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Abstract. Imitation learning refers to an agent’s ability to mimic a de-
sired behavior by learning from observations. A major challenge facing
learning from demonstrations is to represent the demonstrations in a
manner that is adequate for learning and efficient for real time decisions.
Creating feature representations is especially challenging when extracted
from high dimensional visual data. In this paper, we present a method
for imitation learning from raw visual data. The proposed method is ap-
plied to a popular imitation learning domain that is relevant to a variety
of real life applications; namely navigation. To create a training set, a
teacher uses an optimal policy to perform a navigation task, and the ac-
tions taken are recorded along with visual footage from the first person
perspective. Features are automatically extracted and used to learn a
policy that mimics the teacher via a deep convolutional neural network.
A trained agent can then predict an action to perform based on the scene
it finds itself in. This method is generic, and the network is trained with-
out knowledge of the task, targets or environment in which it is acting.
Another common challenge in imitation learning is generalizing a pol-
icy over unseen situation in training data. To address this challenge, the
learned policy is subsequently improved by employing active learning.
While the agent is executing a task, it can query the teacher for the
correct action to take in situations where it has low confidence. The ac-
tive samples are added to the training set and used to update the initial
policy. The proposed approach is demonstrated on 4 different tasks in
a 3D simulated environment. The experiments show that an agent can
effectively perform imitation learning from raw visual data for naviga-
tion tasks and that active learning can significantly improve the initial
policy using a small number of samples. The simulated testbed facilitates
reproduction of these results and comparison with other approaches.

1 Introduction

One of the important aspects of artificial intelligence is the ability of autonomous
agents to behave effectively and realistically in a given task. There is a rising
demand for applications in which agents can act and make decisions similar to
human behavior in order to achieve a goal. Imitation learning is a paradigm in
which an agent learns how to behave by observing demonstrations of correct
behavior provided by a teacher. In contrast to explicit programming, learning
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from demonstrations does not require knowledge of the task to be integrated
in the learning process. It favors a generic learning process where the task is
learned completely from observing the demonstrations. Thus, an intelligent agent
can be trained to perform a new task simply by providing examples. Since an
agent is able to learn complex tasks by mimicking a teacher’s behavior, imitation
learning is relevant to many robotic applications [2][30][6][25][4][12][14][37] and
is considered an integral part in the future of intelligent robots [32].

One of the biggest challenges in imitation learning is finding adequate repre-
sentations for the state of the agent in its environment. The agent should be able
to extract meaningful information from sensing of its surroundings, and utilize
this information to perform actions in real time. Deep learning methods have
recently been applied in a wide array of applications and are especially successful
in handling raw data. One of the most popular deep learning techniques is Con-
volutional Neural Networks (CNNs). CNNs are particularly popular in vision
applications due to their ability to extract features from high dimensional visual
data. The ability of deep networks to automatically discover patterns provides
a generic alternative to engineered features which have to be designed for each
specific task. For instance traditional planning approaches that use computer-
vision methods of object recognition and localization need to tailor the methods
for every individual target and task. CNNs achieve results competitive with the
state of the art in many image classification tasks [9][18] and have been recently
used to learn Atari 2600 games from raw visual input [21][22]. These and other
recent attempts have shown that deep learning can be successful in teaching an
agent to perform a task from visual data. However, most studies focus on 2D
environments with stationary views; which does not reflect real world applica-
tions. Moreover, direct imitation is performed without considering refining the
policy based on the agent’s performance. To the best of our knowledge, training
an agent from raw visual input using deep networks and active learning in a 3D
environment has not been done.

In this paper we present a novel method that utilizes deep learning and ac-
tive learning to train agents in a 3D setting. The method is demonstrated on
several navigation tasks in a 3D simulated environment. Navigation is one of
the most explored domains in imitation learning due to its relevance to many
robotic applications, such as flying [30][1][24] and ground vehicles [33][28] [7][27].
Navigation is also an essential base task in high degree of freedom robots (e.g.
humanoid robots) [8][31]. We propose a generic method for learning navigation
tasks from demonstrations that does not require any prior knowledge of the
task’s goals, environment or possible actions. A training set is gathered by hav-
ing a teacher control the agent to successfully perform the task. The controlled
agent’s view of the 3D environment is captured along with the actions performed
in each frame. A deep convolution network is used to learn visual representa-
tion from the captured video footage and learn a policy to mimic the teacher’s
behavior. We also employ active learning to improve the agents policy by em-
phasizing situations in which it is not confident. We show that active learning
can significantly improve the policy with a limited number of queried instances.
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Once trained, the agent is able to extract features from the scene and predict
actions in real time. We conduct our experiments on benchmark testbed that
makes it seamless to replicate our results and compare with other approaches.

Benchmark environments are useful tools for evaluating intelligent agents. A
few benchmarks are available for 2D tasks such as [3] [26] [16] and are being
increasingly employed in the literature. 3D environments however have not been
as widely explored, although they provide a closer simulation to real robotic
applications. We use mash-simulator [20] as our testbed to facilitate the evalua-
tion and comparison of learning methods. It is also convenient for extending the
experiments to different navigation tasks within the same framework.

In the next section we review related work. Section 3 describes the proposed
methods. Section 4 details our experiments and results. Finally we present our
conclusions and discuss future steps in Section 5.

2 Related Work

2.1 Navigation

Navigation tasks have been of interest in AI in general and imitation learning
specifically from an early stage. Sammut et al [30] provides an early example of
an aircraft learning autonomous flight from demonstrations provided via remote
control. Later research tackle more elaborate navigation problems including ob-
stacles and objects of interest. Chernova et al [7] use Gaussian mixture models to
teach a robot to navigate through a maze. The robot is fitted with an IR sensor
to provide information about the proximity of obstacles. This data coupled with
input from a teacher controlling the robot is used to learn a policy. The robot is
then able to make a decision to execute one of 4 motion primitives(unit actions)
based on its sensory readings. In [11] the robot uses a laser sensor to detect and
recognize objects of interest. A policy is learned to predict subgoals associated
with the detected objects rather than directly predicting the motion primitives.
Such sensing methods provide an abstract view of the environment, but can’t
convey visual details that might be needed for intelligent agents to mimic human
behavior. [23] use neural networks to learn a policy for driving a car in racing
game using features extracted from the game engine (such as position of the car
relative to the track). Driving is a complex task compared to other navigation
problems due to the complexity of the possible actions. The outputs of the neural
network in [23] are high DOF low level actions. However, the features extracted
from the game engine to train the policy would be difficult to extract in the
real world. Advances in computational resources have prompted the use of vi-
sual data over simpler sensory data. Visual sensors provide detailed information
about the agents surrounding and are suitable to use in real world applications.
In [29] a policy for a racing game is learned from visual data. Demonstrations
are provided by capturing the games video stream and the controller input. The
raw frames (downsampled) without extracting engineered features are used as
input to train a neural network.
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2.2 Deep learning

Deep learning methods are highly effective in problems that don’t have estab-
lished sets of engineered features. CNNs have been used with great success to
extract features from images. In recent studies [21][22] CNNs are coupled with
reinforcement learning to learn several Atari games. A sequence of raw frames is
used as input to the network and trial and error is used to learn a policy. Trial
and error methods such as reinforcement learning have been extensively used
to learn policies for intelligent agents [17]. However, providing demonstrations
of correct behavior can greatly expedite the learning rate. Moreover, learning
through trial and error can lead the agent to learn a way of performing the task
that doesn’t seem natural or intuitive to a human observer. In [13] learning from
demonstrations is applied on the same Atari benchmark. A supervised network
is used to train a policy using samples from a high performing but non real time
agent. This approach is reported to outperform agents that learn from scratch
through reinforcement learning. Other examples of using deep learning to play
games include learning the game of ’GO’ using supervised convolution networks
[10] and a combination of supervised and reinforcement learning [34]. These ex-
amples all focus on learning 2D games that have a fixed view. However in real
applications, visual sensors would capture 3D scenes, and the sensors would most
likely be mounted on the agent which means it is unrealistic to have a fixed view
of the entire scene at all times.

In [19] a robot is trained to perform a number of object manipulation tasks.
First a trajectory is learned using reinforcement learning with the position of
the objects and targets known to the robot. These trajectories then serve as
demonstrations train a supervised convolutional neural network. In this case no
demonstrations are needed to be provided by a teacher. However, this approach
requires expert knowledge for the initial setup of the reinforcement learning
phase. Compared to related work that employs deep learning to teach an intel-
ligent agent, this is a realistic application implemented with a physical robot.
However, the features are extracted from a set scene with small variations. This
is different from applications where the agent moves and turns around, and with
that completely altering it’s view.

2.3 Active learning

In many imitation learning applications direct imitation is not sufficient for
robust behavior. One of the common challenges facing direct imitation is that the
training set doesn’t fully represent the desire task. The collected demonstrations
only include optimal actions performed by the teacher. If the agent makes an
error it arrives at a state that was not represented in its learned policy [36].
It is therefore necessary in many cases to provide further training to an agent
based on its own performance of the task. One of the methods to enhance a
trained agent is active learning. Active learning relies on querying a teacher
for the correct decision in cases where the trained model performs poorly. The
teacher’s answers are used to improve the model in its weakest areas. In [8]
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active learning is used to teach a robot navigation tasks. The agent estimates a
confidence measure for its prediction and queries a teacher for the correct action
when the confidence is low. Erroneous behavior may also be identified by the
teacher. In [5] the robot is allowed to perform the task while a human teacher
physically adjusts its actions, which in turn provides corrected demonstrations.
Some imitation learning tasks involve actions that are performed continuously
over a period of time (i.e an action is comprised of a series of motions performed
in sequence). In such cases a correction can be provided by the teacher at any
point in the action trajectory [29][15]. This way the agent is able to adapt to
errors in the trajectory.

3 Proposed Method

In this section we detail our proposed method for learning navigation tasks from
demonstrations. The source code for this work can be accessed at:
https://github.com/ahmedsalaheldin/ImitationMASH.git

3.1 Collecting Demonstrations

In imitation learning it is assumed that a human teacher is following an unknown
optimal policy. It is therefore possible to use an optimal policy if it exists to
collect demonstrations. To collect a training set we use a deterministic automated
teacher that has access to information hidden from a human or intelligent playing
agent such as position of targets and obstacles in a 3D space. Each training
instance consists of a raw 120 × 90 image of the rendered 3D scene and the
action performed by the teacher. We only use the current frame (not a sequence
of previous frames) in an instance because for the navigation tasks investigated
here adhere to the Markov property. That is, that current state is sufficient to
make a decision. And any previous actions and states need not be included in the
representation of the current state. In that case training an imitation learning
policy is reduced to a supervised image classification problem; where the current
view of the agent is the image and the action chosen by the teacher is the label.
Subsequently the trained agent will be able to predict a decision (as it would be
taken by the teacher) given its current view. More formally, the agent learns a
policy π from a set of demonstrations D = (xi, yi) such that u = π(x, α). Where
xi is a 120 × 90 image, y is the action performed by the teacher at frame i, u is
the action predicted by policy π for input x and α is the set of policy parameters
that are changed through learning.

3.2 Deep learning

To learn the policy we employ a deep convolutional neural network. The proposed
network uses several convolution layers to automatically extract features from
the raw visual footage. Then a fully connected layer is used to map the learned
features to actions. Each convolution layer is followed by a pooling layer that
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down-samples the output of the convolution layer. The convolution layers take
advantage of spacial connection between visual features to reduce connections
in the network. The pooling layers reduce the dimensionality to further alleviate
the computations needed. Our network follows the pattern in [22]. It consists of
3 convolution layers each followed by a pooling layer. The input to the first layer
is a frame of 120 × 90 pixels. We apply a luminance map to the colored images
to obtain one value for each pixel instead of 3 channels, resulting in a feature
vector of size 10,800. Figure 1 shows the architecture of the network. The filter
sizes for the three layers are 7×9, 5×5 and 4×5 respectively; and the number of
filters are 20, 50 and 70 respectively. The pooling layers all use maxpool of shape
(2,2). Following the last convolution layer is a fully connected hidden layer with
rectifier activation function and fully connected output layer with three output
nodes representing the 3 possible actions. Table 1 summarizes the architecture
of the network.

Fig. 1. Architecture of the neural network used to train the agent

Table 1. Neural network architecture

Layer Size of activation volume

Input 120 * 90

Conv1 7 * 9 * 20

Conv2 5 * 5 * 50

Conv3 4 * 5 * 70

FC 500

Output(FC) 3

3.3 Active learning

Active learning is employed to improve the initial policy learned from demon-
strations. This is achieved by acquiring a new data set to train the agent that
emphasizes the weaknesses of the initial policy. The agent is allowed to perform
the task for a number of rounds. For each prediction the network’s confidence
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is calculated, and if the confidence is low the optimal policy is queried for the
correct action. The action provided by the teacher is performed by the agent
and is recorded along with the frame image. The confidence is measured as the
entropy of the output of the final layer in the network. The entropy H(X) is
calculated as:

H(X) = −
∑
i

P (xi) log2 P (xi) (1)

Where X is the prediction of the network, P (xi) is the probability distribu-
tion produced by the network for action i.

The active samples are added to the training set and used to update the
initial policy. We find that updating a trained network using only the active
samples results in forgetting the initial policy in favor of an inadequate one
rather than complementing it. Therefore the training set is augmented with the
active samples collected from the playing agent. The augmented dataset is used
to update the network that was previously trained. We find that it is easier and
faster for the network to converge if it is pre-trained with the initial dataset than
training from scratch. Algorithm 1 shows the steps followed to perform active
learning.

Low confidence predictions are mainly caused by situations that were not
covered by the training data. Therefore, for active learning to be effective, it
is important that it is performed in the simulation rather than on a collected
dataset. Because by performing its current policy in the simulation, the agent
arrives at unfamiliar situations where it is not confident in its behavior and thus
utilize active learning.

Algorithm 1 Active Learning Algorithm

1: Given: A policy π trained on a Data set D = (xi, yi)
Confidence threshold β

2: while Active Learning do
3: x = current frame
4: u = π(x, α)
5: H(X) = −

∑
i

P (ui) log2 P (ui)

6: if H(X) < β then
7: y = Query(x)
8: perform action y
9: add (x, y) to D

10: else
11: perform max(u)

12: Update π using D
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4 Experiments

We conduct our experiments in the framework of mash-simulator [20]. Mash-
simulator is a tool for benchmarking computer vision techniques for navigation
tasks. The simulator includes a number of different tasks and environments. As
well as optimal policies for a number of tasks. All the navigation is viewed from
the first person perspective. The player has 4 possible actions: ‘Go forward’,
‘Turn left’, ‘Turn right’ and ‘Go back’. Although there are 4 possible actions,
the action ’Go back’ was never used in the demonstrations by the optimal policy.
Therefore the network is only presented with 3 classes in the training set and
thus has 3 output nodes.

4.1 Tasks

The experiments are conducted on the following 4 navigation tasks:

Reach the flag This task is set in a single rectangular room with a flag placed
randomly in the room. The goal is to reach the flag. The task fails if the flag is
not reached within a time limit.

Fig. 2. sample images from “Reach the flag”

Follow the line This task is set in a room with directed lines drawn on the
floor. The lines show the direction to follow in order to reach the flag. The target
is to follow the line to the flag, and the agent fails if it deviates from the line on
the floor.

Fig. 3. sample images from “Follow the line”
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Reach the correct object In this task two objects are placed on pedestals in
random positions in the room. The objective is to reach the pedestal with the
trophy on it. The task fails if a time limit is reached or if the player reaches the
wrong object. The wrong object has the same material of the trophy and can
take different shapes.

Fig. 4. sample images from “Reach the correct object”

Eat all disks This task is set in a large room containing several black disks
on the floor. The target is to keep reaching the disks. A disk is ‘eaten’ once the
agent reaches it and dissapears . New disks appear when one is eaten. The goal
of this task is to eat as many disks as possible within a time limit.

Fig. 5. sample images from “Eat all disks”

Figures 2 - 5 show sample images of the 4 tasks in the 120 × 90 size used in
the experiments.

4.2 Setup

To evaluate the proposed methods, the performance of the agent is measured
over 1,000 rounds. A round starts when the task is initialized and ends when
the agent reaches the target or a time limit is reached. The number of frames
in a round might vary depending on how fast the agent can reach the target.
For all tasks, in each round the environment is randomized including room size
and shape, lighting and the location of the target and the agent. A time limit
is set for each round and the round fails if the limit is reached before the agent
reaches the target. The time limit is measured in frames to avoid any issues with
different frame rates. The time limit is set as the maximum time needed for the
optimal policy to finish the task; which is 500 frames for ”Reach the flag” and
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”Reach the correct object” and 5000 frames for ”Follow the line”. In “Eat all
disks” the task is continuous, so a time limit was set to match the total number
of frames in the other tasks.

4.3 Implementation details

Inter-process communication is used to communicate data across the different
components of the testbed. The agent acts as a client and communicates with
the simulator via a TCP connection as follows: The agent requests a task from
the server, the server initiates a round and sends an image to the client. The
client sends an action to the server. The server calculates the simulations and
responds with a new image. Figure 6 shows a flowchart of the data collection
process.

The network used for prediction is also decoupled from the agent. The net-
work acts as a predicting server where an agent sends frames that it receives
from the simulator and in return receives a decision from the network. The
entire process of communication with both servers occurs in real time. This
implementation facilitates experimentation, as making changes to the network
doesn’t affect the client or the simulator server. Moreover, it is easier to extend
this system to physical robots. A predicting server can be located on the robot or
on another machine if the robot’s computational capabilities are not sufficient.
A predicting server can also serve multiple agents simultaneously. The agent
client is implemented in c++ to facilitate interfaceing with the mash-simulator.
The predicting server and the training process are implemented in python using
the Theano deep learning library [35]. Figure 7 shows a flowchart of the agent
performing a task.

Fig. 6. Dataset Collection Flowchart
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Fig. 7. Imitation Agent Playing Flowchart

4.4 Results

In this section we present the results of the proposed method. The same network
and parameters are used to learn all tasks. For each task 20,000 images are used
for training. Testing is conducted by allowing an agent to attempt the tasks
in the mash-simulator and recording the number of successful attempts. An
agent’s performance for the first 3 tasks is evaluated as the percentage of times
it reaches the target in 1,000 rounds. For “Eat all disks”, the performance is
measured as the number of disks eaten in 1,000 rounds. We also report the
classification error on an unseen test set of 20,000 images collected from the
teacher’s demonstrations.

Table 2 shows the results for the first 3 tasks. The success measure is the
percentage of rounds (out of 1000) in which the agent reached the target. While
error is the classification error on the test set collected from the teacher’s demon-
strations. The agent performs well on “Reach the flag” and is significantly less
successful in the other two tasks. “Follow the line” is considerably less fault tol-
erant than “Reach the flag”. As a small error can result in the agent deviating
from the line and subsequently failing the round. Whereas in “Reach the flag” the
agent can continue to search for the target after a wrong prediction. In “Reach
the correct object” the agent is not able to effectively distinguish between the
two objects. This could be attributed to insufficient visual details in the training
set, as the teacher avoids the wrong object from a distance. Qualitative analysis
of “Reach the flag” shows that the agent aims towards corners as they resemble
the erect flag from a distance. Upon approaching the corner, as the details of the
image become clearer, the agent stops recognizing it as the target and continues
its search. While this did not pose a big problem in the agent’s ability to execute
the task it is interesting to examine the ability of CNNs to distinguish small de-
tails in such environments. It is also worth noting that the teacher’s policy for
”Reach correct object” does not avoid the wrong object if it is in the way of the
target and achieves 80.2% success rate

Table 3 shows results for the 4th task ”Eat all disks”. The table shows the
score of the agent compared to the score achieved using the optimal policy. The
agent is shown to achieve 97.9% of the score performed by the optimal policy.

To improve the agent’s ability to adapt to wrong predictions and unseen
situations, active learning is used to train the agent on “Follow the line”. In the
other tasks where the agent searches for the target, the optimal policy remembers
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Table 2. Direct Imitation results

Task reach the flag reach object follow the line

success 96.20 % 53.10% 40.70%

error 2.48% 4.06% 0.86%

Table 3. “Eat all disks” results

Task Agent Optimal policy

score 1051 1073

error 1.70% -

the location of the target even if it goes out of view due to agent error. Therefore
active learning samples include information that is not represented in the visual
data available to the agent and thus degrade the performance. This can be
rectified by devising a teaching policy that does not use historical information,
or by incorporating past experience in the learned model.

Figure 8 shows the results of active learning on the “Follow the line” task.
Active learning is demonstrated to significantly improve the performance of the
agent using a relatively small number of samples. Comparing the classification
error with success rate emphasizes the point that the errors come from situations
that are not represented in the teacher’s demonstrations.

Fig. 8. Results for active learning on “follow the line” task

The task in which the time limit affected the performance was “Reach the
flag”. As the agent continues to follow its policy in search of the flag even after
performing wrong predictions. The effect of the time limit is evaluated in Figure 9
which presents the success rate of “reach the flag” task with different time limits.
The horizontal axis represents the time limit as a percentage of the maximum
time needed by the teacher. The graph shows that the longer the agent is allowed
to look for the target the higher the success rate.
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Fig. 9. Results for “reach the flag” task with increasing time limits

Overall the results show good performance on 3 out of the 4 tasks. They
demonstrate the effectiveness of active learning to significantly improve a weak
policy with a limited number of samples. Even without active learning the agent
can learn a robust policy for simple navigation tasks.

5 Conclusion and future directions

In this paper, we propose a framework for learning autonomous policies for nav-
igation tasks from demonstrations. A generic learning process is employed to
learn from raw visual data without integrating any knowledge of the task. The
experiments are conducted on a testbed that facilitates reproduction, compari-
son and extension of this work. The results show that CNNs can learn meaningful
features from raw images of 3D environments and learn a policy from demon-
strations. They also show that active learning can significantly improve a learned
policy with a limited number of samples.

Our next step is to conduct an investigation of the proposed approach in more
visually cluttered environments to further evaluate the ability of convolution
networks to create adequate representations from (relatively) low resolution 3D
scenes. As well as extend active learning experiments to more tasks. We also
aim to integrate reinforcement learning with learning from demonstrations to
improve the learned policies through trial and error. This allows the agent to
generalize its policy to unseen situations and adapt to changes in the task without
requiring to query the teacher.
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