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Abstract Energy harvesting (EH) is a promising strategy to prolong the operation of energy-constrained

wireless systems. Simultaneous wireless information and energy transfer (SWIET) is a potential EH tech-

nique which has recently drawn significant attention. By employing SWIET at relay nodes in wireless

relay systems, the relay nodes can harvest energy and receive information from their source nodes si-

multaneously as radio signals can carry energy as well as information at the same time, which solves

the energy scarcity problem for wireless relay nodes. In this paper, we study SWIET for nonregener-

ative orthogonal-frequency-division multiplexing (OFDM) amplify-and-forward (AF) systems in order

to maximize the end-to-end achievable rate by optimizing resource allocation. Firstly, we propose an

optimal energy-transfer power allocation (EPA) policy which utilizes the diversity provided by OFDM

modulation. We then validate that the ordered-SNR (signal-to-noise ratio) subcarrier pairing (SP) is the

optimal SP scheme. After that, we investigate the information-transfer power allocation (IPA) and EH

time optimization problem which is formulated as a non-convex optimization problem. By making the

approximation at high SNR regime, we convert this non-convex optimization problem into a quasi-convex

programming problem, where an algorithm is derived to jointly optimize the IPA and EH time. By ana-

lytical analysis, we validate that the proposed resource allocation scheme has much lower computational

complexity than peer studies in the literature. Finally, simulation results verify the optimality of our pro-

posed resource allocation scheme.
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1 Introduction

In recent years, energy harvesting (EH) has attracted a great deal of attention in wireless communi-

cations [1]. As a promising EH technology to solve energy scarcity issues at energy-constrained wireless

nodes, simultaneous wireless information and energy transfer (SWIET) has recently been proposed in [2].

Since then, various wireless systems have been studied to enable wireless nodes to harvest wireless energy

and receive information simultaneously [3–6]. In wireless relay systems, by employing SWIET at source-

to-relay links, a relay node equipped with EH devices is able to harvest energy from radio frequency (RF)

signals while receiving information from its source. As such, the lifetime of energy-constrained relay

nodes is prolonged, which is practically important for wireless relay systems. Therefore, in [7], the wire-

less relay system with SWIET was firstly studied and two protocols, time-switching relaying (TSR) and

power-splitting relaying (PSR) protocols, were proposed for the EH relay to harvest energy from the

source’s RF signals. With the TSR protocol, the relay spends some time on harvesting energy and the re-

maining time on processing information; with the PSR protocol, the relay uses a portion of received power

to harvest energy and the remaining power to process information. Under TSR and PSR protocols, the

performance of a narrow-band single-carrier amplify-and-forward (AF) relay system was studied in [7].

It is well-known that resource allocation is critical for improving the performance of wireless networks

and wire-lined networks. For instance, by taking into account the traffic type, the total available resources

and the users’ channel qualities, utility-based resource allocation algorithms were provided in [8] to op-

timize the performance of wireless networks. By casting the resource allocation problem into a network

utility maximization model, the optimal algorithms were proposed in [9] to improve performance of wire-

less networks while meeting the various quality-of-service (QoS) requirements of users. Thus, in order

to improve the performance of the SWIET-based wireless relay system, a great deal of research effort

has devoted to how to properly allocate resource in the system recently. Under single-carrier narrow-band

channels, the power allocation strategy in a PSR-based EH relay system with multiple source-destination

pairs has been studied in [10, 11]. More recent studies on SWIET have focused on wireless broadband

relay systems. This is because modern or future wireless communication systems operate in broadband

channels in order to provide transmissions with high data rates. In [12], the resource allocation scheme in

a PSR-based broadband orthogonal-frequency-division multiplexing (OFDM) system with decode-and-

forward (DF) relaying has been investigated. In [13], both PSR-based and TSR-based resource allocations

in a multi-antenna OFDM system with amplify-and-forward (AF) relaying have been studied.

In this paper, we consider a TSR-based OFDM system with a nonregenerative AF relay. We choose

TSR instead of PSR because SWIET is comparatively simple to implement in TSR-based systems as

current commercial circuits are usually designed to receive information and harvest energy separately [4].

Meanwhile, as compared to DF relaying, AF relaying has the big advantage that the relay needs no or

only partly knowledge about the structure and coding scheme of the signal, which allows for the easy

upgrading of a mobile communications system without also having to upgrade the relay stations [14]. As

we mentioned above, TSR-based wireless relay systems have been investigated for narrow-band [7] and

broadband [13] channels respectively. Since the end-to-end achievable rate is not a monotonic function

of the EH time [7,13], both studies have employed brute-force search to achieve the optimal EH time. At
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each search point for the optimal EH time, the transmission power constraint at the relay is determined.

As such, a TSR-based wireless relay system can be equivalently regarded as a traditional wireless relay

system in which the source and the relay have separate power constraints. Then, the problem of optimal

resource allocation for the TSR-based wireless relay system becomes similar to that in the traditional

wireless relay system without SWIET. Such a resource allocation scheme can also be applied to a TSR-

based OFDM AF relay system - to optimize the EH time with brute-force search and then solve the

resource allocation problem for an equivalent traditional OFDM AF relay system. From this point on we

refer to such a resource allocation scheme as the BFS (brute-force searching) scheme. The BFS scheme

has high computational complexity because it is not trivial to obtain the optimal EH time with brute-force

search on a continuous space. Also, the calculation of the optimal resource allocation in a traditional

OFDM AF relay system with separate power constraints at the source and the relay usually involves a

two-dimensional grid search procedure to obtain two optimal Lagrange multipliers [15, 16].

Our objective in this paper is to maximize the end-to-end achievable rates for an OFDM AF relay

system with SWIET by optimizing resource allocation with low computational complexity. Resource

allocation in our AF relay system includes

– EH time optimization determines the time used to transfer energy from the source to the relay. It thus

also determines the time used to transmit information.

– Energy-transfer power allocation (EPA) determines the power allocated to each subcarrier at the

source when the source transfers energy to the relay.

– The pairing of subcarriers determines how the relay combines the subcarriers at the source-to-relay

(SR) link and the relay-to-destination (RD) link to forward information to the destination.

– Information-transfer power allocation (IPA) determines the power allocated to each subcarrier at the

SR and RD links when the source and the relay transmit information.

We first propose an EPA policy that can optimally utilize frequency diversity provided by OFDM mod-

ulation. Then, we validate that the ordered-SNR (signal-to-noise ratio) subcarrier pairing (SP) is optimal

in terms of maximizing end-to-end transmission rates in AF relay systems. The ordered-SNR SP enables

the relay to pair the subcarriers at the SR link and the RD link based on their SNR ordering. Finally, in

order to optimize the EH time and IPA, we formulate a non-convex programming problem, and then con-

vert it into a quasi-convex problem with high SNR approximation. By using the bisection search method

to solve the quasi-convex problem, we derive an algorithm that achieves the optimal IPA as well as the

optimal EH time. Our theoretical analysis shows the much lower computational complexity (as compared

to the BFS scheme) achieved by the proposed new resource allocation scheme.

This paper is organized as follows. Section II proposes the system model. Section III presents the de-

tailed studies on our optimal resource allocation scheme. Section IV demonstrates our simulation results

which verify the optimality of our proposed resource allocation scheme. Section V concludes the paper.

2 System model and problem formulation

Consider an OFDM AF relay system with a source node (S), a destination node (D), and an EH relay

node (R) as illustrated in Fig.1(a). The destination does not directly communicate with the source due
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Fig. 1 System model and signal processing at the two-hop OFDM AF relay system with SWIET
.

(a) System model; (b) signal processing at the energy harvesting relay node.

to distance or obstacles, thus the relay assists communication between the source and the destination

[15–17]. The source has fixed energy supply while the relay is energy-constrained which needs to harvest

energy from RF signal transmitted by the source and operates with the TSR protocol.

The transmission from the source to the destination is on a time-frame basis. Each time frame with

equal duration, denoted as T , is divided into three time slots with one fraction of αT and two fractions of

(1− α)T/2. During the first time slot with a duration of αT , the relay harvests energy transferred by the

source to charge its battery. During the second time slot with a duration of (1−α)T/2, the relay receives

the information signals transmitted by the source. The above processes are illustrated in Fig. 1(b). During

the third time slot with a duration of (1−α)T/2, the relay amplifies and forwards the received information

signals to the destination by using the harvested energy at the first time slot. The information transmission

during the second and third time slots is implemented on a SP basis, where the information transmitted by

the source on one subcarrier at the first hop is forwarded by the relay to the destination on one designated

subcarrier at the second hop [15–17]. The subcarrier pair set is denoted asN = {1, 2, · · · , N}, where N

is the subcarrier number in the considered system.

The channel is assumed to be block fading, i.e., the channel gains are constant within the duration

of one frame, but vary independently from one frame to another. Denote hSRn and hRD
n as the channel

responses of the source-relay (SR) link and relay-destination (RD) link on subcarrier n, respectively.

The variances of the received additive white Gaussian noises (AWGN) at the relay and the destination

are denoted as σ2
R and σ2

D, which is uniformly distributed over all subcarriers. Then, γSRn =
|hSR

n |
2

σ2
R/N

and

γRD
n =

|hRD
n |

2

σ2
D/N

are the normalized channel gains.
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Let pE =
{
pS,Em ≥ 0,m = 1, 2, · · · , N

}
be the EPA policy, where pS,Em denotes the source’s transmit

power allocated to the mth subcarrier for the purpose of energy transfer. Then, the energy harvested at

the relay can be expressed as [4]
E = αT

N∑
m=1

τpS,Em
∣∣hSRm ∣∣2 (1)

where 0 < τ < 1 is the energy conversion efficiency which depends on the rectification process and the

EH circuitry. Moreover, let pI =
{
pS,In ≥ 0, pRn ≥ 0, n ∈ N

}
be the IPA policy, where pS,In and pRn denote

the transmission power allocated on the subcarriers of subcarrier pair n ∈ N at the source and the relay

respectively for information transmission purposes. It is assumed that the harvested energy at the relay

is used for the relay’s information transmission, and the energy consumed in transmission should not be

larger than the harvested energy [7, 10–13]. Thus, pRn must satisfy

(1− α)
2

N∑
n=1

pRn ≤ α
N∑
m=1

τpS,Em
∣∣hSRm ∣∣2 (2)

For the OFDM AF relay system with SWIET, the end-to-end achievable rate can be expressed as [15]

R =
(1− α)B

2N

N∑
n=1

log2

(
1 +

pS,In γSRn pRnγ
RD
n

pS,In γSRn + pRnγ
RD
n + 1

)
(3)

where B is the total spectral bandwidth in the unit of Hz. Thus, we can formulate resource allocation

problem to maximize the end-to-end achievable rate such as follows

max
α∈[0,1],pE,pI,N

R

s.t. (2),
N∑
m=1

pS,Em ≤ PS,
N∑
n=1

pS,In ≤ PS (4)

where PS is the maximum allowable transmit power at the source.

3 Optimal resource allocation

3.1 Optimal power allocation for energy transfer

During the first time slot, the source transfers energy to the relay. Considering the transmission power

constraint at the source and according to (1), we have

E = αT
N∑
m=1

τpS,Em
∣∣hSRm ∣∣2 ≤ αTτPS max (H) (5)

whereH ,
{∣∣hSRm ∣∣2 ,m ∈ N}. The inequality in (5) indicates, in order to maximize the harvested energy

at the relay, the source should allocate all the available power to the subcarrier which has the maximum

channel gain. Thus, we obtain the optimal EPA policy as follows:
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Proposition 1 For the OFDM AF relay system with SWIET, the optimal EPA pS,Em for problem (4) is

pS,Em =

PS, m = argmax
m

{∣∣hSRm ∣∣2},

0, otherwise.
(6)

Based on proposition 1, (1) can be rewritten as

E = αGT (7)

where G , τPS max (H) is a constant.

3.2 Optimal subcarrier pairing

As the optimal EPA is determined, problem (4) can be simplified as follows:

max
α∈[0,1],pI,N

R (8a)

s.t.
(1− α)

2

N∑
n=1

pRn ≤ αG (8b)

N∑
n=1

pS,In ≤ PS (8c)

It is noted that given any α, problem (8) is equivalent to the resource allocation problem for the tra-

ditional OFDM AF relay system with separate power constraints at the source and the relay. For such

traditional OFDM AF relay system, it has been proved in [15] that the optimal SP to maximize the end-

to-end achievable rate is to pair the SR and RD subcarriers at the relay with ordered-SNR SP, i.e., the

SR subcarrier with the strongest channel gain is paired with the RD subcarrier with the strongest channel

gain, the SR subcarrier with the second strongest channel gain is paired with the RD subcarrier with the

second strongest channel gain, and so forth . Thus, we provide the following proposition.

Proposition 2 The optimal subcarrier pair set N for problem (4) can be obtained with the ordered-

SNR SP.

3.3 Optimal EH time and IPA

Based on the optimal ordered-SNR SP, we can reduce problem (8) to the optimization of EH time

and IPA only. Nevertheless, the power constraint in (8b) is non-convex, thus problem (8) is a non-convex

optimization problem, which is hard to solve directly.

We observe that the objective function in problem (8), which is provided in (3), is a non-increasing

function of α. Meanwhile, according to (8b), we can obtain

α ≥
1
2

∑N
n=1 p

R
n

1
2

∑N
n=1 p

R
n +G

(9)
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Thus, the optimal α satisfies the equation

α =
1
2

∑N
n=1 p

R
n

1
2

∑N
n=1 p

R
n +G

(10)

Submitting (10) into (3), we have

R =
GB

N
(∑N

n=1 p
R
n + 2G

) N∑
n=1

log2

(
1 +

pS,In γSRn pRnγ
RD
n

pS,In γSRn + pRnγ
RD
n + 1

)
(11)

At high-SNR region, we can rewrite (11) to obtain the upper-bound approximation of the end-to-end

achievable rate such as

Rup =
GB

N
(∑N

n=1 p
R
n + 2G

) N∑
n=1

log2

(
1 +

pS,In γSRn pRnγ
RD
n

pS,In γSRn + pRnγ
RD
n

)
(12)

This upper bound becomes tight as the channel gains of the subcarriers increase [15]. Therefore, the IPA

solution obtained using (12) is asymptotically optimal.

Then, we can simplify problem (8) such as

max
pI

Rup s.t.
N∑
n=1

pS,In ≤ PS (13)

However, the objective function of problem (13), which is provided in (12), is still non-convex. Fortu-

nately, we observe that this function is quasi-concave, which is just as stated in the proposition as follows

Proposition 3 The rate function in (12) is a quasi-concave function.

Proof : The rate function in (12) is quasi-concave if all superlevel sets of the objective function are

convex. For any λ ≥ 0, the superlevel set of the objective function is expressed as follows

Sλ =

{
pI : GB

N∑
n=1

log2

(
1 +

pS,In γSRn pRnγ
RD
n

pS,In γSRn + pRnγ
RD
n

)
−λN

(
N∑
n=1

pRn + 2G

)
≥0

}
.

It can be proved that Sλ is a convex set. �

In addition, the constraints in problem (13) are affine. Therefore, we propose to solve the problem

with the quasi-convex optimization method [18] on the basis of proposition 3. Firstly, problem (13) can

be equivalently rewritten as

min : µ

s.t.max
pI

GB

N(
∑N

n=1 p
R
n+2G)

∑N
n=1 log2

(
1 +

pS,In γSR
n pRnγ

RD
n

pS,In γSR
n +pRnγ

RD
n

)
≤ µ

s.t.
∑N
n=1 p

S,I
n ≤ PS

 (14)

by introducing a variable µ as an upper bound on problem (13). This step holds since minimizing µ is

the same as finding the least upper bound of the objective function in problem (13). This is equal to

the maximum value of the objective function in problem (13), which exists, as seen by straightforward

continuity argument.
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Furthermore, problem (14) can be equivalently rewritten as follows

min : µ

s.t.min
pI

µN
(∑N

n=1 p
R
n + 2G

)
−GB

∑N
n=1 log2

(
1 +

pS,In γSR
n pRnγ

RD
n

pS,In γSR
n +pRnγ

RD
n

)
≥ 0

s.t.
∑N
n=1 p

S,I
n ≤ PS

 (15)

Then, µ is a true upper bound if the problem

min
pI

µN

(
N∑
n=1

pRn + 2G

)
−GB

N∑
n=1

log2

(
1 +

pS,In γSRn pRn γ
RD
n

pS,In γSRn + pRnγ
RD
n

)

s.t.
N∑
n=1

pS,In ≤ PS (16)

has a non-negative optimal value. It can be easily proved that the objective function in (16) is convex [18].

Thus, problem (16) is a convex problem, which has a globally unique optimal solution. By using the

Karush-Kuhn-Tucker (KKT) conditions [18] (details in Appendix 1), we can obtain the optimal solution

of problem (16) as 
pS,In =

W√
υγRD

n

[
Q
γRD
n

W 2
− 1

γSRn

]+
,∀n (17)

pRn =
W√
µNγSRn

[
Q
γSRn
W 2
− 1

γRD
n

]+
,∀n (18)

where W ,
√
µNγSRn +

√
υγRD

n , x+ , max(x, 0), Q = GB
log(2) and υ is the Lagrange multiplier

determined by the maximum available power constraint in (16). It is noted that the optimal power alloca-

tion in (17) and (18) is a multi-level water-filling policy, since the water surface is different for different

subcarriers.

As the optimal solution for problem (16) is obtained, we can solve problem (13) using a standard

bisection procedure as summarized in Algorithm 1, where ε denotes the predefined accuracy of bisection

search over µ and U is the upper bound of the optimal value of problem (13),

U = BN log2

(
1 + PS max

n
γSRn

)
which is obtained by considering the maximum achievable rate from source to relay.

3.4 Complexity analysis

We have derived the optimal resource allocation scheme for TSR-based OFDM AF relay systems in

previous subsections. Meanwhile, as mentioned in section 1, the optimal resource allocation for TSR-

based OFDM AF relay systems can also be obtained with the BFS scheme by optimizing the EH time

with brute-force search, which is just as those in [7] and [13] for TSR-based wireless relay systems. As

for the BFS scheme, we have to exhaustively search for the optimal α for problem (8) and solve problem
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Algorithm 1: Joint IPA and EH time optimization for OFDM AF relay systems with SWIET

1: Initialization: µl = 0, µu = U and t = 0;

2: Repeat:
µ(t) = 1

2 (µl + µu);

Obtain pS,In and pRn , n ∈ N , by multi-level waterfilling;

pS,In (t) = pS,In , pRn (t) = pRn ;

If µN
(

N∑
n=1

pRn (t) + 2G

)
−GB

∑N
n=1 log2

(
1 +

pS,I
n γSR

n pRnγ
RD
n

pS,I
n γSR

n +pRnγ
RD
n

)
≥ 0

µu = µ(t);

else µl = µ(t);

t = t+ 1;

3: Until: µu − µl < ε

4: Obtain the optimal IPA and EH time:
pS,In = pS,In (t), pRn = pRn (t);

Calculate the optimal EH time according to (10).

(8) at each search point of α. As a result, the BFS scheme has much higher computational complexity

than our proposed resource allocation scheme, which can be validated as follows.

Firstly, for our proposed resource allocation scheme, the computational complexity of the bisection

search used in Algorithm 1 is O
(
log2

(
ε−1
))

. To calculate the optimal IPA, one optimal Lagrange mul-

tiplier υ is to be determined (refer to (17) and (18)). Let δ be the predefined accuracy of calculating

the optimal Lagrange multiplier by the gradient method [18]. Then, the computational complexity is

O
(
log2

(
δ−1
))

as the bisection search method is employed to calculate the optimal Lagrange multiplier.

As the optimal Lagrange multiplier υ is determined, the complexity of the calculation IPA by (17) and

(18) is N . Thus, the general computational complexity of our proposed resource allocation scheme is

O
(
log2

(
ε−1
) (

log2
(
δ−1
)
+N

))
.

Secondly, for the BFS scheme, the computational complexity of the brute-force search can be eval-

uated as O
(

1
∆α

)
, where ∆α is an update step for the exhaustive search on a continuous interval [0, 1].

Furthermore, the calculation of IPA in a traditional AF OFDM relay system [15] requires calculating two

optimal Lagrange multipliers, whose computational complexity is O
(
1/δ2

)
as the gradient method is

used to calculate the two optimal Lagrange multipliers. Thus, the general computational complexity of

the BFS scheme is O
(

1
∆α

(
1
δ2 +N

))
.

Without loss of generality, let ε = δ = ∆α = ς = 0.001 and N = 2048. Then, for our proposed

resource allocation scheme, the general computational complexity is about 2 × 104. Meanwhile, for the

BFS scheme, the general computational complexity is about 109. That is, the computational complexity

of our scheme is about 5× 104 times lower than that of the BFS scheme.
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4 Simulation results

We verify the performance of our proposed resource allocation scheme by computer simulations in

this section. In the simulations, the total number of subcarriers in our OFDM AF relay system is set as

N = 32. The channel responses over each subcarrier are independent and identically distributed complex

Gaussian random variables with unit variances, which means that the amplitudes of channel responses

are Rayleigh distributed. The large-scale path loss is modeled as d−2, where d is the distance between

two nodes. The distance between the source and the destination is set as dSD =100m. The total system

bandwidth is set as B = 5MHz. The maximum allowable transmit power at the source is set as PS =

10dBm. The variance of the receiving noise at the relay and destination is set as σ2
R = σ2

D = −70dBm.

The energy conversion efficiency is τ = 0.9. All configuration parameters mentioned above will not

change in the following simulations unless specified otherwise.

In Fig.2, we compare the end-to-end achievable rates achieved by different resource allocation schemes

as the location of the relay varies. The compared schemes are our proposed optimal resource allocation

scheme (denoted as ’Proposed optimal scheme’ in the legend), the BFS scheme and the scheme with fixed

α (denoted as ”Fixed EH time”). The BFS scheme is obtained by solving problem (13) as α is given and

optimizing α with brute-force search. The Fixed EH time is obtained by solving problem (8) with fixed

α. For our proposed optimal resource allocation scheme, we illustrate the upper bound (denoted as ”UB”

in the legend) and lower bound (denoted as ”LB” in the legend) of the achieved rates. For other schemes,

we only illustrate the upper bound of the achieved rates for convenience of observation. The upper bound

is obtained by optimizing the resource allocation with the end-to-end achievable rate at high SNR ap-

proximation. The lower bound is obtained with the actual rate calculated with the optimal solutions at

high SNR approximation. From Fig.2, it is observed that both the proposed optimal resource allocation

scheme and the BFS scheme achieve the maximum rates. Also, it is observed that the proposed optimal

resource allocation scheme outperforms the schemes with fixed EH time. Furthermore, for our proposed

optimal scheme, we magnify the upper and lower bounds of the achieved rates as κ =0.7, 0.8 and 0.9.

From the magnified results, it is observed that the lower bound and upper bound of the proposed optimal

resource allocation scheme are almost the same for all relay locations, except for the case that as κ = 0.9,

where the upper bound is a little larger than the lower bound. This indicates that the actual rates obtained

with the lower bound are nearly optimal. Moreover, it is interesting to note that the optimal rates are larger

as the relay locates near by the source or the destination, compared to those as the relay locates halfway

between the source or the destination. This is contrast with that for traditional wireless relay systems with

fixed power supply at the relay, where the largest rate is achieved just as κ = 0.5 [15, 16].

In Fig.3, we illustrate the optimal α and the consumed power at the source and the relay as the relay

location varies. From Fig.3, it is observed that the the optimal α is the largest as κ = 0.5. This indicates

that the relay harvests most energy as the relay locates halfway between the source and the destination.

Moreover, it is observed that the power consumed at the source is equal to its allowable transmit power

wherever the relay locates, while the power consumed at the relay decreases as the relay moves from the

source towards the destination. Furthermore, according to Fig.2 and Fig.3, it is observed at as κ varies
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Fig. 3 Optimal EH time and consumed power at the source and the relay as the relay location varies

from 0.2 to 0.8, the optima α is approximately equal to 0.9, while the rate achieved by the the scheme

with fixed EH time α = 0.9 approaches to that achieved by the proposed optimal scheme.

In Fig.4, we compare the rates achieved by different resource allocation schemes as PS varies, where

the relay location indicator is set as κ = 0.8. The compared schemes are the same as Fig.2. In addition, we

also illustrate the optimal α in Fig.4. From Fig.4, it is observed that both the proposed optimal resource

allocation scheme and the BFS scheme achieve the maximum end-to-end rates for all PS. Also, it is

observed that the proposed optimal resource allocation scheme outperforms the schemes with fixed EH

time for all PS. Moreover, it is also observed that the EH time decreases as the PS increases, which means

that more time can be used for information transmission and thus the achieved rate can be increased.

Especially, it is noted that as PS decreases to 0dBm, the optimal α is approaches to 0.9 and the rate

achieved by the scheme with fixed EH time α = 0.9 approaches to that achieved by the optimal scheme.

Meanwhile, as PS = 40dBm, the optimal α is approximately equal to 0.5 and the rate achieved by the

scheme with fixed EH time α = 0.5 approaches to that achieved by the optimal scheme.



12 Gaofei Huang, Wanqing Tu

0 10 20 30 40 50
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

R
a

te
s
 (

k
b

p
s
)

 
S
!(dBm)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

 

Proposed optimal scheme: UB

Proposed optimal scheme: LB

BFS scheme

Fixed EH time:  =0.1

Fixed EH time:  =0.5

Fixed EH time:  =0.9

Optimal  

Fig. 4 Average rate and optimal α as PS varies and κ = 0.8; comparison of the optimal resource allocation scheme with the
schemes with fixed EH time.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

 
S
!(dBm)

R
a

te
s
(k

b
p

s
)

0 5 10
0

25

50

Proposed optimal scheme: UB

Proposed optimal scheme: LB

Fig. 5 Performance loss evaluation of our proposed scheme at low SNR regime; comparison of the upper bound and lower bound
of optimal rate achieved by our proposed scheme.

Since our proposed scheme is obtained by high SNR approximation, there will be performance loss at

low SNR regime, which is just illustrated in Fig.5. For observation convenience, we set the noise power

as -50dBm to obtain the results in Fig.5, which is larger than that in the previous simulations. By Fig.5,

it is observe that as SNR is low, i.e. PS varies from 0dBm to 10dBm, the achieved rate by our proposed

scheme with the lower bound is smaller than that depicted as the upper bound, though the gap can be

negligible at high SNR regime.

In Fig. 6, to evaluate the impact of SP, we compare the actual end-to-end achievable rates achieved

by the ordered-SNR and no ordered-SNR SP schemes as the number of subcarriers N varies, where the

no ordered-SNR SP scheme means that the relay pairs the nth subcarrier at the SR link with the nth

subcarrier at the RD link without sorting these subcarriers in advance. For both SP schemes, the EH

time and PA are optimized according to the statement in previous section. The relay location indicator

κ is set as 0.1, 0.5 and 0.9, respectively. From Fig.6, it is observed that the ordered-SNR SP achieves
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Fig. 6 Average end-to-end achievable rate versus N ; comparison of ordered-SNR SP scheme with no ordered-SNR SP scheme.

the maximum end-to-end rate. Especially, for the case that the relay locates near by the destination, i.e.

κ = 0.9, ordered-SNR SP can achieve a significant performance gain over no ordered-SNR SP.

5 Conclusion

In this paper, we investigated the problem of optimizing the EH time, SP, EPA and IPA in order to

maximize end-to-end achievable rates for OFDM nonregenerative AF relay systems with SWIET. An

optimal EPA policy was first proposed to transfer energy from the source to the relay. Then, we validated

that ordered-SNR SP is globally optimal. After that, the EH time and IPA was jointly optimized by

solving a quasi-convex programming problem with bisection search. Our theoretical analyses showed

that the proposed optimal resource allocation has much lower computational complexity than the peer

studies do in the literature. Finally, the simulation results demonstrated the optimality of our proposed

resource allocation scheme.

Acknowledgements The research work was supported by the Guangdong natural science foundation (No. 2014A030310349),

Guangdong science and technology project (No. 2016A010101032, 2013B010402018, 2013B020200016, 2012A010800009), Guangzhou

science and technology project (No. 2014J4100142, 2014J4100233), Guangzhou education bureau science and technology project

(No. 2012A082) and Guangzhou college and university science and technology project (No. 1201421329). The work of Dr. Tu in

this paper was supported by the U.K. EPSRC under Grant EP/J017159/1.

APPENDIX 1 : DERIVATION FOR THE OPTIMAL SOLUTIONS IN (17) and (18)
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Since (16) is a convex optimization problem, the solution can be obtained with KKT conditions. Using

standard optimization technique, construct the Lagrange function as follows:

L = µN

(
N∑
n=1

pRn + 2G

)
−GB

N∑
n=1

log2

(
1 +

pS,In γSRn pRnγ
RD
n

pS,In γSRn + pRnγ
RD
n

)
+ υ

(
N∑
n=1

pS,In − PS

)

= µN

(
N∑
n=1

pRn + 2G

)
−GB

N∑
n=1

log2
(
pS,In γSRn + pRnγ

RD
n + pS,In γSRn pRn γ

RD
n

)
+GB

N∑
n=1

log2
(
pS,In γSRn + pRnγ

RD
n

)
+ υ

(
N∑
n=1

pS,In − PS

)
(19)

where υ ≥ 0 is the Lagrange multiplier. Then the optimal solutions pS,In and pRn must satisfy the following

equations:
∂L

∂pS,In
=

GB

log 2

[
γSRn

pS,In γSRn + p
pRn
n γRD

n

− γSRn + pRn γ
SR
n γRD

n

pS,In γSRn + pRn γ
RD
n + pS,In γSRn pRnγ

RD
n

]
+ υ = 0 (20)

∂L

∂pRn
=

GB

log 2

[
γRD
n

pS,In γSRn + pRn γ
RD
n

− γRD
n + pS,In γSRn γRD

n

pS,In γSRn + pRn γ
RD
n + pS,In γSRn pRnγ

RD
n

]
+ µN = 0 (21)

By (20) and (21), we have
γSRn

(
pRnγ

RD
n

)2
=
υ log 2

GB

(
pS,In γSRn + pRnγ

RD
n

) (
pS,In γSRn + pRnγ

RD
n + pS,In γSRn pRnγ

RD
n

)
(22)

γRD
n

(
pS,In γSRn

)2
=
µN log 2

GB

(
pS,In γSRn + pRnγ

RD
n

) (
pS,In γSRn + pRnγ

RD
n + pS,In γSRn pRnγ

RD
n

)
(23)

Then, by (22) and (23), we have

pRn = pS,In

√
υγSRn
µNγRD

n

(24)

Substituting (24) into (22), we obtain the optimal solution pS,In as in (17). After obtaining pS,In , we can

obtain pRn as in (18) by (24).
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