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Abstract 
Wind Turbines require numerous and varied types of maintenance activities throughout their lifespan, the frequency of which 
increases with years in operation. At present the proportion of maintenance cost to the total cost for wind turbines is significant 
particularly for offshore wind turbines (OWT) where this ratio is ~35%. If this ratio is to be reduced in-spite of adverse operating 
conditions, pre-mature component failures and absence of reliability database for wind turbine components, there is a need to 
design unconventional maintenance scheme preferably by including novel failure prediction methodologies. Several 
researchers have advocated the use of Artificial Neural Networks (ANN), Bayesian Network Theory (BNT) and other statistical 
methods to predict failure so as to plan efficient maintenance of wind turbines, however novelty and randomness of failures, 
nature and number of parameters involved in statistical calculations and absence of required amount of fundamental work 
required for such advanced analysis have continued to maintain the high cost of maintenance. This work builds upon the 
benefits of condition monitoring to design methods to predict generic failures in wind turbine components and exhibits how such 
prediction methods can assist in cutting the maintenance cost of wind turbines. This study proposes using a dedicated tool to 
assist with failure prediction and planning and execution of wind turbine maintenance. The design and development of such an 
all-inclusive tool will assist in performing administrative works, inventory control, financial calculations and service management 
apart from failure prediction in wind turbine components. Its database will contain reference to standard management practices, 
regulatory provisions, staff details and their skillsets, service call register, troubleshooting manuals, installation guide, service 
history, details of customers and clients etc. that would cater to multiple avenues of wind turbine maintenance. In order to build 
such a software package, a robust design of its database is crucial. This work lists prerequisites for choosing a physical 
database and identifies the benefits of relational database software in controlling large amounts of data of various formats that 
are stored in such physical databases. Such a database would be an invaluable resource for reliability studies, an area of 
interest for both academic researchers and the industry that are identifying avenues to economise wind turbine operations. 
 
Keywords: wind turbines, failure prediction, condition based maintenance, artificial neural network, Bayesian network, 
maintenance tool, database, offshore wind turbines, efficient maintenance, reliability database   

 

1. Introduction 
Early failure detection is critical in planning for maintenance and preventing failure. However for Wind 

Turbines, that is a prominent source of electrical energy in many countries having both onshore and offshore 
variants, failure prediction is full of challenges. Partly, this is due to the large number of components in wind 
turbines (an offshore wind Turbine contains >10,000 components) that gives rise to thousands of root causes and 
failure combinations (10,000 components if on an average fail due to 5 root causes in 5 different types, this would 
give a total of 250,000 root cause and failure combinations). As an example, root causes of failures for wind 
turbine generator are varied and result in electrical faults, stator and rotor faults, fault in power electronic devices, 
sensors and associated circuits, etc. Common failures in wind turbine gearbox are pitting, spalling, tooth 
breaking, bearing ring and bearing roller failures1,2, etc. that arise from loss of lubricants, excessive vibration in 
some loose components etc. Similarly failure in turbine hub can occur from cracks, misalignment of blades, 
prolonged interaction with wind, dust and ice build-up, etc. whereas failure in blades can occur due to unbalanced 
masses, aerodynamic asymmetry and misalignment3. Failure in the main shaft can occur due to fatigue, 
misalignment, expansion, friction, wind turbulence, cavitation, inherent defects4 etc. whereas common failures in 
the electrical system are short and open circuits, fused, burning, malfunction of electronic and electrical parts5,6, 
sensor and controllers failures etc. Many of these failure occur due to design and manufacturing faults7,8,9,10,11. 
Similarly there are many other types of failures in wind turbine components12,13,14,15,16,17,18,19.  

Failure prediction for wind turbine components is also challenging as historically rotating machineries were 
largely used under controlled conditions for which reliability data exists, however their operation under stochastic 
conditions, like offshore weather and onshore windy terrains, is new and not well understood. The confidentiality 
surrounding wind turbine component failures has made it difficult to build a reliability database that has further 
made it difficult to study such failures and design methods to predict failures and use existing prediction methods. 
It is important that as a first step a generic framework for studying failures and reliability studies is built that can 
later be expanded to meet site or turbine specifications. Design of such a reliability database has been proposed 
by Sinha (2015)20.  

A major benefit of failure prediction is the lead time to failure that gives time to optimise activities, a 
practice that can control costs by availing best suited resources at most economical prices and avoiding 
purchase of high cost items on short notices. This is of particular interest to offshore wind turbine (OWT) 
operators due to their higher maintenance and operating costs as compared to onshore wind turbine (OnWT) 
operators (maintenance cost to total cost ratio for OWT and OnWT are ~35% and ~15%21,22respectively). Using 
failure prediction, an offshore vessel of correct capacity can be hired to meet the specific requirement of 
maintenance rather than paying higher amount for bigger offshore vessels for urgent requirements. Offshore 
transportation being very costly, can cost thousands to tens of thousands of pounds per day23, any saving made 
on this can be a big overall saving. As OWT have distinct advantages over OnWT24,25,26 and as their 
maintenance is costlier than OnWT maintenance cost, in this work, whenever a discussion is done about cutting 
costs, the work will take case scenario of OWT. However challenges associated with controlling high cost of wind 
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turbine maintenance is not only related to predicting failures. They are multifaceted and involve costs and 
difficulties associated with management of transportation, inventory (spares), skilled and unskilled manpower, 
health and safety, cost of offsetting safety risks, cost of maintenances deferment, etc. The cumulative financial 
impact of these challenges has resulted in elevating the Levelised Cost of Energy (LCoE) that for OWT and 
OnWT are ~ £130/MW and ~£110/MW (for >5MW OnWT) respectively27, whereas for coat, petroleum, and 
biomass etc. LCoE is < £100/MW. Thus methods that are developed to control the maintenance cost of OWT and 
OnWT would invariably indorse this business. In order to cater to these requirements, there is a need for a tool 
that can assist in performing these functions and cater to the requirements of company-wide departments.      

In order to take advantage of the lead time provided by failure prediction and accurately plan for CBM 
style maintenance, there will a requirement to work with company-wide departments, external regulators and 
service providers. This will require both time and expenditure. However a tool that is designed and developed to 
meet such requirements would greatly assist maintenance planners. Such a tool would be a great asset in 
establishing the root cause of failure and hence to plan appropriate maintenance. For example in rotating parts, 
like shaft, that fails due to fatigue and cracking, establishing fatigue to be the cause of failure would need to be 
justified by the higher than normal speed of shaft during operation, a data that would need evidence from speed 
monitoring of the shaft. Alternatively if misalignment of shaft had caused failure, evidence would be needed for 
variation in its inclination angle over a period of time. Again this is something that would need monitoring data as 
evidence. Similarly a shaft that fails due to its internal defects would release higher amount of energy over a 
period of time before failing when compared to a normal shaft. Numerous such failures need to be studied to 
determine the true root cause of failure28,,29,30,31,32,33,34,35,36,37,38 in a wind turbine, a number that cannot be 
managed manually. Hence there is need of a tool that can provide assistance in management of wind turbine 
maintenance. Some prerequisites for such a tool were discussed by Sinha et al. (2013)39. Such a tool would be 
different from the available tools that are generally designed to monitor wind turbine components or detect failure, 
like WAsP, WindPRO, SCADA and WANSYS. This novel tool would largely assist with integration of multitude of 
information, right from automatic failure detection, to anticipating date for next maintenance, to calculating cost of 
implementing next maintenance, to providing reference to stored information, like regulatory provisions, personal 
management, call register etc., and right to the administrative aspect of planning maintenance40,41,42. This work 
discusses about the usefulness of designing a robust database for such a tool, its prerequisites and advantages.  
 
SECTION A 
A1.   Planning for a CBM maintenance 

Condition Based Maintenance (CBM) is a scheme where maintenance is planned when components of a 
machine starts to show signs of malfunction, not necessarily a complete failure. CBM has assisted in reducing 
downtime, lower spares requirements and economise machine maintenance in several industries43,44,45,46 and 
this work aims to utilise the benefits of CBM to predict failures in wind turbine components. In this scheme the 
operation of machine components are monitored using properties like vibration47,48, acoustics49,50, strain51,52, 
shock53,54, ultrasonic waves55,56, viscosity and composition of lubricating oil57,58, electrical parameters59,60, 
performance parameters61,62,63, radio waves64, temperature65, electrical signals66,67,68 and others 
parameters69,70. Failures in components are then detected by studying these outputs and comparing it to 
standard results. Once some abnormalities are detected these components are classed as failing and so 
preventive maintenance is planned. Many supplementary techniques are also used to assist in decoding failures 
in components, like the use of Fast Fourier Transformation71, Time-Frequency Representation, Time Scale 
Decomposition72, AM/FM technique73 etc. to analyse electrical signals74,75. The information obtained from 
monitoring is also useful for designing reliable component76,77,78 and reduce component failure. Supervisory 
Control and Data Acquisition (SCADA) systems, like Wind Power Dashboard, CONCERTO, Wind Net79,80 etc. 
are modules that collect condition monitoring signal from wind turbine controller and transmits it to remote 
locations where these signals are studied and failures are detected. A Wind Turbine controller collects signal and 
data from sensors attached to the monitored components and either stores it locally or sends it via a transmitting 
medium or instruments like SCADA system to remote offices. As sensors need to function correctly for monitoring 
of components and proper operation of wind turbines, it is important that these sensors are also proactively 
maintained and checked for any malfunction. To give an example of the role of sensor in wind turbine operation, 
the outputs of wind vane are used to orient and align the nacelle and blades of wind turbines in the direction of 
the incoming wind. If due to faulty sensors, this is not done actively, this might result in failures to creep in 
associated components. Hence, by making use of existing sensors, CBM cuts down cost of special instruments 
that are useful for failure detection, such as in the case of inspection methods. However cost of sensors, its 
implementation and periodic services adds to the overall cost to wind turbine maintenance81,82,83 and so a trade-
off is often established between cost and benefits when deciding upon what and how many components are to be 
monitor in the wind turbines84.  

To demonstrate an example of CBM based maintenance planning, let us assume the case of many OWT 
operating alongside each other in the offshore site. This has been shown in Figure 1. Further let us assume that 
continuous monitoring of OWT results in the detection of failures in the sub-systems, assemblies, subassemblies 
and components of various OWT. These failures can be uniquely represented by codes as shown in Figure 1. All 
such failures and faults in various OWT are compiled in a list called a Failure and Fault List (FFL). Now, based on 
the policy to decide and plan for maintenance, resources are assembled and maintenance is executed. FFL is 
useful in deciding on the type and quantity of resources that would be required for any maintenance manoeuvre. 
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As CBM provides lead time to failure, any staff training or specialised resources can be procured in given time. 
Any learning from maintenance execution is incorporated in the future trainings.    

 

Figure 1   A setup for CBM based offshore wind farm maintenance program 

  
Different wind turbine service operators may use different versions of CBM methodology, however this study 

recommends using a CBM based maintenance scheme that has been shown in Figure 2 to observe, anticipate 
and fine tune the anticipation level of failures in wind turbines. In line with the process shown in Figure 1, in 
Figure 2, the condition of wind turbine parts are monitored for failures on an active basis. The data obtained from 
online monitoring and any inspections performed on wind turbine components are processed and condition of 
OWT components are determined. Such analysis is fed into a custom made Bayesian network to anticipate any 
other additional failures and faults that might have been in incipient mode and was not detected. All such 
observed and anticipated failures are recorded in FFL. Since, information related to wind turbine failures are not 
readily available, a customised intelligent system, like Artificial Neural Network, is used to remember and update 
information related to circumstances surrounding failures, their impact level and other related information. In this 
way, it will be possible to find tune prediction of various failures with time and conditions surrounding failures. 
This is important since all wind turbines, especially offshore based wind turbines operate under varied conditions 
and hence their failures and failure patterns are different. By having knowledge of failures, suitable techniques 
can be designed to determine vulnerability of wind turbine failure, like by using Reliability Block Diagram. So, by 
using the concept of Artificial Neural Network and Bayesian Network, an up-to date reliability database can be 
developed that will only assist in improving the confidence level of anticipating failures in OWT and hence assist 
in planning better and economical maintenance. By saving time and cost, and by improving maintenance, such a 
model is of great assistance in optimising wind turbine maintenance.    
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Figure 2   Diagram shows a CBM scheme to plan for wind turbine maintenance 

A2.   Components in wind turbines  
The first step of Figure 2 identifies various components in wind turbines. EU FP7 ReliaWind Consortium85 

has proposed a list of wind turbine components in various subsystems, assemblies and subassemblies of wind 
turbines. An abridged list of this proposal is shown in Table 1. In this listing there are more than 150 different 
types of components varying from hose and pump to data and signal cables and switches. Although this listing 
can be further expanded into much smaller units like subcomponents and its parts, however as a first step 
towards designing CBM maintenance as shown in Figure 2, for this study the list proposed by EU FP7 ReliaWind 
Consortium has been taken. This decision has also been made as the cost of maintenance for failures below 
component level may actually be higher its benefits.   

 
System Subsystem Assembly Subassembly Component 

W
in

d 
Tu

rb
in

e 

Drive Train Module, 
Electrical Module, 
Nacelle Module, Rotor 
Module, Support 
Structure, Collection 
System, Metrological 
System, Substation 

Gearbox, Generator, Main 
Shaft Set, Auxiliary 
Electrical System, Control 
& Communication 
System, Frequency 
Converter, Power 
Electrical System, 
Hydraulic System, Nacelle 
Auxiliary, Yaw System, 
Blade, Pitch System, 
Foundation 

Bearing, Cooling System, 
Lubrication System, Metrological 
/ Nacelle/ other Sensors, Rotor, 
Structural & Mechanical, High / 
Low Speed Side, Mechanical 
Brake, Electrical Services, 
Lightening Protection System, 
Ancillary Equipment, 
Communication System, 
Condition Monitoring System 

Hose, Pump, Radiator, Thermostat, Motor, 
Bushing, Case, Mounting, Torque Arm, Filter, 
Debris/Level/Pressure/Temp Sensor, Fan, 
Resistance Controller, Lamination, Slip Ring, 
Encoder, Wattmeter, Magnet, Coupling, Rotor 
Lock, Shaft, Transformer, High speed / 
position sensor, Fan, Fuse, Relay, Switch, 
Power, Point, Pushbutton, Space Heater, 
Surge,  Arrester, UPS, Circuit Breaker, Cable, 
Analogue Digital I/O, Data logger, Protocol, 
Adapter Card, CPU, Watch Dog Unit, Control 
Software, Power / Vibration / Watch Dog 
Switches          

 

Table 1   An abridged listing of EU FP7 ReliaWind Consortium proposed wind turbine parts 
 
A3.   Inspection Techniques for OWT 

Several online and offline manual methods are used to inspect wind turbine components. Such inspection 
techniques are important for condition monitoring OWT components and in establishing and predicting failures. 
Some of these methods for various components and assemblies of wind turbines have been compiled in Table 1. 
It can be observed from Table 1 that for majority of components and assemblies, there are more than one 
inspection techniques. This is because any single inspection technique is limited in its scope and application due 
to limitations created by its operating principle. For example, Pressure Measurement technique is used apart 
from Oil analysis and temperature analysis inspection techniques for a Hydraulic system where characterisation 
of pressure, constituents in oil surrounding temperature are all useful in identifying failures in a Hydraulic system 
and any one inspection method is incapable of detecting failure characteristics for other methods. However by 
implementing more than one inspection technique, especially for OWT that contains > 10,000 components, both 
time and cost associated with monitoring, failure detection and analysis, and designing preventive methods, gets 
increased. Hence, there is a need for methods that can reduce the requirement for such large number of 
inspections techniques to detect failures and faults in wind turbine assemblies and components.   

 
WT Units Inspection Methods WT Units Inspection Methods 
Blade Fibre Optic Method Grid Controller Failsafe Technique 

 Vibration Monitoring Technique  Hub Variation in Performance Parameter Technique 

 Visual Inspection Technique  Vibration Monitoring Technique for  Blades 

 Strain Measurement Method Hydraulic System Hydraulic Oil Analysis Technique 

 Variation in Performance  Parameter  Hydraulic Oil Temperature Measurement 
 

 Variation in Process Parameter  Visual Inspection Technique 
Cable Cable Twist Sensors Status  Pressure Measurement Technique 
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 Visual Inspection Technique  Tribology Technique 

 Electrical Effects Observation Low Speed Shaft Relation to Pitch Angle and Rotor Position 
Controller Visual Inspection Technique  Vibration Measurement Technique 

 Process Parameter Variation Technique Main Bearing Lubrication oil Analysis 

 Thermograph Technique  Temperature Measurement of Main Bearing 
Foundation Corrosion Monitoring Technique  Vibration Monitoring Technique  for Main Bearing 

 Visual Inspection Technique Main Shaft Vibration Monitoring Technique 

 Vibration Monitoring of Tower  Accelerometer Technique 
Coupler Visual Inspection Technique  Vibration Monitoring Technique 
 Variation in Process Parameter Metrological  Variation in Wind Speed Method 
Gearbox Gearbox Oil Analysis Nacelle Variation in Process Parameter Method 

 Component Replacement Technique Pitching System Acceleration Measurement Technique  

 Online Oil Examination  Vibration Monitoring Technique  

 Temperature Monitoring  Technique  Tower Corrosion Monitoring Technique 

 Vibration Monitoring Technique   Visual Inspection Technique 

 Visual Inspection Technique  Strain Measurement Method 
Generator Visual Inspection Technique  Vibration Monitoring Technique of Tower 
 Oil Analysis Technique Generator Bearing Wind Speed Variation in Process Parameter Technique 
 Temperature Monitoring Technique Gear Wheel Visual Inspection Technique 
 Variation in Performance Parameter   

 

Table 1   Various Inspection techniques used for wind turbine components and assemblies86,87,88,89,,90,91,92,93,94,.95,96,97 

A4.   Methods to predict failures in wind turbine components 
A4.1.   Overall Failure Result Method 

A process is proposed here that can assist service personal consolidate results from two or more different 
inspection techniques and derive information about incipient failures (if any). This process has been shown in 
Table 2. In this process failures are categorised into three categories, i.e. No Failure (0), Partial Failure (X) and 
Complete Failure (1) (Table 2 (a)). The process assumes that the results obtained from any inspection technique 
is correct and truly represents a failure without dispute. As a result if any inspection technique infers No Failure 
(0), Partial Failure (X) or Complete Failure (1), it is correct (Table 2 (a)). As a result, if one inspection technique 
does not detect Partial Failure (X) or Complete Failure (1) in a machine, it actually refers to the case of No Failure 
(0). Results of two or more inspection methods are joined by using a truth table as shown in Table 2(b). So if one 
inspection method shows complete failure ‘1’, while another inspection method shows no failure ‘0’, this would 
indicate a complete failure ‘1’ of the component. An application of this process is shown in Table 2(c). Assuming 
that a machine contains 7 different components, M1 – M7, where the numbers are assigned in ascending order 
from either the input or output side of the machine such that adjacent parts are assigned consecutive numbers. 
Let us assume that three different inspection techniques provided results as shown in Table 2 (c). So by using 
Table 2(b) one can evaluate the Overall Failure Result (OFR) for different components of the machine that would 
provide a comprehensive and consolidated report about components who have either failed or are expecting 
failure. OFR can also assist in predicting failure, like if component M2 and M4 show complete failure, it is unlikely 
that M3 would not have experienced any failure, or at least incipient failure. Hence there is a need to maintain M3 
along with all other failed components. So, OFR not only confirms failure in components, it provides information 
about components where inception of failure may have started to occur, making this method very useful. 

 

 
 
 

(a) 

Category 
(C) 

Type of 
Failure 

0 No Failure 

X Partial 
Failure 

1 Complete 
Failure 

(b) 

C 1 C 2 Result 
(C 1 + C 2) 

0 0 0 
X 0 X 
1 0 1 
0 X X 
X X X 
1 X 1 
0 1 1 
X 1 1 
1 1 1 

 M1 M2 M3 M4 M5 M6 M7 
IR 1 0 1 0 X 0 0 1 
IR 2 0 0 0 0 1 X 0 
IR 3 X 0 0 1 0 0 0 

Overall 
Failure 
Result 

X 1 0 1 1 X 1 

 
 
 
 

(c)  
Table 2   A process to join two or more Inspection Results (IR) (a) categories of failures, (b) Truth Table (c) An example 
illustrating the process (M1 – M7 denotes parts of a machine)         
 

A4.2.   Reliability Block diagram 
A machine is built of many components arranged in series and parallel combinations. Due to proximity of 

components to each other, failure or fault in in component will have an influence on other adjoining components 
and the machine as a whole. To illustrate this point, in Figure 3(a) and Figure 3(b), a series and parallel 
connection of components in a machine are shown. From Figure 3(a) it can be observed that failure in either M1 
or M2 will result in the failure of the overall system and would directly influence the performance of M3. However 
in parallel arrangement shown in Figure 3(b), M4, M5 and M6 operate independent of each other and failure in 
any one of them does not influence other components. In this case, the machine will only fail when M4, M5 and 
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M6 were to fail simultaneously. If likelihood of failure of all such components were equally likely, the machine 
shown in Figure 3(b) would be less likely to fail than machine shown in Figure 3(a). This is the reason why 
compensatory provisions that introduces additional components in machines to bypass failure are connected in 
parallel to the working component.  

   
(a)                                     

 
 

𝑅𝑜𝑀𝑆𝑒𝑟𝑖𝑒𝑠 = �𝑅𝑜𝑀𝑖

𝑛

𝑖=1

 

 
RoM Series = RoM1 * RoM2 * RoM3 

(b)  
 
 
 
 
 
 
 

𝑅𝑜𝑀𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =  �Ro𝑀𝑖

𝑛

𝑖=1

 

RoM Parallel = RoM4 +RoM5 +RoM6  
Figure 3   Calculation of Reliability of Machine (RoM) for machine parts connected in (a) Series, and (b) Parallel 

Reliability is defined as the likelihood of a machine or component to perform its intended function under a 
given condition98. We define a term Reliability of Machine (RoM) to be the expectation that the machine will 
perform its intended function under given condition. According to the concept of Reliability Block Diagrams, the 
RoM can be calculated by multiplying the Reliability of its components in series and parallel combinations, as 
shown in Figure 3. So, Unreliability of Machine (UoM) will equal to (1 - RoM) and will denote the probability of a 
machine to not perform its intended function under a given condition. This method can be used to determine the 
reliability of a wind turbine if reliability of its individual components is known or can be established statistically. 
This is useful to categorise wind turbines in urgent need of maintenance based on its higher likelihood of failure. 
This is part of the planning process for wind turbine maintenance as shown in Figure 2. However this method has 
some limitations, like: 

- RoM value for feedback circuits has not been defined and hence cannot be calculated, 
- This method only provides a quantitative value of reliability and does not provide any information about 

the type or nature of anticipated failure in components 
- Effect of external conditions is not considered while calculating reliability value. This reduces confidence 

level in the value of reliability, especially for OWT components 
- It requires that reliability value of all wind turbine components is known, data of which is difficult to obtain 

However this method is useful in finding the reliability of the wind turbines, and expanding it to obtain the 
reliability of a wind farm, if reliability values of wind turbine components have been identified. Also, if reliability 
values of modules, in which components are connected in parallel, are found, this method has many advantages.         

A4.3.   Using Bayesian Network  
 A Failure Modes Effects and Criticality Analysis (FMECA) database has been made of generic failures in 
wind turbine gearbox, generator and the electrical systems (Sinha, 2015). Analysis of these failures shows that:  

- a root cause of failure can result in one or many failures types and failure modes 
- a failure can gives rise to other failures 
- combined effect of two or more failures can create situation for another type of failure 
- a failure can either have no, moderate or severe effect on power generation capability of OWT 
- rectification of a failure does not guarantee a solution or reduced likelihood of occurrence of linked failures 
- it is also uncertain that occurrence of a failure explicitly implies the occurrence of its linked failures 
- there is a greater certainty in determining the occurrence of a failures when linked to its root failure cause 
- the root causes for a failure can have intrinsic, operational, human negligence and environmental factors   

 

In view of such observations, a failure dependency model has been proposed to anticipate likelihood of a failure 
based on intrinsic, operational, human negligence and environmental factors. Such a method has been used in 
medical science for treatment, in sports, wireless networks etc99 where likelihood of occurrence of one event 
determines the next course of action. This model uses the fundamentals of Bayes’ Theorem100 and Bayesian 
Network as each step is linked to the other steps by using conditional probability that determines the likelihood of 
occurrence of the next step based on the likelihood of its previous steps. This has been shown in Figure 4.   
 

 

M3 M2 M1 

M6 

M4 

M5 
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Figure 4   Schematic of a proposed network for determining failure in OWT components and assemblies     

This process can be understood by an example of Bayes’ Theorem according to which, probability of occurrence 
of failure type A, given that it’s a root cause event B has occurred, can be calculated using: 

  

𝑃(𝐴|𝐵) =  𝑃(𝐴).𝑃(𝐵|𝐴)
𝑃(𝐴).𝑃(𝐵|𝐴)+𝑃(𝐴′).𝑃(𝐵|𝐴′)

 ;  where A’ represents the probability when failure type A does not occur  

As an example, suppose that a component fails due to two root causes of failure (R1, R2) whose probability of 
occurrence are 0.51 and 0.49 respectively. Now suppose that chance of occurrence of failure due to these root 
causes were 0.1 and 0.65 respectively. So, the probability of occurrence of failure (F) given root causes R1 and 
R2 can be calculated as under: 
 

𝑃(𝑅1|𝐹) =   
𝑃(𝑅1).𝑃(𝐹|𝑅1)

𝑃(𝑅1).𝑃(𝐹|𝑅1) + 𝑃(𝑅1′).𝑃(𝐹|𝑅1′)
=  

0.51 ∗ 0.1
0.51 ∗ 0.1 + 0.49 ∗ 0.65 = 0.138 

𝑃(𝑅2|𝐹) =   
𝑃(𝑅2).𝑃(𝐹|𝑅2)

𝑃(𝑅2).𝑃(𝐹|𝑅2) + 𝑃(𝑅2′).𝑃(𝐹|𝑅2′)
=  

0.49 ∗ 0.65
0.51 ∗ 0.1 + 0.49 ∗ 0.65

= 0.862 

Hence, the conditional probability that failure would occur for root causes R1 and R2 are 0.138 and 0.862 
respectively. One can see that in-spite of the higher value occurrence of R1 , the likelihood of a failure occurring 
due to R1 is lower and coincides with the low value of the likelihood of the failure. Hence this method provides a 
more realistic figure for anticipating failure.    
 The model proposed in Figure 4 aims to use the above concept of Bayes’ Theorem to interconnect 
various failure states using the likelihood of occurrence of the four root causes of failures, namely inherent faults 
‘C’, operational causes ‘D’, human negligence ‘a’ and external factors ‘b’, i.e. environmental factors. So by having 
knowledge of C, D, a and b, transition from one failure state to the next failure state can be determined. Whereas 
C/D calculates the conditional probability of failure for a particular state, ai/bj calculates the conditional probability 
of failure due to human negligence and environmental factors. Some equations that are used in the process are 
shown below. These have been listed below.        
 

𝑃(𝐴/𝐵) =  𝑃(𝐴∩𝐵)
𝑃(𝐵)

 ; 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴).𝑃(𝐵) ;   𝑃(𝐴𝑖/𝐸) =
𝑃(𝐴𝑖).𝑃(𝐸𝐴𝑖

)

𝑃(𝐴1)𝑃� 𝐸𝐴1
�+ 𝑃(𝐴2)𝑃� 𝐸𝐴2

�+⋯+ 𝑃(𝐴𝑛)𝑃� 𝐸𝐴𝑛�
 

Where P = probability, (A/B) = conditional probability of A given B.  
A4.4.   Using Artificial Neural Network  
 It was outlined in Section A4.3 that failures could be determined with greater certainty if knowledge about 
its root causes of failure was known. So, if a self-learning knowledgebase is built that over a period of time can 

ai/bj 

ai/bj 
ai/bj 

ai/bj ai/bj 

ai/bj 

ai/bj ai/bj 
ai/bj 

ai/bj 
ai/bj 

ai/bj 
ai/bj 

ai/bj 
ai/bj ai/bj 

G E 

D C 

A 

B 

F 

H 

I 

J 

L 

K 

C   D  

C   D 

A 

B 

A     = Failure State A 
B     = Failure State B 
C/D = Likelihood of failure due 
to Intrinsic/operational causes 
a/b  = Likelihood of failure 
due to human negligence / 
environmental factors  
 
(Likelihood of failure is 
termed as weighting factor) 
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store and fine tune the correspondence between root causes of failure and occurrence of the failure, this would 
improve the accuracy of failure prediction in future. A conceptual model has been proposed in this work that uses 
a concept similar to Artificial Neural Network as shown in Figure 5. In this method a recurring relationship is 
established between Root Causes of Failures (RC) and various Failure Types (FT) of a Failure Mode (FM). A 
mathematical relationship that combines these together has been shown below.  
 
𝐹𝑇𝑗 = ∑𝑤𝑗𝑖𝑅𝐶𝑖     ;   𝐸𝑘 =  ∑𝑧𝑘𝑗𝐹𝑇𝑗      ;   𝑌𝑖 =  ∑𝐸𝑘 ;    where wji and zkj are scale factors from Bayesian Network Theory. 

  
 

   
Figure 5   Schematic shows a failure anticipation method using Artificial Neural Network schema 

      
 

A5.   Understanding types of failures in wind turbine components 
 It was shown in Section 1 and Section A1 that there are numerous types of failures in wind turbines 
assemblies, subassemblies and components. In Table 3, some generic failures in components of wind turbine 
gearbox have been shown. For example, gear shafts can become seized, cracked, misfire, misaligned etc. 
However a gear shaft that has misaligned would also ultimately result is seizure and cracking as a next step. So, 
if the likelihood of these events can be established, using Section A4.3 and Section A4.4, a model can be 
developed to predict failure in gearboxes. Similarly, a leaking hose, if left unattended, can fracture and result in 
the cooling (/lubricating) system to be shunted out of gearbox operation. In the absence of a cooling (/lubrication) 
system, the gearbox would develop many other types of failures and result increase in frictional energy from 
shafts that can result in the abnormal expansion of shafts and its ultimate failure. Hence, by inter-relating such 
failures, with their root causes, and by determining the likelihood of their occurrence, it may be possible to predict 
failures and design better and economical maintenance. In view of the limitation encountered in getting access to 
real operational and failure data, there is a need for more work in this particular area.      
 
 

Assembly Subassembly Component Generic Failures – Failure Modes 
Gearbox Gearbox Bearing Carrier/Planet/Shaft Worn, Binding, Sticking, Seized, Jammed, Excessive Play, Dry/No Lubricant, Misaligned, Fitting 

Issue, Pitted, Aged, Scored, Corroded, Brinelling, Vibrations, Clogging, Fatigued, Induced Generator Bearing Shaft/Rear 
Gearbox Cooling/Lubrication Hose Broken, Worn Out, Cracked/Fractured, Leaking, Induced 
Gearbox Cooling/Lubrication Pump Leaking, No Operation, Shorted, Seal/Gasket Failure, Induced, Misalignment, Degraded 

Operation, Bearing Failure, Mechanical Failure, High Current, Drift, Cooling Failure, No Start 
Intermittent Operation, Lubrication problem, Burned, Fatigued, Corroded, Cavitation  

Gearbox Gears Shaft Seized, Cracked, Warped, Rusted, Induced, Alignment Issue 
Gearbox Gears Bushing Loose, Corroded, Misfire, Aged/Deteriorated, Fracture, Loose, Scarred, Induced 
Gearbox Housing Case Binding, Excessive Use, Broken, Cracked, Misaligned, Skipping, Induced, Leaking Lubricating 

Oil 
Gearbox Housing Mounting Broken, Excessive Play, Loose, Induced 
Gearbox Lubrication System Filter Leaking, Improper Output, Clogged, Degraded operation, Cracked, Broken, Out of 

Specification, Burst, Warped, media Migration, Channelling 
Gearbox Lubrication System Seal Leaking, Cut, Punctured, Aged, Worn, Loose, Induced, Gasket Failure, Cracked 
Gearbox Sensors - Degraded Output, Opened, Shorted, No Operation, Zero or Maximum Output, Drifting 

Output, Closed, Internal Failures, Induced, No Signal Output, Mechanical Failure  

Table 3   Some common types of failures in wind turbine gearbox 
 

A6.   Advantage of failure prediction on the cost of maintenance: Offshore Wind Turbines 
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An offshore wind farm contains many OWT along with their steel or concrete foundations, power cables, 
offshore and onshore substations, onshore power stations for power conditioning and transmission, 
communication networks and other entities that contribute towards the overall cost of maintaining offshore wind 
farm. However, as this study is focused around maintenance of wind turbines, cost of other avenues are not 
considered in this work. If ‘MCWF’ is the cost of maintaining an offshore wind farm containing ‘N’ OWT, this is 
given by  𝑀𝐶𝑊𝐹 = ∑ 𝑀𝐶𝑂𝑊𝑇

𝑁
𝑛=1  . However failure in OWT assemblies, subassemblies and components, can all be 

attributed to failure at the component level and so if functions Φijk, Sijk and Wijk are defined such that Φ, S and W 
represent cost of repairing minor failure, fault and component replacement respectively, and ‘i’, ‘j’ and ‘k’, denote 
assembly, subassembly and component of OWT, the cost of maintenance of OWT. However there are additional 
costs, like cost of manpower, transport and training (if any), that adds to this overall cost. So the overall cost of 
offshore wind farm maintenance will be given by: 
 
                   𝑀𝐶𝑊𝐹 = ∑ {∑ ∑ ∑ �𝛷𝑖𝑗𝑘 + 𝑆𝑖𝑗𝑘 + 𝑊𝑖𝑗𝑘�}𝑛 + 𝐶𝑚𝑎𝑛𝑝𝑜𝑤𝑒𝑟 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐾

𝑘=1
𝐽
𝑗=1

𝐼
𝑖=1

𝑁
𝑛=1    

 
 In order to demonstrate the benefit of failure prediction in lowering cost of offshore wind farm 
maintenance, as an example consider a wind farm with 50 wind turbines in which only the gearbox and generator 
are monitored for failures and faults. So for example, if condition monitoring of OWT components shows that 12 
of 50 OWT have failures or faults, maintenance would be planned for these 12 OWT. For visual representation 
these failures are marked by symbol ‘X’ in Table 4. If cost of manpower is £30/hr and the trip requires 10 staff 
members to work 2 shifts in a day (8 hours each) for 5 days, transportation costs £10,000/day, the cost of training 
is £10,000 and the overall cost of repairing failures, including spares is £75,000, the overall cost of this 
maintenance will be £159,000. Now assuming that some failures were predicted (marked as ‘Y’ in Table 4) 
whose maintenance cost was of the value £12,000 and which left to itself for a later date would require an 
offshore visit of 5 staff members for 3 days and cost £45,000 to repair, the cost of this additional maintenance 
would be £71200(assuming use of smaller offshore vessel costing £5,000/day and training cost £4000). However 
if such failures were predicted, and included in the first maintenance, the savings made will be £59,200. If such 
failures were to result in downtime of OWT in a wind farm that leads to revenue losses amounting to £45,000, the 
overall savings made by failure prediction would equal to £104,200. This is a significant amount to be saved by 
just investing £12,000 additional amount in latest maintenance.  
 In real case scenario, there are many other avenues and conditions, and associated cost factors that 
need to be considered while deciding and designing a maintenance plan for wind turbines. As the number of 
factors involved in this work is numerous, the next section discusses about design of the database of a software 
tool that can assist in performing such tasks.    
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SECTION B 
B1.   Introduction 

It was discussed in Section 1 that there is need of a dedicated software tool to assist with the planning 
aspect of wind turbine maintenance. A key prerequisite of such a tool is a robust design of its database to store 
varied types of data and information, in various formats, of various sizes, for different purposes and for both 
online and offline data. Hence it is important that such a database be designed with care and meets all 
requirements of software part of the tool. A database is a combination of physical space and a database software 
that can assist in managing (insert, update, delete, format, etc.) the data stored in such locations. Such database 
software in association with a software program builds a software tool. 

According to Cambridge dictionary “Relational Database is a computer database that allows the user to 
find and organise data in many different ways”101. A Relational Databases (RDB), a database software, divides 
the physical space into many tables with columns and rows to store data of various formats. These tables and 
their rows and columns are related to each other by a relationship and hence the term relational database. 
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Relational Database Management System (RDBMS) is a software tool that assists in handling database structure 
and its data using commands, like select, insert, delete, update, create table, drop table, where, join, etc. 
Information about RDB and RDBMS can be obtained from Microsoft SQL Server 2008 Database Development 
training kit or any book on similar topic. An example of a table containing columns and rows is shown in Figure 6. 
The table contains anonymised information about two wind farms, their location, turbine model, year of 
manufacture, installation date and Operator Company. If the name of table was “WindFarm Details”, and it was 
required to obtain information about wind turbine models in the WindFarm of name “WF Sample 1”, the following 
RDBMS command can be used to obtain the result.     

 
COMMAND 
SELECT Turbine_Model FROM WindFarm Details WHERE WindFarm = ‘WF Sample 1’ 
 
OUTPUT 
Model 19 
Model 17 
Model 19 
Model 22 

 
Figure 6   Sample figure illustrating table, column and row architecture of a relational database. 

RDB provides the facility of joining multiple tables using a unique column name. Such a linkage of two 
tables is shown in Figure 7. It is seen that when two tables are linked by unique column name, information 
between these tables can be shared. For example Fischer Sam, who is an Inspection Engineer and earns 
£34,600 (from first table) has a degree in Instrumentation Engineering and is HSE trained with Project 
Management experience (from second table). Although it is possible to combine tables, working with large tables 
are time consuming, takes more processing time of computer and can bottleneck the database. Hence tables 
with many columns are often divided into smaller tables containing fewer columns using a method called 
Normalisation without losing any information102,103 and is normally performed for any large databases. This work 
has designed a 3rd Order Normalised database for use in SQL database software environment.  

  
 

 
Figure 7   Figure shows linking of two Tables so that information between them can be shared 

 
B2.   Database architecture for software package  

The database of the software tool planned for wind turbines, Enterprise Resource Planning Software for 
Offshore Wind Turbines Maintenance (ERP-OWTM) has been divided into 3 distinct parts on purpose. All the 
parts contain a 3rd order Normalised database for data storage. This is shown in Figure 8. In Database Section A, 
identification of all wind turbine components (uniquely identified by special codes), their monitored data and their 
conditions are identified and stored. The status of component health and failures are recorded as unique codes. 
In Database Section B, data about inventory, spares, service standards, HSE regulations, finance, etc. are stored 
for ready reference by software program. The software program modules use these data to plan maintenance. In 
Database Section C, processed data or information is stored. For example, a software program module that 
caters to a query of estimating the time till next maintenance would use data from Section A and Section B, and 
save its output result in Database Section C. The result of these queries can be referenced at a later date. 
Similarly, a program module that stores information for HSE compliance about number of accidents and deaths 
during maintenance execution, and any special hazards encountered during work etc. would reference Section A 
and Section B data to generate a result that it would store in Section C. 
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B3.   Prerequisites from physical database and its controlling software 
The prerequisites for choosing a database and its controlling software for use in ERP-OWTM are many. 

These have been summarized in Table 5. Any database software that fulfils these requirements would be an 
ideal choice for fabricating Enterprise Resource Planning Software for OWT Maintenance (ERP-OWTM). In this 
work SQL 2008 has been used for developing a database for supporting ERP-OWTM software package as it 
satisfies majority of the prerequisites listed in Table 5.   

 
 
 

  Support for  Required Characteristics from Database Software 
Large Volume of  data Condition Monitoring, SCADA systems very quickly generate gigabytes of data. Selected Database 

software should be able to support large volumes of data.  

Relationship Stored data would have relationship to each other hence the chosen database should be capable of 
simultaneously establishing and handling many relationships between data  

Formats of Data Incoming data are in various formats, hence database software should be able to support various formats 
of data, like integer, floating number, date, picture 

User Interface Software would be used by trained and unskilled personal, so its user interface need to be simple and 
easy to understand and navigate 

Safety / Privacy Since multiple users will logon to the database software simultaneously, hence viewing selected data need 
to be restricted by user authorisation 

Reliability Database should ensure that stored data does not become corrupt with time and hence facility should be 
there for both local and remote data backup  

Commands Common words enabled user interface would assist unskilled people easily interact with the database 
using the software tool.  

Storage / Retrieval The database software should have easy and short to remember commands that does not take 
appreciable time to execute to storage, manipulate or retrieve data 

Expansion With new modules, the size of database would increase. Hence the selected software should have a 
scalable architecture  

Redundancy Facility for identification, retrieval and archiving of long time unused, corrupt and unwanted data should be 
present. This is essential for housekeeping.  

Protection of stored Data  Accidental deletion of related data should be avoided by the database software least it would form 
redundant sets of data    

Access and Access Time Database software should provide facility for efficient management of data so that data can be accessed in 
very short interval of time 

Migration Selected database should be compatible with other available databases so that in case of need, data can 
be transported between different types of databases  

Table 5.   Characteristics of a database to be used in the development of a software tool for OWT maintenance planning 

 

Wind Farm Wind Turbine Sub-System Assembly Sub-
Assembly Component Status of 

Component 

Live / Manual 
Data Feed 

Live / Manual 
Data Feed 

Software  
Program 1 Database Section B  

Data for Reference 
 

Database Section A  
Status of Wind Farm 

 

Database Section C 
Processed Data 

3 

2 

Results from 
Software 

Figure 8   Shows division of database for an ERP-OWTM tool 

1 

Database Section B 
Stored Data 

Historical Service Records, Personal Records, 
Health & Safety, Inventory, Customer Records 
Vendor Records, Climatic Conditions, Exchange 
Rate, Inflation Rate, Bank Interest Rate, Good 
Maintenance Practices, Service Standards, 
Component Cost, List of spare parts, Service 
Provider Companies, Spares Providing 
Companies, Staff Qualification & Training 
Records etc. 
 
 
 
 
 
  
 
 

2 3 

Database Section C 
Reports/Information for  

Maintenance Crew, Service Provider & 
Contractors, Wind Farm Operator, Wind 
Farm Owner & Investors, Staff providing 
support services, Clients and Customers 
receiving power, Spares Supplier & 
Manufacturers, Wind Turbine 
Manufacturer, Energy Market, 
Regulators, HSE Agencies, Press, Banks 
& other lending agencies 
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B4.   A nomenclature for Wind Turbine Parts, Failures, Maintenance, Spares  
This section discusses about a hierarchical naming convention to uniquely identify all wind turbine 

subsystems, assemblies, subassemblies and components. The proposed convention assigns and concatenates 
codes of different levels in a wind turbine to determine an overall code. This is shown in Figure 4. As shown, the 
code for a carrier bearing has been evaluated to be WDGEBC based on the combination of codes of subsystem, 
assembly, subassembly and the carrier bearing it. In similar terms, code for a filter in the cooling system of the 
generator of drive train module would be WDGNCF. Similarly all other parts can be uniquely named and 
identifiable.    

 

 

Figure 9.  A hierarchical naming convention for wind turbine parts 

In a wind farm where there are many wind turbines, to uniquely identify any particular wind turbine, a 
unique number is assigned prior to the letter ‘W’. So for example in a wind farm containing 150 wind turbines, the 
wind turbines are identified by numbers such as 1W, 2W, …NW, where N is number of wind turbines in the wind 
farm. So 56WDGEBC would be the identification code of the carrier bearing in the Gearbox of wind turbine 
number 56. This convention can be used to reference failures and maintenance of OWT parts. Here failure 
associated with any component is suffixed with _FXX. For example, 56WDGEBC_F32 would denote a failure 
type denoted by F32 in the database for the carrier bearing in gearbox of 56 number wind turbines. Similarly, 
corresponding maintenance can be represented by suffixing the component code with _MXX, where it would 
refer to the maintenance strategy to failure type _FXX. Spares related to a particular component are denoted by 
suffixing _SPXX. 

 

B5.   Data types  
Various types and formats of data would be made available to database of ERP-OWTM from live 

condition monitoring, offline inspection results, historical service records, troubleshooting manuals, etc. The 
database must be capable of identifying and storing such diversified formats of data. SQL 2008 offers the facility 
to handle different formats of data and type definition characteristic using which the data type of a column in a 
table can be restricted to accept only certain data format. This facility ensures that the database accepts and 
stores different formats and prevents unrecognised formats or unwanted data to populate the database. Thus by 
ensuring that only correct data format is entered in database, the database software maintains high level of 
integrity of the database.  For example if a column in a table of the database is configured to accept date of birth 
of employees, that column will only accept data in the format of a date and not any arbitrary number. Similarly a 
column that is configured to accept only numbers to represent money, will not accept any characters as an entry. 
In Table 6 a list of different data types have been shown from the perspective of use in database of ERP-OWTM 
software package. 

 
                     

 

Data Type Comment 
varchar Variable width character string, maximum 8,000 characters 
nchar Fixed width Unicode string, maximum 4,000 characters 
bit Allows 0,1 or null 
image Variable width binary string. Maximum 2GB 
smallint Allows whole numbers, -32,768 and 32,767 
int Allows whole number between -2.14*109 and 2.14*109 
float Floating precision number, -1.79*10308 to 1.79*10308  
money Monetary data from -922*1012 to 922*1012 
real Floating precision number data from -3.4*1038 to 3.4*1038 
date Stored date only 
time Store a time only 
timestamp Stored unique number that gets updated every time a row gets created or modified 
varbinary Variable width binary string. Maximum 2GB 

Table 6.  Data Types and Variables used in the database 

+ + + + 
System 

Wind Turbine 
 Subsystem 
Drive Train 
Assembly 

 

 Assembly 
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 Subassembly  
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 Component     
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B6.   Tables, Columns and Rows of ERP-OWTM  
          Various tables can be defined for the database of OWT maintenance software package to accommodate 
the diverse nature of information sources. This section shows some tables along with the names & data types of 
its columns. As is seen from Table 7, there are many tables containing variety of information about wind farm, 
wind turbine and its assemblies. For example the table by name of ‘Wind Farm’ contains columns that aim to 
collect information about the location, distance, onshore/offshore, commissioning date etc. for a wind farm such 
that any wind farm can be uniquely identified. Similarly, table by name of ‘Wind Turbine’ is designed to store 
information about all the wind turbines. In the table by name of ‘Wind Turbine’, there is a column by the name of 
‘Wind Farm’ and is a pointer by the table by similar name so that any wind turbine can be uniquely identified to a 
wind farm. Similarly the table by the name of ‘Wind Turbine Assembly’ contains pointers to other tables which 
contain more detailed information about assemblies of the wind turbine. These tables are linked to the parent 
table ‘Wind Turbine Assembly’ using a pointer of ‘WT ID’. Such design of the database ensures that only limited 
number of information is contained within any table to avoid data duplication and reduces chances of database 
corruption.            
 

Wind Farm Data Wind Turbine Assembly Data Generator Data Frequency C Data 
Wind Farm Name char WT ID Int WT ID Int WT ID Int 
Farm ID Varchar Main Shaft Set Char Generator SN Int Module FC SN Int 
Country Char Gearbox char Generator ID Int FC ID Int 
Location Char Generator  Char Manufacturer Char Manufacturer Char 
Onshore/Offshore Char Auxiliary Electrical Char Model Char Model Char 
Distance (KM) smallint Control & Communication Char Type Char Type Char 
Power Rating (MW) smallint Frequency Converter char Rating Int Rating Int 
Farm Developer  Char Gearbox Data Installation Date Installation Date 
Address/Phone Char WT ID Int Last Service Date Last Service Date 
Commission Date  Date Gearbox SN Int Last Overhaul Date Last Overhaul Date 
Warranty  (Years) Smallint Manufacturer Char Main Shaft Data AE Comp Parts Data 
Warranty Expiration Date Model Char WT ID Int Module ID int 
AMC Company  Char Type Char Main Shaft SN Int Transformer char 
AMC Period (Years) smallint Rating Char Main Shaft ID Int Circuit Break. char 
AMC Start Date  Date Installation Date Date Manufacturer Char Cabinet char 
AMC End Date  Date Last Service Date Model Char Fan char 
Wind Turbine  Data Last Overhaul Date  Type Char Fuse char 
Wind Farm Name Char Aux Electrical System Data  Rating Int Prot. Relay char 
Wind Turbine Name Char WT ID int Installation Date Light char 
WT ID Int Module SN int Last Service Date Mech Switch char 
Manufacturer Char Module ID Int Last Overhaul Date Pushbutton char 
Model Char Serial Number Char Control Com. Data Relay  char 
Serial Number Int Manufacturer Char WT ID Int Space Heater char 
Installation Date date Model Char Module SN Int Surge Arrest. char 
Cut-in Speed float Type Char Module ID Int Thermal Prot. char 
Cut-out Speed Float Voltage Rating Int Manufacturer Char UPS char 
Swept Area Float Current Rating Int Model Char Cont Comm Parts Data 
Rated Power float Installation Date Date Type Char Module ID Int 
Gearbox Parts Data Last Service Date Rating Int Breaker char 
GB SN int Last Overhaul date Installation Date Temp Sensor char 
C Bearing char Generator Parts Data Last Service Date Cable char 
P Bearing char GN SN int Last Overhaul Date Contactor char 
S Bearing char Filter char Freq Conv Parts Data Digital I/O char 
Hose char Hose char FC ID int Bus Master char 
Pump char Pump char CC Filter char Frequency char 
Coil char Commutator char Main Shaft Parts Data Condition Cab char 
Hollow Shaft char Exciter char MS SN int Data Logger char 
Bushing char Resistance Controller char Coupling char Sensor char 
Case char Slip Ring char Rotor Lock char Power Supply char 
Mounting char Core Temperature char Trans Shaft char CPU char 
Hose char Encoder char Shaft char Comm Bus char 
Primary Filter char Wattmeter char Axial Bearing char Closed Loop char 
Pump char Front Bearing char Compr Coupler char Emerg Button char 
Seal char Housing char Connect Plate char Max Spe. itch char 
Secondary Filter char Rear Bearing char Bearing Seal char Power Switch char 
Debris Sensor char Shaft Bearing char Main Shaft char SC Switch char 
Pressure Sensor char Silent Block char Radial Bearing char   
T Sensor char Cooling Fan char Rotor Lock char   
    Slip Ring char   
    HS Sensor char   
    LS Sensor char   
    Posit Sensor char   

Table7.  Wind Farm, Wind Turbine and its assembly description 
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B7.   Defining a Wind Farm 
This section shows how information about a wind farm is laid out in the database such that it characterises all of 
its wind turbines and their different assemblies, sub-assemblies and components in a unique fashion. This has 
been shown in Figure 10. As can be seen from Figure 10, wind farms, WF A, WF B and WF C, individually point 
to wind turbines that are present in their wind farm, while those wind turbines point to its individual assemblies 
which then point to subassemblies and components. Finally at the component level a failure code can be 
assigned corresponding to the failure that may have occurred. By default all components are assigned a No 
Failure code, which is updated in the event a failure is encountered. This information is then taken further to 
analyse and plan maintenance. If a spare would be required for this maintenance work, then the failure code 
would indicate this and hence a reference would be made to the maintenance database and spares inventory. 
When failure codes are determined, all necessary resources can be collected using references to their individual 
databases. This has also been shown in Figure 10 where manpower and transport are linked to unique failures.  

  
 

 

OP_Name 
WF A 
WF B 
WF C 

WF A 
WT 1 
WT 2 
WT 3 

 
WF B 
WT 1 
WT 2 
WT 3 
WT 4 
WT 5 

 
WF C 
WT 1 
WT 2 
WT 3 
WT 4 
WT 5 
WT 6 

 
 
 

WT 1 
DT 1 
EM 1 
NM 1 
RM 1 
SS 1 

 
WT 2 
DT 2 
EM 2 
NM 2 
RM 2 
SS 2 

 
WT 3 
DT 3 
EM 3 
NM 3 
RM 3 
SS 3 

 

DT 1 
GE_1 
GN_1 
MT_1 

 
EM 1 
AEE_1 
CC_1 
FC_1 
PE_1 

 
NM 1 
HS_1 
NA_1 
NS_1 
YS_1 

 
RM 1 
BL_1 
PS_1 

 

SS 1 
FO_1 
TO_1 

 

GE_1 
Bearing_1 
Cooling System_1 
Gears_1 
Housing_1 
Lubrication System_1 
Sensor_1 

 
GN_1 
Cooling System_1 
Lubrication System_1 
Rotor_1 
Sensor_1 
Structural & 
Mechanical_1 

 
MT_1 
High Speed Side_1 
Low Speed Side_1 
Mechanical Brake_1 

 

 Bearing_1 
Failure Code 

 
 Cooling 
System_1 
Failure Code 

 
 Gears_1 
Failure Code 

 
 Housing_1 
Failure Code 

 
 Lubrication 
System_1 
Failure Code 

 
 Sensor_1 
Failure Code 

 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

Notations Used in the table 
Wind Farm WF Tower TO Gearbox GE Support Structure SS 
Wind Turbine WT Foundation FO Main Shaft MT Operator OP 
Drive Train DT Pitch System PS Auxiliary Electrical System AEE Nacelle Assembly NA 
Electrical Module EM Blade BL Control & Communication CC Generator GN 
Nacelle Module NM Yaw System YS Hydraulic System HS   
Rotor Module RM Nacelle Structure NS Power Electrical System PE   

Figure 10.   Shows the database tables and its relationships for a component level status (failures) in an OWT 

              

M_Code 
Comment 
S_Code  
I_Code 
Work Type 

S_Code 
Picture 
Name 
Manufacturer 
Available (Y/N) 
Transport 

Transport 
Helicopter 
Vessel (Small) 
Vessel (Medium) 
Vessel (Large) 
Vessel (Very Large) 

F_Code 
Comment 
M_Code  

Work_Type_ID 
Electrical 
Mechanical 
Water Diving 
Structural 
Civil 
Computing 
Instrumentation 
Electronics 

I_Code 
Comment 
Availability  
Picture 
Application 
Dimension 
Weight 
Cost / unit 

Manpower 
FName 
LName 
Mobile Number 
Specialisation 
Training 
Qualification 

Qualifications 
Graduate Degree 
Post-Graduation 
Doctoral Degree 
MBA 
Chartered Accountant 
Social Sciences 
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B8.    Overall Outlay of the Database 
An overall design framework of the ERP-OWTM has been shown in Figure11 that provides guidelines for 

the design of database and interrelation between them. Any individual block in the figure is an outcome of a 
interrelated database modules. It also provides an indication to various performance indicators that are useful to 
measure the success or failure of a maintenance regime. In Figure 11 maintenance planning for only wind turbine 
gearbox has been shown but it can be extended to include other components as well.   

 

 

 

Figure 11  Schematic diagram of database layout and software framework for the design of ERP-OWTM 

2. Conclusion 
  The ability to predict failure has a profound effect maintenance planning and its costs. Failures in 
machines, like wind turbines can be interrelated by their root causes, dependences on other failures and 
operating conditions. In this work such dependency between failures and root causes were studied and it is found 
that such information could be used to plan a Condition Based Maintenance and make savings on spares, 
transportation and manpower. In fact, use of condition monitoring information in itself bypasses many 
complexities which statistical methods have faced since long time, like incorporating effect of weather conditions 
on OWT failure. However this work is fundamental and there is a need for more information about failure to make 
this model more accurate. This work also looked into the design and development of a database that would 
support a software tool for management of wind turbine maintenance. Design of a database is fundamental and 
an important step in the development of any software tool especially for projects that are developed from 
inception and those which are built for large applications. It is intended that database designed in this work will 
reduce the amount of software code that would otherwise have been required. Whilst it is difficult to source data 
related to wind turbine, especially for OWT, this work makes use of some dummy data to test the outputs from 
the database. However it is expected that many additional modules would be incorporated with time in the 
database, which would then increase the size of the database. The 3 module structure developed for the 
database (Section B2) would be effective in incorporating all such modular expansions. Further with new 
information, many columns and rows would need to be modified but as all the tables have been normalised, any 
negative effect on database structure would be minimal.      
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