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Introduction 

Positron emission tomography/computed tomography (PET/CT) with18F-flourodeoxyglucose 

(FDG) has a clear role in oncological applications with the fused images1,2 providing 

improved detectability and lesion localisation accuracy.3 Furthermore, the use of diagnostic 

quality CT with PET can offer advantages over standalone CT for accurate staging of 

disease due to a better assessment of nodal and metastatic involvement.4 However, the 

benefits of these examinations need to be balanced against the lifetime attributable risk of 

cancer from a combined PET/CT investigation.5 

Patient dose associated with PET/CT can be very high, and a high proportion of the dose is 

due to the diagnostic quality (DQ) CT examination. Recent technological improvements, 

notably time of flight (TOF),6,7 have been implemented to enable the superior spatial 

resolution of modern PET/CT systems, and along with a strategy of calculating weight based 

injected activity8–10 it has resulted in reduced radiation dose, with a preference to increase 

emission time rather than injected activity for obese patients.6 Early reports of radiation dose 

in PET/CT, combining 18F-FDG with DQ CT could produce effective dose in the range of 24-

46 mSv.5,11,12 However, a more recent Korean study reports an average radiation dose of 

12.2 mSv, based on a mean injected activity of 5.111.19 MBq per Kg and CT scan for 

attenuation correction (AC).10 This is in line with other studies using CT for AC only, where a 

dose of 8.5 mSv has been reported.11 In other words, by not acquiring the DQ images one 

can reduce the dose by up to a factor of 3. Before this is done one needs to assess the loss 

of lesion detection performance associated with not acquiring DQ images. 

The EANM provides guidelines for different CT scanning strategies in PET/CT13 and the 

authors of the current study also recognise that funding and availability of contrast media 

may also dictate protocol, with variations in practice globally. In the UK, typical practice is for 

low-dose CT to be performed on all patients for AC. DQCT would only be required for a 

limited field of view over an area of clinically relevant interest if a standalone DQCT has not 

yet been completed. However, the evaluation of images suitable for CTAC can be difficult, 

with low positive predictive values reported in single photon emission computed 

tomography/computed tomography (SPECT/CT).14 Nodule detection within the thorax has 

high clinical importance since a nodule can represent an early manifestation of lung 

cancer.15 For small nodules, FDG-PET can be associated with false negatives,15 thus giving 

more importance to the CT data for nodule detection. Evaluation of CTAC images remains a 

controversial issue, with variations in reporting practice down to local protocol and 

interpretations of IRMER regulation 7.8; ‘…ensure that a clinical evaluation of the outcome of 

each medical exposure is recorded’.16  
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A previous study17 has assessed nodule detection performance in the CT images acquired  

for AC during SPECT/CT. This observer performance study compared nodule detection in 

the AC images produced by a range of CT acquisition parameters on systems from different 

manufacturers, revealing significant differences in nodule detection between SPECT/CT 

systems for images acquired for AC.17 However, this study did not compare AC and DQ 

images for nodule detection on the same PET/CT system. 

The purpose of our study is to compare the nodule detection performance provided by 

images acquired with diagnostic quality against those acquired with the primary purpose of 

AC. 

 
Method 

Image Acquisition 

AC and DQ images were acquired on a GE Discovery 670 64-slice PET/CT system (General 

Electric Healthcare, Waukesha, WI, USA). CT images of the anthropomorphic chest 

phantom (Lungman N1 Multipurpose Chest Phantom, Kyoto Kagaku Company Ltd, Japan) 

were acquired for five different configurations of nodule position. For each configuration, the 

phantom was loaded with 12 nodules, measuring 5, 8, 10 and 12 mm diameters and 

contrasts -800, -630 and +100 HU. The size, HU and precise anatomical position of all 

nodules were recorded at the time of insertion. There were no duplicate nodules, i.e., 

nodules with same diameters and contrasts, in the same transaxial slice. 

The CT images were acquired per the imaging protocol of our clinical partner, summarised in 

Table 1. AC and DQ images were acquired with automatic tube current modulation (ATCM). 

The CT component of this hybrid system uses a manufacturer termed “noise index” for 

automatic exposure control. The “noise index”, referenced to the standard deviation of CT 

numbers in a water phantom measured on the CT scout (planning image), uses an algorithm 

to maintain levels of image noise as attenuation varies between projections.18–20 The 

minimum and maximum tube current (mA) and “noise index” were set for AC and DQ 

acquisitions. Table 1 lists the remaining technical parameters used to acquire the AC and 

DQ images. Scan and reconstruction field of view (FOV) are protocol driven: to provide 

correction of photon attenuation (AC) and for image fusion (DQ). The remaining difference in 

acquisition parameters between AC and DQ images is the reconstructed slice thickness. 

Dose length product (DLP) is reported by the CT scanner as an estimate of dose received; 

computed tomography dose index (CTDI) is not a robust measure of dose for evaluations 

using ATCM.21 
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Acquisition kVp Noise 

Index 

Mean mA 

(min-max) 

Recon. 

Slice 

(mm) 

Pitch Matrix 

Size 

Scan 

FOV 

(mm) 

Recon 

FOV 

(mm) 

Pixel 

Size 

(mm) 

DLP 

(mGy-cm) 

AC 120 40.00 
34.8±4.8 

(30-42) 
2.5 1.375 512x512 700 500 0.98 44.6 

DQ 120 24.24 
228.5±53.2 

(143-292) 
1.25 1.375 512x512 500 360 0.70 243.3 

Table 1: The parameters used for image acquisition and reconstruction for both diagnostic quality (DQ) CT 

and CT for attenuation correction (AC). Noise index is the standard deviation of pixel values; this determines 

the mean tube current (mA) within a pre‐determined range (max‐min). FOV, field of view; Recon, 

reconstruction.  

 

Observer Performance Study 

A total of 45 normal cases (trans-axial slices with no simulated nodules) and 47 abnormal 

cases (transaxial slices) containing 1-3 simulated nodules (average 1.26 per abnormal case) 

were selected for the observer study from the AC and DQ image data. A case was defined 

as a single transaxial slice. A histogram illustrates the distribution and type of nodules used 

in this study, Figure 1. Image display and recording of interpretations were performed using 

ROCView22 (Bury St Edmunds, UK, www.rocview.net) using a 22” widescreen monitor at 

60Hz (HP L2245wg, 1680x1050, 1.8 megapixels, Hewlett Packard, Palo Alto, CA, USA) 

calibrated using X-Rite i1 and Eye-One Match 3 software (X-Rite, Grand Rapids, MI, USA). 

Observers were instructed to mark the centre of each nodule using a mouse click.  A slider-

bar rating scale (1-10) was used to rate confidence. An acceptance radius (AR), defined as 

the maximum distance, in order to be classified as a lesion localization, between the centre 

of a mark and the centre of the nearest nodule, was used to classify marks as lesion 

localization. This was set at 20-pixels. 

 

Figure 1: A histogram to explain the frequency and type of simulated nodules used in this study. 
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Cases were displayed in a different randomised order for each observer but on a fixed lung 

window (width 1500, level -500) for optimal evaluation of the simulated nodules. The 

observers comprised of 4 radiographers (5-16 years CT experience), 3 radiographers who 

provide diagnostic reports as part of their practice (2-14 years CT experience) and 2 nuclear 

medicine technologists (2-3 years CT experience). The nine observers were informed of the 

approximate 50:50 ratio of normal and abnormal cases and the range and characteristics of 

the nodules. Observers were also provided with a training dataset of ten images to 

familiarise themselves with the appearances of the phantom and nodules, and the procedure 

to mark and rate the nodules under the free-response paradigm using the user interface. 

These training requirements were deemed adequate since there was no need to manipulate 

images, while a phantom removes the influence of case variation. Additionally, the 

requirement for image randomisation and consideration of memory effect precautions, that 

are standard with clinical studies, are unnecessary with this phantom study. 

 

Statistical Analysis 

Since the observer task required the localisation of nodules we desired an analysis method 

that accounts for localisation. The ROC paradigm considers only a single rating for the entire 

case, thus ignoring the location of the nodules. The equally weighted jackknife alternative 

FROC JAFROC (wJAFROC) figure of merit23, which accounts for location information, is the 

weighted empirical probability that a lesion is rated higher than any mark on a normal case. 

In addition to this, the area under the empirical highest rating inferred ROC curve was also 

used as a figure of merit. A random reader fixed case analysis was performed to test for a 

statistical difference in nodule detection performance. Case was regarded as a fixed factor 

because case variability does not apply to when using a single phantom; of course, the 

results are then specific to the phantom used. 

Data were analysed using an R24 package implemented JAFROC analysis, available at 

(https://cran.r-project.org/web/packages/RJafroc/index.html). Two situations were analysed: 

(i) wJAFROC; and (ii) a highest-rating inferred ROC analysis (HR inferred ROC) that was 

derived from FROC data. A difference in nodule detection performance was considered 

statistically significant when the p-value of the overall F-test was less than 0.05, or 

equivalently, the 95% confidence interval for the treatment pairing did not include zero. To 

control the probability of Type I error test alpha was set at 0.05. 

 

Results 
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Nodule detection as measured by either FOM was significantly better on the diagnostic 

quality images. The relevant statistics, P values, treatment difference and FOMs, including 

95% confidence intervals (CI) are summarised in Table 2, which lists the wJAFROC analysis 

and the HR inferred ROC analysis. The FOM differences in Table 2 are negative since AC is 

treated as the first modality in the analysis, and the FOM for AC was smaller than that for 

DQ. We also analysed the data in terms of lesion level detection (sensitivity) using the 

maxLLF (maximum lesion localisation fraction) FOM in Rjafroc. Again, a statistically 

significant difference was found in favour of DQ (F(1,8) = 56.25, p = 0.0001); DQ FOM 

0.857(0.779,0.935), AC FOM 0.751(0.673,0.830). Typical images for DQ and AC are shown 

in Figure 2a & 2b. 

 
Analysis F-Statistic P value FOM Difference 

(95% CI) 

Figure of Merit (95% CI) 

AC DQ 

wJAFROC F(1,8) = 24.18 0.0012 -0.07 (-0.11,-0.04) 0.776 (0.693,0.858) 0.849 (0.789,0.910) 

HR Inferred ROC F(1,8) = 10.13 0.0129 -0.05 (-0.09,-0.01) 0.847 (0.787,0.907) 0.899 (0.862,0.936) 

Table 2: The wJAFROC and highest rating inferred ROC statistics, figures of merit and inter‐treatment 

difference with 95% confidence intervals (CI). Both analyses were sensitive enough to find a statistical 

difference in nodule detection performance, where the P value was less than 0.05 and the 95% CI of the 

treatment difference did not include zero. 

 

 

Figure 2: An example of the images produced with DQ (a) and AC (b). This case shows two nodules labelled 1 

(right simulated lung, 10 mm 100 HU nodule) and 2 (left simulated lung, 8 mm ‐800 HU nodule). 
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The wJAFROC analysis showed a notable increase in statistical significance over the HR 

inferred ROC analysis, where the ROC analysis produced the expected inflation in figure of 

merit with a smaller treatment difference, Table 2. An inflated FOM is evident with the 

inferred ROC analysis since the wJAFROC FOM uses only the correctly localised lesions; 

the occasions where a non-lesion localisation (NL) rating exceeds the lesion localisation (LL) 

rating are not included. The ROC FOM does include these ratings, as it is not sensitive to 

location data; as a result the fraction of cases where a diseased case is rated higher than a 

non-diseased case is increased. A larger difference between DQ and AC is seen with 

wJAFROC as it is measured over a larger range (0 to 1, wAFROC; 0.5 to 1, ROC). 

Despite the lower statistical significance of the HR inferred ROC analysis it is important to 

note that the difference between the two treatments (AC and DQ) was large enough for a 

statistical difference to be observed even with ROC analysis. Observer averaged empirical 

wAFROC plots and the corresponding highest-rating inferred ROC plots for DQ and AC 

images are displayed in Figure 3. 

To analyse the impact of mAs and slice thickness, and thus determine the controlling factor 

on nodule detection, we eliminated the smallest nodules (5 mm) from supplementary 

analyses. We hypothesised that if a statistically significant difference remained between 

CTAC and DQCT then it is more likely that tube charge (mAs) is the controlling factor, rather 

than slice thickness. We again performed wJAFROC and HR inferred ROC analysis, Table 

3. For the sub-evaluation it is necessary to apply a Bonferroni correction to account for 

multiple comparisons. The corrected value of alpha is 0.05/2 (or 0.025). 

 

Supplementary 

Analysis 

F-Statistic P value FOM Difference 

(95% CI) 

Figure of Merit (95% CI) 

AC DQ 

wJAFROC F(1,8) = 8.60 0.0189 -0.04 (-0.07,-0.01) 0.829 (0.760,0.898) 0.868 (0.817,0.918) 

HR Inferred ROC F(1,8) = 4.95 0.0568 -0.03 (-0.06,0.00) 0.890 (0.839,0.941) 0.920 (0.888,0.951) 

Table 3: Results of supplementary analyses with 5 mm nodules removed from the dataset, showing the 

wJAFROC and highest rating inferred ROC statistics, figures of merit and inter‐treatment difference with 95% 

confidence intervals (CI). Only the wJAFROC method was sensitive enough to show a significant difference 

between AC and DQ. 

Even with removal of the 5 mm nodules the  wAFROC analysis shows a significant 

difference between DQ and AC (p-value lower than the Bonferroni corrected value of alpha), 

suggesting that the main contributor to the difference is the large difference in mAs - which 
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implies more noise in the AC images - which would impact on detectability of low contrast 

large nodules. This would suggest that the controlling influence on nodule detection was 

tube charge (mAs) for the nodules and phantom reported in this study, since removal of the 

smaller nodules, most likely to be affected by slice thickness, did not change the overall 

outcome. This supplementary analysis adds weight to the additional value of location based 

analysis methods in observer studies, where the HR inferred ROC analysis was not sensitive 

to this result. 

Analysis of nodule detection rates between AC and DQ showed that differences existed for 

most nodule types of size and contrast. However, the detection difference was largest for 

5mm nodules with 93 successful localisations on DQ images and 64 successful localisations 

on AC images. 

 

Figure 3: The empirical reader‐averaged wAFROC plot and the corresponding highest‐rating inferred ROC 

plot. 
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Discussion 

This study found nodule detection to be significantly poorer on images acquired for AC 

compared to DQ. Based on these results we do not advocate acquiring only AC images if 

nodule detection in the size range quoted in this study is required. The limited usefulness of 

the AC images for nodule detection may have implications for PET/CT protocols that use AC 

only, if the focus of the examination is pulmonary nodules.  

A supplementary analysis, excluding the smallest nodule size (5 mm), still generated a 

statistically significant result. This is suggestive of tube charge (mAs) being the controlling 

factor in this work, rather than slice thickness. In this study the average mAs, as controlled 

by ATCM, for the DQ images was much higher at 228.5±53.2 (range 143-292) compared to 

34.8±4.8 (range 30-42) for the AC images. This effect of mAs seems to be confirmed by 

other recent work.25 However, the potential impact of spatial resolution should not be 

ignored, since smaller slice thickness can result in higher nodule contrast due to decreased 

partial volume effects. Pixel size will also be reduced in AC image; this loss of resolution can 

be unavoidable since a larger field of view is required to minimise truncation artefacts.26 

Several authors12,27,28 have considered dose optimisation in PET/CT using subjective 

evaluations to compare image quality of AC acquisitions. None of the previous works 

evaluating radiation dose in PET/CT reported observer performance studies. The limitations 

of objective and subjective evaluations are often overlooked in evaluations of technology. 

However, these studies suggest agreement with the current study, finding low-dose CT not 

to be equivalent to DQ CT. A clinical evaluation of the AC image in SPECT/CT has come to 

our attention during the writing of this work. Coward et al14 reviewed the AC images in 3485 

patients attending for myocardial perfusion imaging; they found a positive predictive value of 

only 12% for incidental findings revealed in the AC image, suggesting that routine reporting 

of these images was not beneficial. This would appear to confirm the findings of our study. 

It is important to note that lesion detection in clinical PET/CT is not reliant only on CT 

imaging. The metabolism of a lesion is also important in PET/CT; a small lesion that is 

metabolically active is likely to be seen on PET even if the morphological characteristics of 

the lesion prevent it from being picked up on CT. The converse may also be true, where a 

larger less active, or non-avid lesion, may be overlooked. Well differentiated thyroid 

carcinomas tend to have lower FDG avidity while lung carcinoids are typically considered 

non-avid.29 Hybrid imaging improves the detection of non-FDG avid tumours and lesions but 

questions remain about how much time should be invested assessing AC images for non-

avid abnormalities. 
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An additional point of interest concerns our secondary analysis of data to investigate the 

impact of tube charge and slice thickness. This analysis highlights the statistical power 

advantage of a location based analysis in observer studies. The wJAFROC FOM was still 

able to detect a statistical difference in nodule detection performance when the smallest 

nodules (5 mm) were removed, while the HR ROC analysis was not sensitive to the 

difference in performance. This is an important point to consider when planning an observer 

study that involves precise localisation. We also applied the maxLLF FOM to indicate lesion 

level detection (sensitivity); this again showed a highly significant difference in performance 

in favour of DQ. 

There are some limitations to our work. Phantom studies are useful when comparing 

imaging methods under controlled conditions, removing the influence of case variation. 

However, the relevance to clinical interpretations can be limited and of this type of result 

should be carefully considered. Additionally, this phantom did not account for respiratory 

motion. Continuous breathing techniques have been employed in PET/CT examinations but 

there is a growing acceptance of breath-hold CT scanning30–32 for pulmonary pathology, 

which is better represented by the phantom model in this research than a simulation of 

respiratory motion. However, respiratory motion is an important consideration, but currently 

we do not know the impact of respiratory motion on nodule detection in this phantom. A 

study that emulates respiratory motion in this phantom is underway. 

Additionally, we do not know the impact of ATCM on nodule detection. ATCM is widely 

accepted as a suitable dose reduction method for DQ imaging33–37 but despite the mA being 

limited to operate within upper and lower limits,35 previous work19 suggests the selection of 

“noise index” can be arbitrary and radiation dose may not be adequately optimised. Future 

work could assess nodule detection in DQ images acquired with and without ATCM using 

observer performance studies patterned on the current work. 

Conclusion 

Nodule detection was significantly worse on images acquired for AC as compared to DQ and 

it suggests that images for AC should not be used for interpretation of non-avid lesions. 

Even when the smallest nodules (5 mm) were removed from the analysis, a statistically 

significant difference remained for the specification of nodules used in this study. 
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