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EFFECT OF EMISSIVITY ON THE HEAT AND MASS
TRANSFER OF HUMID AIR IN A CAVITY FILLED
WITH SOLID OBSTACLES

Draco Iyi, Reaz Hasan, and Roger Penlington
5Faculty of Engineering and Environment, Department of Mechanical and

Construction Engineering, Northumbria University, Newcastle
Upon Tyne, UK

The work reported here is a 2D numerical study on the buoyancy-driven low-speed turbulent

flow of humid air inside a rectangular cavity partially filled with solid cylindrical objects for
10a Rayleigh number of 1.45� 109. Variations of Nusselt number, buoyancy flux, vapor mass

fraction, and turbulence viscosity ratio are presented for various emissivity values of wall

surfaces. It was observed that during the natural convection process, radiation effects are

very significant and the air/water vapor combination results in a small increase in heat

transfer as compared with the pure natural convection of dry air.

151. INTRODUCTION

Buoyancy-driven flow inside cavities has been the subject of extensive research
for the last two decades due to the growing demand for detailed quantitative
knowledge of the transfer processes and also due to its relevance in many practical
applications [1, 2]. The basic setup for such flows, which has also attracted most

20attention from researchers, is a rectangular cavity filled with dry air whose opposing
vertical walls are heated differentially [3, 4]. Detailed data on flow, turbulence, and
heat transfer have been collected through various experiments [5–7]. Following
this, numerical researchers have also been quick to respond to the experimental
literature by conducting validation and exploratory studies on this very topic [8].

25The interest seems to be ongoing because more challenging situations are emerging
with time [7, 9].

In the case of a rectangular cavity of height H, the natural convection heat
transfer from hot to cold walls is characterized by the formation of a slowly moving
vortex. This vortical motion is often interpreted as an ‘‘engine’’ which transfers heat

30from the heated surface (source) to the cold surface (sink). The intensity of the flow is
conveniently expressed by the Rayleigh number, Ra¼ gbDTH3=(av), where b is the
coefficient of thermal expansion and DT is the temperature difference between
the vertical walls. Depending on the Rayleigh number, the flow can be treated as
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turbulent or laminar. Rayleigh numbers lower than 108 indicate a buoyancy-induced
35laminar flow, with transition to turbulence occurring over the range of 108<Ra<

1010 [10, 11].
In the last decade or so, the trend in buoyancy-driven flow research has

shifted to the examination of cavity flow coupled with heat and mass transfer
[2, 12]. The majority of studies in this category are concentrated on steady-state

40laminar flow of Rayleigh numbers over the range 104–106 [13] investigating the
flow induced by temperature and mass concentration gradient. A single-phase
modeling approach for the transport of fluid mixture for laminar flows was used.
On the other hand, numerical works carried out by Teodosiu et al. [14] and Close
and Sheridan [15] assumed a two-phase laminar flow for the transport of fluid

45mixture, which highlights the influence of concentration gradient upon the develop-
ment of the flow.

A more recent shift in the study of buoyancy-driven cavity flow is to examine
the simultaneous heat and mass transfer in enclosures containing solid obstacles.
This interest has grown due to its relevance to practical flows such as comfort in

50indoor environments [8], design of double skin facades [16], the drying=cooling of
agricultural products [1], cold storage, and other engineering applications [17].
Unlike porous media, these obstacles are not in contact with each other but are close
enough to influence the transfer processes significantly. Typical examples of studies
in this category are the works by Das and Reddy [18], Desrayaud and Lauriat [13],

55and Yoon et al. [19], all of which are limited to steady-state two-dimensional laminar
natural convection flow of Rayleigh number ranging from 105 to 108. Das and
Reddy [18] and Yoon et al. [19] have reported on fluid flow and heat transfer in a
differentially heated rectangular cavity containing just one disconnected solid pro-
duct, and Bragas and de Lemos [20, 21] and Hooman and Merrikh [22] investigated

60cavities filled with several obstacles. Findings from these research works show that
when a limited number of solid products are involved, fluid flow is predominantly
confined between the vertical walls and the first column of the objects. Further, an

NOMENCLATURE

A heat transfer area (m2)

B buoyancy flux (m2=s3)

Deff effective diffusion coefficient (m2=s)

g gravitational acceleration (m=s2)

Gr Grashof number, (¼gbDTL3=n2)

H height of the cavity (m)

k thermal conductivity (W=m K)

L width of the cavity (m)

m mass fraction of vapor to dry air

M molecular weight of vapor

N buoyancy number

Nu local Nusselt number

P pressure (Pa)

Pr Prandtl number

Ra Rayleigh number (¼gbDTH3=ma)

T temperature (K, �C)

~vv velocity vector (m=s)

Vy vertical velocity component (m=s)

x species concentration

x, y coordinates in x- and y-directions

yþ nondimensional wall distance

a absorption coefficient (¼k=qcp)

b thermal expansion coefficient (1=K)

d wall proximity (m)

DT temperature difference

r Stefan–Boltzmann constant

(5.672� 10�8 W=m2 K4)

q density (kg=m3)

m dynamic viscosity (kg=ms)

e turbulent dissipation rate (m2=s3)

e emissivity

W stream function (kg=s)

2 D. IYI ET AL.



increase in the number of solid products results in greater fluid flow in some areas,
especially close to the product surfaces.

65Another important characteristic of this kind of flow is the importance of
radiation between surfaces. It is known [23] that the effect of radiation is fairly
significant and comparable to convective heat transfer even for moderately low tem-
perature differences in naturally ventilated spaces. In this context, surface emissivity
plays a very important role in establishing total heat transfer. Laguerre et al. [17]

70reported on a study for a Rayleigh number of 1.45� 109. The numerical calculations
were based on the assumption that the flow is laminar, but in reality this Ra may be
considered to be in transition to the turbulent regime. The effect of radiation
between the walls and the solid objects has been given special attention and the find-
ings highlight this contribution. However, the study considered only one value of

75emissivity for the prediction of the experimental data.
The aims of the present numerical study are to explore the detailed flow field

for humid air in a rectangular cavity with solid obstacles, which was also the test case
for Laguerre et al. [17]. Of particular interest in our study is analysis of the influence
of the surface emissivity of the cavity walls and of the solid obstacles in an effort to

80quantify radiation influences. Also, we have scrutinized the flow by considering it
to be turbulent. Finally, the effect of humidity was also studied in detail with a view
to quantifying the exact contributions due to concentration gradient.

2. FLOW PROBLEM

The geometrical configuration used in this investigation is similar to the cavity
85used in the experimental study conducted by Laguerre et al. [17]. As shown in

Figure 1, this is a two-dimensional rectangular cavity with an aspect ratio of 2:1
(H=L) and contains obstacles which occupy about 15% of the total cavity volume.

Figure 1. Geometry and the coordinates (dimensions are in mm).
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The temperatures of the vertical walls were maintained at 1.2�C and 21�C (i.e.,
DT¼ 19.8�C). The authors have provided data for temperature profiles along

90the mid-height (y=H¼ 0.5) and at x¼ 66 mm near the cold wall of the cavity.
Vertical velocity (Vy) and relative humidity profiles measured at the mid-height
and mid-width (x=L¼ 0.5) of the cavity were also reported. In the experimental
setup, humidity was maintained by placing a shallow pan of water (13.7�C) at
the bottom surface which was heated electrically. The temperatures of all the walls

95along with other relevant properties were all available in the article.

3. NUMERICAL METHOD

Calculations were carried out using the commercial Computational Fluid
Dynamics software FLUENT: ANSYS1 Academic Research, Release 13.0. The
methodology involves the iterative solution of the Navier–Stokes equations along

100with continuity and energy equations using the SIMPLE algorithm on collocated
variables. Humidity was considered as a separate phase and hence another scalar
transport equation for species transport was incorporated. We assumed the flow to
be turbulent and hence suitable two-equation eddy-viscosity turbulence models were
also chosen. More details on turbulence models will be given in the next section.

105Without going into detailed description of the governing differential equations
which may be found in several text books such as Versteeg and Malalasekera [24],
we concentrate on the numerical strategies and accuracy aspects of the predictions.
However, for the sake of completeness the governing equations for mass,
momentum, energy, and species concentration are given as follows.

~rr � q~vvð Þ ¼ 0 ð1Þ

~rr � q~vv�~vvð Þ ¼ � ~rrpþ m ~rr � ~rr �~vvþ ~rr �~vv
� �T

� 2

3
~rr �~vv
� �

I

� �
þ q� q0ð Þ~gg ð2Þ

Cp
~rr � qT~vvð Þ ¼ k ~rr2

T ð3Þ

~rr � qx~vvð Þ ¼ D ~rr � q ~rrx
� �

ð4Þ

115From a numerical analysis point of view, the accuracy of computations is affected by
the choice of grids, the viscous models, discretization schemes, and the convergence
criteria and remains a major concern for numerical scientists [8, 25]. These uncertain-
ties that may influence the flow physics were carefully taken into account in the
numerical modeling for greater accuracy. For discretization of the convection terms,

120second-order convection schemes were considered. Utmost care was taken to address
the issues of grid density and grid quality. The mesh was made up of structured quad
mesh near the walls and unstructured near the core region, where the flow velocity is
very low.

In order to capture the sharp gradients, the mesh was clustered near the walls,
125where minimum mesh orthogonal quality was about 1. (A value close to zero

indicates low-quality mesh and a value close to one indicates high-quality mesh.)
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Particular attention was given to resolve the boundary layer very close to the walls
because of the low-Re turbulence models that were used for the simulations. The
number of cells in the first layer of each cylindrical obstacle in the circumferential

130direction was initially 40, which was then raised to 68 corresponding to an overall
mesh density of 90,500. The results were generally insensitive to the changes of grid
density around obstacles; hence all the calculations reported in this article were
obtained with this mesh. The value of the nondimensional distance, yþ for the final
mesh, was found to be just below 1 for all surfaces (cavity and solid obstacles),

135justifying our use of the low-Re model.
It is worthwhile to note that the process of computing a steady-state solution

using very fine mesh had been quite challenging because of oscillations associated
with higher-order discretization schemes. As a result, a number of steps were taken
to achieve a steady-state solution. Initially, a natural convection flow field was estab-

140lished with a lower value of Rayleigh number (106) with a first-order convection
scheme using an incompressible unsteady solver for a time step of 0.002 s. This flow
field was later used as an initial condition for the higher Rayleigh number of
1.45� 109 with the second-order discretization schemes for all equations. Calcula-
tions were performed using a single Intel core 2Duo E6600 2.4 GHz processor and

145a typical run took about 8 h of computing time.
The boundary conditions considered for the simulations are similar to those

given in the experimental paper of Laguerre et al. [17] and are summarized in
Table 1. The constant vapor mass fraction is maintained at the bottom horizontal
wall and impermeable conditions assumed for the top and hot vertical walls and

150for the surfaces of cylindrical obstacles. To conserve the species transport equation,
a constant mass fraction equal to the saturation value at the cold wall was specified.
The condition of constant mass fraction at the cold wall is justified because the tem-
perature is constant on that surface. No slip boundary conditions were imposed for
any solid surfaces.

155Finally, to simulate the heat transfer due to radiation, the discrete ordinate
method [26] was chosen due to its proven superiority in predicting radiative heat
transfer involving a participating medium. In this study, the humid air is treated
as an absorbing–emitting and nonscattering gray medium. The general equation
of heat transfer by radiation (in a given ~ss direction) for both unhumidified and

160humidified cavities is

~rr � I ~rr;~ssð Þ~ssð Þ ¼ 0 ð5Þ

Table 1. Boundary conditions used in the simulations

Wall

Thermal

conditions (�C)

Mass fraction

(kg water=kg air)

Material, thermal

conductivity (W=m K)

Top 14.4 Zero diffusive flux Plaster, 0.35

Bottom 13.7 0.00968 Plaster, 0.35

Cold 1.2 0.00407 Aluminum, 202.4

Hot 21 Zero diffusive flux Glass, 0.75

Obstacles Zero heat flux Zero diffusive flux Plaster, 0.35

HEAT TRANSFER IN CAVITY FILLED WITH SOLID OBSTACLES 5



where I ~rr;~ssð Þ is the radiative intensity in the~ss direction and~rr is the position vector.
At the surface of the solid obstacles, the thermal boundary condition is

�k ~rrT �~nnþØnet:rad ¼ �k ~rrTp �~nn ð6Þ

165where Ønet:rad ¼ Øin �Øout;Øin ¼
R
~ss�~nn>0 Iin �~ss �~nn � dX;Øout ¼ 1� erð Þ �Øin þ errT4

p .

The walls are all assumed as gray diffuse and four angles of discretization (2, 4,
16, and 24) were used.

4. RESULTS AND DISCUSSION

4.1. Choice of Viscous Model

170At the very outset of this investigation, we decided to evaluate whether the
flow should be considered laminar or turbulent and at the same time to scrutinize
the sensitivity of common viscous models. This was felt necessary due to the fact that
the Rayleigh number is 1.45� 109, which is clearly within the transition zone [27].
For practical reasons, we restricted ourselves to six popular eddy viscosity models

175available within the FLUENT package. These are abbreviated as AKN (Abe et al.
[28]) AB (Abid [29]), CHC (Chang et al. [30]), LM (Lam and Bremhost [31]), LS
(Launder and Sharma [32]), and YS (Yang and Shih [33]). Figures 2a, b show the
velocity profiles predicted by various models along the mid-height of the cavity.

Figure 2. Profiles at mid-height (a) vertical velocity near the hot wall; (b) vertical velocity near the cold wall.
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A careful examination at the velocity profiles reveals that while the core region
180outside the boundary layers is fairly stagnant and hence insensitive to the turbulence

models, the situation is very different near the vertical walls. The Launder–Sharma
model returned the best overall results and hence this has been used for all the
calculations reported in this work. Figures 3a, b compare the temperature profile
near the cold wall (x¼ 66 mm) and the relative humidity distribution along the

185mid-width (x¼ 0.5 L). Results obtained with the laminar assumption were plotted
and both figures justify our approach to incorporate a turbulence model.

4.2. 2D Simplification of 3D Radiation

The choice of emissivity is critical when modeling radiation heat transfer and,
even for this type of moderate temperature difference, the effect of radiation has been

190found to be fairly significant. The 2D simplification of an inherently 3D radiation
heat transfer also raises issues about the accuracy of the data produced by 2D simpli-
fication of the domain. According to Laguerre et al. [17], the presence of the side wall
in the experimental setup was ‘‘unavoidable’’, the net effect of which was, to some
extent, equivalent to ‘‘shielding’’ of radiation which the 2D geometries cannot

195replicate. They further argued that for a 2D calculation with all surfaces having the
same emissivity, the emissivity e2D can be equated to e3D by the following relation:

e2D ¼
2e3D

4� e3Dð Þ ð7Þ

Laguerre [17] predictions with equivalent e2D values instead of e3D are far better
200than those with actual surface emissivity. With this simplified relation, the emissivity

of e3D¼ 0.9 for all surfaces gives an equivalent emissivity of e2D¼ 0.58. We scruti-
nized this simplification further and a comparison of temperature for 2D vs. 3D
domains is presented in Figure 4. It will be seen that the predicted temperatures at
x=L¼ 0.5 for e¼ 0.9 (3D) and e¼ 0.58 (2D) are in close agreement, justifying the

205need for a smaller emissivity value for 2D calculation. The value e¼ 0.9 (2D) is
shown for comparison, which also highlights the significant influence of radiation
for this flow.

Figure 3. (a) Profiles of temperature at 66 mm from the cold wall; (b) profile of relative humidity at

mid-width.
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As mentioned in the ‘‘Introduction’’ section, one of the aims of this article is to
study the effect of surface emissivity on various flow features. In light of the above

210discussion, we decided to present the results for four emissivity values of e¼ 0, 0.22,
0.58, and 0.67 for our 2D model, which correspond to e¼ 0, 0.4, 0.9, and 1.0,
respectively, for the 3D model. It is fully recognized that this simplification needs
further analysis but the results presented later will not be affected because we are
interested in the trends. Although we did perform calculations with higher values

215of e for the 2D domain, they have not been included for reasons of clarity.

4.3. Temperature Fields

Temperature distribution is one of the most critical mean quantities, because
the flow develops as a result of buoyancy which is directly dependent upon the tem-
perature gradient. Concentration gradient also plays a part but as will be shown later

220that it is much less dominant. Figures 5a, b show the temperature plots along the
mid-width (x¼ 0.5 L) and near the cold wall (x¼ 66 mm), respectively. It will be seen
that temperature stratification is lower at the bottom wall and higher at the top
wall for all values of emissivity. Since radiation between all surfaces is considered,
oscillations of the temperature profiles can be very clearly seen in these plots. This

Figure 4. Emissivity sensitivity for temperature prediction.

Figure 5. Temperature profile at (a) mid-width; (b) near cold wall (x¼ 66 mm).
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225is because the fluid temperature further away from the cylinder surface is higher than
that very close to its surface – a phenomenon highly influenced by the surface
emissivity value.

The temperature profile of the flow domain shows a decrease in temperature
with the increase in emissivity. In addition to the overall thermal stratification in

230the cavity, stratification is also observed in each gap between the obstacles. One very
important point to note is the fact that the predicted temperature for e¼ 0 (i.e., with-
out radiation) is very inaccurate, the largest discrepancy being displayed near the top
wall. This has also been numerically verified by Laguerre et al. [17]. The fact that
the inclusion of radiation improves the results drastically is a further verification

235that radiation does play a very significant role in apparently low-temperature
applications.

4.4. Wall Heat Transfer

The rate of heat transfer at each wall is determined by the arithmetic sum of
convection and radiation components for both local and average values. Equation

240(8a) shows the expression for the local Nusselt number:

Nu ¼ Nucov þNuradð Þ ð8aÞ

In Eq. (8a), Nu represents the total local Nusselt number which is made up of

Nucov ¼ qirad
L=�kkDT and Nurad ¼ qirad

L=�kkDT , where qi is the local convective heat

245flux and qirad
is the radiative heat flux evaluated at each node (ith node) along a given

wall.
Similarly, the average Nusselt number is given by Eq. (8b) below:

Nu ¼ Nucov þNurad ð8bÞ

250In Eq. (8b), Nu represents the average heat transfer for the wall and is made up of

Nucov ¼ �qqcovL=�kkDT and Nurad ¼ �qqradL=�kkDT , where �qqcov and �qqrad are the integral
average of total heat flux and radiation heat flux, respectively.

The average Nusselt numbers for the various emissivity values are shown in
Table 2. It will be seen from the hot wall values that the rate of heat transfer

255increases with increase in emissivity. Without radiation there is a balance between
the conductive and convective heat fluxes at the interfaces of the walls. Radiation
causes an additional heat flux towards the interface due to incident radiation and
an extra outgoing heat flux associated with emission of radiation. To ascertain the

Table 2. Average surface Nusselt number

Test Hot Top Cold Bottom

e¼ 0 38.98 23.69 39.51 24.24

e¼ 0.22 46.78 34.14 47.22 34.61

e¼ 0.58 50.81 35.77 51.02 35.99

e¼ 0.7 52.47 37.48 53.31 38.37
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significance of the radiation component, the local Nusselt numbers for the hot wall
260are plotted in Figures 6a, b. The perturbations in the radiation component are due to

the proximity of the obstacles. It is also clear that the effect of emissivity is more
prominent for radiation as shown in Figure 6b. Since the flow velocities are small
(Figures 2b, c) and temperatures are low, the radiative heat fluxes are modest but
comparable in size to convective heat fluxes. The local Nusselt number variation

265for the top wall as shown in Figure 7 indicates that heat is transferred through this
wall in both directions, which is a consequence of boundary condition. The assump-
tion of adiabatic wall which is sometimes used [5] is far from reality.

4.5. Stream Function and Turbulence

Further insight into the effect of emissivity on velocity can be obtained from
270the stream function plots in Figures 8a, b. As the value of emissivity is increased,

there is a corresponding increment in the value of the stream function. Figure 8a also
displays a stable (rather stagnant) zone in the core areas but shows a 45% increase in
circulation rate due to emissivity increase at the midpoint measured at the

Figure 6. (a) Local Nusselt number along the hot wall; (b) local radiation Nusselt number along the hot

wall.

Figure 7. Local Nusselt number along the top wall.
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mid-height of the cavity. Slightly enhanced perturbations for higher e values are the
275direct results of radiation. The stream function profile in Figure 8b shows a rather

monotonically decreasing trend with peak values near the bottom wall of the cavity.
The sensitivity to emissivity is fairly comparable to Figure 8a.

As was shown in Figures 2b, c, the flow is characterized by upward and
downward boundary layer flows along the hot and cold walls, respectively, with a

280somewhat stagnant region in the central part. Hence the turbulent quantities are also
dominant along the two walls. To analyze this effect, we plotted the turbulent vis-
cosity ratio, m� ¼ mt=m at the mid-height of the cavity in Figure 9. As expected, the
values of m� are only significant within the boundary layers. Interestingly, for higher
e values m� is found to decrease slightly. To investigate this, we plotted the compo-

285nents of Nusselt numbers for hot and cold walls in Figure 10 for various values of e.
It will be seen clearly that as the value of emissivity is increased, there is an adjust-
ment between the convection and radiation components with the latter contributing
to the overall increase in heat transfer. In fact, the convection component, which is
affected by viscous effects, can be seen to decrease slightly (more for the cold wall)

290with increase in emissivity which is in line with the m� variation for different
emissivities.

Figure 8. Stream function profile at (a) mid-height, (b) mid-width.

Figure 9. Turbulent viscosity ratio at mid-height.
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4.6. Buoyancy and Concentration Effect

Buoyancy flux B characterizes the buoyancy-driven flow and is expressed as

B ¼ gbmixqi

qcp
ð9Þ

295

In Eq. (9), bmix represents the combined volumetric expansion coefficient of the air–
water vapor mixture. Figure 11 shows the buoyancy flux plot along the hot wall. As
the expression for B shows, the curves follow the trend of the local Nusselt number.
The buoyancy effects are the results of combined temperature and concentration gra-

300dients. The concentration gradient is due to a difference in the relative molecular
mass between the dry air and water vapor. At 20�C, the relative molecular mass
of dry air is 28.97 kg=kg mol, while for saturated air it is 28.71 kg=kg mol. However,
water vapor is less dense and the relative molecular mass is only 18.015 kg=kg mol.

Calculations were carried out for an unhumidified cavity by considering only
305dry air. A comparison of the average heat transfer between the temperature-induced

buoyancy (unhumidified cavity) and that due to the combined influence of mass

Figure 10. Total, convective, and radiative heat transfer as a function of emissivities at the hot and cold

walls.

Figure 11. Buoyancy flux near (a) the bottom wall, (b) the hot wall.
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and temperature (humidified cavity) was made. The difference between the two
predictions was, as expected, not unduly high but not insignificant either. The data
showed heat transfer enhancement of 5.4% and 5.7% for the hot and bottom walls,

310respectively. This observation may prove to be significant for long-exposure situa-
tions typical of human comfort studies.

Finally, we analyzed the effect of radiation on mass transfer. Figures 12a, b
show that the mass fraction, m, defined as the ratio of mass of vapor to the total
mass of mixture, decreases with increasing surface emissivity. This is due to the fact

315that at low emissivity value the vapor mass transfer increases, and as the emissivity
value increases the fluid temperature decreases (Figures 5a, b).

These phenomena also account for the decrement in the profiles of the effective
diffusion coefficient, Deff of vapor at higher values of surface emissivity, as shown in
Figure 13. Further quantitative information is provided in Figure 14, where we

320plotted the buoyancy number, N, which is a ratio of mass to temperature-induced
buoyancy. This ratio N measures the significance of the contribution to buoyancy
of the variation in vapor concentration in the cavity. The effective diffusion
coefficient of vapor is also observed to be maximum close to the vertical walls and
almost constant at the core of the cavity, and is comparable to the commonly used

325value of �3� 10�5 m2=s [14]. As expected, the variations and nature of these curves

Figure 12. Mass fraction of water vapor along (a) mid-width, (b) mid-height.

Figure 13. Effective diffusion coefficient of water vapor at mid-height.
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are very similar to the viscosity ratio curves presented in Figure 9, highlighting the
fundamental similarity in the diffusive transport mechanism of momentum and
concentration.

5. CONCLUSIONS

330The work presented in this article highlights the fact that turbulent natural
convection flow is very sensitive to the appropriate choice of turbulence models.
Both surface emissivity and mass concentration are found to influence heat transfer
which in turn affects the fluid flow pattern inside the cavity. From our calculations,
the following conclusions can be made:

335. The flow field is influenced by turbulence near the walls while the core area is
essentially a stagnant region. Comparison to experimental data highlights that
the flow and heat transfer are better predicted with a suitable low-Re turbulence
model. Amongst the six Eddy Viscosity Models (EVMs) employed for the
predictions, the Launder–Sharma model gave the best overall result.

340. Radiation was found to influence the flow, temperature, humidity, and rates of
heat and mass transfer within the cavity. The implication is that by a careful
selection of material, heat transfer may be passively influenced.

. Humidity affects the heat transfer rate to a limited extent, which may be relevant
for long exposure in comfort designs.
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