

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Challenges and Recommendations for the Design
and Conduct of Global Software Engineering

Courses: A Systematic Review

Tony Clear
School of Engineering, Computer &

Mathematical Sciences
Auckland University of Technology
Private Bag 92006, Auckland, NZ

+64 9 921 9999
tony.clear@aut.ac.nz

Mats Daniels
Uppsala University

Box 337 751 05 Uppsala
+46 18 471 3167

matsd@it.uu.se

Sarah Beecham
Lero – The Irish Software

Research Centre,
University of Limerick

Ireland
+353 61 233769

sarah.beecham@lero.ie

Roger McDermott
Dept. of Computer Science
Robert Gordon University

Aberdeen, UK
+44 1224 262000

roger.mcdermott@rgu.ac.uk

John Barr
Ithaca College

Ithaca, New York,
USA

+ 1 607 274 3011
barr@ithaca.edu

Michael Oudshoorn
Dept of Computer Science and

Computer Networking
Wentworth Institute of Technology

Boston, USA
+1 617 989 4275

oudshoornm@wit.edu

Airina Savickaite
Dept. of Comp. Sci. and Engineering

Vilnius University
Lithuania

+1 (860) 486-5232
airina.savickaite@gmail.com

John Noll
Lero – The Irish Software Research Centre,

University of Limerick
Ireland

+353 61 233769
john.noll@lero.ie

ABSTRACT
Context: Global Software Engineering (GSE) has become the
predominant form of software development for global companies
and has given rise to a demand for students trained in GSE. In
response, universities are developing courses and curricula around
GSE and researchers have begun to disseminate studies of these
new approaches.
Problem: GSE differs from most other computer science fields,
however, in that practice is inseparable from theory. As a result,
educators looking to create GSE courses face a daunting task:
integrating global practice into the local classroom.
Aim: This study aims to ameliorate the very difficult task of
teaching GSE by delineating the challenges and providing some
recommendations for overcoming them.

Method: To meet our aims we pose two research questions
(“When teaching GSE to students in Higher Education, what are
the (a) challenges, and (b) recommendations for addressing
them”) and then conduct a systematic literature review (SLR) to
determine the answers to these questions. Our SLR follows a
carefully designed and validated protocol.
Results: We found 82 papers that addressed our research
questions. Our findings indicate that in addition to the challenges
posed by GSE in general, particular problems arise in educational
situations. The majority of these challenges fall into the “global
distance” category, though teamwork challenges and people issues
(such as trust) also commonly arise. Organizational differences
between institutions, differing skill sets between students in
different locations, and varying cultural work norms, for example,
all operate within educational settings in quite different ways than
in professional development teams. Integrating cultural training,
conducting teamwork exercises to build trust, and instructor
monitoring of team communication are all examples of techniques
that have been used successfully by educators according to our
review
Conclusion: Despite the severity of the challenges in GSE
education, many institutions have successfully developed courses
and curricula targeting GSE. Indeed, for each of the challenges we
have identified in the literature there are numerous
recommendations for overcoming them. Instructors can use the
recommendations given in this study as a starting point to running
successful GSE courses.

CCS Concepts
• Social and professional topics ➝ Computing
education • Software and its engineering.

Keywords
Global Software Engineering, International Collaboration, Open
Ended Group Project, Capstone, Teaching and Learning, Global
Software Development, Systematic Literature Review.

1. INTRODUCTION
In this working group we have examined the many issues facing
Computer Science (CS) educators teaching CS courses involving
global collaboration, and the options available to them in
responding to the issues arising. The available literature proved to
be voluminous and wide ranging, but was rather disparate in
nature, reporting local experiences and often failed to build upon
prior work.
In this paper we present recommendations from our
comprehensive systematic literature review on Global Software
Engineering (GSE) Education. Since Monasor et al.’s literature
review in 2010 [47], no comprehensive review of the research has
been published to provide a complete instructor-focussed picture
of the available material on GSE education. While Monasor [47]
presented the state of the art of GSE education and training in
both university and industrial settings, there were no clear
guidelines in terms of barriers and recommendations. Fortaleza
[30], conducted a mapping study in 2012, which reviewed who
was doing GSE Education; although identifying some 19 GSE
courses, they noted a contradiction between the espoused need for
such education and the reality, concluding there were “a small
number of institutions that in fact teach it in their programs” [30].
By focussing more on practical guidelines and recommendations
(see Section 6.1), we aim to help CS course instructors and
interested researchers to determine the current state of research in
GSE Education, and how they might use that research to inform
their practice. Our systematic approach to analyzing published
studies enables us to identify reliably where the literature has
recurring themes, where it presents conflicting findings, and
where are there gaps in the existing body of knowledge.
GSE is fast becoming standard practice [4; 30; 48; 57], and
today’s software engineering students are very likely to become
tomorrow’s global software engineer. Nearly ten years ago now,
the report of the ACM Job Migration Task Force on the
Globalization and Offshoring of Software was introduced with
these statements by John White, then Chief Executive Officer of
ACM:
…the field of computing and information technology has
experienced a dramatic shift in the past five years to a truly global
industry.
The forces that have driven and shaped this change are still at
play and will continue.
The educational systems that underpin our profession will need to
change. [4]
We consider the wider implications of preparing students for the
complex world they are likely to enter, where they will not only
be confronted with difficult technical problems, but also with how
to work successfully in multi-site teams.
Global software engineering, or global software development
(GSD), courses have increasingly been offered as a way to afford

students authentic learning experiences [23; 43; 56] of global
collaboration. Given the importance of educating students with
the required skills for developing software in multi-site teams we
look to the literature to answer two research questions (RQs):
RQ1: What are the challenges in delivering GSE courses to
Software Engineering students?
RQ2: What are the recommendations for delivering GSE courses
to Software Engineering students?
The aim is to produce a broad ranging resource for global
software engineering educators, which will support efforts to
design and conduct successful courses between globally dispersed
institutions and student teams.
This paper is organised as follows: in the next section, we begin
with a brief background on Global Software Engineering
Education, which also outlines a rationale for the definition we
have adopted when scoping this study. In Section Three we
summarise our systematic method for conducting the review
which involves following rules set out in our protocol. Section
Four presents an overview of the surveyed literature, including
geographical spread, temporal aspects, and publication details.
Section Five reports the results of our synthesis of identified
themes based on our two research questions. In Section Six we
discuss our key findings, as well as some limitations of this study;
finally, in Section Seven we present our conclusions.

2. BACKGROUND
2.1 Global Software Engineering Education
This systematic literature review is concerned with a crucial but
neglected area of software engineer education and training: – how
to teach global software engineering methods to students before
they enter the workplace? There is increasing recognition that
GSE requires special treatment, and that students entering the
workplace are likely to find themselves working in distributed
teams. In investigating the topic of GSE for this study, the
available literature proved to be voluminous and wide ranging, but
was rather disparate in nature, reporting many local experiences
and often failing to develop upon prior work. As noted in our
introduction, two reviews have been conducted on this topic that
address aspects of the area [30; 47]. Yet no review of this scope,
with the purpose of bringing together the combined knowledge on
the topic with specific recommendations for GSE educators, has
been found in the GSE education literature. Therefore, since
much of the prior work has been descriptive in nature, our goal in
this paper, in common with the call to offer ‘solutions’ in Ali-
Babar and Lescher [1], is to provide some guidance for CS
educators that not only identifies issues and pitfalls, but is of a
more prescriptive and directly applicable nature for those planning
and offering GSE courses.
Since GSE is increasingly cited as becoming the norm [4; 30; 48;
57], students studying SE are very likely to find themselves
working in multi-site teams on graduation. Yet GSE projects often
fail to realise hoped-for advantages such as higher productivity
through hiring highly skilled engineers from countries with
competitive labour rates [21]. The challenge of developing
software across Global Distance (temporal, geographic and
cultural), is complex. Many organisations are realising that they
need to invest in cultural training to improve team collaboration
[45; 46]. If educators of the future workforce can pre-empt this
need, the new tranche of software engineers will be better
equipped for the unique challenges imposed on them by working
in multi-site teams.

The studies in this area suggest that conventional approaches to
teaching SE are increasingly outdated and lack authenticity. For
instance, as observed in Matthes [43]:

When considering the personal requirement today's software
engineers are facing in their daily work life, it is surprising to see
that teaching GSE at universities is still in its infancy.

The literature is presenting mixed messages. The balance
between developing students with strong technical skills, and
augmenting those with a broader set of professional capabilities,
has long been a source of tension in the academy [43; 56].
Traditionally these challenges in computer science and software
engineering programmes have been addressed through capstone
courses and internships [18; 20].

However with the rise of globalisation and the concomitant
changes in the working environment for professional software
engineers [4], new approaches are needed, and a number of
collaborative software engineering programmes have arisen in
response [3; 4; 13; 24; 25; 28; 31; 61]. These initiatives have
mostly been pioneering and relatively discrete, and have
represented non-trivial commitments for the participating
institutions. Some of the collaborations however have been long
lived e.g. [19; 23; 28; 55]. One encouraging report has observed
that students in international teams can benefit from learning by
osmosis and can perform as well as the students in local teams
despite the extra effort usually required for GSE projects [41].

Underlying the need for extra effort in courses of this nature are a
number of issues which inevitably arise from the challenges of the
distances posed by time, space, organisational, linguistic and
cultural boundaries [15; 16; 19; 26; 27; 32]. Confusions,
technology breakdowns [34], issues relating to trust development
[38], collaboration readiness [52], cultural challenges [14; 16],
student motivation [11; 56] and uncertainties in communication
[22; 52], are all inevitably part of the experience. Consequently,
the ability to manage ambiguity and uncertainty are key
capabilities that students must develop if they are to have an
education that endures [19; 24; 27; 45; 56]. Since we do not have
all the answers for doing this well, it is therefore necessary to
continue to develop models, practices and strategies that will
serve both students and educators, as well as the profession. A
starting point for capturing these methods is to identify key
lessons from what has worked well in GSE teaching and learning
as reported in the literature.

2.2 Defining GSE/GSD
In this working group we had to wrestle with scoping our study
and its boundaries. We use the terms Global Software
Engineering (GSE) and Global Software Development (GSD)
interchangeably, but with education added as a modifier settled on
the abbreviation “GSE-Ed” for this study. A working definition
for GSD/GSE is given below:

In GSD, stakeholders from different national and organizational
cultures and time zones are involved in developing software…and
tasks at various stages of the software lifecycle may be separated
and implemented at different geographic locations coordinated
through the use of information and communication
technologies…[36]

2.3 Defining GSE-Ed
GSE-Ed can be considered as an extended case of Software
Engineering Education. The starting point therefore for a

definition will be the definition of standard co-located models for
SE Education. Yet as is obvious from the quotes below that is no
simple task, as there has been argument over the definition of
software engineering itself for decades, for instance.

There is no universally accepted definition of software
engineering. For some, software engineering is just a glorified
name for programming [44].

The fact that the literature contains many different definitions of
software engineering implies that a concise and complete
definition of software engineering is difficult to formulate [42,
p.11].

Essentially therefore, software engineering practices are largely
concerned with managing relevant processes and with design
activities, and these can appear in a range of guises. Most of the
activities involved in software development and evolution tend to
use team-based processes that embody some form of design
element…Each of these adds yet another layer of complication:
teams must be organized with regard to aspects such as
communication, coordination, and management and design
activities are nondeterministic…processes that lead to solutions
that are rarely right or wrong [42, p.12].

Therefore SE Education needs to address these aspects of theory
and professional practice and the SE 2014 report on Curriculum
Guidelines for Undergraduate Degree Programs in Software
Engineering [42] identifies three guiding principles:

The first is the desired outcomes for a student who has studied an
undergraduate curriculum in software engineering. The second is
a set of foundational ideas and beliefs about the nature and form
of software engineering. The third concerns the goals for the
curriculum guidelines [42, p.20].
GSE education amplifies the inherent challenges in SE education
noted above in the SE2014 report. Team based processes in GSE
now incorporate various forms of distance, which further add to
the yet another layer of complication problem. So strategies to
manage and limit these complexities become important, with
theoretical courses and simulation approaches complementing full
inter-institutional collaborations.

Given these definitional problems and inconsistencies we have
settled on a working definition of GSE-Ed for the purposes of this
paper:

“GSE-Ed represents a combination of learning and teaching
strategies that prepare students for GSE/GSD”

where GSD adopts the definition from Holmström [36] as stated
in Section 2.2.

In a systematic literature review [17; 48] it is critical to be
comprehensive, yet ensure that a manageable number of papers
are retained for the analysis; therefore, defining terms is
important. In this study we are interested in the differences in
learning and teaching in globally distributed models. The
research questions posed in the study then, are based upon this
definition of GSE-Ed.

Similarities can also be noted with other forms of authentic
educational experiences [cf.18]. GSE Education courses can be
placed within a continuum model, with multiple dimensions. The
model from [18] is repeated in Figure 1 to indicate the aspects for
consideration in a co-located setting.

Fig. 1 The co-operative education continuum [18]

Helping to further focus this study, we started with the notions of
distance common in the GSE literature [15; 16; 19; 26; 27; 32],
and used those to determine whether a paper was in scope. We
required that a focus on educational courses/initiatives addressing
these dimensions was present in a study that would fit our
inclusion/exclusion criteria. Figure 2 presents these distances,
collapsed into three primary aspects, on the basis that linguistic
and institutional distance could be viewed within a broader
cultural distance dimension.

Fig. 2 Distances in GSE-Ed

These distinctions helped us frame the criteria by which to include
or exclude studies as elaborated in the next section.

3. METHOD - Systematic Literature Review
(SLR) Procedure
We used the SLR procedure defined by Kitchenham and Charters
[39] to identify, evaluate and interpret the available published
studies relating to our research questions.
The aim of this SLR is twofold: first, to identify the challenges
that educators experience when teaching global software
engineering, and second, to propose a set of recommendations that
will facilitate and ease the teaching process. The population of
interest comprises software engineering students and their
instructors, and the topic of interest is teaching and learning in
Global Software Engineering. We look for answers to our
research questions through an investigation of primary studies
found in selected sources.
In accordance with systematic review guidelines [39] we take the
following steps:

1. Identify the need for a systematic literature review

2. Formulate review research question(s)

3. Source selection – record sources used to search for
primary studies

4. Document selection: Classify data needed to answer the
research question(s) (inclusion exclusion criteria).

5. Extract data from each included study (data extraction)
6. Summarise and synthesise study results (meta-analysis)
7. Assess and record the quality of included studies
8. Interpret results to determine their applicability (see

discussion section of this paper) – we describe in this
section how we validated our results.

9. Write-up study as a report (as evidenced in this paper)

These steps are detailed in our protocol [6], which is based on the
process used by Beecham and colleagues [5]. We developed our
protocol by piloting the process with three researchers who
performed searches based on rules given in the protocol.
The remainder of this methodology section summarises the
process presented in our protocol. Where more information is
required please refer to Beecham et al. [6].

3.1 Identify the need for a review
The proposed systematic literature review is concerned with an
important area in software engineer education and training: how
to prepare students for global software engineering. While there is
increasing recognition that GSE requires special treatment, and
that students entering the workplace are likely to find themselves
working in distributed teams, no deep review has been undertaken
to bring together the combined knowledge on the topic.

3.2 Formulate review research questions
We considered whether our general research question, “What are
the key issues in and approaches to designing and conducting
GSE courses?” is suitable for investigation by systematic review.
Prima facie this question does not closely match the type
suggested by Kitchenham and Charters [39], where the emphasis
is on assessing how technology is adopted in or affects software
engineering. Our work perhaps relates more closely to the root of
the guidelines provided by the medical literature. We can adapt a
medical theme, “Assessing the economic value of an intervention
or procedure”, to “Assessing the [economic] value of applying
recommended design approaches to global software engineering
courses”. In our case we can interpret “economic” in terms of a
student’s readiness to work in GSE.
Initial research shows very little work in the area of the economics
of education in global software engineering. Therefore, to answer
our key research question in terms of the value GSE courses bring
to the student and the workplace we pose two sub-questions:
RQ1: What are the challenges in delivering GSE courses to
Software Engineering students?
RQ2: What are the recommendations for delivering GSE courses
to Software Engineering students?
We need to address both these questions as there may be barriers
(RQ1) to implementing certain recommended practices (RQ2).
Recommendations (RQ2) need to be in context with any known
constraints (RQ1). The context of the education setting is
Higher/Third tier level. The recipients of these courses can
therefore be full time students (with no industrial experience), or
software engineers (professionals) participating or collaborating in
university based training.

3.3 Source selection
Papers were selected using two different methods. The principle
technique was a keyword search in the major on-line digital
libraries. Key words and synonyms were drawn up for each
research question and then the following databases were searched
using Boolean conditional key word search strings:

- IEEE Digital Library (www.computer.org)
- ACM Digital Library (http://portal.acm.org/dl.cfm)
- Scopus (http://www.elsevier.com/solutions/scopus)

The keywords used in each of these searches are provided in
Appendix C, where different combinations of this string are
applied:
((((software OR "information technology" OR "information
system*" OR comput* OR programming) AND (student OR
trainee OR learner)) AND ("distributed software" OR "global
software”) AND (educat* OR train* OR course)))
These initial searches resulted in 545, 57, and 160 papers
respectively, with a total of 762 as shown in Table 1.
To ensure we did not overlook any important material, additional
searches were performed directly on key conference proceedings
producing a further 23 studies:
International Conference on Global Software Engineering
(ICGSE)
International Conference on Innovation & Technology in
Computer Science Education (ITiCSE)
Collaborative Teaching of Globally Distributed Software
Development Workshop (CTGDSD)
These specific conferences were chosen because of their focus on
either Global Software Development or Computer Science
Education (or both). These direct searches involved an
examination of the table of contents from the last ten years of
ITiCSE and ICGSE, and the three years that the CTGDSD was
held. Papers from these sources were selected according to our
inclusion and exclusion criteria (see Section 3.4 below) and our
two research questions (see Section 3.2 above). These additional
searches resulted in 23 additional papers (see Table 1).
Table 1 shows the number of papers selected from our sources
described in Section 3.3. Having removed duplicates across
databases, we were left with 649 unique papers to consider
including in our study. The table shows the several filtering
phases used to establish our final set of 82 papers.

Table 1: Paper selection process
Selection Process # papers Validation process

Database papers found 762 Check for known papers

Duplicates removed (-136) 626 Agreement across researchers

Direct searches (+23) 649 n/a

Sift based on Title and
Abstract (478 rejected)

171 All 649 papers assessed by 2
researchers

Full papers reviewed applying
inclusion and exclusion
criteria (63 rejected)

108 9 papers reviewed by 2
researchers to check
agreement

Repeated studies identified
(26 removed) to produce final
set of 82 papers (excl criteria
2)

82 8 papers discussed by group
to agree which paper to
retain

3.4 Document selection
To be included in this study a paper had to meet the inclusion
criteria and not fall into the exclusion criteria. The criteria used to
scope the study are given in Tables 2 and 3:
Table 2: Paper Inclusion Criteria

1. must address global software development/engineering
(GSD/GSE), defined as collaboration across various Global
Distances: cultural/linguistic, temporal, geographic.

2. must be either a theoretical study or an empirical study (where we
define ‘empirical’ as in Hirschheim [35] (i.e., cases, [including
experience reports] multiple observations as in surveys, statistical
samples, anything coming from the five senses)

3. must have been published in the years 2000-date; (publications
found in a secondary searches can be any date).

4. must be peer reviewed.
5. must directly answer one or more of our RQs.
6. must be a primary study (reporting ideas or experiences directly).

Table 3: Paper Exclusion Criteria

1. books, presentations, opinion pieces, posters, very short papers
(less than 2 pages), or proposals.

2. repeated studies that did not provide significant new insight.
3. studies focused primarily on open source development rather than

global software engineering
4. complete proceedings, not individual papers.
5. where the focus is primarily on E-learning, remote learning, or

cloud computing as opposed to GSD/GSE.
6. where the primary concern is on hardware/distributed systems

(where distributed relates to the system, rather than team).
7. where the focus is on collaborative software development which is

not globally dispersed.
8. where there is no focus on (at least) parts of the life cycle

development process across collaborative groups/parties.
9. SLRs or tertiary studies. These would reflect previously discovered

insights, duplicate findings in our primary studies.

3.5 Data extraction
The 171 full papers (accepted based on reading the title and
abstract – see Table 1) were divided between the authors for
further review. Each researcher extracted data from their set of
papers according to:

Our Research Questions
Exclusion Criteria
Inclusion Criteria
Quality Criteria (Valentine’s taxonomy Appx B)

Data was extracted in two phases. Phase 1 required the researcher
to provide context information and assess whether the study met
our inclusion and exclusion criteria (as a result of this process we
excluded a further 63 studies). The remaining 108 studies were
checked for repetition (where similar study results are reported
across different publications), resulting in a further 26 studies
being eliminated. The final set of 82 studies were closely
examined and recorded in Phase 2 (qualitative analysis) where
text snippets that addressed our research questions were extracted
directly into our data extraction form (see Appendix F all
categories included in the data extraction form). The form also
prompted the researcher to record any themes that emerged as part
of the data extraction process for further analysis as explained in
the next section. For practical purposes all results, including
quality assessment are combined into one document/excel
spreadsheet.

3.6 Summarise and synthesise study results
We synthesised our text snippets into themes using content
analysis, a qualitative analysis technique often used to analyze
unstructured text, such as focus group data. The process of data
analysis as described by Krippendorff [40] is similar to the
grounded theory method, where replicable and valid inferences
are made from the data to their context. Where content analysis
differs from grounded theory is that it is largely numeric and
therefore includes a quantitative form of research. Content
analysis produces results such as, “46% of challenges recorded in
the GSE Education Literature relate to Global Distance”. Content
analysis involves assigning a type or code to excerpts of text,
which captures or classifies the meaning of the excerpt.
Traditionally, qualitative analysis is performed on large
documents such as interview transcripts; individual sentences or
fragments within the larger document are coded according to their
meaning or intent. In the context of our literature review analysis
these “documents” are the published studies, and the fragments
are short text extracts from papers that are deemed to answer our
research questions.
Consequently, each artefact can be considered as a whole, with a
type assigned to convey the meaning of the entire artifact. Using
content analysis, a researcher can assign a type code to each text
snippet, classifying it, for example, as a Teamwork issue, or a
Global Distance issue, where the resulting coded sample set gives
a picture of the types of issues instructors experience when
conducting courses in GSE.

3.6.1 Developing a Coding Scheme
Content analysis aims to identify the meaning of text by assigning
a code that conveys that meaning. Coding allows researchers to
ask quantitative questions about qualitative data, such as, how
often do the studies on Education in GSE mention issues
commonly associated with Global Distance as opposed to
technical issues associated with how to learn to program? As
such, it is essential that the coding scheme used to convey
meaning is accurate. Also, it must be repeatable: different
researchers should assign the same code to a given text fragment,
and the same researcher should assign the same code to a given
fragment when analyzed a week or a month later.
A good coding scheme is not only accurate and repeatable; if the
number of codes is small, and their definitions are clear, the
coding process becomes straightforward and can be completed
easily and quickly. Our coding method is adapted from Noll [49-
51] and comprises the following steps:
1) Create Initial Type Set: The first step is to select a
representative sample of text fragments, and from these, create an
initial set of codes that capture their meanings.
This is an inductive approach, in which the researcher reads a
fragment and invents a code (word or phrase) that captures the
meaning conveyed by the fragment. The list of codes grows and
evolves as more fragments are read, and in the end may have
many codes.
In this study, an initial set of codes was derived from a trial
examination of several hundred text snippets extracted from 30
reviewed papers. These snippets were divided among six
researchers, who individually created major categories and minor
codes to describe their snippets.
This initial code set, shown in Appendix D, (Table D1), attempted
to capture the wide variety of meanings, and comprised a total of

110 minor codes that were grouped in 18 major categories that
reflected both research questions.
2) Aggregate into Type Categories: Next, the list of codes is
examined to discover broader categories. Codes with similar
meaning are grouped together, and coalesced into a single
category. The goal is to refine the list into a handful of categories
with distinct meanings, so that it is easy to decide to which
category a given text fragment belongs. The categories are given
names which become the codes that are assigned to text
fragments.
The six researchers met as a group to compare their individual
codes, and agree on an aggregated set of major categories and
minor codes. In this way, the initial set of 18 major codes was
reduced to seven categories, shown in Table 4, that capture
meaning appropriate to the research questions for this study.
For example, the initial types ‘language differences’, ‘cultural
differences’, ‘time’, and ‘geographic distance’ went into the single
category ‘global’; the minor codes under this major category
capture the differences among types of Global Distance. Where
issues or recommendations spanned across all Global Distances,
we used the catch-all ‘increased complexity’ minor code.
Table 4: Final set of 7 codes and associated classifications

1. GLOBAL DISTANCE 4. INFRASTRUCTURE
Increased complexity Tools
Cultural Technical issues
Temporal Version Control
Linguistic
General 5. DEVELOPMENT PROCESS
Organisational S/w Development Process
Skills Requirements

Design
2.STAKEHOLDER/ ROLE Coding

Client Testing
Instructor System/code integration
Student
University representative 6. CURRICULUM/PEDAGOGY
Role conflict Course design

Learning Outcomes
3.PEOPLE/SOFT ISSUES

Motivation 7. TEAMWORK/TEAM CREATION
Trust Synergy
Stress Task allocation
Self-awareness

The results section discusses the frequencies of these codes, and
summarises the findings according to each major category. The
authors of this paper used the fully defined version of these codes
as presented in Appendix E (Table E1) to categorise findings from
their data extractions.
3) Create Checklist: Creating the final set of categories and codes
was an iterative process. The final set of codes continued to be
refined throughout the data extraction and coding process. It is in
this way that new codes evolved, where there were gaps in the
initial coding scheme.

3.6.2 Validating Codings
Once text fragments from all accepted papers were extracted and
coded, the codings were subjected to a validation process to
ensure consistency among different researchers. This was
achieved with a four step process:
1) Extract text fragments from the coding forms. We used a form
(see Appendix F) to collect data from each paper; the form

included fields for text fragments and codings. These text
fragment fields were extracted into a data file for processing.
2) Normalize codings using final checklist. The initial set of text
fragments used to develop the final checklist was automatically
recoded by mapping original major and minor categories and
codings to final categories and codings from the checklist.
3) Validate codings. Once each text fragment had a major
category and minor code from the final checklist, each fragment
was reviewed by two researchers to ensure the correct category
and code were assigned. A total of 806 text fragments were
divided into four groups of 403 fragments (first half, second half,
even, and odd). Each of four researchers then examined each
fragment in one of these groups to validate the assigned major
category and minor code.
4) Resolve conflicts. Where two researchers disagreed on a
category and/or code assignment, the differences were discussed
among the group via email, and a final major category and minor
code agreed.

3.7 Study Methodology Quality Assessment
Many of the studies we reviewed were descriptive, and case
specific. In keeping with our observations, Valentine [63]
identified that CS education publications often do not fit the
standard research quality benchmarks. We did not therefore
attempt to assess the quality of the studies in terms of sample
sizes, sampling, response rates, questionnaire design, etc.
However, as discussed in the results section, we applied a scheme
developed specifically for CS Education according to Valentine’s
taxonomy [63].
First, each paper was classified as “Experimental”, “Marco Polo”,
“Philosophy”, “Tools”, “Nifty”, or “John Henry”; these categories
are described in detail in Appendix B. Then, for studies classified
as “Experimental”, additional data about the context of the study
(geographical area(s) involved, total number of sites,
methodology, and analytical technique) were captured. Finally,
for those studies classified as “Experimental” an assessment of the
strength of the findings was made, based on the technique(s) used;
this assessment ranged from “anecdotal” for studies that were
essentially experience reports, to “valid” for studies that followed
an explicit methodology, to “strong” for studies that presented
statistical evidence to support the findings.

3.8 Validation
3.8.1 Validation 1 - Paper Selection based on Title
and Abstract.
Our paper selection followed a repeatable, auditable and reliable
process as outlined in our protocol [6]. The initial list of papers
was derived from several sources (see Section 3.3). After
eliminating papers that were duplicated across sources, 649
primary papers were identified as potential sources for this study
(see Table 1).
Three authors performed the initial screening of this list of papers
in three stages. The aim was to only include those papers that met
our inclusion/exclusion criteria detailed in Section 3.4.
Stage 1: Three authors assessed the first 100 papers in our
extracted papers list and by reading the title and abstract classified
them according to the following scheme: "accept", "reject",
"background", or "don't know".
Stage 2: Any disagreements between the three authors were
resolved through discussion, and the inclusion/exclusion criteria
modified in the protocol accordingly. For example, the filtering

criteria was scoped to exclude papers that focused on e-learning or
distance-learning where there was not clear evidence of global
software development.
Stage 3: The remaining 549 papers were examined by the same
three authors, who applied the refined criteria to classify each
paper by the same four designations. All designations were
verified by the other two authors and discrepancies were resolved
through discussion.
This first filtering based on abstract and title, resulted in 171
accepted papers, to go to the next phase of analysis which was to
read the full paper and complete data extraction forms.

3.8.2 Validation 2 - Paper selection (Full Paper)
A generic data extraction form was developed to record the
context of the paper, and how each paper addressed our research
questions. As a test of utility, three authors then independently
used the form to extract and record data from nine randomly
chosen papers; each of these papers was reviewed by two authors.
The resulting 18 data extraction forms were compared and
discussed, and the form was modified to better reflect the
information required for the SLR. An example of this form is
given in Appendix F.
The first part of the form addresses inclusion and exclusion
criteria. After reading the full text, we rejected 62 more papers, as
they failed to meet our inclusion/exclusion criteria. We also
updated the protocol to reflect issues in the criteria. For example
we realized that we should exclude secondary reviews from our
study, since we had included most of the primary papers
examined by these reviews; as such, the inclusion of these review
papers would have resulted in duplicate findings.

3.8.3 Validation 3 -Data synthesis
In order to test our synthesised codes (method described in
Section 3.6) four authors independently examined the mapping of
text fragments for each selected paper to the codes, as described
above in Section 3.6.2. In the end, every text snippet was thus
coded or validated by at least two researchers.

4. RESULTS
4.1 Overview of Selected Studies
This section provides a brief overview of the studies profiling
sources and dates, study methods and themes.

4.2 Study Sources
Table 5 gives a breakdown of where our 82 papers have been
published. Papers were derived from a variety of sources, many
of them high quality SE and CS-Ed conferences, (and some
miscellaneous in the ‘other’ category). Not unsurprisingly the
GSE focused venues provided the most papers for our study.
Table 5. Sources of Selected Papers

Conference/Workshop/Journal # Papers
Int’l Workshop on Collaborative Teaching of Globally

Distributed Software Development (CTGDSD)
13

Int’l Conf. on Global Software Engineering (ICGSE) 13
Int’l Conference on Software Engineering (ICSE) 10
Frontiers in Education Conference 6
Journal Articles 6
IEEE Conf. on SW Eng’ring Edu. & Training (CSEE&T), 5
Annual SIGCSE conference on Innovation and technology

in computer science education (ITiCSE)
4

Int’l Conf. on Information Technology Based Higher
Education and Training (ITHET)

3

Other: (conferences and workshops that occur twice or less) 22
Total 82

4.3 Study Methods
Here we categorise the types of studies that we have included in
our selected papers. As these studies have been conducted with
an educational focus we apply a taxonomy developed by
Valentine and applicable to CS education publications [63]. The
taxonomy consists of six categories, with the experimental
category representing studies with some form of research rigour,
through to Marco Polo descriptive studies as experience reports of
one-off course iterations. The other categories are relatively self-
explanatory, but are elaborated more fully in Appendix B.
Table 6. Profile of Selected Papers using Valentine Taxonomy

Category # Papers %
Experimental 42 51
John Henry 0 0
Marco Polo 24 29
Nifty 1 1
Philosophy 6 7
Tools 9 11

Totals 82 100

As can be seen from the classifications, approximately half of the
studies apply some form of rigour in research design, which helps
support the quality of our analysis, but nearly a third consist of
local experience reports. A smaller number of papers adopt a
more philosophical stance, and the remainder focus on tools to
support GSE-Ed.
The more general classification, in Table 7 below, presents an
alternative view. (Although classified as experimental within
Valentine’s classification, we excluded the literature reviews from
the full analysis to avoid inflating our challenges and
recommendations). However they have provided useful
background information for the study.

Table 7. Profile of Selected Papers by Research Type
Category # Papers %

Empirical Research 43 52.5
Experience Report 34 41.5
Theoretical 5 6

Totals 82 100

As can be seen from the classifications, the papers were relatively
evenly divided between empirical research studies, (studies
applying quantitative and qualitative methods), and experience
reports, which had limited research rigour. Research approaches
and methods used covered a broad range from action research,
descriptive and exploratory case studies, controlled experiment,
student and instructor surveys, questionnaires and interviews,
grounded theory, content analysis, log usage data analysis,
statistical analysis. So the field can be considered both diverse
and open in its choice of methods. A small number of theoretical
papers were noted which presented frameworks or philosophical
perspectives on aspects of GSE-Ed.

4.4 Geographical distribution of papers
The Figure 3 bar chart groups countries represented in our 82
studies by frequency of citation in the selected papers. In all we
see that a rich selection of 39 countries is represented, which span
the globe from east to west and north to south.

Fig 3: Countries represented in the empirical studies
The frequency groupings in Figure 3 indicate those more active
countries from this study, with USA dominant overall, followed
by Germany and Sweden as GSE sourcing countries, while the
commonly regarded GSE providing countries of China and India
are in a second grouping; Panama is represented perhaps as a
nearshoring option. The subsequent groupings appear relatively
mixed, representing a variety of collaborations between
institutions across those countries. However, as can be seen from
frequencies in the bar-chart, the studies covered in our review
have a western /USA slant, given that they appear in the majority
of our studies.

4.5 Study Dates
Figure 4 presents frequencies according to the year in which our
82 studies were published.

Fig 4: Number of papers included in review over time (no.82)

0

5

10

15

20

25

30

35

40

45

Al
ge

ria
, A

us
tr

al
ia

, D
en

m
ar

k,
 E

gy
pt

, F
ra

nc
e

Gr
ee

ce
, H

un
ga

ry
, J

ap
an

, K
or

ea
, M

al
ay

sia

Co
st

a
Ri

ca
, S

en
eg

al
,U

K

Ch
ile

, C
ol

om
bi

a,
 Ir

el
an

d,
 N

ew
 Z

ea
la

nd
,…

Ar
ge

nt
in

a,
 C

an
ad

a,
 N

et
he

rla
nd

s,
 S

pa
in

,…

Br
az

il,
 C

am
bo

di
a,

 F
in

la
nd

, M
ex

ic
o,

…

Ru
ss

ia
,

Cr
oa

tia
,

In
di

a,
 It

al
y,

 T
ur

ke
y

Ch
in

a

Pa
na

m
a

Ge
rm

an
y,

 S
w

ed
en

U
SA

N
um

be
r o

f o
cc

ur
re

nc
es

Collaborating Countries

0

5

10

15

20

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14N
um

be
r o

f p
ub

lic
at

io
ns

Year of publication

Table 8. Recommendations and Challenges Major Theme Breakdown
Recommendations Challenges Total

Theme Freq. % Rank Freq % Rank Freq Freq %

Global Distance 60 16% 4 189 46% 1 249 32%

Teamwork 80 22% 1 55 13% 2 135 17%

Curriculum/Pedagogy 71 19% 2 32 8% 6 103 13%

Stakeholder/Role 62 17% 3 36 9% 4 98 13%

Infrastructure 49 13% 5 33 8% 5 82 11%

People/Soft issues 28 8% 6 46 11% 3 74 10%

Development Process 16 4% 7 18 4% 7 34 4%

Totals 366 409 775 100%

As can be seen from Figure 4, there have been a fairly steady flow
of papers over the last 15 years, from a slow start in the early
2000’s and a picking up from 2005 to a peak in 2011 and 2012.
While there appears to be a slight drop-off, papers are continuing
to be published in the area. Although we conducted our searches
to include papers published in the first half of 2015, no papers
were identified that year. Many of the key conferences had not
been held at mid June 2015, and there is often a lag until database
publishing. We do however include commentary in the
background and analysis sections (e.g. 5.3.2) based upon two
specific ICGSE 2015 papers [7; 56], which had been published at
time of writing and were relevant and known to the authors.
Certainly GSE-Ed remains a rich area for enquiry and solutions
are still being sought, as institutions grapple with preparing
students for working globally, so we would expect GSE-Ed
publications to continue for some time.

5. SUMMARY AND BREAKDOWN OF
STUDY THEMES
The themes and subthemes identified in Section 3.6 above
occurred with the frequencies shown in Table 8.
While Global Distance was a dominant category overall, in this as
in other categories, the focus differed between challenges and
recommendations. For the challenges themes, global distance
was the dominant category, found in some 46% of the papers,
with teamwork and a set of people/soft issues related concerns
ranking next in approximately one third of the papers. Next were
Stakeholder roles, infrastructure and curriculum/pedagogy in a
grouping of similar weighting, with development process issues
following at seventh place.
For the recommendations themes, the focus shifted to teamwork
and curriculum/pedagogy as the areas into which interventions
most often fell, with modifying stakeholder roles and addressing
global distance not far behind, being found in approximately one
third of the papers. Addressing issues to do with infrastructure
ranked next with people/soft issues and development process
having a lesser occurrence.
The following subsections present the results of our analysis,
grouped by theme. We first present the theme’s challenges (our
RQ1) in order of frequency. Each challenge is followed by the

recommendations for solving the issues (RQ2). Table 8 provides
a full list of our themes along with their frequency and ranking.

5.1 Global Distance
Our Global Distance theme encompasses cultural, temporal,
linguistic, geographic, and organisational distances. This distance
tends to be expressed in terms of communication overhead due to
increased complexity, and scaling of processes. For example tacit
knowledge can remain hidden when working remotely, and
temporal distances can lead to time delays, especially when
distributed teams are sharing modules with high dependencies. In
an educational setting, Global Distance extends to differences in
institutional regulations (concerning synchronisation of semesters,
assessments schemes, expectations and goals), and also
differences in student skill levels. The following sub-sections
discuss these distances more fully along with example quotes
from related studies. In keeping with our research questions, we
divide up our section in terms of GSE teaching and learning
challenges (RQ1) – Section 5.1.1; and recommendations (RQ2) in
section 5.1.2. Section 5.1.3 summarises the findings for the
Global Distance theme.

5.1.1 Global Distance Challenges
Instructors reporting experiences of conducting GSE courses find
Global Distance issues the most problematic, accounting for 46%
of all our major identified themes (see Table 8). Looking at this
large category in more detail we find that temporal issues (that
encompass time related issues such as lack of time overlap, and
delays), are the most prominent of all Global Distance challenges
identified in our literature review on GSE Teaching and Learning.
On the other hand, Table 9 shows that the recommendations for
reducing the effects of Global Distance are most often found in
the form of Organisational and institutional practices (accounting
for 39% of Global Distance recommendations), where for
example an effort should be made to synchronise course length,
and start and finish times. The following 7 sections give an
overview of the main challenges associated with Global Distance.

5.1.1.1 Cultural Distance Challenges
Cultural distance is defined in terms of differences in student
communication styles (formal/informal; direct/indirect speech;
deference to hierarchy, not being able to say ‘no’), cultural norms,
Ethnic and religious beliefs, and treatment of gender.

Table 9: Global Distance: Frequencies of Themes Identified in
82 Studies of GSE-Ed

Theme Challenges Recommendations
Freq % # Papers Freq % # Papers

Cultural 39 21 27 6 10 6

Geographic 9 5 9 4 5 4

Increased complexity 13 7 12 6 10 6

Linguistic 22 12 22 6 10 6

Organisational and
institutional

46 24 30 23 39 16

Skills (of student) 11 6 11 3 5 3

Temporal 49 26 35 12 20 9

Total 189 100 N/A 60 100 N/A

Cultural challenges in GSE education spanned from differences in
‘student’ culture [#76]1, work culture and work ethic [#38, #40],
formality at work [#5], treatment of women [#23], adherence to
rules [#23], to reactions to criticism [#23].
Cultural difference was a recurring theme across several studies
[#28, #38, #54, #61]. These differences can be observed in styles
of interaction [#33, #44] where mixed cultural backgrounds
caused problems with the interactions with extended team
members [#37].
Culture can have an effect on performance, where students with a
strong hierarchical culture performed more poorly in collaborative
projects [#75]. Non-reporting of project task overruns [#69], not
giving an opinion to avoid confrontation [#19], and a reluctance to
ask questions [#68] can all have an adverse effect on the project
and are issues to be aware of in mixed cultural groups.

5.1.1.2 Geographic Distance Challenges
We view this minor theme as the impact geographic distance has
on communication; where members of the team, for example, can
no longer rely on informal type of communication to discuss
issues and share knowledge.
Since remote team members are no longer visible, they may get
forgotten or left out [#19], also it is difficult to interpret silence in
a conversation when not meeting someone face to face [#82].

5.1.1.3 Challenges due to Increased Complexity
This theme was a catch-all in terms of covering issues that cut
across several Global Distance minor themes, which we define as
‘increased complexity’ due to running large-scale projects that are
distributed.
Some observations in this category were quite high level, and just
noted that in GSE education communication processes can be
challenging [#18, #13, #4] or need more communication than co-
located student project groups [#49]. One group of researchers
note that the preoccupation with communication and cultural
issues limits the student’s ability to explore other SE challenges
[#60] perhaps underlining the finding that video-conferencing
alone does not work [#11].

1 Note: we prefix with # references from the secondary reference list of
selected studies in Appendix A.

5.1.1.4 Linguistic Distance Challenges
Several studies reported issues relating to language, for example
where students are forced to communicate in their second
language.
Language was often viewed as a barrier to communication [#1,
#12, #13, #40]; some students had problems in expressing
themselves in English [#5], and in extreme cases a lack of
language skills led to isolation [#7], also poor language skills
made it more difficult to share a sense of humour [#82].
Language can also be a problem in development, for example
when a group of Turkish students were asked to develop
Graphical User-interfaces in Spanish [#72]. Often the Lingua
Franca is English which in one case was the third common
language across all the teams and introduced an additional
translation filter in both directions [#23].

5.1.1.5 Organisational Distance Challenges
This minor theme caused the course organisers a great deal of
anguish – and is perhaps the most difficult to control, with some
advice given to select collaborating institutions with care given
that many of these issues are beyond the control of any one
location or institution. This section concerns problems with
synchronisation or with infrastructures across collaborating
institutions. For example, development process and
communication tool mismatch, mismatch in course length,
content, semester start and end dates, and different approaches to
assessment, also differences in governance and management
styles.
Management of the course has considerable overheads, and
includes the additional coordination work of hosting institutions
[#52, #55, #56]. Different school schedules is a problem [#51, #4,
#13], along with conflict resolution [#76], dealing with continuous
changes of rules at each site [#4], differing university regulations
[#76], different views and expectations of teaching staff [#4],
differences in admission requirements across institutions [#4],
differences in examination requirements [#4], and incompatible
holidays [#9, #23].
Bosnić et al. [#7] conducted many research studies in the field of
GSE Education, and noted: it can be a very challenging task for
the project supervisor to monitor remote team and, at the end of
the project work, evaluate their overall performance and
individual contributions, and GSE courses require additional
effort in technical preparation, involvement with students and
interaction with host institutions [#7].

5.1.1.6 Skills Imbalance Challenges
This set of observations refers to the distance between technical
skill levels of participating student groups. It links closely to the
Organisational challenges above. Here the focus is on the problem
from the instructor’s perspective in terms of trying to create a
balanced team [#17], and managing different skill levels [#4],
where in one extreme case students joined the distributed course
with no training in technologies, tools or architectures [#67].

5.1.1.7 Temporal Distance Challenges
This sub-set of challenges proved the most prominent in the
Global Distance theme. Forty-nine text fragments were identified
in our 82 papers that dealt with some issues around time (see
Table 9). We take a broad interpretation of temporal challenge,
where any issue relating to time zone differences, time delays,
issues with synchronous communication are included here,
including time pressure due to over stretched team members.

Time-zone differences between locations made it difficult to
schedule meetings [#1, #53, #67] and coordinate activities [#38,
#40, #76, #78,] where meeting times were arranged that did not
suit everyone [#68]. Time management is also a concern [#74,
#4]. These difficulties point to the student project setting
reflecting the kind of issues global teams in industry face daily;
which is what the instructors aim to expose.
Time is important to communication, and has been studied as a
specific line of research, in for example Swigger’s 2012 study on
the temporal communication behaviors of global software
development student teams [#78]. Swigger et al. note:
communication behaviour seem to be linked to a team’s timing,
pacing, synchronization and, ultimately, performance. This tends
to support the premise that global software teams, similar to
teams everywhere, are temporally patterned in complex ways
[#78]. This pattern is perhaps explained by Swigger in an earlier
study in 2009: students’ temporal patterns during projects also
varies, with lots of communications at the beginning of each
project and again soon after the mid-point of the project, and
finally at the end of the project [#80].

5.1.2 Global Distance Recommendations
For definitions of each of the seven minor themes in this category
please refer to the challenges section above and Appendix E. The
recommendations in this section may not apply in every case –
they are taken from a range of papers with different contexts (see
Section 4), however the interested reader can gain some useful
insights into how other educators have overcome some of the
challenges mentioned in the previous section. There is a stark
contrast as well in terms of the number of recommendations (60)
compared to the number of identified challenges (189) in Global
Distance (see Table 8).

5.1.2.1 Reducing Cultural Distance
Understanding of different cultures can be taught in separate short
courses [#27], and some say must be taught in terms of norms,
beliefs and business ethos [#71]. Culture can be taught using
practical or theoretical teaching methods [#54]. A tip given by
Lago [#45] is to identify the cultural and educational differences
between the students in the separate locations, and have students
learn from each other with respect to culture [#36].

5.1.2.2 Reducing Geographic Distance
According to Richardson, an initial face to face meeting with the
central team proved to be extremely important [#68]. Updating
and revising the associated documentation is especially important
when team-members are not all collocated [#2]. However, there
was very little in the literature that directly addressed geographic
distance issues. Geographic distance issues are perhaps helped by
recommendations made in other major themes, such as
infrastructure.

5.1.2.3 Reducing Increased Complexity due to
Global Distance
Course leaders should encourage informal forms of
communication [#64]. This can be achieved through a mix of
communications styles (text based methods for complex details,
and video for getting to know team) [#13]. Also communication
should be frequent – and kept consistently high [#19, #64].
Communication protocols and strategies should be taught to the
students [#71].

5.1.2.4 Reducing Linguistic Distance
Conversational English should be taught [#71], and some
recommend that, in order to participate in the project, students

must pass an English language test [#63]. Also given the different
language skills in the teams, students should be given the
opportunity to communicate through text; email evened out the
differences in English language abilities between teams, it was
completely text based and allowed everyone to focus on what was
being communicated [#13].

5.1.2.5 Reducing Organisational/Institutional
Distance
These recommendations are based around harmonizing processes
across institutions and establishing a clear line of responsibility.
For example, Favela [#28], recommend establishing
responsibilities and power, whereas Clear suggests that project
leaders agree to a course specific set of terms [#16], yet Bosnic
[#4] state that a key success factor is flexibility in accepting
different rules and habits. Students should be selected by the
instructor based on a student profile to ensure a balanced team
[#4], which requires a reliable and consistent student profiling
process. The selection of the collaborating partner institution is
critical; look for collaborators that are patient, reliable and
supportive [#17], and ideally have evidence of pre-existing strong
relationships [#35].

5.1.2.6 Redressing Skills Imbalance Between
Locations
Support for this distance was sparse, other than ensuring that there
is a clear understanding of knowledge prerequisites [#21], and
perhaps as a warning Gotel notes, it would be better if [students]
had a software engineering class first to learn the skills and then
be able to apply them in a global context [#38]. Another way to
close the skills gap is to identify … educational differences
between students … and then exploit those differences through
knowledge transfer in the delivery of the course [#45].

5.1.2.7 Reducing Temporal Distance
Temporal distance is eased by team members being flexible about
meeting times [#48], and finding a common time for weekly
development that all teams can participate in to keep track of
progress and problems [#13]. Schedules should be shared to
include working hours of the team [#35]. A mandatory project
communication plan should be drawn up [#62], and teammates
should be told if the student cannot attend a meeting or will be
unable to answer emails [#48]. A mix of synchronous and
asynchronous communication methods [#35] that are organised at
regular intervals [#72] helps the team to keep in touch when not
working in the same timezone. Communication might need to be
started by brute force [#19], and text based communication may
be the only option available at certain times [#13].

5.1.3 Global Distance Summary
Global Distance challenges and recommendations found in GSE
educational settings are reflecting similar issues to those reported
in the general GSE literature, where both observe issues relating
to cultural, geographic, linguistic, and temporal distances [48; 58].
Table 8 shows the number of challenges observed in GSE
Distance far outweighs the recommendations (with 189
observations made in challenges, and 60 recommendations).
However, when considering recommendations made in our other
themes, for example ‘infrastructure’ in section 5.5, these will have
a positive impact on Global Distance issues. Therefore we advise
anyone looking to conduct GSE courses to look across all our
themes to gain a full and balanced picture of what is required.

5.2 Teamwork
Teamwork is an essential component of software engineering in
general and it is not surprising that it is also a central problem in
global software engineering, ranking as the second most
addressed challenge in this study (see Table 10).

5.2.1 Teamwork Challenges
Teamwork in a global setting is certainly affected by issues such
as culture and temporal differences that are also addressed in the
global distance category. However, the teamwork category
reflects the unique challenges imposed on students working
together on a global project in an educational setting.
Table 10. Teamwork Challenges

Theme/Subtheme Count # Papers

Teamwork 55 37

Synergy 36 27

Task allocation 19 17

There are two minor categories designed to tease out the particular
global problems in teamwork, ‘synergy’ and ‘task allocation’.
Synergy refers to issues affecting the cohesion, integration, and
cooperation of global teams while task allocation includes the
challenges of balancing skills, responsibilities, authority,
accountability and management amongst a team. Project
management issues in particular are included in the task allocation
category.

5.2.1.1 Teamwork & Synergy Challenges
Comments in the synergy category reflected the difficulty student
teams had forming effective working relationships with distant
teams. Papers commenting on this issue indicate that a large
amount of effort is required to engage distant teams and that local
and distant team members sometimes do not commit sufficiently
to a project or have different goals. These challenges often serve
to limit engagement within and between local and distant teams
and, as a result, reduce trust and cooperation between local and
distant teams. Studies found, for example:
students working in the international teams were expected to put
extra effort because of the communication, coordination, and
collaboration issues that characterizes GSE projects [#46].
students are demotivated mostly due to lack of commitment by
other [remote] team members, differing goals or lack of
motivation from the start of the project, and large differences in
knowledge [#7].
One aspect that had a negative effect on the motivation was one
team member who repeatedly failed to deliver what he had
promised [#29].
…distance makes it difficult to establish trust and form
relationships among distributed stakeholders [#2].
…global teams don't cooperate [#11].
Another common cause of this lack of synergy is the mere fact
that teams are geographically separated. Local teams tend to
forget about their global teammates or misunderstand their
intentions:
…forget the other (global) team [#19].
Since students do not see each other, they have difficulty to
generate a picture about their partners in their minds [#72].

The participants in the international teams did not know each
other. In some cases, this turned out to be problematic [#46].

5.2.1.2 Teamwork & Task Allocation Challenges
Comments in the task allocation minor category addressed the
difficulties students and instructors had in creating teams with
balanced skills and managing these teams in fair and effective
ways. The studies in the papers described many different reasons
for this imbalance. For example, when students themselves
determine roles their inexperience or lack of knowledge of a
remote team can lead to imbalances. As the papers point out:
Leadership is a critical management skill. In this study, in some
projects, it was asked students to select their project manager
(leader) by themselves. But this did not work [#63].
The sub standard group had never defined a team leader [#50].

students may not be able to delegate the roles and responsibilities
within the project team so that the team can work successfully
together [#69].
In addition, this immaturity in leadership often leads to project
management mistakes that impact the project and the student
learning experience:
student[s] do not estimate time to complete tasks well [#37].
views of perceived experts were given extra weight within the
consensus-seeking procedure [#53].

5.2.2 Teamwork recommendations
Teamwork is the most addressed recommendation category in
terms of both number of recommendations proposed and number
of papers mentioning recommendations. Almost half of the
papers provided at least one recommendation to the teamwork
problem (see Table 11).
Table 11. Teamwork Recommendations

Theme/Subtheme Count # Papers

Teamwork 80 37
Synergy 49 26

Task allocation 31 21

Teamwork recommendations reflect the unique challenges found
in GSD as detailed in the Teamwork Challenges section (see
section 5.2.1). These recommendations detail methods that can be
used to get local and remote teams to communicate and
collaborate across time and distance so that trust can be built
between the teams and work can truly be effectively shared.
As in the Teamwork Challenges section, recommendations are
grouped into two minor categories, synergy and task allocation.
Recommendations in the synergy category propose methods and
mechanisms to help local and remote students communicate,
understand, and even bond. Task allocation recommendations, on
the other hand, are designed to assist and train students in the
management of local and remote groups.

5.2.2.1 Teamwork & Building Synergy
A key part of synergy, according to the papers we examined, is to
ensure clear and constant communication. Good communication
creates visibility, better decision-making and a common
understanding of shared goals (Feljan et al. [#29]). This
communication must start early to have a positive effect on
synergy; Cao et al. [#12], Matthes et al. [#52], Last [#48], and
Gloor [#33] all suggest that it’s important to get the [local and

global] students to be familiar with each other as soon as possible
(Filipovikj et al. #30]). Dastidar et.al even recommend that at
least one member from each team, preferably the liaison should
travel to the other sites to know the other team members and the
team psychology better [#20].
Part of the initial meetings should be to help local and remote
teams develop a shared vision. A shared vision is essential to
synergy says Gotel et al. [#35] and Favela [#28] while Peña-Mora
suggest that instructors require students to articulate their own
vision of the project they want to work on, and then asks them to
collaborate with the other class members and the instructors to
develop one shared project vision [#65].
Once an initial understanding is established, studies recommend
that instructors continue to be proactive to ensure that teams
maintain their synergy. Filipovikj et al. [#30] state that
instructors must ensure that communication levels [are]
consistently high, Gotel et al. [#37] claim that instructors must
focus more than [they] expect upon social bonding activities, and
Nordio et al. [#62] recommend optional group exercises
emphasising communication skills. Crnković et al. [#19],
Filipovikj et al. [#30] and Ende et al. [#23] all stress that synergy
is only possible if instructors ensure that students keep the other
site in mind [#30]. The Filipovikj et al. paper in particular offers
several tips that will keep students from forgetting about the
remote site.

5.2.2.2 Teamwork & Handling Task Allocation
The second minor category under the teamwork major category
was task allocation, including student team management. Most of
the recommendations from the studies in this area concerned team
organization. Several papers observed that small teams (both
local and global) worked better: Keeping teams small induces
team members to equally contribute to project and allows tutor to
monitor individual performances; also communication overhead
is kept to a minimum (Matthes et al. [#52]; see also Giraldo et al.
[#32], and Gloor et al. [#33]).
Other authors suggested that self-organized teams worked well
(see Fagerholm et al. [#26] and Gotel [#35]) though some authors
preferred mapping students to particular skill positions (Feljan et
al. [#29], Neto et al. [#58], and Deiters et al. [#21]). The trade-
off between self-organizing teams and planned teams seemed to
be that the former provides more buy-in and synergy from the
students while the latter creates technically stronger teams:
balance the expertise within each group so that each group has a
range of skills available to it. (Neto et al. [#58]; see also Peña-
Mora et al. [#65]). Lago et al. found that Both VUA and UDA
students found the assignment of roles and roles rotation a good
idea to better organize and distribute the teamwork [#46] and
Feljan et al. note that there should be a balance of nations
involved in a team; otherwise a kind of favoritism can occur.
[#29]
Some studies recommended appointing team leaders and in-
country champions to organize local and global teams [#41, #80].
Serce et al. claim that the experience level of the leader is critical
and it is better to assign a more experienced person to globally
distributed students teams. [#72]
A final note of interest is that several studies found that the
distribution of responsibilities, as opposed to roles, was crucial.
Deliverables produced by the international teams must contribute
more centrally, to the final product claims Doerry et al. [#22].
One paper in particular, Peña-Mora et al. [#65], recommend
developing a responsibility chart comprised of the tasks students

must complete to fulfill their role in the course is the next move
instructors and students need to make.

5.2.2.3 Teamwork Summary
For instructors, the take away on synergy from these papers is that
local and global teams seldom create synergy on their own. It
takes careful planning and mentoring from the instructor to
develop and encourage this synergy.
Task allocation, in sum, is seen by many studies to be a crucial
part of the success of global student projects. The studies seem to
indicate that instructor involvement in team constitution and roles,
and even in individual responsibilities, is necessary. Any
instructor planning to teach a GSD course would do well to think
carefully about the makeup of local and global teams and apply
some of the principles recommended in this section to their teams.

5.3 People/Soft Issues
This theme was the third most dominant in the group of themes
identified, indicating the important role that the socio-emotional
dimension plays in globally distributed courses. For students
expecting to repeat their often individual experiences from
technically focused computer science or software engineering
courses, dealing with the people issues which must be surmounted
in GSE presents a major challenge [#5].

5.3.1 People/Soft Issues Challenges
As indicated in Table 12 below, challenges under this theme
grouped into three primary subthemes: motivation, trust, and
stress, with motivation and trust having the bulk of the focus.

Table 12. People/Soft Issues Challenges

Theme/Subtheme Count # Papers

People/Soft Issues 46 29

Motivation 23 17

Trust 18 16

Stress 3 2

Self-awareness 2 2

5.3.1.1 People/Soft Issues - Stress Challenges
As an example of the stress experienced by students in a GSD
course [#47] report
this is often the first encounter with working in a bigger project
group, and it is easy for them to get overwhelmed and lose focus
of what we try to convey in the course.

5.3.1.2 People/Soft Issues - Motivation Challenges
The topic of student motivation was mentioned in several studies,
with a wide range of contributing factors being identified, as
noted in the excerpts below:
The topic of student motivation was mentioned in several studies,
with a wide range of contributing factors being identified,
including: Communication issues; different perception of time,
respect for deadlines and low quality work; [#5] differences in
work culture leading to increased conflict and decreased trust;
lack of commitment by other team members, differing goals or
lack of motivation from the start of the project, and large
differences in knowledge [#7].

Lack of motivation resulted in procrastination leading to
insufficient time at the end of the project [#63], and poor
performance: The two groups that developed a bad attitude
toward the exercise never bought into the outsourcing idea [#50].
Method of grading both individual work and group projects may
negatively affect student participation and performance [#79],
[#45]. Fear of results may affect motivation [#69], and
competition between teams sometimes is de-motivating [#37].
Division of less glamorous tasks may breed resentment and
reduce buy-in [#54].
As can be seen the range of motivation related concerns that arise
in GSD courses is considerable, with a resultant need for
instructors to actively manage student motivation. Indeed the
issue has been strongly stated as a conclusion in a previous
Review [47]:
Students involved in GSD training programs usually experience a
lack of motivation.

5.3.1.3 People Issues - Self-Awareness Challenges
Cognate with motivation Self-awareness was a code relating to
student specific attributes that can cause issues in a non face-to-
face environment, for instance student concerns relating to
perceptions of self; of respect; and of temporal repercussions
from misunderstandings; rendered collaboration less effective in
nftf environment [#82]. In addition work teams with low attention
to future time had greater odds of poor performance [#75].
While these student degrees of self-awareness may not be easy
for instructors to impact, it is necessary to be aware of them so
that suitable designs or interventions can be considered.

5.3.1.4 People/Soft Issues - Trust Challenges
Issues associated with trust were apparent from several studies.
The selected issues arising included:
Remoteness - since students do not see each other, they have
difficulty to generate a picture about their partners in their minds
[# 72], so assumptions about team members materialise from day
one [#37]. Students lack loyalty, team spirit and collective
responsibility [#19, trust in the remote teammates.[#46], and
suffer from Inability to find stakeholders quickly [#8].
Poor performance: when programming difficulties resulted in
some members underperforming, the team began losing trust in
them on important tasks [#64], Two of the teams had a bad
attitude related to the use of an outsource programmer. They were
unwilling to bring this third party into the team as a contributing
partner [#50].
Qualities important in teamwork, such as trust or cooperation
[can be] an additional challenge if various cultures are involved
[#15], students are faced with different cultures for the first time,
and they may have a hard time accepting behavior not similar to
theirs [#6].

5.3.2 People/soft issues recommendations
This theme in contrast to its third highest placing under challenges
was the sixth most dominant in the group of recommendation
themes identified, suggesting that the socio-emotional dimension
as an area in itself was not given critical focus in devising
recommendations. It is interesting to speculate on the reasons for
that reduced emphasis, but perhaps some of this focus had already
been taken up in recommendations regarding more active
stakeholder roles and strategies addressing Global Distance.
Nonetheless this remains an area which did attract several

recommendations, and the need for motivation from both staff and
students was noted in [#4] as a key success factor.
As indicated in Table 13 below, recommendations under this
theme grouped into two primary subthemes: motivation and, trust
echoing their primacy as subthemes in the accompanying
challenges category.
Table 13. People/Soft Issues Recommendations

Theme/Subtheme Count # Papers

People/soft issues 29 16
Motivation 20 10

Trust 8 8

5.3.2.1 People/Soft Issues – Inspiring Motivation
For the topic of student motivation several concrete
recommendations were made. For instance:
give students the choice of co-located or distributed project. [#62]
and
Enhance student motivation through mandatory participation
[#32].
As can be seen these are directly contradictory recommendations,
but each could play a role in encouraging student participation in
learning. The first suggestion however presumably means that
only students interested in GSD would participate, which seems
undesirable from a GSD learning outcome perspective. Other
recommendations can be classified as recommendations for
course design or action before the course begins, actions to be
taken at the start of the course and actions during the course. Key
suggestions for motivational designs of the course relate to its
being motivational for students through its authenticity or through
a degree of competition, for instance:
Genuine global software engineering projects that engage
students in activities and deliverables that are truly
interdependent are more important to the success of a global
software engineering course than anything else an instructor can
do [#77].
Both [#4] and [#6] recommend competitions which motivate
students for developing software [#4, #6], where student teams
work on a software engineering problem, defined by an external
customer from a foreign university [#4].
One recommendation for instructors from the outset is the
importance of conveying the motivation for the GSE-Ed course
[#29].
Peters et al..[56], reflecting on student motivational concerns,
observe that the use of a learning agreement can be a conscious
strategy to assist students to be conscious of the broader learning
goals of a GSD course.
Recommendations for instructors during the course relate to
consistently encouraging and rewarding student work, and active
mentorship:
Yet not all concerns relating to student motivation may be readily
addressed, as recognized in the frank acknowledgments by [#30]:
Tip 3: Keep communication levels consistently high - outcome
communication flow good but some students passive, the lesson
learned is that frequent communication is not enough, and that
the students’ engagement plays a crucial role [#30].

Tip 6: Remember: we are different - outcome positive: The
implementation of the teachers’ tips prevented issues related to
cultural difference in the project. Teachers' view: However the
differences in technical skills were significant and the overall
motivation of some students was too low to cover for the
deficiencies in their knowledge [#30].
In the latter case of course some task redesign and reallocation
prior to the course, or implementation of technical mentoring
strategies during the course may be helpful. These
recommendations would tend to fit under the teamwork/task
allocation, or stakeholder role themes.

5.3.2.2 People/Soft Issues – Building Trust
Issues associated with trust were apparent from several studies.
Again we illustrate selected recommendations for course design or
action before the course begins, actions to be taken at the start of
the course and actions during the course below. An initial
recommendation is that, teams should travel to the other site
[#11], which is consistent with those from the GSD literature
which recommend face to face meetings to alleviate forms of
Global Distance [48]. While it is clearly desirable for the teams to
meet face to face before or at the outset of the collaboration, it is
not always practical with student teams due to cost or logistical
issues. Related challenges and recommendations referring to the
cost and sustainability of GSD courses are noted under the
category of ‘Global Distance: organisational’.
to make the first contact easier, students asked for some ice-
breaking sessions, as well as proposed to have additional
innovative and fun moments during the course, to break the
“serious” course atmosphere [#29].
These recommendations on approaches to ‘breaking the ice’ need
careful design, as cautioned by [#30] who observed the need to
move beyond formal introductions to: a deeper informal
interaction between the team members.
Augmenting the informal interaction may also take the form of
culturally specific educational components in the course, which
address cultural differences through assignments comparing
cultures [#19].

5.3.2.3 People/Soft Issues – Summary
Processes and approaches that build trust will be important if
teams are to function and perform effectively. The literature on
trust in global teams is large, but we can see here some tensions
between what may be assumed to be initial positive assumptions
with notions like Dispositional trust [which] refers to an
individual’s ability and willingness to form trust in general, [62]
(and includes attributes such as openness to experience), swift
trust [38] (assumptions of professional competence on the part of
peers) or referred trust [54] (trusting behaviours based on
instructor’s assurances about the remote colleagues). In reality,
as the quotes above indicate, the situation is dynamic and fluid, as
not only do the degrees of trusting behaviour that students bring to
the course vary, but a form of situated trust [53] appears to be in
operation (where trust evolves based on the situation and the
performances and the cues from team members). As observed in
[62], interpersonal trust in virtual settings builds based upon the
attributes of Competence, Predictability, Benevolence, Integrity.
So when working in global teams with unfamiliar colleagues,
failure to demonstrate competence and behave in predictable ways
(especially on the part of remote team members) can be extremely
damaging to the fragile initial dispositions and to further trust
development, and poses a major challenge to effective student
learning in GSD courses.

Instructors need to pay attention to motivational designs for a
GSE-Ed course and the need to mentor and encourage students
with key interventions at critical stages of a course. But the onus
rests also with students themselves. As noted under motivation
above, the differences in student skills and subsequent
performance can damage trust [#30]. But a strategy of honesty is
one that students can adopt to help enlist support and sustain trust:
Be honest about your own technical abilities [#48].

5.4 Stakeholder Role
The stakeholder category encompasses the various roles in GSE-
Ed (instructor, student, client, university representative) and
considers how their participation creates either challenges/barriers
or recommendations to education. Since GSE-Ed is delivered by
instructors to students in the context of a university, it not
surprising that this category has received attention from many
(about a fourth) of the studies.

5.4.1 Stakeholder Role Challenges
GSE-Ed courses have several stakeholder perspectives to manage
as indicated in table 14.

Table 14. Stakeholder/Role Challenges

Theme/Subtheme Count # Papers

Stakeholder/Role 36 20
Instructor 14 8

Student 13 10

Client 6 4

Role conflict 2 2

University representative 1 1

5.4.1.1 Instructor Role Challenges
The instructor sub-category involved issues the course
instructor(s) encountered with managing a globally dispersed set
of students. As can be imagined, the most common challenge for
the instructor is the time involved in such management. This idea
was repeated in many studies [#37, #76, #7]. This increased
workload can also apply to other associated staff [#4].
Another rather obvious challenge is the difficulty planning and
coordinating a course that operates in two or more locations.
Studies warn about the high degree of synchronization of
objectives, classes, and project that must be done between
locations [#67, #76, #37]. Similarly, instructors must be prepared
to spend significant time coordinating schedules and resources
across global classes, but these challenges are addressed in the
infrastructure section.
Student communication across teams is one of the particular areas
that needs special planning and time from the instructor to be
effective. As one author said, effective communication requires
additional time and instructors required a communication plan.
Students [are] sometimes unwilling to put the time into effective
communication [#63].
Finally, normal teaching activities like maintaining objectivity,
continually auditing students, and keeping students focused
become even more challenging in a distributed environment.
Gotel et al., for example, talk about the difficulty in maintaining

objectivity with global teams [#37] and also about the challenges
in properly auditing local and global teams [#37, #34]. And [#1],
[#53] and [#67] describe the time and difficulty in managing
student meetings.
Overall, running a GSD course requires more time, planning, and
monitoring than a normal SE course because of the distributed
nature of the course and instructors must be aware of this when
teaching or planning such a course.

5.4.1.2 Student Role Challenges
The second stakeholder role we identified in these studies is that
of the student. The student role includes issues of student
management skills, preparation, and focus. Management skills
are a particularly difficult challenge. Many of the courses
presented in these studies had no software engineering experience
as a prerequisite for the GSD course. As a result, students were
learning both processes and management skills in a very difficult
global situation. As Gotel et al. note, Students are not prepared
for managing resources at distance [#35]. Problems students
have in this area include a lack of attention to details about the
distributed process [#53, #35], a frustration and inability to handle
a lack of predictability related to global management [#76], an
inability to manage deadlines between local and distant teams
[#62, #21, #37] and an inability to get global and local teams to
attend meetings [#72].
Students also lack a global awareness that is an important part of
their role. For example, global and local groups tend to use tools
that they are familiar with but which are different from the other
group; makes coordination between groups hard says Petkovic et
al. [#67], a challenge echoed by [#2] and [#35]. Students also
have a tendency to forget the distant group [#33, #36, #19]. As
Gloor et al. [#33] put it, students must remember to inform the
rest of the group about their other activities.
When students do confront the complications of geographic and
temporal distance they seem unprepared to handle them and
surprised by the effort required. Paasivaara et al. [#64, #10]
discuss the problems that temporal distance causes students, for
example. Lago et al. [#46] note that students working in the
international teams were expected to put extra effort because of
the communication, coordination, and collaboration issues that
characterizes GSE projects and that participation in the
international teams was perceived as effort consuming. A result
of this increased effort means that communication issues are an
expected demotivating factor that instructors must manage says
Bosnić et al. [#5].
The student role, then, sees many challenges that must be
addressed by the instructor either through curricular design,
course management, or mentoring. Student immaturity in global
management and their unfamiliarity with overcoming geographic
and temporal distance pose distinct challenges that must be
addressed.

5.4.1.3 Client Role Challenges
Another role that poses challenges in GSE-Ed is the “client” role.
In the GSD context a “client” could be external to the academic
environment or a global student team that is serving as a client. In
both cases, similar problems crop up. The most challenging of
these is handling feature creep. Gotel et al. [#38] say, for
example unlike projects that students create for themselves, the
US students were developing code for the Cambodian students
(clients) and scope creep was a concern while Neto et al. [#58]
saw students having problems with managing [external]
customers and the development process; customers wanted

additional functionality etc. One result of this complication is that
dealing with problems at the customer site impacts on student
progress and may cause work redistribution within the team
[#58].
On the other hand, Bruegge et al. [#11] note that sometimes the
client is not responsive which causes acute problems in a course
with semester time constraints. When an external client is
responsive, it causes different problems: an external customer
from industry usually does not possess teaching experience,
raising the risk of unsuitable course advising and project support
[#7]. Or, even if the client provides proper support, … projects
requiring an acquisition of highly domain specific knowledge,
usually under supervision of the customer. Such knowledge tends
not to be communicated to the remote team [#7], and thus causes
problems for the remote team.
Several studies noted that problems sometimes arise not out of a
particular role, but from the fact that roles conflict. Clients are
voluntary, for example, but students must meet class
requirements. Clear et al. [#17] describe the problems created by
the tension between voluntary participation of subjects and [the]
student role. Lago et al. [#46] note that students themselves
assume many roles on local and remote teams and the use of many
roles has been perceived as a limitation (or overload) in local
teams.

5.4.1.4 University Representative Role Challenges
The final role that was described in the set of studies that we
considered was the ‘university representative’. This role is
separate from that of the instructor and includes the critical (but
background) managerial, technical and administrative supporting
roles, which sanction and enable a GSE-Ed course. A course
must operate in the university environment with its structure and
rules and Gotel et al. [#37] point out that it is easy to overlook the
costs in start-up, set-up and on-going management. In other
words the university role, as it represents the structure and rules of
the university, presents a challenge that instructors must plan for
and accommodate.

5.4.2 Stakeholder/Role Recommendations
The stakeholder recommendation category (instructor, student,
client, university representative) provides ideas for overcoming
the various challenges that these different roles face in GSE-Ed.
As with the stakeholder challenges category, the stakeholder
recommendation category was the second most targeted category
for papers. Table 15 provides the statistics for this category.

Table 15. Stakeholder/Role Recommendations
Theme/Subtheme Count # Papers

Stakeholder 62 33
Instructor 48 25
Student 7 7
Client 5 5
University 2 2

5.4.2.1 Instructor Role Considerations
The majority of recommendations were for the instructor role. A
reading of the comments indicate that the overall recommendation
is that the instructor must be intimately involved with the teams
and projects (both local and global) and must provide clear and
predictable guidance. Cao et al., for example, state that an

appropriate level of management and control by the instructor are
needed in the [global] project [#12] while Gotel et al. suggest
that instructors review planned tasks and help students improve
their global estimating skills and monitor the health of all team
members [local and global] regularly and McDermott et al.
claim that [distributed] groups needed high levels of academic
and IT support [#53]. Junhua et al. [#42] also recommend a
coordinator role between local and global teams for the instructor
and Fagerholm et al. suggest that courses use a resident coach to
actively mentor the team and make sure that the project lives up to
its expected outcomes for the customer [#26]. Finally, we hear
from Bosnić et al. that regular and frequent team and student
status reporting and monitoring; more intensive at start and early
instructor intervention is needed [#4].
Students are obviously immature global software engineers and
several studies emphasize the guidance aspect of the instructor
role. Serce et al. advise, for example, be specific about
deliverables, including who delivers them and when and where
they are delivered and create the specific locations where the
deliverables will be placed [#72]. Gloor et al. echo this, saying
[create] good agendas for each meeting [between local and global
teams] with exact presentation schedules and clear instructions
for what to prepare is necessary to arrange effective virtual
meetings [#33] and Gotel et al. suggest if it is important to do
something, provide the students with guidelines [#37]. Peña-Mora
et al. [#65, #41] recommend that instructors actively assist
students in developing project goals and creating architectural
designs.
These recommendations that instructors guide students and
provide explicit structure may make it sound like instructors
should be fairly rigid in their approach to GSE-Ed courses. In
fact, many studies indicate that the opposite is true; instructors
must be flexible and anticipate change. Crnković et al. suggest
that instructors be flexible, overcome the differences and be alert;
new problems can arise at any time [#19]. Ende et al. [#23],
Keenan et al. [#43], Petkovic et al. [#66], and Filipovikj et al.
echo these suggestions, with Filipovikj adding beat the
administration [#30]!

5.4.2.2 Student Role Considerations
Student roles received much less attention from these studies.
The most common suggestion is that students have the appropriate
background before entering the course. Students lacking this
background can cause serious problems among teams; as Feljan et
al. noted: One aspect that had a negative effect on the motivation
was one team member who repeatedly failed to deliver what he
had promised; [#29]. Matthes et al. had the most specific
recommendation: student level of expertise should be at least in
5th semester of a computer science study project (e.g. late
bachelors or master student level) [#52].

5.4.2.3 Client Role Considerations
Several alternative approaches were suggested for dealing with
the client relationship. Bosnić et al. [#7] suggest using student
contests (especially software engineering contests) as an
alternative form of external customer. Also several papers
considered using simulators in lieu of actual clients, with [#44]
and [#54] both exploring this approach.

5.4.2.4 University Representative Considerations
A final role identified in these studies was that of the university
representative. A university representative, in this context, may
be a person outside the formal class structure (perhaps another
faculty member) who provides an independent view of the course.

Swigger et al., for example, says it would be helpful to have an
independent faculty member have some oversight to keep the
bigger picture in mind. It is too easy for the instructor to become
focused in minute details. Gotel et al. [#37] echo this sentiment
that it is important to establish independent third-party oversight
to ensure that projects do not get out of hand.

5.4.2.5 Stakeholder Role Summary
In addition to the instructor and student roles, studies mentioned
two other common roles, that of the client and the university. The
client is usually external to the course and will be remote from at
least one of the teams. This poses challenges for students and
instructor. Fagerholm et al., [#26], for example, comment that
close customer participation is a critical success factor for
producing a software product in seven weeks with a newly
composed software team. Bosnić et al., [#6] further add the
customer involved should be company representative who should
be willing to spend time with the students discussing the project
proposal and status an idea echoed in Paasivaara et al. [#64] that
says that an instructor must ensure frequent communication with
the customer. Overall, these studies reflect the necessity of close
local team/global team/client relationships if a project is to
succeed within the limited timeframe of a course.
In brief, we learn from these studies that instructors planning
GSE-Ed courses must be aware of the importance of the instructor
role in particular. Instructors must carefully consider how they
will guide both local and global students through the software
engineering process and must ensure that all teams have clear
guidelines and structures. The studies mentioned above all give
excellent guidance for establishing guidelines and providing
guidance and these suggestions should be considered carefully
when embarking on a GSE-Ed course.

5.5 Infrastructure
The infrastructure theme comprises challenges and
recommendations related to development platforms and tools,
communication infrastructure such as instant messaging and video
conferencing, and source code control (SCCS) systems.

5.5.1 Infrastructure Challenges

Table 16. Infrastructure Challenges
Theme/Subtheme Count # Papers

Infrastructure 33 23
Tools 19 14
Technical issues 12 12
Version control 2 2

Issues related to infrastructure are another category of challenges
that are faced by both global software development projects and
global software development courses. And, like other challenges
discussed previously, there are infrastructure challenges that are
unique to the educational context.

5.5.1.1 Infrastructure Tools & Challenges
Infrastructure challenges were mentioned 33 times in 23 papers.
Nearly a third of these concerned communication and
collaboration technology, including both the difficulty in
installing and learning how to use, such technology [#32, #46,
#82], to the lack of reliability of some tools [#13, #23, #76].

Differences in available technology at different locations is also a
problem [#12].

5.5.1.2 Infrastructure Version Control Challenges
Several studies pointed out the problems caused by lack of a
shared Source Code Control System (SCCS). Lack of a shared
SCCS not only makes it difficult to identify the latest version of
an artifact [#8], but also makes inter-team coordination more
difficult [#42.] This goes beyond simply sharing code among
groups; as Berkling and colleagues observed, in distributed
projects, the physical location of information artifacts such as
source code, task descriptions, or comments on changes, and the
lack of 'global knowledge' about their existence make traceability
and rationale management an especially hard task [#2].

5.5.1.3 Infrastructure Technical Issues & Challenges
Differences in tools and environments across sites, was also a
frequent problem. Part of this is simply due to the natural
heterogeneity present when different teams from different
institutions are involved. However, attempting to eliminate
heterogeneity by imposing a common development environment
or tool set across all teams brings its own problems. In addition to
the extra effort required on the part of both instructor and students
[#53], the chosen solution may not actually work in a distributed
context [#42]. And even if it does work, a common tool set must
overcome inertia on the part of students; as Petkovic observed, ...
global and local groups tend to use tools that they are familiar
with but which are different from the other group... [#67]; this
inertia makes adopting a uniform environment and tool set
difficult, even if institutional and administrative resistance can be
overcome.

5.5.2 Infrastructure Recommendations
A total of 49 recommendations address some aspect of
infrastructure.

5.5.2.1 Infrastructure Platforms & Tool
Considerations
Of these recommendations, over a quarter specifically address
communication, including video conferencing facilities [#8, #19,
#29, #65]. Braun and colleagues suggest that both client reviews,
and progress meetings with instructors or other teams, should be
conducted via video conference [#8]. Feljan assert that it is
important to have video conferencing for a "flawless" GSD
course, despite the fact that technical glitches occur from time to
time due to bandwidth limitations or other connection problems
[#29].
Five studies suggest using groupware and similar collaboration
tools to bridge the distance gap between teams [#8, #17, #64, #71,
#76].
Finally, Junhua recommends desktop sharing software for both
team meetings and meetings with the instructor [#41], while Gotel
and colleagues suggest that communication tools need to be
supplemented with simple calendar, scheduling, and notification
tools to assist meeting logistics [#37].
Of the ten mentions of solutions to the challenge of heterogeneous
infrastructure, most suggest using a common environment or set
of tools across all sites [#4, #16, #27, #35, #41, #48, #61, #61,
#65, #65]. But how should one achieve this? Gotel and colleagues
recommend selecting a "minimal" tool set to be used at all sites
[#35]. In contrast, Bosnić et al. suggest that students should be
allowed to choose their tools, rather than having choices imposed
by the instructor [#4]. To make deployment of such a common

tool set easier, Junhua recommends using a virtual machine
loaded with open source tools (to avoid licensing issues) [#41].
Five suggestions involve various kinds of knowledge management
tools. Both Junhua [#41] and Nordio et al. [#61] suggest using a
wiki for both distributing course information, and capturing
project discussions. Junhua also suggests having each team deploy
a web site to distribute plans and project status [#41]. Carlson and
Nan observe that an SCCS provides knowledge sharing as well as
archiving capabilities [#13]. Braun and colleagues recommend
that communication tools used for informal communication
should be able to record such conversations, as a way of capturing
and sharing project knowledge [#8].
In addition to recommendations for different kinds of tools or
infrastructure, a few recommendations address how to use these
tools. For example, Monasor et al. describe an approach that uses
chatbots to allow students to learn how to communicate with
colleagues from different cultures [#54]. Romero and colleagues
go so far as to assert that instructors must teach communication
groupwork tools as part of a GSD course [#71], while Nordio et
al. recommend that student teams be required to write a
"communication plan" in order to encourage frequent, effective
communication [#62].

5.5.2.2 Infrastructure Summary
Despite the obstacles posed by heterogeneity, appropriate tools
are important to help bridge the communication gap opened by
lack of informal face-to-face communication [#2]; this is
especially true for projects employing Agile methods [#35].
In summary, while tools are an important part of any software
development effort, additional tools, especially for
communication, are required for global software development,
and for global software development courses. Also, even
conventional tools such as source code control take on an
additional role in helping to bridge the Global Distance gap [#13,
#41].

5.6 Curriculum/Pedagogy
This theme was the sixth most dominant in the group of themes
identified, but its frequency fell within a secondary grouping of
themes that included stakeholder and infrastructure issues, so was
not insignificant.

5.6.1 Curriculum/Pedagogy Challenges
As indicated in Table 17, challenges under this theme grouped
into three primary subthemes: course design, learning outcomes
and pedagogy, with course design having the bulk of the focus.
Table 17. Curriculum/Pedagogy Challenges

Theme/Subtheme Count # Papers

Curriculum/pedagogy 32 18
Course design 27 17

Learning outcomes 5 4

5.6.1.1 Curriculum/Pedagogy & Course Design
Challenges
As an example of the Course design challenges that arise in a
GSD course, the curriculum needs to incorporate a focus on ‘soft
skills’ in addition to the technical, for instance …in the areas of
cross-cultural communication and teamwork, with sensitivity to
East-West differences in management [#27].

But as Gotel et al. [#37] ironically observe, learning soft skills is
hard.
Several student related challenges which have implications for
course design arose. These included students wanting freedom in
choosing projects, and technologies [#29]. Student concerns about
misbalance in knowledge levels of students enrolled to the course,
ranging from students who have poor knowledge in programming
and basic software engineering disciplines, to ones who have
specific knowledge not required for their particular project [#29].
Other concerns included: workload being too high [#29]; the
granularity of task decomposition being too coarse [#35]; just-in-
time learning – [since] teaching content as the students need it
made it difficult for students to plan far enough into the future
[#38]. Instructor concerns about providing feedback regarding
project grading too late in the course [#7]; and unequal grading
and evaluation schemes across institutions [#52].
Then there were the challenges related to providing realistic and
“authentic learning” experiences [33], through course designs
which accommodate the needs of the collaborating parties. As one
report observed, students must experience GSD to understand the
challenges [#70]. Challenges were noted in setting up realistic
settings that could allow the students to tackle representative
problems [#56]; with having students actually participating in a
real-life, multi-site, globally dispersed, industrial project and thus
acquiring knowledge from experience, [#81]; defining a project at
the same time attractive, of suitable complexity, easily
modularized for distributed development, based on available
technologies, and so on [#7]. Cross site tensions were noted,
between running a successful global and collaborative project
and accommodating the wider curriculum demands of each
participating institution [#37], and preparing a common course
and complying with local admin rules on each side [#4], as was
the sparseness of curriculum materials [#76].
More specific challenges related to the design of the course
architecture, which needs careful consideration. In one case the
course architecture resulted in a communication bottleneck
through the need for teams to communicate through a central team
which became overloaded and the level of detail that could be
conveyed by this “middleman” was sometimes limited [#68]. In
another case cross-development phase collaboration issues made
it difficult for both sites to collaborate if they are in different
phases, and thus, have a different focus on the project [#11].

5.6.1.2 Curriculum/Pedagogy & Learning Outcomes
Challenges
The topic of learning outcomes had a lesser focus but did raise
some important challenges for learning and scaffolding strategies.
For instance, the inability of students to look ahead and plan their
work -Consequently, they learn about requirements when they
need to do requirements and they learn about testing when it
comes to testing [#37], and the tendency for the students to get
blinded by their particular role, thus not getting a holistic view
[#29], which leads to a strong need to mentor students [#34].

5.6.2 Curriculum Pedagogy Recommendations
This theme ranked second behind teamwork as the most
prominent in the group of recommendation themes identified, in
contrast to its lower placing under the challenges category This
would suggest perhaps naturally that design of the student
teaching and learning experience was seen as a key area for
constructive intervention in GSE-Ed courses.

Table 18. Curriculum/Pedagogy Recommendations

Theme/Subtheme Count # Papers

Curriculum/pedagogy 71 34
Course design 64 31

Learning outcomes 7 7

As indicated in Table 18, recommendations under this theme
echoed the challenges for the theme, and grouped into two
primary subthemes: course design and learning outcomes with
course design having the bulk of the focus.

5.6.2.1 Curriculum/Pedagogy & Course Design
Solutions
Reflecting the complexity of the topic, a rich variety of strategies
may be adopted as Course design recommendations for a GSD
course. On reviewing the 64 recommendations arising from this
review, these strategies in turn fell under several groupings:

Course architecture; assessment; authentic
professional experiences; collaboration; culture;
curriculum development; evaluation; gamification;
management skill development; Open Source
Strategies; considerations at the outset of the course;
considerations prior to the course; process related
approaches; nature of the project; scaffolding learning;
the course schedule; simulation strategies; task
allocation and tools.

While space precludes an exhaustive enumeration here, since
these are key recommendations for practitioners, selected
examples of these strategies will be outlined below.
Under the category of course architecture, considerations
include: allocating different modules of a large system to
distributed teams [#62, #20]; and in a more sophisticated, scaled
and graduated approach Keenan et al. [#44] recommend applying
four selected GSD teaching patterns: remote testing; subordinate
role; partitioning; continuous development. The latter design is a
strategy that incorporates a conscious approach to scaffolding
student learning. A design that enforces choosing a topic that
naturally needs lots of cross team communication [#52] is also an
approach that can encourage collaboration.
Several recommendations address assessment: it is important to
design an assessment process tailored to GSD, with rules adapted
from GSD practice [#57]; inform learners about assessment
objectives [#57]; in grading: emphasize the entire software
lifecycle [#67]; identify the learners’ starting skill set by self-
assessment, assess theoretical knowledge and interaction skills,
final summative evaluation and learner self-assessment [#57];
define three deliverables for evaluation: initial presentation; final
presentation and final report [#52]; and in a contrasting
recommendation: staff should make a thorough analysis and
testing of the final product in the end and grades should be more
influenced by the product quality. Students who gave their best
should be awarded, with a greater distinction to the ones who
invested less effort [#29]. Approaches to evaluation were also
recommended, one including evaluating teaching quality as well
as student learning [#41] and the other recommending
incorporating qualitative techniques [#15]. A further efficiency
recommendation was that evaluation sheets take no longer than
10 -15 minutes to complete for each project team and deliverable
[#52].

Learning by doing was advocated by several authors, with a goal
of the course being seen to provide authentic professional
experiences, in which students are exposed to realistic
experiences [#8] while still in the education process [#15] and
exposure to software engineers from different cultures [#14].
Yet, in contrast to the above view, GSD courses were seen to be
too difficult and complex for institutions to run, indeed Monasor
further concluded, given the difficulties of covering the multiple
aspects of GSD, that any initiative should be focused on a specific
field [47], and so simulation strategies were one recommended
option. These ranged from suggesting single site exercises run as
simulations [#49], through developing courses with simulation
scenarios including virtual meetings for cultural training [#54];
using a simulator for training in requirements elicitation [#70];
using a simulator for training in the decision making process and
trade-offs in GSD [#59]. Augmenting simulation is the use of
gamification as a learning strategy with games and contests being
proposed [#60, #80].
Curriculum development is an important topic given as noted in
[#76] the sparseness of curriculum materials for GSD. Topics to
be taught include: supporting distributed groups and global
distributed software development, cross-cultural communication,
international ethics, problem solving [#27, #32, #76]. Courses
recommended teaching modules or activities that addressed
culture [#4, #14, #29]. As reported in [#14] GSD modules with
their particular emphasis on culture were a success. Modules
include lectures, seminars, readings, and interviews of global
software engineers. Adding to the soft skills focus [#62]
recommended that the course have optional group exercises
emphasising management skills. One strategy recommended for
curriculum development included using an open source
community approach by developing a core set of reusable
instructional material and establishing a common web-based
infrastructure supporting distributed collaboration [#27].
Course sequencing was an important area, with establishing the
course schedule and incorporating regular deadlines considered
critical [#4]. Key activities needed to be conducted at distinct
stages of the course. Prior to the course a set of pre-semester
GSD training sessions [#62] or a crisp preparatory GSE overview
with a project management focus [#52] were advocated. At the
outset of the course it was recommended that instructors hold
lectures on past courses and typical challenges experienced [#4];
and to minimise student frustration, should explain to the students
the rationale behind vague requirements [#29]. It was also
considered important that all sponsors and tutors consistently
state the main objective right at the beginning [52], and keep a
strong focus upon the process before the project topics and tools
[#37] The nature of the project was considered of critical
importance. Project feasibility including ability to be tested
within the time allocated was the major consideration for some
[#42], (e.g. keep project scope to three months with prior defined
outcomes [#52]; keep project simple [#62]). Alignment with the
sponsor’s needs [#52] and delivering a complex software system
for a real client [#8] were key elements of other
recommendations. Two cautions were noted however; do not try
to run disparate projects with the latest technologies until the
underlying process works [#37]; and it is not sufficient to assign a
real-life project; it is also important to make it deployable and
sustainable [#37]. The latter of course has implications for hand-
off processes and a clear definition of the scope of the project.
Within the context of a project where student skills may be mixed
a task allocation strategy may be needed, allowing student teams

to pay to outsource parts of their project to a global developer is
an effective means of teaching GSD [#50]. While this
recommendation has a pedagogic focus, the topic of task
allocation is treated more comprehensively under the teamwork
theme.
On the topic of tools one recommendation suggested familiarising
students with commonly used case tools in industry [#68]. While
coded in this case under curriculum, the topic of tools is dealt with
more fully under the infrastructure theme.

5.6.2.2 Curriculum/Pedagogy & Learning Outcomes
Approaches
Again, as with the challenges for this theme, the topic of learning
outcomes had a lesser focus but did propose some applicable
approaches for learning. Key recommendations focused on the
use of reflection to develop students insight into their own
learning [#34] and by making the learning from the course more
explicit, thereby inculcate the habits of a ‘reflective practitioner’
[60] through a final phase of reflection about what the student has
experienced [#77].
Further recommendations had a course and assessment focus:
have optional group exercises emphasising communication skills
[#62] and, whole class project presentations and feedback [#4].
Yet others focused on the mentor role of the instructor in guiding
students towards achieving the learning outcomes [#34].

5.6.2.3 Curriculum/Pedagogy Summary
As can be seen there are a set of tensions between course design,
learning outcomes and student inclinations. For instance, it may
be logical to design a course of the inherent complexity that GSE
presents, with a just-in-time learning philosophy [#7] to help
scaffold student learning, but this works counter to the innate
student inclination not to look ahead and plan their work [#7,
#37]. Striking a balance in course design to meet learning
outcomes, pace and complexity of material to be covered and
mentoring students with differing skill sets is a challenge for
instructors, who wish not to be dragged into the role of technical
lead for their teams.
A concluding challenge for course design really serves to
motivate the need for a GSE-Ed course and especially a front end
lifecycle dimension to a GSE-Ed course:
professionals who have recently graduated from universities often
lack the skills and abilities to do global requirements elicitation
[#70].
The general strategy of ‘learning by doing’ advocated above, was
also noted as a key conclusion in the review by Monasor et al..
The teaching and training of GSD must be supported by practical
experiences through which students can learn by doing [47].
Final recommendations had a broader focus than the course itself,
with the first recommendation noting the need for a build up to
such a course within an educational programme. Similar points
have been made in [25; 55] suggesting integrating the course with
the whole software engineering curriculum, so students will have
necessary skills to complete a distributed project [#41]. A further
recommendation proposed constructing a research linked model
of learning and teaching [#18], which relates to the
recommendation in [#17] and reflects concerns also noted in [#27]
namely establish a sustained and adequately funded research
project as a strategy to fund and sustain a longer term GSE-Ed
initiative. This recommendation also advocates for an extension

of the curriculum and student learning towards the broader forms
of scholarship in teaching and learning, integration and
application advocated by Boyer [12], and towards the ‘scholarship
of engagement’ in which the academy and society more closely
interact [59].

5.7 Development Process
Development process challenges and recommendations concern
different phases of the software lifecycle, from requirements to
integration and testing. Consequently, one might expect that
process issues, and recommendations, would feature highly when
discussing global software development education.
However, as noted in Table 19, relatively few studies (11 of 82)
present software process challenges, or recommendations (13 of
82) as presented in Table 20.

5.7.1 Development Process Challenges
Table 19. Development Process Challenges

Theme/Subtheme Count # Papers

Development process 17 11
System/code integration 6 4
S/w development process 4 4
Coding 2 1
Design 2 2
Requirements 2 2
Testing 1 1

The most frequently occurring process challenge is system
integration, with seven challenges mentioned in four studies [#24,
#44, #62, #63]. This is perhaps not surprising, since successful
integration requires distributed teams to collaborate effectively,
both in designing and adhering to effective interfaces among
components, and in performing actual integration. The two main
integration problems are integration failures before deadlines
[#44, #62], and merge conflicts during integration [#24, #44].
General software development process problems received four
mentions [#17, #18, #35, #68], ranging from poor quality
resulting from lack of process [#17], to problems arising when
processes are not followed [#18], to the effects of constant change
on development [#35, #68].
Requirements issues mentioned feasibility [#36] and negotiation
[#49]. Coding issues centered around difficulties understanding
and modifying legacy systems [#44].
Of particular interest is that two studies [#41, #44] mentioned that
students lack design experience, which resulted in too much time
spent on design [#41], and designs that were not partitioned
effectively into modules that could be developed independently.
The latter is particularly important in a distributed context where
Global Distance results in communication delays.
The one testing challenge mentioned stemmed from handing the
testing task over to a remote team, a practice that is sometimes
seen in outsourcing arrangements [48]; this practice was
characterized as "difficult" and was seen to take longer than if the
testing was done by the same team that developed the code [#44].

5.7.2 Development Process Recommendations
As table 20 indicates, despite being the most often mentioned
challenge, only two studies [#24, #62] had recommendations

related to system and code integration: "manage" merge conflicts
when integrating software [#24], use design by contract to specify
module interfaces using the Eiffel programming language [#62],
and require mandatory code review of those interfaces before
proceeding to implementation [#62].
Table 20. Development Process Recommendations

Theme/Subtheme Count # Papers

Development process 16 13
S/w development process 8 6
Design 3 3
System/code integration 3 2
Coding 1 1
Requirements 1 1

Design phase recommendations include partitioning for
independent development [#52], and documenting design
decisions and rationale to facilitate knowledge transfer to other
teams [#46].
The one coding suggestion recommended forcing students to use a
common programming language [#63], while involving students
in requirements specification emphasized the importance of
communication [#50].
For development process recommendations, two studies
emphasized that teams should start design and implementation as
early and possible [#13, #20], two recommended adapting Agile
methods [#20] including pair programming [#58], and three
advocated daily or weekly status meetings [#58], or summary
reports [#23, #35], and one advocated prototyping as a way of
exposing "emerging" requirements [#17].

5.7.2.1 Development Process Summary
Viewed as a whole, the key take-away in the process area for
instructors planning a Global Software Development project
course is to avoid integration problems by first ensuring modular
designs, with modules that can be developed independently, and
start implementing early. Some work has been undertaken in GSE
to uncover the differences in GSE architectural knowledge
management that shows the dependencies between the
components and stakeholders [2; 8].

6. DISCUSSION
This working group has examined what turned out to be a
voluminous body of literature on the topic of GSE-Ed. The scale
of the undertaking has surprised, if not at times daunted us.
Nevertheless, the richness of the material uncovered has allowed
us to derive a solid set of results which answer both our research
questions, relating to the challenges and recommendations for
GSE-Ed. We also believe that this study adds considerably to our
current stock of knowledge on how to better conduct such
courses.

6.1 Recommendations
We have identified many challenges faced by educators who
attempt to deliver a course on Global Software Development.
These are due in large part to the nature of Global Software
Development itself: geographic separation, cultural differences,
and lack of timezone overlap present barriers to communication
and collaboration, which in turn affect other aspects of the
development experience. In addition, teaching Global Software
Development brings its own unique challenges, especially when

differences in curriculum among participating institutions is
considered. Fortunately, we have identified numerous solutions to
all of these challenges; the most frequently mentioned of these are
presented in Table 21.
Global Distance is, not surprisingly, the most frequently mentioned
challenge, and has been addressed in detail in Section 5.1. The most
common solutions focus on improving communication, by building
communication into the development process, and by improving
cultural awareness to make communication more effective.
One of the unique challenges to GSE-Ed posed by Global Distance
derives from the differences among participating institutions
regarding schedules, policies, and expectations. The most common
solutions for this challenge are to make the schedule and
expectations (including deliverables) as uniform as possible across
institutions, and to make sure both are well-defined at each location.
While these recommendations focus on the student experience, a
third counsels the instructor to choose counterparts wisely.
Teamwork is a challenge for any Software Development course, but
is especially so for GSE courses, due to the aforementioned
communication barriers. Recommendations for addressing
teamwork focus on two areas: communication, where the advice is
to encourage students to communicate early and often by including
communication in the development process, and teaching
communication skills as part of the course; and, the students
themselves, where solutions include creating roles (such as local
leaders or champions) that promote teamwork, matching skills to
roles, and keeping teams small to encourage team bonding.
Some of the most interesting solutions address People/Soft Issues.
The most commonly mentioned also apply to Global Distance and
Teamwork: communicate early and often, and promote bonding
through social interaction, games, and required participation.
Instructors are advised to be exceptionally enthusiastic.
The most commonly mentioned solution for addressing
Stakeholder/Role challenges for students is to make project
requirements and roles, especially a group project manager, clear.
The same advice applies to instructors: increased workload should
be met by clearly defining roles and responsibilities at each
location. Finally, several papers suggested using simulated rather
than real clients.

Recommendations to address Infrastructure problems most
frequently involve communication technology to overcome the
lack of face-to-face encounters. These include collaboration tools
such as groupware and wikis, and video conferencing. A unique
problem for GSE-Ed is tool and environment heterogeneity; most
commonly this is addressed by providing a common environment
across all sites.
Curriculum/Pedagogy challenges are unique to GSE-Ed (as
compared to GSE in general); the main solution is to scaffold
learning, through mentoring as well as course design. As
elsewhere, soft skills (such as communication and cultural
awareness) are also frequently mentioned. Also recognized is the
need to be realistic, as reflected in achievable learning objectives
and assessment tailored to GSE.
Finally, a few recommendations address the Development
Process. Regular meetings are frequently mentioned; also
mentioned is documenting designs that are partitioned for
independent development.
To summarize, communication, in the form of scheduled, frequent
meetings that start early in the course, as well as course content
focused on learning how to communicate, is a recurring
recommendation across challenge categories. This is not
surprising, as many of the challenges arise from barriers to
communication that students do not face in their conventional
classes. Consequently, they may not have the skills or experience
to overcome these barriers on their own.

6.2 Comparison to Previous Work
It is informative to compare this study with the results gained
from four prior studies. The first of these is the study by Noll and
colleagues [48] into the same concerns for GSD practitioners. The
second, by Crnkovic et al. [23], presents “ten tips” for GSD
educators based on the authors’ experience. The third is the set of
conclusions from the review of GSE-Ed by Monasor [47], and the
fourth is a paper by Damian [24] (cited in [47]), in which a
framework for conducting their GSE-Ed course is presented. As
can be seen in Tables 22 and 23, no single study covers all of the
categories our study has identified in GSE-Ed, in addition to the
issues facing GSD practitioners.

Table 21. Top GSE-Ed Challenges and Recommendations for Educators, Synthesized From Our 82 Papers

Challenges Recommendations
Global Distance

Limited time overlap between sites inhibits communication and
causes delays [#1, #4, #7, #8, #10, #12, #13, #19, #20, #22, #26,
#31, #35, #37, #38, #40, #46, #49, #51, #52, #53, #54, #55, #61,
#63, #64, #66, #67, #68, #69, #73, #74, #76, #78, #80]

1. Schedule regular meetings in advance [#13, #35, #72, #48]
2. Make teams communicate more often than they normally would [#19, #48, #62]
3. Use synchronous and asynchronous media [#49, #55]

Participating institutions have different term schedules,
expectations, and regulations [#4, #5, #7, #8, #9, #12, #13, #16,
#17, #19, #22, #23, #25, #26, #27, #41, #43, #44, #51, #52, #54,
#55, #56, #62, #63, #67, #68, #74, #76, #80]

1. "Harmonize deliverables, time schedules and evaluation schemes across all
participating universities" (but be flexible) [#4, #23, #41, #23]

2. Ensure roles are well-defined at each institution [#15, #16, #28]
3. "find a supportive, reliable and patient collaborating partner" [#17, #35]

Students don’t know how to work with people from different
cultural backgrounds [#4, #5, #6, #15, #19, #23, #27, #28, #33,
#37, #38, #40, #43, #44, #45, #49, #54, #60, #61, #64, #66, #68,
#69, #75, #76, #80, #82]

1. Include cultural awareness topics in course content [#27, #71, #54]
2. Provide opportunities for students to learn about cultural difference from each

other [#36, #45]

Teamwork
Large effort and commitment is required by students to engage
global teams [#2, #7, #11, #29, #33, #46, #73]

1. Create communication exercises to teach students how to use communication
tools [#6, #37, #60, #62]

2. Instructors must monitor communication levels to ensure that they remain high
[#30, #35]

Challenges Recommendations
Local teams tend to forget about their global teammates or
misunderstand their intentions [#2, #19, #33, #37, #46, #72,
#78]

1. Start communications early to form relationships [#12, #20, #30, #33, #48, #52,
#66]

2. Create a shared vision between local and global teams [#28, #35, #65]
3. Create bonding exercises [#23, #30, #37]

Difficulties for both students and instructors creating teams with
balanced skills and managing these teams in fair and effective
ways [#7, #23, #37, #44, #46, #50, #53, #63, #69, #72]

1. Instructor should map students to particular skill positions [#21, #29, 46, #58,
#65]

2. Appoint team leaders and in-country champions [#41, #72, #80]
3. Keep teams small [#32, #33, #52]
4. Use self-organizing teams [#25, #35]

People/Soft Issues
Lack of student motivation [#5, #7, #19, #29, #34, #37, #39,
#44, #45, #46, #50, #53, #54, #63, #69, #77, #79]

1. Use contests and games to boost student motivation [#4, #6, #19, #81]
2. Be exceptionally enthusiastic as an instructor [#4, #19, #29, #65]
3. Require participation to maintain student engagement [#30, #32]

Lack of trust between teams [#6, #8, #15, #19, #33, #37, #44,
#46, #50, #62, #64, #66, #67, #72, #76, #82]

1. "focus more than you expect upon social bonding activities and communication
protocols, and from day one" [#11, #19, #23, #29, #35, #37]

2. Students to be honest about their own technical abilities [#48].

Stakeholder/Role
Student lack of distributed project management experience [#2,
#10, #12, #20, #21, #35, #38, #53, #62, #72]

1. Clearly define project organization and requirements [#19, #22, #23, #33, #37,
#41, #61, #62, #65, #72, #80]

2. Require a designated group project manager [#15, #41, #58, #62, #72]

Increased workload for instructor [#4, #7, #18, #37, #76] 1. Create a complete class structure so that instructor responsibilities are clearly
delineated [#19, #37, #65, #72]

2. Use a coordinator or coach to help teams with the project [#11, #26, #42]
3. Establish support systems for both students and instructors [#37]
4. Scale down the project if you change the course in any way [#37]

Client lack of education experience [#7, #11, #38, #58] 1. Use simulators in lieu of real clients [#44, #45, #54, #55, #59, #70]
2. Instructors should ensure that a close relationship is built with the client [#6, #26,

#64]
3. Use programming contests in lieu of clients [#6, #7]

Infrastructure
Communication and collaboration technology challenges [#13,
#23, #32, #46, #76, #82]

1. Use groupware and similar collaboration tools to bridge the gap between teams
[#8, #17, #64, #71, #76]

2. Use wikis and other knowledge management tools [#8, #13, #41, #61]
3. Use video conferencing facilities [#8, #19, #29, #65]

Tool and environment heterogeneity [#42, #53, #67] 1. Use a common environment or set of tools across all sites [#4, #16, #27, #35, #41,
#48, #61, #61, #65, #65]

Lack of shared SCCS [#2, #42] 1. Use Git or similar SCCS [#13, #41]

Curriculum/Pedagogy
Tensions between course design, learning outcomes and student
inclinations [#37,#27,#15, #29, #70, #56, #38, #76, #52, #68,
#7]

1. Scaffold student learning, through course design & mentoring [#62, #67, #37,
#42, #81,#76, #81, #16, #27, #46]

2. Explicitly teach soft skills [#54, #76, #27 #14, #29, #60, #62, #4]
3. Encourage reflective attitudes in students [#34, #18, #77]

Difficulty of real-life, globally dispersed projects
[#81,#37,#87,#15,#7,#37, #56, #70]

1. Design achievable and authentic learning experiences [#15, #67, #62, #42, #8]
2. Design an assessment process tailored to GSD[#57,#15,#52, #29,#41, #67]

Development Process
System/code integration failures [#24, #44, #62, #63] 1. "Manage" merge conflicts when integrating software [#24]

2. Use design by contract to specify module interfaces using the Eiffel programming
language, and require mandatory code review of those interfaces before
proceeding to implementation [#62]

Requirements, design, testing failures [#36, #41, #44, #49] 1. Start design and implementation early [#13, #20]
2. Partition designs for independent development [#52]
3. Document design decisions and rationale [#46]

Other process failures [#17, #18, #35, #68] 1. Require regular status meetings and/or reports [#20, #23, #35, #58]
2. Force students to use a common programming language [#63]

Table 22. GSE-Ed Challenges — Comparison with Other Frameworks
GSE-Ed
Challenge
(Current study)

GSD Theme
(Noll et al.,
2010)[48]

Ten Tips
(Crnkovic 2012)[23]

Student Preparation for GSD
(Monasor et al., 2010)[47]

GSD Instructional
Design Framework
(Damian et al., 2006)[24]

Global Distance Language and
cultural
distance

Temporal
distance

Geographic
distance

Inflexible sets of rules from different
institutions brings unsolvable
situations

Some students had more flexible
interpretation of time

Some more open and direct in
conversation, some avoid confrontation

Language differences cause difficulties

Schedule problems , communication
difficulties - greater with cultural and
language differences

Different timetables of students make it
difficult to coordinate projects

Teamwork Management Different understandings of teamwork
Students lack loyalty, team spirit and

collective responsibility

International teamwork

Curriculum/
pedagogy

Technical capabilities differ between
students. Causes problems in
coordinating development

Stakeholder/role Organization Simulating complexity of real
environments difficult for universities

Distributed Project
Management

Infrastructure Infrastructure Specific tools required for
communication, collaboration and
document management.

CMC

People/soft issues Fear and Trust Students with different backgrounds
have different sources of motivation

Students in GSD training usually
experience a lack of motivation

Ambiguity/uncertainty

Development
process

Process
Product

architecture

Iterative development

As noted in section 5.1.3, Global Distance challenges and
recommendations found in GSE educational settings are
reflections of similar issues reported in the general GSE literature,
such as issues relating to cultural, geographic, linguistic, and
temporal distance [48; 58]. In addition to Global Distance, Noll et
al. [48] identified five other categories of general GSD
challenges: process and management issues; fear and trust;
infrastructure; organization; and product architecture. As shown in
Table 21 these have corresponding themes in the present study.
However, there are peculiarities of the educational setting that
pose different challenges from industrial practice. For example,
the challenge of dealing with different schedules across
institutions, and allocating tasks to students with very different
backgrounds and skill levels, are unique; these are captured by the
Curriculum/pedagogy theme. This theme was also recognized as a
challenge by Crnkovic et al., but they offered no specific solution.
On the other hand, neither Monasor et al. nor Damian et al.
explicitly identified Curriculum/pedagogy as a challenge, but both
offered some solutions in this category.
The mapping in Table 23 focuses on recommendations, where
again differences and gaps which distinguish our findings from
earlier studies can be noted. The ten tips recommendations in
Crnkovic et al. [23] (also [#19] in our reviewed papers), address
most of the categories apart from development process, but offer a
single point of view and are more general than the broader set of
concrete recommendations we have elaborated in this study.
As can be seen, Damian et al.’s [24] framework does not address
all of the categories, and is also a very context specific
presentation. Taken as a whole, these four studies (columns 2-5)
suggest the validity of the categories we have identified, while the
gaps confirm the need for a comprehensive review like ours. The
differences between our study and Monasor et al.’s [47]
conclusions are evident, reflecting the directive and
recommendation focused nature of this study, as opposed to their

survey of the state of the art. As such, our study has made a
contribution, through its detailed mapping of challenges, and
through a comprehensive set of recommendation for practitioners;
the most frequently mentioned of these challenges and
recommendations have been presented in Table 21.
As Table 22 and 23 illustrate, and as noted in Section 5.1.3 above,
our theme boundaries, while useful in terms of illustrating the
many different areas to consider when developing and conducting
GSE educational courses, are not rigidly fixed. A cross theme
view must be taken in order to gain a holistic picture of a course.
When considering recommendations made in our other themes,
for example ‘Infrastructure’, these will have a positive impact on
our ‘Global Distance’ issues. Therefore we advise anyone
applying these recommendations to look across all our themes to
gain a full and balanced picture of what is needed to conduct a
GSE-Ed course. Should an even finer grained view of process
and practice be required than presented in this systematic
literature review (SLR), we suggest that the reader goes directly to
the underlying studies that are grouped in terms of each issue they
address.

6.3 Limitations
This study is very broad in two dimensions, the number of papers
considered and the topic itself. In terms of the number of papers,
649 unique papers were considered and 82 were ultimately
examined. The screening process was rigorous (see Section 3.8,
Validation), yet it is quite possible that relevant papers were
passed over. The considerable scope of the topics covered within
GSE-Ed and the many headings and site/project specific terms
used, together with a variable focus on the educational aspect of
the publication, mean that GSE-Ed is inherently a challenging
candidate for a systematic review. The quantity of examined
papers and the rigor of the examination, however, give us
confidence that the major challenges and recommendations of
GSE-Ed were uncovered.

Table 23. GSE-Ed Recommendations — Comparison with Other Frameworks

GSE-Ed
Solution (Current
study)

GSD Theme
(Noll 2010)[48]

Ten Tips (Crnkovic 2012)[23] Student Preparation for GSD
(Monasor 2010)[47]

GSD Instructional Design
Framework (Damian
2006)[24]

Global Distance Language and
cultural
distance

Temporal
distance

Geographic
distance

Start communication by brute force
(Tip 1)

Keep communication levels
consistently high. (Tip 3)

Teamwork Management Ensure that students keep the other
site in mind (Tip 4)

Be flexible – overcome the
differences (Tip 7)

Be alert (Tip 9)

Cross universities whole
team

Curriculum/
pedagogy

Teaching of GSD must be supported
by practical experiences through
which students can learn by doing

Strategies for assessment of
learning

Stakeholder/role Organization Be flexible – beat the administration
(Tip 8)

Not possible for instructors to cover
all stages and problems of GSD so

any initiative should be focused on a
specific field

Self-managed team negotiate
scope

Infrastructure Infrastructure Appropriate selection of tools a key
aspect

Wide range of tools

People/soft issues Fear and Trust Get the students to be familiar with
each other as soon as possible (Tip
2)

Keep the students highly motivated
(Tip 5)

Remember: we are different (Tip 6)
Be enthusiastic (Tip 10)

Initial problem definition by
client progressive
clarification during lifecycle

Development
process

Process
Product

architecture

Students alternate client &
development role

Project scope negotiated with
client through iterations

The search itself posed several limitations. The initial search
strings produced too many papers and false positives to be useful.
The first IEEExplore database search, for example, produced over
40,000 hits. As a result, we had to narrow the search criteria and,
may as a consequence have missed some relevant papers.
The inclusion/exclusion criteria that were used to filter papers
pose another potential limit. Given the number of initial papers,
the inclusion/exclusion filter had to be made quite tight to produce
a manageable number of papers (see Section 3.8, Study
Validation). In particular, studies centering on e-learning, studies
concerning commercial GSD, and studies in books were not
considered. These exclusions could have missed some important
challenges or recommendations. The e-learning studies, for
example, may have considered students in geographically
dispersed locations working on projects in teams. Though not
directly GSD, they could have produced useful data.
The extraction process also creates some limitations to this SLR.
After verifying the extraction process itself (see Sections 3.5, 3.6
Data extraction and synthesis), data was extracted from each
source by a single researcher. Again, given the quantity of papers
it is possible that relevant data were missed in these extractions.
As observed by Jalali and Wohlin [37] We do not claim to have
collected all relevant studies, but we included as many studies as
possible. It should also be noted that although some studies may
have been missed, there is no reason to believe that they would be
distributed differently across the classifications than the papers
included in the systematic review presented.

Following the extraction of data, both challenges and
recommendations were categorized into major and minor
categories. The categories themselves were derived through the
efforts of all the researchers and were filtered through four of the
researchers. The categorization of data itself was examined by
four researchers. As a result, we are quite confident that the
categories and categorization are accurate and appropriate but, of
course, a process this extensive leaves room for error.
Given the rigor and redundancy in our methods, we are confident
that this study has produced comprehensive and accurate
challenges and recommendations for GSE-Ed. Notwithstanding
the many limitations detailed in this section, we have made efforts
to provide enough detail in the form of derived themes and results,
to allow other researchers and instructors to build on our findings.
This is aided by our repeatable review process recorded in our
protocol [6].

7. CONCLUSION
In this paper we set out through a comprehensive systematic
literature review to answer two research questions:
RQ1: What are the challenges in delivering GSE courses to
Software Engineering Students?
RQ2: What are the recommendations for delivering GSE courses
to Software Engineering Students?
We identified seven major themes around which challenges and
recommendations were grouped, namely: Global Distance;
Teamwork; Curriculum/Pedagogy; Stakeholder/role;

Infrastructure; People/Soft issues; Development Process. A
comprehensive and detailed set of challenges and associated
recommendations have been outlined in this report.
Following a rigorous SLR process (described in Section 3)
allowed us to thoroughly examine the issues and options available
in the surprisingly rich GSD-Ed literature. We were able to draw
on the wisdom of previous researchers as expressed in the 82
papers examined.
An overview summary of the key challenges and
recommendations derived from our study was presented above in
Table 21. The numbering in the table reflects the order of
frequency – where those recommendations mentioned by the most
studies come first. While this order does not necessarily reflect
impact of the challenges or effectiveness of the solutions, it does
suggest that the frequently noted challenges are likely to be faced
by an instructor conducting a GSD-Ed course, and the frequently
noted recommendations have worked across a range of contexts.
Teaching software engineering is difficult in a co-located setting,
and as this review shows, teaching GSE-Ed courses comes with a
considerable overhead, mainly due to distance issues. Teaching
GSE-Ed in university settings is not for the faint hearted; yet, as
the 82 studies in this SLR testify; many universities are doing just
that. Universities in 39 different countries are collaborating across
shores, in an effort to respond to the growing imperative of
preparing their students for multi-site distributed development.
These distributed development courses aim to give students first-
hand experience of GSE in the hope to enhance their technical
abilities, and at the same time teach them the importance of soft
skills and teamwork.
This study has added to prior work in the area by consolidating
insights from the diverse set of independent studies in GSE
Education. It adds to knowledge gained through individual
studies, by synthesizing a detailed set of identified challenges,
accompanied by an actionable set of recommendations to address
them. We hope it will prove a valuable reference source for
educators seeking to enhance the quality of software engineering
education through the design and implementation of successful
GSE courses in fruitful global partnerships.
As Table 21 shows, each of the challenges raised in the studies we
examined have clear recommendations that will help course
designers prepare for GSE-Ed. If we were to distill these down to
a single “key takeaway”, the message is: start preparing early for
the course, know the level and experience of your cohort of
students, and plan the development and tasks accordingly.

7.1 Future Work
While this study represents the results of an extensive review of
the literature, there remain many unanswered questions. For
example there appears to be little work on the individual student
role in terms of recommendations as a stakeholder in the process,
since most of the reviews focus on the instructor role, or how the
student must interact as part of a team, or issues students have,
with the exception of [29]; also there is not a great deal of work
describing the client or customer role in GSE-Ed. Perhaps this is
calling for more collaboration between universities and
organizations, a familiar research question that has yet to be
answered [9; 10]. From an external, cross-institution and intra-
institutional linking aspect, the University representative role is
underexplored. Also, although some work has started to assess a
team’s general readiness for conducting GSE [7], an assessment
for university’s readiness is also needed to take into account the
differences identified in this review. Finally, research into

strategies for successfully sustaining such courses on a long term
basis is sorely needed.

ACKNOWLEDGEMENTS
We would like to thank the working group leaders for their
support during this challenging process, and to the anonymous
reviewers for giving their time and expertise to help us improve
the final report.
This work was supported, in part, by Science Foundation Ireland
grants 10/CE/I1855 and 13/RC/2094 to Lero - the Irish Software
Research Centre (www.lero.ie), and by contract CF 2014 4348
from the European Regional Development Fund and Enterprise
Ireland.

REFERENCES
[1] Ali-Babar, M. and Lescher, C., 2014. Editorial: Global

software engineering: Identifying challenges is important
and providing solutions is even better. Information and
Software Technology 56, 1, 1-5.

[2] Ali, N., Beecham, S., and Mistrík, I., 2010. Architectural
knowledge management in global software development: a
review. In IEEE International Conference on Global
Software Engineering Workshops (ICGSEW). 347-352.

[3] Aspray, W., Mayadas, A.F., Vardi, M.Y., and Zweben, S.H.,
2006. Educational Response to Offshore Outsourcing. In
Proceedings of the 37th SIGCSE technical symposium on
Computer science education ACM, Houston, Texas, USA,
330-331. DOI= http://dx.doi.org/10.1145/1121341.1121443.

[4] Aspray, W., Mayadas, F., and Vardi, M., 2006.
Globalization and Offshoring of Software - A Report of the
ACM Job Migration task Force. ACM.

[5] Beecham, S., Baddoo, N., Hall, T., Robinson, H., and Sharp,
H., 2006. Protocol for a Systematic Literature review of
Motivation in Software Engineering. Technical Report UH-
CS-TR-453 Report.

[6] Beecham, S., Clear, T., Barr, J., and Noll, J., 2015. Protocol
for Challenges and Recommendations for the Design and
Conduct of Global Software Engineering Courses: A
Systematic Review. (ITiCSE Working Group One: Technical
Report No. Lero_TR_2015_01) Report.

[7] Beecham, S., Noll, J., and Richardson, I., 2015. Assessing
the Strength of Global Teaming practices: A pilot study. In
Proceedings of the 10th IEEE International Conference on
Global Software Engineering (ICGSE'15) IEEE Computer
Society, Castilla-la Mancha, Spain.

[8] Beecham, S., Noll, J., Richardson, I., and Ali, N., 2010.
Crafting a global teaming model for architectural knowledge
management. In Proceedings of the 5th IEEE International
Conference on Global Software Engineering (ICGSE'10),
Princeton, New Jersey, USA.

[9] Beecham, S., O'leary, P., Baker, S., Richardson, I., and Noll,
J., 2014. Making Software Engineering Research Relevant.
Computer 47, 4, 80-83. DOI=
http://dx.doi.org/10.1109/mc.2014.92.

[10] Beecham, S., Oleary, P., Richardson, I., Baker, S., and Noll,
J., 2013. Who are we doing Global Software Engineering
research for? In Proceedings of the 8th International
Conference on Global Software Engineering (ICGSE'13),
IEEE, 41-50.

[11] Bosnić, I., Čavrak, I., Orlić, M., Žagar, M., and Crnković, I.,
2011. Student Motivation in Distributed Software
Development Projects. In Proceedings of the 2011
Community Building Workshop on Collaborative Teaching
of Globally Distributed Software Development ACM, 31-35.

[12] Boyer, E., 1990. Scholarship Reconsidered: Priorities of the
Professoriate. Carnegie Foundation Special Report.
Princeton University Press.

[13] Bruegge, B., Dutoit, A.H., Kobylinski, R., and Teubner, G.,
2000. Transatlantic Project Courses in a University
Environment. In Seventh Asia-Pacific Software Engineering
Conference, 2000. APSEC, 30-37. DOI=
http://dx.doi.org/10.1109/APSEC.2000.896680.

[14] Casey, V., 2010. Imparting the Importance of Culture to
Global Software Development. ACM Inroads 1, 3, 51-57.

[15] Clear, T., 2002. E-Learning: A Vehicle for Transformation
or Trojan Horse for Enterprise? - Revisiting the role of
Public Higher Education Institutions. International Journal
on E-Learning 1, 4 (October-December), 15 - 21.

[16] Clear, T., 2010. Exploring the Notion of 'Cultural Fit' in
Global Virtual Collaborations. ACM Inroads 1, 3 (Sept), 58-
65.

[17] Clear, T., 2012. Systematic Literature Reviews and
Undergraduate Research. ACM Inroads 3, 4 (Dec), 10-11.
DOI= http://dx.doi.org/10.1145/2381083.2381087.

[18] Clear, T., Claxton, G., Thompson, S., and Fincher, S., 2011.
Cooperative and Work-Integrated Education in Information
Technology. In International Handbook for Cooperative &
Work-Integrated Education, R. Coll and K. Zegwaard Eds.
World Association for Cooperative Education Inc, Lowell,
MA, 141-150.

[19] Clear, T. and Kassabova, D., 2008. A Course in
Collaborative Computing: Collaborative Learning and
Research with a Global Perspective. In Proceedings of the
39th ACM Technical Symposium on Computer Science
Education, M. Guzdial and S. Fitzgerald Eds. ACM,
Portland, Oregon, 63-67.

[20] Clear, T., Young, F., Goldweber, M., Leidig, P., and Scott,
K., 2001. ITiCSE 2001 Working Group Reports - Resources
for Instructors of Capstone Courses in Computing. SIGCSE
Bulletin 33, 93-113.

[21] Conchuir, E., Agerfalk, P., Olsson, H., and Fitzgerald, B.,
2009. Global Software Development: Where Are The
Benefits? Commun. ACM 52, 8, 127-131. DOI=
http://dx.doi.org/10.1145/1536616.1536648.

[22] Cramton, C., 2001. The Mutual Knowledge Problem and its
Consequences for Dispersed Collaboration. Organization
Science 12, 3 (May-Jun), 346-371.

[23] Crnković, I., Bosnić, I., and Žagar, M., 2012. Ten Tips to
Succeed in Global Software Engineering Education. In
Proceedings of the 34th International Conference on
Software Engineering (ICSE) IEEE Press, 1225-1234.

[24] Damian, D., Hadwin, A., and Al-Ani, B., 2006. Instructional
Design and Assessment Strategies for Teaching Global
Software Development: a Framework. In Proceedings of the
28th International Conference on Software Engineering
(ICSE), ACM, Shanghai, China, 685-690. DOI=
http://dx.doi.org/10.1145/1134285.1134391.

[25] Daniels, M., Berglund, A., and Petre, M., 1999. Reflections
on International Projects in Undergraduate CS Education.
Computer Science Education 9, 3, 256-267.

[26] Daniels, M., Cajander, Å., Clear, T., and Mcdermott, R.,
2015. Collaborative Technologies in Global Engineering:
New Competencies and Challenges International Journal of
Engineering Education 31, 1 (B), 267-281.

[27] Daniels, M., Cajander, Å., Pears, A., and Clear, T., 2010.
Engineering Education Research in Practice: Evolving Use
of Open Ended Group Projects as a Pedagogical Strategy for
Developing Skills in Global Collaboration (Special issue on
Applications of Engineering Education Research).
International Journal of Engineering Education 26, 4, 795-
806.

[28] Daniels, M., Petre, M., Almstrum, V., Asplund, L.,
Bjorkmann, C., Erickson, C., Klein, B., Last, M., and
Berglund, A., 1998. RUNESTONE, an International Student
Collaboration Project. In IEEE Frontiers in Education
Conference IEEE, Tempe, Arizona.

[29] Filipovikj, P., Feljan, J., and Crnković, I., 2013. Ten Tips to
Succeed in Global Software Engineering Education: What
do the Students Say? In 3rd International Workshop on
Collaborative Teaching of Globally Distributed Software
Development (CTGDSD), 20-24. DOI=
http://dx.doi.org/10.1109/CTGDSD.2013.6635241.

[30] Fortaleza, L.L., Conte, T., Marczak, S., and Prikladnicki, R.,
2012. Towards a GSE International Teaching Network:
Mapping Global Software Engineering Courses. In
Collaborative Teaching of Globally Distributed Software
Development Workshop (CTGDSD), 1-5. DOI=
http://dx.doi.org/10.1109/CTGDSD.2012.6226944.

[31] Gotel, O., Kulkarni, V., Say, M., Scharff, C., and
Sunetnanta, T., 2009. A Global and Competition-Based
Model for Fostering Technical and Soft Skills in Software
Engineering Education. In 22nd Conference on Software
Engineering Education and Training (CSEET), 271-278.
DOI= http://dx.doi.org/10.1109/CSEET.2009.36.

[32] Hauer, A. and Daniels, M., 2008. A Learning Theory
Perspective on Running Open Ended Group Projects
(OEGPs). In Conferences in Research and Practice in
Information Technology, Simon and M. Hamilton Eds.
ACS, Wollongong, NSW, Australia, 85-92.

[33] Herrington, J., Oliver, R., and Reeves, T., 2002. Patterns of
Engagement in Authentic Online Learning Environments. In
19th Annual Conference of the Australasian Society for
Computers in Learning in Tertiary Education (ASCILITE)
2002, A. Williamson, C. Gunn, A. Young and T. Clear Eds.
UNITEC Institute of Technology, Auckland, New Zealand,
Auckland, 279-286.

[34] Hettinga, M., 2002. Understanding Evolutionary Use of
Groupware. In Telematica Instituut Delft University of
Technology, Enschede, 191.

[35] Hirschheim, R., 2008. Some guidelines for the critical
reviewing of conceptual papers. Journal of the Association
for Information Systems 9, 8, 3.

[36] Holmström, H., Fitzgerald, B., Ågerfalk, P.J., and Conchúir,
E.Ó., 2006. Agile practices reduce distance in global
software development. Information Systems Management
23, 3, 7-18.

[37] Jalali, S. and Wohlin, C., 2012. Global Software
Engineering and Agile Practices: A Systematic Review.
Journal of Software: Evolution and Process 24, 6, 643-659.

[38] Jarvenpaa, S. and Leidner, D., 1999. Communication and
Trust in Global Virtual Teams. Organization Science 10, 6,
791-815.

[39] Kitchenham, B. and Charters, S., 2007. Guidelines for
Performing Systematic Literature Reviews in Software
Engineering, version 2.3. In EBSE Technical Report Keele
University, UK.

[40] Krippendorff, K., 1980. Content Analysis: An Introduction
to its Methodology. Sage Publications, Beverly Hills.

[41] Lago, P., Muccini, H., and Babar, M.A., 2012. An Empirical
Study of Learning by Osmosis in Global Software
Engineering. Journal of Software: Evolution and Process
24, 6, 693-706.

[42] Le Blanc, R., Sobel, A., Ben-Menachem, M., Lethbridge,
T., Díaz-Herrera, J., Hilburn, T., Mcgettrick, A., Atlee, J.,
Hawthorne, E., Leaney, J., Budgen, D., Matsumoto, Y., and
Thompson, J., 2015. Software Engineering 2014:
Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering.

[43] Matthes, F., Neubert, C., Schulz, C., Lescher, C., Contreras,
J., Laurini, R., Rumpler, B., Sol, D., and Warendorf, K.,
2011. Teaching Global Software Engineering and
International Project Management-Experiences and Lessons
Learned from Four Academic Projects. In CSEDU (2), 5-15.

[44] Meyer, B., 2001. Software Engineering in the Academy.
Computer 34, 5, 28-35. DOI=
http://dx.doi.org/10.1109/2.920608.

[45] Monasor, M.J., Vizcaíno, A., and Piattini, M., 2010. A Tool
for Training Students And Engineers in Global Software
Development Practices. In Collaboration and Technology
Springer, 169-184.

[46] Monasor, M.J., Vizcaíno, A., and Piattini, M., 2012.
Cultural and linguistic problems in GSD: a simulator to train
engineers in these issues. Journal of Software: Evolution
and Process 24, 6, 707-717.

[47] Monasor, M.J., Vizcaino, A., Piattini, M., and Caballero, I.,
2010. Preparing Students and Engineers for Global Software
Development: A Systematic Review. In Proceedings of the
5th IEEE International Conference on Global Software
Engineering (ICGSE’10), 177-186. DOI=
http://dx.doi.org/10.1109/ICGSE.2010.28.

[48] Noll, J., Beecham, S., and Richardson, I., 2010. Global
Software Development and Collaboration: Barriers and
Solutions ACM Inroads 1, 3 (Sept), 66-78.

[49] Noll, J., Beecham, S., and Seichter, D., 2011. A Qualitative
Study of Open Source Software Development: the
OpenEMR Project. In IEEE Empirical Software
Engineering and Measurement Conference – ESEM 2011
September 19-23, Banff, Canada.

[50] Noll, J., Seichter, D., and Beecham, S., 2012. A Qualitative
Method for Mining Open Source Software Repositories. In

Open Source Systems: Long-Term Sustainability Springer
Berlin Heidelberg, 256-261.

[51] Noll, J., Seichter, D., and Beecham, S., 2013. Can
Automated Text Classification Improve Content Analysis of
Software Project Data? In ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM), 2013. 300-303.

[52] Olson, G. and Olson, J., 2000. Distance Matters. Human-
Computer Interaction 15, 139-178.

[53] Panteli, N. and Duncan, E., 2004. Trust and temporary
virtual teams: alternative explanations and dramaturgical
relationships. Information Technology and People 17, 4,
423-441.

[54] Pauleen, D., 2003. Leadership in a global virtual team: an
action learning approach. Leadership & Organization
Development Journal 24, 3, 153-162.

[55] Pears, A. and Daniels, M., 2010. Developing Global
Teamwork Skills: The Runestone Project. In Proceedings of
the 2010 IEEE Education Engineering Conference
(EDUCON 2010), IEEE.

[56] Peters, A., Hussain, W., Cajander, A., Clear, T., and
Daniels, M., 2015. Preparing the Global Software Engineer.
In Proceedings of the IEEE 10th International Conference
on Global Software Engineering (ICGSE'15), 61-70.

[57] Raza, B., Macdonell, S.G., and Clear, T., 2013. Research in
Global Software Engineering: A Systematic Snapshot. In
Evaluation of Novel Approaches to Software Engineering, J.
Filipe and L. Maciaszek Eds. Springer Berlin Heidelberg,
126-140. DOI= http://dx.doi.org/10.1007/978-3-642-54092-
9_9.

[58] Richardson, I., Casey, V., McCaffery, F., Burton, J., and
Beecham, S., 2012. A process framework for global
software engineering teams. Information and Software
Technology (IST), 54, 11, 1175-1191.

[59] Sandmann, L.R., 2008. Conceptualization of the Scholarship
of Engagement in Higher Education: A Strategic Review,
1996–2006. Journal of Higher Education Outreach and
Engagement 12, 1, 91-104.

[60] Schön, D., 1987. Educating the Reflective Practitioner.
Jossey Bass, San Francisco.

[61] Swigger, K., Brazile, R., Harrington, B., Xiaobo, P., and
Alpaslan, F., 2006. Teaching Students How to Work in
Global Software Development Environments. In
International Conference on Collaborative Computing:
Networking, Applications and Worksharing,
CollaborateCom, 1-7. DOI=
http://dx.doi.org/10.1109/COLCOM.2006.361849.

[62] Tan, F. and Sutherland, P., 2004. Online Consumer Trust:
A Multi-Dimensional Model. Journal of Electronic
Commerce in Organizations 2, 3, 40-58.

[63] Valentine, D., 2004. CS Educational Research: A Meta-
Analysis of SIGCSE Technical Symposium Proceedings.
In SIGCSE Technical Symposium Proceedings
(SIGCSE'04) ACM, Norfolk, VA, 255-259.

Appendix A: List of 82 Accepted Papers (as referenced in our Results Section)

[#1]: Almeida, E. Teaching Globally Distributed Software
Development: An Experience Report. in IEEE 25th
Conference on Software Engineering Education and
Training (CSEE&T). 17-19 April 2012. p. 105-109.

[#2]: Berkling, K., M. Geisser, T. Hildenbrand, and F. Rothlauf.
Offshore software development: transferring research
findings into the classroom, in Software Engineering
Approaches for Offshore and Outsourced Development
2007, Springer. p. 1-18.

[#3]: Bosnić, I., I. Čavrak, M. Orlić, and M. Žagar. Picking the
right project: Assigning student teams in a GSD course. In
IEEE 26th Conference on Software Engineering Education
and Training (CSEE&T). 19-21 May 2013. p. 149-158.

[#4]: Bosnić, I., I. Čavrak, M. Orlić, M. Žagar, and I. Crnković.
Avoiding Scylla and Charybdis in distributed software
development course. In Proceedings of the 2011 community
building workshop on Collaborative teaching of globally
distributed software development. 2011. ACM. p. 26-30.

[#5]: Bosnić, I., I. Čavrak, M. Orlić, M. Žagar, and I. Crnković.
Student motivation in distributed software development
projects. In Proceedings of the 2011 Community Building
Workshop on Collaborative Teaching of Globally
Distributed Software Development. 2011, ACM. p. 31-35.

[#6]: Bosnić, I., I. Čavrak, M. Žagar, R. Land, and I. Crnković.
Customers' Role in Teaching Distributed Software
Development. In 23rd IEEE Conference on Software
Engineering Education and Training (CSEE&T). 9-12
March 2010. p. 73-80.

[#7]: Bosnić, I., F. Ciccozzit, I. Čavrak, R. Mirandola, and M.
Orlić. Multi-dimensional assessment of risks in a distributed
software development course. In 3rd International Workshop
on Collaborative Teaching of Globally Distributed Software
Development (CTGDSD). 2013. IEEE. p. 6-10.

[#8]: Braun, A., A.H. Dutoit, A.G. Harrer, and B. Brugge. IBistro:
a learning environment for knowledge construction in
distributed software engineering courses. In 9th Asia-Pacific
Software Engineering Conference. 2002. p. 197-203.

[#9]: Brazile, R.P., K. Swigger, M.R. Hoyt, B. Lee, and B.
Nelson. A System to Support Teaching Global Software
Development. In American Society for Engineering
Education. 2012. American Society for Engineering
Education.

[#10]: Brooks, I. and K. Swigger. The role of leadership and its
effect on the temporal patterns of global software
development teams. In 8th International Conference on
Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom). 14-17 Oct. 2012. p. 381-
390.

[#11]: Bruegge, B., A.H. Dutoit, R. Kobylinski, and G. Teubner.
Transatlantic project courses in a university environment. In
Seventh Asia-Pacific Software Engineering Conference,
2000. APSEC. 2000. p. 30-37.

[#12]: Cao, L., H. Zhu, and G. Su. Global Software Development
Project. In 18th Americas Conference on Information
Systems, AMCIS 2012 Proceedings. Paper 15 July 29, 2012.

[#13]: Carlson, P. and X. Nan. Experience and recommendations
for distributed software development. In Collaborative

Teaching of Globally Distributed Software Development
Workshop (CTGDSD). 9 June 2012. p. 21-24.

[#14]: Casey, V. Imparting the importance of culture to global
software development. ACM Inroads, 2010. 1(3): p. 51-57.

[#15]: Cavrak, I., M. Orlic, and I. Crnkovic. Collaboration patterns
in distributed software development projects. In 34th
International Conference on Software Engineering (ICSE)
2012. 2-9 June 2012. p. 1235-1244.

[#16]: Clear, T. Replicating an 'Onshore' Capstone Computing
Project in a ‘Farshore’ Setting--An Experience Report. In
6th IEEE International Conference on Global Software
Engineering (ICGSE) 2011. IEEE. p. 161-165.

[#17]: Clear, T. and M. Daniels. Using groupware for international
collaborative learning. In 30th Annual Frontiers in
Education Conference, 2000. FIE. 2000. 2000. p. F1C/18-
F1C/23 vol.1.

[#18]: Clear, T., J. Whalley, J. Hill, Y. Liu, A. Pears, and B.
Plimmer. A global software project: Developing a tablet PC
capture platform for explanograms. In Proceedings of the
8th International Conference on Computing Education
Research. 2008. ACM. p. 41-50.

[#19]: Crnković, I., I. Bosnić, and M. Žagar. Ten tips to succeed in
global software engineering education. In Proceedings of
the 34th International Conference on Software Engineering
(ICSE). 2012. IEEE Press. p. 1225-1234.

[#20]: Dastidar, S.G. and S. Chatterjee. Distributed software
development: Experience and recommendation. In 3rd
International Workshop on Collaborative Teaching of
Globally Distributed Software Development (CTGDSD).
2013. 25-25 May 2013. p. 11-14.

[#21]: Deiters, C. GloSE-Lab: Teaching Global Software
Engineering. In 6th IEEE International Conference on.
Global Software Engineering (ICGSE’11), 15-18 Aug. 2011.
p. 156-160.

[#22]: Doerry, E., R. Klempous, J. Nikodem, and W. Paetzold.
Virtual student exchange: lessons learned in virtual
international teaming in interdisciplinary design education.
In Proceedings of the 5th International Conference on
Information Technology Based Higher Education and
Training, ITHET. 31 May-2 June 2004. p. 650-655.

[#23]: Ende, M., R. Lammermann, P. Brockmann, and G.
Ayurzana. A virtual, global classroom to teach global
software engineering: A Mongolian-German team-teaching
project. In Second International Conference on e-Learning
and e-Technologies in Education (ICEEE). 23-25 Sept.
2013. p. 229-233.

[#24]: Estler, H.C., M. Nordio, C.A. Furia, and B. Meyer.
Awareness and Merge Conflicts in Distributed Software
Development. In IEEE 9th International Conference on
Global Software Engineering (ICGSE). 18-21 Aug. 2014. p.
26-35.

[#25]: Fagerholm, F., P. Johnson, A. Sanchez Guinea, J. Borenstein,
and J. Munch. Onboarding in Open Source Software
Projects: A Preliminary Analysis. In IEEE 8th International
Conference on Global Software Engineering Workshops
(ICGSEW). 26-26 Aug. 2013. p. 5-10.

[#26]: Fagerholm, F., N. Oza, and J. Munch. A platform for
teaching applied distributed software development: The
ongoing journey of the Helsinki software factory. In 3rd
International Workshop on Collaborative Teaching of
Globally Distributed Software Development (CTGDSD). 25
May 2013. p. 1-5.

[#27]: Farley, A., S. Faulk, V. Lo, A. Proskurowski, and M. Young.
Intensive international Summer Schools in Global
Distributed Software Development. In Frontiers in
Education Conference (FIE). 3-6 Oct. 2012. p. 1-6.

[#28]: Favela, J. and F. Pena-Mora. An experience in collaborative
software engineering education. IEEE Software, 2001.
18(2): p. 47-53.

[#29]: Feljan, J., I. Bosnić, M. Orlić, and M. Žagar. Distributed
Software Development course: Students' and teachers'
perspectives. In Collaborative Teaching of Globally
Distributed Software Development Workshop (CTGDSD). 9
June 2012. p. 16-20.

[#30]: Filipovikj, P., J. Feljan, and I. Crnković. Ten tips to succeed
in global software engineering education: What do the
students say? In 3rd International Workshop on
Collaborative Teaching of Globally Distributed Software
Development (CTGDSD). 25-25 May 2013. p. 20-24.

[#31]: Giraldo, F., S.F. Ochoa, L. Aballay, C. Clunie, A. Neyem,
and R. Anaya. Supporting Instructional Software
Engineering Activities Using CODILA: Some Latin
American Experiences, In Education and Educational
Technology 2012, Springer. p. 591-598.

[#32]: Giraldo, F.D. Applying a distributed CSCL activity for
teaching software architecture. In 2011 International
Conference on Information Society (i-Society). 27-29 June
2011. p. 208-214.

[#33]: Gloor, P., M. Paasivaara, C. Lassenius, D. Schoder, K.
Fischbach, and C. Miller. Teaching a global project course:
experiences and lessons learned, In Proceedings of the 2011
Community Building Workshop on Collaborative Teaching
of Globally Distributed Software Development 2011, ACM:
Waikiki, Honolulu, HI, USA. p. 1-5.

[#34]: Gotel, O., V. Kulkarni, M. Say, C. Scharff, and T.
Sunetnanta. A Global and Competition-Based Model for
Fostering Technical and Soft Skills in Software Engineering
Education. In 22nd Conference on Software Engineering
Education and Training (CSEET). 17-20 Feb. 2009. p. 271-
278.

[#35]: Gotel, O., V. Kulkarni, M. Say, C. Scharff, and T.
Sunetnanta. Quality Indicators on Global Software
Development Projects: Does "Getting to Know You" Really
Matter? In 4th IEEE International Conference on Global
Software Engineering (ICGSE’09). 13-16 July 2009. p. 3-7.

[36]: Gotel, O., V. Kulkarni, C. Scharff, and L. Neak. Students as
partners and students as mentors: an educational model for
quality assurance in global software development, In
Software Engineering Approaches for Offshore and
Outsourced Development 2009, Springer. p. 90-106.

[#37]: Gotel, O., C. Scharff, and V. Kulkarni. Mixing continents,
competences and roles: Five years of lessons for software
engineering education. IET Software, 2012. 6(3): p. 199-
213.

[#38]: Gotel, O., C. Scharff, and S. Seng. Preparing Computer
Science Students for Global Software Development. In 36th

Annual Frontiers in Education Conference. 27-31 Oct.
2006. p. 9-14.

[#39]: Honig, W.L. and T. Prasad. A classroom outsourcing
experience for software engineering learning. In ACM
SIGCSE Bulletin. 2007. ACM. p. 181-185.

[#40]: Inkeri Verkamo, A., J. Taina, Y. Bogoyavlenskiy, D. Korzun,
and T. Tuohiniemi. Distributed Cross-Cultural Student
Software Project: A Case Study. In 18th Conference on
Software Engineering Education & Training. 18-20 April
2005. p. 207-214.

[#41]: Junhua, D. A framework for global collaboration in teaching
software engineering. In 3rd International Workshop on
Collaborative Teaching of Globally Distributed Software
Development (CTGDSD). 25 May 2013. p. 30-34.

[#42]: Junhua, D. and Y. Biwu. Teaching software engineering with
Global Understanding. In Collaborative Teaching of
Globally Distributed Software Development Workshop
(CTGDSD). 9 June 2012. p. 11-15.

[#43]: Keenan, E. and A. Steele. Developing a pedagogical
infrastructure for teaching globally distributed software
development. In Proceedings of the 2011 Community
Building Workshop on Collaborative Teaching of Globally
Distributed Software Development. 2011, ACM. p. 6-10.

[#44]: Keenan, E., A. Steele, and X. Jia. Simulating Global
Software Development in a Course Environment. In 5th
IEEE International Conference on Global Software
Engineering (ICGSE). 2010, IEEE. p. 201-205.

[#45]: Lago, P., H. Muccini, and M.A. Babar. Developing a Course
on Designing Software in Globally Distributed Teams. In
IEEE International Conference on Global Software
Engineering (ICGSE’08). 17-20 Aug. 2008. p. 249-253.

[#46]: Lago, P., H. Muccini, and M.A. Babar. An empirical study of
learning by osmosis in global software engineering. Journal
of Software: Evolution and Process, 2012. 24(6): p. 693-706.

[#47]: Lago, P., H. Muccini, L. Beus-Dukic, I. Crnkovic, S.
Punnekkat, and H. Van Vliet. Towards a European Master
Programme on Global Software Engineering. In 20th
Conference on Software Engineering Education & Training
(CSEET '07). 3-5 July 2007. p. 184-194.

[#48]: Last, M.Z. Understanding the group development process in
global software teams. In 33rd Annual Frontiers in
Education (FIE). 5-8 Nov. 2003. p. S1F-20-5 vol.3.

[#49]: Lescher, C., L. Yang, and B. Bruegge. Teaching Global
Software Engineering: Interactive Exercises for the
Classroom. In IEEE 9th International Conference on Global
Software Engineering (ICGSE’14). 18-21 Aug. 2014. p. 163-
172.

[#50]: Long, J. Outsourcing in Next Generation Software
Engineering Technology Education. In American Society for
Engineering Education. 2010. American Society for
Engineering Education.

[#51]: Mäkiö, J. and S. Betz. On educating globally distributed
software development—A case study. In 24th International
Symposium on Computer and Information Sciences (ISCIS).
2009. IEEE. p. 480-485.

[#52]: Matthes, F. Teaching Global Software Engineering and
International Project Management-Experiences and Lessons
Learned from Four Academic Projects. In CSEDU (2). 2011.
p. 5-15.

[#53]: McDermott, R., J. Bass, and J. Lalchandani. The learner
experience of student-led international group project work in
software engineering. In IEEE Frontiers in Education
Conference (FIE). 22-25 Oct. 2014. p. 1-8.

[#54]: Monasor, M.J., A. Vizcaino, and M. Piattini. VENTURE:
Towards a framework for simulating GSD in educational
environments. In 5th International Conference on Research
Challenges in Information Science (RCIS). 19-21 May 2011.
p. 1-10.

[#55]: Monasor, M.J., A. Vizcaíno, and M. Piattini. A tool for
training students and engineers in global software
development practices, In Collaboration and Technology
2010, Springer. p. 169-184.

[#56]: Monasor, M.J., A. Vizcaíno, and M. Piattini. Providing
training in GSD by using a virtual environment, In Product-
Focused Software Process Improvement (Profes) 2012,
Springer. p. 203-217.

[#57]: Monasor, M.J., A. Vizcaíno, M. Piattini, J. Noll, and S.
Beecham. Assessment process for a simulation-based
training environment in global software development. In
Proceedings of the 2014 conference on Innovation &
Technology in Computer Science Education (ITiCSE). 2014,
ACM. p. 231-236.

[#58]: Neto, C.R.L. and E.S. De Almeida. Five years of lessons
learned from the software engineering course: adapting best
practices for distributed software development. In
Proceedings of the Second International Workshop on
Collaborative Teaching of Globally Distributed Software
Development. 2012, IEEE Press. p. 6-10.

[#59]: Noll, J., A. Butterfield, K. Farrell, T. Mason, M. McGuire,
and R. McKinley. GSD Sim: A Global Software
Development Game. In IEEE International Conference on
Global Software Engineering Workshops (ICGSEW). 18
Aug. 2014. p. 15-20.

[#60]: Nordio, M., H.C. Estler, B. Meyer, N. Aguirre, R.
Prikladnicki, E. di Nitto, and A. Savidis. An experiment on
teaching coordination in a globally distributed software
engineering class. In IEEE 27th Conference on Software
Engineering Education and Training (CSEE&T). 23-25
April 2014. p. 109-118.

[#61]: Nordio, M., H.C. Estler, B. Meyer, J. Tschannen, C. Ghezzi,
and E. di Nitto. How Do Distribution and Time Zones Affect
Software Development? A Case Study on Communication. In
6th IEEE International Conference on Global Software
Engineering (ICGSE’11). 15-18 Aug. 2011. p. 176-184.

[#62]: Nordio, M. Teaching software engineering using globally
distributed projects: the DOSE course. In Proceedings of the
2011 Community Building Workshop on Collaborative
Teaching of Globally Distributed Software Development.
2011, ACM. p. 36-40.

[#63]: Nordio, M., R. Mitin, and B. Meyer. Advanced hands-on
training for distributed and outsourced software
engineering. In ACM/IEEE 32nd International Conference
on Software Engineering (ICSE). 2-8 May 2010. p. 555-558.

[#64]: Paasivaara, M., C. Lassenius, D. Damian, P. Raty, and A.
Schroter. Teaching students global software engineering
skills using distributed Scrum. In 35th International
Conference on Software Engineering (ICSE). 18-26 May
2013. p. 1128-1137.

[#65]: Peña-Mora, F., R. Struminger, J. Favela, and R. Losey.
Supporting a Project-Based, Collaborative, Distance

Learning Lab. In Computing in Civil and Building
Engineering. 2000. ASCE. p. 170-176.

[#66]: Petkovic, D., G.D. Thompson, and R. Todtenhoefer.
Assessment and comparison of local and global SW
engineering practices in a classroom setting. ACM SIGCSE
Bulletin, 2008. 40(3): p. 78-82.

[#67]: Petkovic, D., R. Todtenhoefer, and G. Thompson. Teaching
Practical Software Engineering and Global Software
Engineering: Case Study and Recommendations. In 36th
Annual Frontiers in Education Conference. 27-31 Oct. 2006.
p. 19-24.

[#68]: Richardson, I., A.E. Milewski, N. Mullick, and P. Keil.
Distributed development: an education perspective on the
global studio project. In Proceedings of the 28th
international conference on software engineering. 2006,
ACM. p. 679-684.

[#69]: Richardson, I., S. Moore, D. Paulish, V. Casey, and D. Zage.
Globalizing Software Development in the Local Classroom.
In 20th Conference on Software Engineering Education &
Training, CSEET '07. 3-5 July 2007. p. 64-71.

[#70]: Romero, M., A. Vizcaino, and M. Piattini. Teaching
Requirements Elicitation within the Context of Global
Software Development. In Mexican International Conference
on Computer Science (ENC). 21-25 Sept. 2009. p. 232-239.

[#71]: Romero, M., A. Vizcaíno, and M. Piattini. Developing the
Skills Needed for Requirement Elicitation in Global Software
Development. In ICEIS (1). 2008. p. 393-396.

[#72]: Serce, F.C., F.N. Alpaslan, K. Swigger, R. Brazile, G.
Dafoulas, and V. Lopez. Strategies and guidelines for
building effective distributed learning teams in higher
education. In 9th International Conference on Information
Technology Based Higher Education and Training (ITHET).
April 29 -May 1 2010. p. 247-253.

[#73]: Shata, O. A Crash Undergraduate Course in Global Software
Engineering. In 12th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD). 6-8 July 2011.
p. 213-218.

[#74]: Stroulia, E., K. Bauer, M. Craig, K. Reid, and G. Wilson.
Teaching distributed software engineering with UCOSP: the
undergraduate capstone open-source project. In
Proceedings of the 2011 community building workshop on
Collaborative teaching of globally distributed software
development. 2011, ACM. p. 20-25.

[#75]: Swigger, K., R. Brazile, B. Harrington, S. Peng, and F.
Alpaslan. A case study of student software teams using
computer-supported software. In Proceedings of the 2005
International Symposium on Collaborative Technologies and
Systems. 20 May 2005. p. 167-173.

[#76]: Swigger, K., R. Brazile, B. Harrington, P. Xiaobo, and F.
Alpaslan. Teaching Students How to Work in Global
Software Development Environments. In International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom. 17-20
Nov. 2006. p. 1-7.

[#77]: Swigger, K., R. Brazile, F.C. Serce, G. Dafoulas, F.N.
Alpaslan, and V. Lopez. The Challenges of Teaching
Students How to Work in Global Software Teams. In IEEE
Transforming Engineering Education: Creating
Interdisciplinary Skills for Complex Global Environments. 6-
9 April 2010. p. 1-30.

[#78]: Swigger, K., M. Hoyt, F.C. Serçe, V. Lopez, and F.N.
Alpaslan. The temporal communication behaviors of global
software development student teams. Computers in Human
Behavior, 2012. 28(2): p. 384-392.

[#79]: Swigger, K., F.C. Serce, F.N. Alpaslan, R. Brazile, G.
Dafoulas, and V. Lopez. A Comparison of Team
Performance Measures for Global Software Development
Student Teams. In 4th IEEE International Conference on
Global Software Engineering (ICGSE’09). 13-16 July 2009.
p. 267-274.

[#80]: Swigger, K., F.C. Serce, G. Dafoulas, F.N. Alpaslan, and V.
Lopez. When do distributed student teams work? In

International Conference on Information Technology Based
Higher Education and Training (ITHET). 2012. 21-23 June
2012. p. 1-8.

[#81]: Van Solingen, R., K. Dullemond, and B. van Gameren.
Evaluating the Effectiveness of Board Game Usage to Teach
GSE Dynamics. In 6th IEEE International Conference on
Global Software Engineering (ICGSE’11). 15-18 Aug. 2011.
p. 166-175.

[#82]: Woit, D. and K. Bell. Student communication challenges in
distributed software engineering environments. In ACM
SIGCSE Bulletin. 2005. ACM. p. 286-290.

Appendix B: Valentine’s Taxonomy of Study Types [63] :

In this paper Valentine proposes a six-fold taxonomy to classify the type of articles found in CS Education Research where the usual
requirements of an explicit research question, conveyed in a series of hypotheses, tested with a variety of experimental and control groups, with
a strict statistical analysis of results are relaxed. Valentine suggests that we do not need such a strictly quantified, statistical model to prove
significant educational results. As a result, the set “as inclusive (and yet reasonable) a bar as possible for this category” and settled on a very
simple rubric:

“Experimental”: Studies fall into this category if the author makes
any attempt at assessing the “treatment” with some scientific
analysis. A minimal example would be a study that shows that after
a new Breadth-First CS1 course, the number of CS majors earning a
‘C’ or better in CS2 doubles. A study at the other end of the
category would do a complete statistical analysis. A study of 500
introductory students at two institutions to show the impact of math
background and prior programming to success in CS1 that uses
strict statistical methodology would be an example of this end of the
category. Another, less quantitative example (because not all
knowledge is quantifiable) would be a study that, through a series of
interviews, develops an ethnography of how students develop their
own (often faulty) cognitive rules about parameter passing. Another
qualitative example would be a philosophical discussion of
pedagogy that does a review of existing research literature. Please
note that this is a preemptive category, so if a presentation fits here
and somewhere else (e.g. a quantified assessment of some new
Tool), it would be placed here.

“Marco Polo”: A “Marco Polo” study basically says “I went there
and I saw this.” SIGCSE veterans recognize this as a staple at the
Symposium. Colleagues describe how their institution has tried a
new curriculum, adopted a new language or put up a new course.
The reasoning is defined, the component parts are explained, and
then (and this is the giveaway for this category) a conclusion is
drawn like “Overall, I believe the [topic] has been a big success.” or
“Students seemed to really enjoy the new [topic]”. Now, Marco
Polo presentations serve an important function: we are a community
of educators and sharing our successes (and failures) enriches the
whole community.

“Philosophy”: This type of study occurs when the author has made
an attempt to generate debate of an issue, on philosophical grounds,
among the broader community. An example here would be a panel
discussion on a topic such as “Integrating Empirical Methods into
CS” which is designed to promote discussion within the traditional
computer science community. Or it could include an article that
tries to stimulate the core language debate along philosophical and
educational lines.

“Tools”: Among many other things, colleagues have developed
software to animate algorithms, to help grade student programs, to
teach recursion, and to provide introductory development platforms.
This category encompasses papers that discuss such tools and their
use. For example, a study might explain a tool that allows novice
programmers to use pictograms rather than syntax to create
programs or a tool that graphically represents linked data structures
for students. Not all tools are software; an author could present a
paradigm or an organizing rubric to be a tool for an entire course. A
visual design tree and data flow diagram, for example, could be
used as an effective teaching tool for CS1.

“Nifty”: This, the most whimsical category, is taken from the
panels of the same name offered at conferences. Nifty assignments,
projects, puzzles, games and paradigms are the bubbles in the
champagne of SIGCSE. Most of us seem to appreciate innovative,
interesting ways to teach students our abstract concepts. Sometimes
the difference between Nifty and Tools is fuzzy, but generally a
Tool would be used over the course of a semester, and a Nifty
assignment was more limited in duration.

“John Henry”: Every now and then a colleague will describe a
course that seems so outrageously difficult that one suspects it is
telling us more about the author than it is about the pedagogy of the
class. For example, it is possible to teach CS1 as a predicate logic
course in IBM 360 assembler – but why would you want to do that?
Yes, every once in a while somebody can beat the steam engine, but
most of us try to avoid that situation. John Henry’s can, however,
provide valuable insight into the limits of CS pedagogy.

Note: this appendix is extracted largely verbatim from Valentine
[63].

Appendix C: Search Terms and Strings
Search terms were derived from the research questions by
identifying the population, intervention and outcome and then
identifying alternative spellings and synonyms for the terms. The
Boolean OR was used to incorporate alternative spellings and
synonyms and the Boolean AND was used to link the major terms
from population, intervention and outcome.
The same search string was used for the IEEEXplore database and
the Scopus database. For the ACM Digital Library the search
string was modified to account for syntactical differences in the
query language. Table C1 gives an example of a nested Search
String as used in the IEEEXplore database. The look-up table can
be used to check the precise terms used and years included for
each recorded paper. We stored as much information as possible
about each paper in our Summary Spreadsheet and accompanying
Endnote file. This search yielded 545 papers.
Table C1: IEEEXplore SEARCH TERMS LOOKUP TABLE
– 14 June 2015

Date Search string

Used Command search and refined
by

Content Type: Conference
Publications Journals & Magazines

Year: 2000-2015

Comments

IEEEXplore had a
limit to number of
terms I could use

14
June
2015

((((software OR "information
technology" OR "information
system*" OR comput* OR
programming) AND (student OR
trainee OR learner)) AND
("distributed software" OR
"global software”) AND (educat*
OR train* OR course)))

Inclusive search:

Applies to both
RQ1 AND RQ2 –
did not limit the
papers by
including
BOOLEAN
‘AND’ for
challenges (RQ1)
and
recommendations
(RQ2).

The look-up table in Table C2 shows the search strings used for
the ACM digital library. In the ACM digital library abstracts and
titles had to be searched separately. The abstract search yielded 41
papers and the title search yielded 16 papers.

Table C2: ACM digital library SEARCH TERMS LOOKUP
TABLE – 16 June 2015

Date Search string

Used the query box provided in the
Advanced Search option

Comments

Due to the
constraints of the
advanced search
option, two queries
were performed,
one to search
abstracts and one
to search titles.

16
June
2015

(Abstract:software or
Abstract:programming or
Abstract:comput or
Abstract:"information
technology or information
system") and (Abstract:student
or Abstract:learner or
Abstract:trainee) and
(Abstract:"distributed software"
or Abstract:"global software")
and (Abstract:educat or
Abstract:train or
Abstract:course)

Inclusive Abstract
search:

Applies to both
RQ1 AND RQ2 –
did not limit the
papers by
including
BOOLEAN
‘AND’ for
challenges (RQ1)
and
recommendations
(RQ2).

16
June
2015

(Title:software or
Title:"information technology"
or Title:"information system" or
Title:comput* or
Title:programming) and
(Title:student or Title:trainee or
Title:learner) and
(Title:"distributed software" or
Title:"global software")

Inclusive Title
search:

Applies to both
RQ1 AND RQ2 –
did not limit the
papers by
including
BOOLEAN
‘AND’ for
challenges (RQ1)
and
recommendations
(RQ2). Did not
include the
restrictions that
“educat*”, “train”
or “course” had to
be in the title.

Appendix D: First Categorisation Exercise (30 papers)
Table D1: First Categorisation Exercise (30 papers)

No. Minor Categories Type categories

1
failure to support educational
objective Client

2 barriers to synchronous communication

3
conflict resolution time grows
with no of instructors do communication

4 language related communication

5
negotiation & accountability to
other team members communication

6 Additional time commitment communication

7 awareness communication

8 synchronization communication
9 overhead due to global distance communication

10
lack of face to face and non-verbal
interactions communication

11 infrastructure level conflict management

12 infrastructure/institutional level conflict management

13 student level conflict management

14 early/timely conflict detection conflict management

15 communication style cultural differences

16 impact on communication cultural differences

17 impact on motivation cultural differences

18 institutional cultural differences

19 in student behaviour and norms cultural differences

20 motivational aspects cultural differences

21 students cultural differences

22 course design incompatibilities curriculum

23 delivery techniques curriculum

24 content planning curriculum

25
different skills & education
because of curricular timing curriculum

26 emerging discipline curriculum
27 authentic experience curriculum

28 GSE-Ed immaturity curriculum

29 soft skills curriculum

30 module interfaces development process

31 requirements elicitation development process

32 mentor the students development process

33 code comprehension development process

34 software testing development process
35 software design development process

36 software integration development process

37 Nearshore
Geographical
distance

38
gsd course mgt/scheduling support
tools infrastructure

39
gsd team/project admin support
tools infrastructure

40 gsd communication support tools infrastructure

41
config/rationale mgt/version
control infrastructure

42 tool framework infrastructure

43
environments/technology
platforms infrastructure

44 technical problems infrastructure

45 technical support provision infrastructure

46 tool mismatch infrastructure

47 gsd tailored tools infrastructure

48 gsd knowledge mgt tools infrastructure

49 tool standardization infrastructure

50 tool preference conflicts infrastructure

51 technical problems infrastructure

52 lingua franca as a second language language differences

53 Performance language differences

54 power distance language differences

55 identical terms different meaning language differences

56 performance outcomes motivation

57 student commitment impacts motivation

58 imagination stimulation motivation

59 cultural norms motivation/focus

60 learning versus grade driven? motivation/focus

61
student maturity/willingness to
engage. motivation/focus

62 need for adaptability
management:
instructor

63 Workload
management:
instructor

64 class management
management:
instructor

65
workload balancing immediate vs.
management oversight

management:
instructor

66 logistical/administration issues
management:
instructor

67
student frustration because of lack
of predictability management: student

68 time management management: student

69 project management management: student

70 Workload management: student

71 collaboration patterns orchestration

Table D1 (Continued): First Categorisation Exercise (30
papers)

72
combination people, processes and
tools orchestration

73 need for adaptability organization

74 allocation to teams organization

75 governance organization

76 theoretical framework organization

77 institution: standards organization

78 resource coordination organization

79 project selection organization

80 sustained funding organization

81 institution: regulation organization

82 institution: scheduling organization
83 student organization

84 legal constraints organization

85 synchronization organization

86 assessment pedagogy

87 simulation strategy pedagogy

88 coaching pedagogy

89 need for adaptability pedagogy

90 retaining focus on learning pedagogy
91 GSE-Ed immaturity pedagogy

92 Scaffolding pedagogy

93 team leadership performance teamwork

94 thinking beyond those you see teamwork
95 lack of shared vision teamwork

96 roles and responsibilities teamwork

97 time zone differences time

98 Synchronization time

99 Culture time

100 [event (predictable), cyclical] time

101 a small number of tasks performed time

102 Delay time

103 risk management by students trust

104 [no sub-category] trust

105 negative group cohesion impacts trust

106 negative task assignments trust

107 performance based trust

108 team building trust

109 unfair treatment/preferential treatment trust

110 expertise imbalances trust

Appendix E: 7 Key Themes Defined
Table E1: 7 Key Themes Defined

ID Major
Classification

Minor
Classification Minor String Definition

GSE-
ED_1 Stakeholder/Role General Any group involved in the delivery of

the GSD course
Includes: Student; Tutor; Client; University
Management.

GSE-
ED_1.1 Stakeholder/Role Client Client; Proxy Client; Product Owner;

External client.
Stakeholder in development process who
provided the requirements.

GSE-
ED_1.2 Stakeholder/Role Instructor Instructor; Tutor; project manager,

supervisor

Tutor role in GSE-Ed, e.g. Instructors should
assist in architectural design and partitioning for
independent development of modules.

GSE-
ED_1.3 Stakeholder/Role Student Student; trainee; learner; student role

in the process
Student role (e.g. becoming team leader).
Student skills. Student visibility

GSE-
ED_1.4 Stakeholder/Role University

representative
University Managers; course leaders;
departments.

Funding; buy-in; resource allocation (e.g.
classrooms, new tools, servers)

GSE-
ED_1.5 Stakeholder/Role role conflict Conflicting Roles; need for multi-role;

role confusion
Teaching needs merged with motivation to do
research (different goals?)

GSE-
ED_2 Global Distance Increased

complexity

General differences between groups
operating in the same team as viewed
in terms of (Cultural; Temporal;
Linguistic; Geographic;
Organisational, Institutional,
Managerial, Student Skill) - Scaling
(in communication), levels of
communication

Often manifested as increased complexity,
communication overhead, and process scaling
(to address complexity), lack of informal
communication

GSE-
ED_2.1 Global Distance Cultural Cultural

Communication styles, cultural norms. Ethnic
and Religious differences, treatment of gender;
culture associated with different institutions or
organisations, ethics come under this banner

GSE-
ED_2.2 Global Distance Temporal Temporal (e.g. synchronisation) or

Time related, e.g. delays

Synchronous or synchronous forms of
communication, any reference made to time in a
GSD context, including time pressure.

GSE-
ED_2.3 Global Distance Linguistic Language related Teams may need to communicate in their second

language.

GSE-
ED_2.4 Global Distance General Geographic Impact geographic distance has on

communication

GSE-
ED_2.5 Global Distance Organisational Organisational/institutional/managerial

This focusses on 'Management' and
Synchronisation. This includes distance caused
by any mismatch across universities in they way
they operate. e.g. term/semester length, course
content; Goals mismatch (e.g. commitment
levels may vary as a result); Conflict detection;
conflict resolution, conflict management,
governance. includes open source community
differences

GSE-
ED_2.6 Global Distance Skills Student Skills

Different Skills taught at different universities,
different abilities, different course focus,
different length of course, immersive.

Table E1: 7 Key Themes Defined (Cont’d)

ID Major Classif. Minor Classif Minor String Definition

GSE-
ED_3

Teamwork/
team creation

General Negotiation and accountability to
other team members

How team spirit is generated across universities
and countries; responsibilities; roles.
Skills match

GSE-
ED_3.1

Teamwork/team
creation synergy

Pulling together, respect, synergy,
support, knowledge sharing,
tolerance, integration, collaboration;
accountability

Understanding strengths and weaknesses, taking
personal responsibility for own part in team;
shared vision

GSE-
ED_3.2

Teamwork/team
creation task allocation

Creating a balanced team, project
management, project selection,
decision making, task allocation,
coordination

Matching skills at the outset at project kick-off.
Allocating tasks across the SDLC

GSE-
ED_4

Curriculum/ped
agogy General

Course design; delivery techniques;
content planning; skill levels of
student; emergent discipline; GSD
maturity; soft skills training, course
content.

Course objectives, grading and assessment
schemes; course feedback; learning outcomes,
rewards for certain behaviour

GSE-
ED_4.1

Curriculum/ped
agogy Course design

Course design, planning, grading,
moderation, assessment, course
delivery capabilities and techniques

Course design compatibilties

GSE-
ED_4.2

Curriculum/ped
agogy

Learning
Outcomes

Learning outcomes. Value added,
skills enhancement.

Retain focus on learning; need for adaptability,
tap into prior learning

GSE-
ED_5

Development
Process General

Development architecture (module
interfaces); requirements engineering;
interfaces; testing; handovers, coding;
build, implementation. Scaling.

Any activity across the software development
lifecycle; and, type of process used (e.g.
agile/plan driven).

GSE-
ED_5.1

Development
Process Requirements SDLC: Requirements engineering Requirements elicitation; negotiation, validation,

management.

GSE-
ED_5.2

Development
Process

Software
Development
Process

Plan drive/ Agile/ Scrum, etc.

GSE-
ED_5.3

Development
Process

System/code
integration Implementation/integration

GSE-
ED_5.4

Development
Process Design SDLC: Architecture/Design

Students lack experience to partition a software
architecture appropriately to allow independent
modules.

GSE-
ED_5.5

Development
Process Testing

GSE-
ED_5.6

Development
Process Coding

GSE-
ED_6 Infrastructure General Anything relating to the external

development environment

Development tools, platforms, technical
environment; www, repositories, security,
programming languages

GSE-
ED_6.1 Infrastructure Tools Tools tool support, including type of programming

language used, communication tools, wikis
GSE-
ED_6.2 Infrastructure Technical

issues Technical/platforms The development environment

GSE-
ED_6.3 Infrastructure Version

Control Version Control SVN, GIT hub, etc

GSE-
ED_7

People/soft
Issues General Non-technical or organisation issues

concerning people management
Funding; buy-in; resource allocation (e.g.
classrooms, new tools, servers)

GSE-
ED_7.1

People/soft
Issues Motivation Motivation

Personalities, individual focus/needs/drive/
enthusiasm, equity (equal treatment across
teams), motivation in different cultures

GSE-
ED_7.2

People/soft
Issues Trust Trust

Willingness to share problems and share
experience and knowledge and work.
Assumptions, pre-conceptions, tolerance of
diversity

GSE-
ED_7.3

People/soft
Issues Stress Stress and Pressure

Appendix F: Data Extraction Form (Phase 1 and 2)
FIELDS TO COMPLETE (PHASE 1) Your Response Comments

Paper ID: Use identifier from master /accepted papers list e.g. IEEE_1 or
ACM_1 etc.

Paper Title First few words will suffice

Researcher Name Your name

Date researcher analysed this paper: When you completed this form

EXCLUSION/INCLUSION CRITERIA

Excl Criteria (a): Is study external to global software
engineering? only interested in GSE/GSD as the focus

Excl Criteria (b): Is study external to teaching and learning? needs also to be focussed on education

Excl Criteria (c): Is study based on personal
opinion/viewpoint?

needs a level of rigour so we can trust the results (even from an
expect) - anything without a good theoretical foundation or
based on evidence/empirical study we reject

Excl Criteria (d): Is this a repeated study? include key study only (most comprehensive), repeating results
when author publishes in several venues will bias our results

Incl Criteria (a): RQ Answered? State which RQ is addressed in this study (can be both)

Inclusion Criteria (b): Acceptable source?

Exclude: Books, Book chapters; PhD theses, Tech reports, non-
peer reviewed sources, posters, proceeding front matters/sets or
short papers (<=two pages). Incl conference/workshop
proceedings and journal papers.

DECISION

Decision Status: {Accept/Reject/Waiting for Full paper/Don't
Know}

"Don't know" decisions will go to arbitration. Please use exact
wording, as papers will be classified according to how you code
this field.

Decision Based on: {Abstract/ Intro/ Conclusion/
Method/Whole Paper/ Peer Review/ Arbitration} at what point did you make your decision

CONTEXT OF STUDY

Course / subject taught : (one per row – add more if needed)

Applies to theoretical & empirical studies; e.g. a course on
cultural awareness in GSD can be an e-learning training tool or
an in-class course.

ADD more rows if you need to – one per subject taught

Population: {HE student/ practitioner/ other} ADD more rows if you need to - one per type

Type of study: Valentine’s taxonomy Indicate type: Marco Polo, Tools, Experimental, Nifty,
Philosophy, John Henry (Only one type)

For empirical studies add:

Geographical area : (one country per row, add more if needed)
list countries involved in study (i.e. sites used)

One row per country (ADD more rows if needed)

Number of sites used : give number - if not known state' not given' : use numbers not
text. e.g. 2, (not two).

Appendix F continued.
Data extraction form Phase 2.

PHASE 2: Qualitative Data Extraction. Please complete following ONLY if paper is accepted- i.e. has passed all criteria in Phase 1 above

QUALITATIVE DATA EXTRACTION Challenge/Solution

Major
Category
(based on

themes
spreadsheet

or other
inductively

derived
categories

that emerge)

Minor
Category
(based on

themes
spreadsheet

or other
inductively

derived
categories

that
emerge)

Comment
PLEASE NOTE: Your lists of how study answers our
RQs will go into our 'Data Synthesis' stage - where
we aggregate all our findings across ALL our
accepted papers. So please do not interpret what the
authors have found, and try to keep your description
very short (one or two sentences per
challenge/practice at most)

Challenge in Teaching GSD (RQ1)

RQ1: What are the key challenges in delivering GSE
courses to SE Students?
List as many as you find (create additional rows if
needed - one row per challenge)

Challenge in Teaching GSD (RQ1) Add more rows if needed; use exact text from
column A in new column A.

Recommendation for Teaching GSD
(RQ2)

RQ2: What are the key recommendations for
delivering GSE courses to SE Students?
List as many as you find (create additional rows if
needed - one row per recommendation)

Recommendation for Teaching GSD
(RQ2)

Add more rows if needed; use exact text from
column A in new column A.

Methodology (if experiment)(Action Research, Field Study,
Descriptive Case Study, Experience Report)

Describe the method used in the study (if
appropriate)

Method/Analytical technique (if experiment)
{Questionnaire/survey; Face to face interviews; Observation;
Focus Groups, prototyping}

Describe the method used in the study (if
appropriate)

Quality of execution (if experimental in line)

Goal of paper (optional) What was the overall goal of the study?

Emerging Theme (optional) List any themes in terms of GSD challenges or
recommendations

ADDITIONAL DATA/FOLLOW UP

Other observations or useful quotes found in paper Record useful text here / exact quotes we can use in
our report

Other observations or useful quotes found in paper

References found in paper/snowballing (to follow up) Can pre-date year 2000

References found in paper/snowballing (to follow up)

	coversheetConferences
	CLEAR 2015 Challenges and Recommendations for the Design

	OA: GREEN
	OA Logo:
	AUTHORS: CLEAR, T., BEECHAM, S., BARR, J., DANIELS, M., MCDERMOTT, R., OUDSHOORN, M., SAVICKAITE, A. and NOLL, J.
	TITLE: Challenges and recommendations for the design and conduct of global software engineering courses: a systematic review.
	YEAR: 2015
	Publisher citation: CLEAR, T., BEECHAM, S., BARR, J., DANIELS, M., MCDERMOTT, R., OUDSHOORN, M., SAVICKAITE, A. and NOLL, J. 2015. Challenges and recommendations for the design and conduct of global software engineering courses: a systematic review. In Proceedings of the Innovation and technology in computer science education on working group reports (ITiCSE-WGR '15), 4 - 8 July 2015, Vilnius, Lithuania. New York: ACM [online], pages 1-39. Available from: https://doi.org/10.1145/2858796.2858797.
	OpenAIR citation: CLEAR, T., BEECHAM, S., BARR, J., DANIELS, M., MCDERMOTT, R., OUDSHOORN, M., SAVICKAITE, A. and NOLL, J. 2015. Challenges and recommendations for the design and conduct of global software engineering courses: a systematic review. In Proceedings of the Innovation and technology in computer science education on working group reports (ITiCSE-WGR '15), 4 - 8 July 2015, Vilnius, Lithuania. New York: ACM, pages 1-39. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Conference: Innovation and technology in computer science education on working group reports (ITiCSE-WGR '15), 4 - 8 July 2015, Vilnius, Lithuania.
	ISBN: 9781450341462
	eISBN:
	ISSN:
	Set statement: © McDermott | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ITiCSE-WGR '15, http://dx.doi.org/10.1145/2858796.2858797.
	License: BY-NC 4.0
	License URL: https://creativecommons.org/licenses/by-nc/4.0
	CC Logo:
		2017-04-07T15:01:26+0100
	OpenAIR at RGU

