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Abstract 

Alternative renewable energy must emerge to sustainably meet the energy demands 

of the present and future. Current alternatives to fossil fuels are electricity from solar, wind 

and tidal energies and biofuels. Biofuels, especially bioethanol could be produced from 

lignocellulosic feedstock via pre-treatment and fermentation. The cellulose I content of most 

lignocellulosic feedstock is significant, yet its highly crystalline amphiphilic structure 

interlinked with the lignin network makes it difficult to process for bioethanol production. 

Processing lignocellulosic biomass via a range of physico-chemical, mechanical and 

biological pre-treatment methods have been well established, however a relatively new area 

on the use of cellulose II (a polymorph of native cellulose obtained via mercerisation or 

regeneration) for the production of bioethanol is still in its early stages. Hence, this review 

discusses in detail the advantages of using cellulose II over cellulose I as feedstock for 

bioethanol production. Furthermore, current green and sustainable methods for cellulose II 

production and the advantages and disadvantages of each method are discussed. In 

addition, examples from literature reporting higher fermentable sugar and bioethanol yields 

using cellulose II as feedstock are reviewed, thereby highlighting its importance in the field of 

bioethanol production. The conclusion from this review suggests that, in all the cases studied, 

fermentable sugar and/or bioethanol production was found to be higher when cellulose II was 

used as feedstock instead of native cellulose/lignocellulosic biomass. This higher yield could 

be attributed to the modified structural and lattice arrangement of cellulose II, its porous 

volume and degree of polymerisation. 
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1. Introduction 

Enhanced global utilisation of fossil fuels with the associated increase in 

greenhouse gas (GHG) emissions from growing anthropogenic activities is 

continuously debated. Global politics also influences the movement of fossil fuel stock 

across boundaries. It was predicted that serious fossil fuel depletion will be 

experienced by 2030 [1]. The International Energy Agency (IEA) estimated that global 

fossil fuel dependence would drop from 82% to 76% by 2035 with up to 18% of total 

energy consumed from renewable energy resources [2]. This emphasises the need to 

increase renewable energy production and accordingly investments are underway 

globally to expand renewable energy production (Fig. 1).  

 

Fig. 1 

 

There are a range of alternate energy resources available to supplement fossil fuels, 

including bioenergy (e.g. biogas, biodiesel, biomass and bioethanol), solar, geothermal, 

ocean/marine and wind. Amongst the alternatives mentioned above, bioenergy has the 

potential to replace current transportation fuels. Bioenergy for transportation includes, 

biodiesel and bioethanol. Feedstocks essential to produce biodiesel include algae, waste 

vegetable oils, animal fats, palm oil and non-edible oils [3]. Whereas, the feedstock required 

to produce bioethanol could be classified into first generation feedstocks - food crops such 

sugarcane and corn and second generation feedstocks - lignocellulosic materials and 

cellulosic wastes [4,5]. 

 

Second generation bioethanol production entirely utilises cellulose I and its wastes as 

feedstock for the fact that cellulose I is the most abundant naturally available organic material 

on earth. Shown below in Table 1 are the cellulose I contents of various lignocellulosic 

biomass. All the feedstock mentioned in Table 1 have varying amounts of lignin in them. 

Lignin is an aromatic hydrophobic compound which forms interlinking complexes with 

cellulose I and reduces freely available cellulose I, hence giving plants their structural stability 

[6]. It is expensive, both from an energy and cost perspective to breakdown the lignin network 

in lignocelluloses to release cellulose I followed by cellulose I degradation to release 

fermentable sugars for bioethanol production. In order to utilise cellulose to the fullest, it is 



better to use freely available cellulose in the form of processed cellulose waste rather than 

lignocelluloses. 

 

Table 1 

 

Bioethanol production from native cellulose or lignocellulosic biomass have been 

extensively studied and reviewed in the past [7-13]. All the published reviews have 

emphasised the use of cellulose I for biofuel production, however, the review presented 

highlights the importance of cellulose II as feedstock for biofuel production over cellulose I. 

Even though cellulose II production has been in practice since 1850’s, green, clean and 

sustainable methods for the production of cellulose II has been introduced only recently [14]. 

It was well established in the past decade that cellulose II was the most easily digestible 

polymorph of cellulose with its modified lattice arrangement, higher porous volume, higher 

surface wettability and lower crystallinity compared to cellulose I, however its use as 

feedstock for bioethanol production was not extensively studied.  

 

The aim of this review is to emphasise the importance of cellulose II as a superior 

feedstock than cellulose I for bioethanol production. This was achieved by subdividing the 

review into three subsections. The first section explains the structural differences of cellulose 

I and cellulose II comparing its advantages and disadvantages. The subsequent section 

details modern, green and renewable methods for cellulose II production and the final section 

discusses recent examples from literature on the superiority of cellulose II over cellulose I as 

feedstock for biofuel production thereby highlighting its importance in the area of renewable 

energy. This review was prepared to serve as a resource for researchers working in the field 

of lignocellulosic biofuels to acquire knowledge on the advantages of cellulose II over 

cellulose I for biofuel production.  

 

2. Structure of Cellulose 

Cellulose I is an amphiphilic homopolysaccharide compound [15]. Individual β-D-

glucose units joined by a (1-4)-glycosidic bond as well as intermolecular and intramolecular 

hydrogen bonds and hydrophobic interactions give rise to a rigid cellulose structure [15,16]. 



Cellulose I molecules have both disordered amorphous and highly ordered crystalline regions 

along its chain [17]. The structure of cellulose I with chair confirmation and equatorial 

orientation of the glucose molecules, the β (1-4) glycosidic bond and the intramolecular and 

intermolecular hydrogen bonds represented by the green dotted lines are shown in Fig. 2.  

 

Fig.2  

 

In addition to the characteristic hydrogen bonds of cellulose I, van der Waals 

interactions (hydrophobic interactions) also play a major role in stabilising the structure of 

cellulose I. The intermolecular and intramolecular hydrogen bonds along with the van der 

Waals interactions make cellulose I an amphiphilic compound. Cellulose  I was proposed to 

be an amphiphilic compound because all three hydroxyl groups of the anhydroglucose units 

have an equatorial orientation making it hydrophilic and the H atoms of its C-H bonds have 

an axial orientation making it hydrophobic [15,18-24] (Fig. 3). Clear understanding of the 

amphiphilic property of cellulose I is necessary to choose appropriate amphiphilic solvents to 

dissolve cellulose I for the purpose of cellulose II production or for further chemical processing 

of native cellulose. The most common solvent, water which is non-amphiphilic would not 

dissolve cellulose I because of this reason. 

 

Fig. 3 

 

Different polymorphs of cellulose could be produced from its native form as seen in 

Fig. 4 [25]. Physico-chemical treatments of native microcrystalline cellulose (cellulose I) 

yields these different polymorphs. Native cellulose Iα is produced by microbes whereas the 

most abundant cellulose Iβ is found in higher plants. Although cellulose Iα and Iβ have parallel 

strands of cellulose, they differ in their lattice arrangement with the former being triclinic and 

the latter having a monoclinic structure.  

 

Fig. 4 

 



Cellulose II could be produced from both cellulose Iα or Iβ via alkali treatment 

(mercerisation) or solubilising and recrystallising (regeneration) respectively. In a few rare 

instances, naturally occurring cellulose II has been isolated [25-27]. This naturally occurring 

cellulose II was isolated from a mutant Acetobacter xylinum strain, whereas it’s wild strain 

generally produces cellulose Iα. Unlike cellulose I, cellulose II has an antiparallel strand 

arrangement and monoclinic lattice arrangement. Other polymorphs of cellulose such as 

cellulose IIII and cellulose IIIII could be reversibly produced from cellulose I and cellulose II 

via NH3 treatment respectively. The degree of conversion of cellulose III polymorph and the 

reversibility back to the parent polymorph depends on the process in which ammonia is 

removed from the reaction mixture [28]. This polymorph was reported to exhibit a monoclinic 

crystal structure similar to cellulose II [29]. Another similarity that was observed among 

cellulose IIII, cellulose IIIII and cellulose II structure was the orientation of the -CH2OH group. 

It was found to be in gauche-trans (gt) conformation in cellulose IIII (and cellulose IIIII) unlike 

its parent polymorph, cellulose I which has the hydroxymethyl group in trans-gauche (tg) 

conformation [29]. When these cellulose IIII and cellulose IIIII materials are heat treated, 

cellulose IVI and cellulose IVII are formed. It was reported that although cellulose IVI and 

cellulose IVII have similar unit cell size they have different polarity, with the former having a 

parallel arrangement and the latter having an antiparallel arrangement following its parent 

polymorphs, cellulose I and cellulose II respectively [30]. 

 

An in-depth understanding of the polymorph’s characteristics is necessary for 

determining its end use. Cellulose I is the naturally abundant cellulose whereas, cellulose II 

is the most commonly used man made cellulose and for this reason there is abundant 

information in literature regarding the production and characterisation of these polymorphs 

[16,17,25,31]. It is evident from published literature that the hydrogen bonding interactions 

play a governing role in stabilising the molecular structure of these polymorphs. The hydrogen 

bonding networks for cellulose I and cellulose II are shown along the a-c axis in Fig. 5. As 

can be seen, there are differences in hydrogen bonding between the two polymorphs which 

were induced due to the irreversible transformation of cellulose I to cellulose II during 

mercerisation or regeneration. As a result of the transformation, the latter exists as anti-

parallel chains while the former hosts a parallel chain strand arrangement. 

 



Fig.5 

 

The intermolecular hydrogen bonding is more complicated in cellulose II when 

compared to cellulose I due to its antiparallel chain arrangement. For instance, in cellulose I, 

the O6-H-O3 (indicated within a red circle) intermolecular hydrogen bond is formed parallel 

to the a-axis as a result of tg conformation of the –CH2OH group. Whereas in cellulose II, the 

–CH2OH group occurs in the gt conformation due to the anti-parallel chain arrangement and 

hence forms the O6-H-O2 (indicated within a green circle) intermolecular hydrogen bond [31]. 

The gt and tg conformations of the –CH2OH group not only determine the hydrogen bonding 

in cellulose polymorphs but also determine the fate of chemical reactivity with various radical 

species and chemical compounds. Apart from hydrogen bonds, glycosidic bonds are formed 

between the C1 of a glucose monomer and C4 of the subsequent monomer. During the 

transformation from cellulose I to cellulose II, it is the hydrogen bonding network that is 

reorganised whereas the glycosidic linkages are not affected. Furthermore, cellulose II in its 

hydrate (non-dried) form has superior digestibility than dried cellulose II and cellulose I 

[32,33].  This is because of the increased inter-planar spacing (d-spacing) created due the 

presence of two water molecules per two chain unit cell of cellulose II hydrate [32,33]. The 

increased d-spacing is also due to the weakening of the hydrophobic bonds (van der Waals 

interaction) thereby increasing the hydrophilicity [20,32,34]. In contrast to cellulose I, cellulose 

II has its glucopyranose rings stacked with each other by hydrophobic interactions along the 

(1 -1 0) plane, thereby resulting in an increased density of hydroxyl groups on the surface 

leading to increased hydrophilicity [20]. This increased density of hydroxyl groups gives 

cellulose II a wetting angle of 12O which is significantly lower than many polymers such as 

polyvinyl alcohol, polymethyl methacrylate, starch and polyethylene [20]. Furthermore, 

crystallinity index (CrI) results of cellulose I and cellulose II suggests that the latter is less 

crystalline than the former [35]. Additionally, from literature it can also be seen that the surface 

area and the porous volume of cellulose II is higher than that of cellulose I [34,36]. The 

characterisation of both cellulose I and II clearly indicates the latter to be a far more suitable 

starting material for the efficient release of fermentable sugars and subsequently, biofuel 

production. [32,34,37]. 

 

 



3. Cellulose II synthesis for fermentable sugar and biofuel production 

Cellulose I is difficult to process without pre-treatment, whereas cellulose II is the most 

commonly used man-made form which is relatively easier to process. Hence, to gain better 

accessibility to the cellulose structure for chemical processing, cellulose II has to be derived 

from cellulose I via an efficient pre-treatment process. Due to its amphiphilicity, cellulose I 

cannot be dissolved in water, however it can be dissolved in various other solvents such as 

trifluoroacetic acid, ionic liquids, onium hydroxides, molten salts and cold alkalis [15,38-41] 

(Table 2).   

 

In contrast to conventional alkali dissolution, ionic liquids and onium hydroxides are 

considered as green amphiphilic non-derivatising cellulose I solvents having negligible 

volatility and greater stability at higher temperatures [39,41]. Once dissolved, the irreversibly 

produced cellulose II can be precipitated out by the addition of anti-solvents such as water, 

ethanol, acetone, dilute acids or methanol. The nature of anti-solvents used, influence the 

structure and reactivity of cellulose II [18]. 

 

3.1 Conventional cellulose II production method – Alkali treatment 

Alkali treatment of cellulose I is one of the oldest known industrial processes. In the 

field of fibre production, it is known as the viscose process [42-44]. In viscose process, 

cellulose from pulp is converted to cellulose xanthogenate. This cellulose derivative is then 

dissolved in aqueous NaOH. Upon dissolution, the cellulose II derivative formed is 

precipitated out from solution followed by purification of cellulose II with removal of the 

substituent [42]. Viscose process is still being used for the production of cellophane, a 

packaging material.  

 

Unlike the viscose process, mercerisation is another method to produce cellulose II 

from cellulose I without derivatisation. Mercerisation was introduced by J. Mercer in the 

1850’s where cellulose I was allowed to swell in a concentrated NaOH aqueous solution 

followed by dissolution and precipitation [45,46]. Ever since mercerisation was introduced, it 

has been used to produce cellulose II frequently [47-55].  



Table 2 

 

Yu et al. tested the effect of a range of NaOH concentrations and temperatures on the 

mercerisation of cellulose I [54]. The feedstock material used in their experiments was ground 

jute fibres with an approximate particle size of 1 mm which were dispersed in aqueous NaOH 

solutions in the concentration range of 0 – 30% at 70 OC and 85 OC. It was determined that 

the highest cellulose II content was obtained with a 20% aqueous NaOH solution at 85 OC 

and 25% aqueous NaOH solution at 70 OC upon mercerisation (Fig. 6). It was further 

determined that the crystallinity index increased in the concentration range of 5 – 9% NaOH 

which is due to the increased reactivity of the amorphous regions in the jute fibres. Due to 

the increase in concentration of Na+ and OH- ions present beyond 9% concentration, 

penetration of the cellulose I lattice became easier thereby producing cellulose II with the 

lowest crystallinity until 15% NaOH concentration. When the concentration of NaOH was 

further increased until 30%, viscosity of the solution increased and hence the crystallinity of 

the resulting cellulose II sample was higher. It was also determined that the crystallinity index 

of the precipitated cellulose II was lower with a higher temperature (85 OC). 

 

Fig.6 

 

In contrast to determining the effect of high temperatures on mercerisation, Wang and 

Deng tested the effect of cellulose I dissolution at sub-zero temperatures [50]. They dissolved 

cotton linters in 6% NaOH solution at temperatures ranging from -8 OC to -20 OC. The 

percentage solubility of the samples were calculated and it was found that 25 – 32% solubility 

was reached (and plateaued) at temperatures of -15 OC and -20 OC. It was also determined 

that cellulose II started to appear after 10 minutes of dissolution time at -15 OC. 

 

3.2  New methods for cellulose II production 

3.2.1 Ionic liquid treatment 

Ionic liquids are molten salts with melting temperatures lower than 100 OC. Most 

common ionic liquids to date are air and moisture stable imidazolium based salts [56]. 



Currently, ionic liquids are of prime interest due to their versatility as solvents in various 

applications [57,58]. They are highly flexible, as a number of cation and anion combinations 

could be fabricated based on its end use. Methylimidazolium and methylpyridinium based 

cations, and chloride, acetate and formate anions are the most commonly used species for 

designing cellulose I dissolving ionic liquids [39], however, other anions such as Br-, SCN-, 

BF4
- and PF6

- among others, have been used [14,39,56]. It is believed that the OH groups of 

the neighbouring C6 and C3 cellulose chains form an electron donor-acceptor complex with 

ionic liquids to result in the dissolution of cellulose I [39].  

 

Ever since Swatloski et al. [14] demonstrated the use of ionic liquids as cellulose I 

dissolving solvents for the irreversible production of cellulose II, numerous researchers have 

opted for the use of various ionic liquids for the production of regenerated cellulose [36,49,59-

68]. For instance, Cheng et al. reported the use of an ionic liquid 1-ethyl-3-methylimidazolium 

acetate (EMIM-Ac) to produce cellulose II from Avicel, switchgrass, eucalyptus and pine [65]. 

The biomass samples were milled to 40 mesh prior to EMIM-Ac treatment. The samples were 

heated to 120 OC for 1, 3, 6 or 12 hours. Upon dissolution, hot water was added to precipitate 

cellulose II out of the solution. X-ray diffraction (XRD) profiles of the dried samples revealed 

that after treatment with EMIM-Ac, all the samples were converted to cellulose II as seen in 

Fig. 7, however switch grass samples showed residual cellulose I after an hour’s treatment 

[65,66]. This group performed further experiments at a higher temperature of 160 OC and 

found that the rate of cellulose II formation was higher at higher temperatures, however there 

are chances of cellulose I depolymerisation when dissolved at higher temperatures. 

 

Fig. 7 

 

Zavrel et al. performed a high throughput screening to compare and determine the 

best ionic liquid for producing cellulose II from Avicel and lignocellulose [69]. Apart from Avicel 

and α-cellulose as the standard cellulose I samples, lignocellulosic materials such as spruce 

wood, silver fir, common beech and chestnut wood of size 1-2 mm were dissolved in a range 

of ionic liquids. They screened 21 different ionic liquids for their ability to dissolve cellulose I 

(and lignocellulose) of 1 – 5 wt.% for 8 – 12 hours at 50 OC and precipitated cellulose II. 



Amongst the screened ionic liquids, EMIM-Ac was found to be effective for dissolving 

cellulose I whereas 1-allyl-3-methylimidazolium-chloride (AMIM-Cl) was found to be effective 

for dissolving wood chips as observed from their light scattering measurements. In addition, 

it was also observed that at a higher temperature of 80 OC, the dissolution of cellulose I was 

quicker when compared to lower temperatures ranging from 40 – 60 OC (Fig. 8). It was 

elucidated that viscosity of the ionic liquids is affected at higher temperatures enabling better 

dissolution. Furthermore, at higher temperatures the hydrogen bonds present in cellulose I 

structure were destabilised thereby enhancing the rate of cellulose I dissolution. 

 

Fig. 8 

 

Vitz et al. performed cellulose I dissolution studies using various imidazolium based 

ionic liquids containing odd or even numbered alkyl side chains in combination with a range 

of anions [70]. Few ionic liquids used in their study were commercially available whereas the 

remaining were synthesised before the dissolution experiments. A concentration of 8 wt.% of 

cellulose I (Avicel PH 101) was dissolved in the ionic liquids at 100 OC. In some cases, 

microwave irradiation was used to dissolve cellulose I in ionic liquids. Upon dissolution for 1 

hour, cellulose II was precipitated with the addition of excess methanol. From their 

experiments it was primarily concluded that moisture free ionic liquids were needed to 

achieve high dissolution of cellulose I. Furthermore, they deduced that the moisture uptake 

by ionic liquids with various anions followed the resulting order CH3COO- ≈ (CH3)2PO4
- > 

(CN2)N- > triflate > BF4
- > PF6

-. Secondly, they established that imidazolium based ionic 

liquids with shorter even numbered side chains (two or four) combined with chloride anions 

showed good cellulose I dissolving properties. In addition to chloride anions, acetate and 

phosphate anions were shown to have good cellulose I dissolution properties. Results upon 

microwave irradiation revealed that the yield of cellulose II was 86% for 1-ethyl-3-

methylimidazolium chloride whereas the yield from ionic liquid, 1-ethyl-3-methylimidazolium 

diethyl phosphate was 96%. This was attributed to the degradation of cellulose I in chloride 

containing ionic liquid under microwave irradiation. 

 

Zhang et al. performed nuclear magnetic resonance (NMR) spectroscopic studies on 

the dissolution of cellobiose (a disaccharide containing two anhydroglucose units) in EMIM-



Ac to understand the mechanism of cellulose I dissolution in ionic liquids [71]. They provided 

evidence that the acetate ion in EMIM-Ac forms a hydrogen bond with the hydrogen atoms 

of the cellobiose hydroxyl group whereas the imidazolium ion bonds with the oxygen atoms 

of the cellobiose hydroxyl group thereby dissolving it.  

 

It can be seen from literature that ionic liquids for cellulose II production is ever 

expanding. Despite the high versatility for fabrication of ionic liquids and negligible vapour 

pressure, its high viscosity at room temperature, instability in the presence of water and the 

requirement of temperatures higher than room temperature to dissolve cellulose I does not 

make it completely “environmental friendly” for the production of cellulose II. 

 

3.2.2 Onium hydroxide treatment 

Solvents containing onium and hydroxide ions are termed as onium hydroxides. 

Examples of onium hydroxides are tetrabutylammonium hydroxide (TBAH), 

tetramethylammonium hydroxide (TMAH) or tertabutylphosphonium hydroxide (TBPH). 

Onium hydroxides, unlike ionic liquids, are usually found as aqueous solutions and have the 

capability to dissolve wet cellulose I samples. Solvents of this class also have the added 

advantage of lower viscosity when compared to their ionic liquid counterparts. They are also 

liquid at room temperature and they do not require heating to dissolve cellulose I. Additionally, 

Toth et al. demonstrated that an aqueous onium hydroxide, TMAH was a better Mercerising 

agent than aqueous NaOH [72]. 

 

Abe et al. demonstrated the use of onium hydroxides, TBAH and TBPH for the 

production of cellulose II from cellulose I [40]. They dissolved cellulose I in various 

concentrations of aqueous TBAH and TBPH ranging from 40 – 70 wt.% at room temperature 

(25 OC). It was determined that a concentration range of 50 – 60% TBAH and 50 – 70% TBPH 

in water was required for complete cellulose I dissolution at room temperature. Cellulose I 

was insoluble in all the other concentrations of onium hydroxides used. Upon dissolution, hot 

ethanol was added to precipitate cellulose II. H-NMR studies were further conducted to study 

the mechanism of cellulose dissolution in onium hydroxides. It was established from these 

studies that the hydroxide ion of the onium hydroxides formed hydrogen bonds with the 



hydroxyl groups of cellulose. This mechanism of cellulose dissolution observed is similar to 

that in ionic liquids as mentioned earlier. This provides further evidence that an amphiphilic 

compound such as cellulose could only be dissolved in amphiphilic solvents.  

 

Furthermore, Abe et al. published a follow up paper to their above mentioned work (in 

2012) to examine the effect of different onium cations on their cellulose I dissolution capability 

[73]. They used a range of commercially available and tailor made onium hydroxides such as 

TBPH, tetraethylphosphonium hydroxide (TEPH), tri-n-hexylphosphine 

tetramethylammonium hydroxide (THTMAH), tetraethylammonium hydroxide (TEAH), TBAH, 

tri-n-butylmethylphosphonium hydroxide and tetra-n-hexylammonium hydroxide and 

determined the effect of temperature and cellulose I loading on cellulose I solubility. All the 

onium hydroxides used, dissolved a concentration of 15 wt.% cellulose I, whereas TBPH and 

TBAH dissolved 20 wt.% cellulose I. THTMAH and TEAH did not dissolve any cellulose I. 

The non-dissolving ability of TEAH was attributed to the low hydrophobicity of the cation 

which was determined via C-NMR studies. Furthermore, they also observed that a similar 

onium hydroxide, TEPH dissolved up to 15 wt.% cellulose I because the phosphonium cation 

had a higher hydrophobicity than the ammonium cation in TEAH. This established the 

amphiphilic nature of both the onium hydroxides and cellulose I. When an amphiphilic solvent 

such as aqueous TBAH or TBPH was employed for cellulose I dissolution, an optimum 

amount of water was required in solution to form hydrogen bonds between the hydroxyl 

groups of cellulose I (hydrophilic regions) and water. Addition of cellulose I to such an 

amphiphilic solvent disrupts the inter and intramolecular hydrogen bonds within the cellulose 

I structure forming new hydrogen bonds with the surrounding water molecule. Furthermore, 

hydrophobic cations in these amphiphilic solvents interact with the respective hydrophobic 

regions in cellulose I causing complete dissolution of cellulose I. Further details on the 

characteristics of amphiphilic solvents used for cellulose I dissolution could be found 

elsewhere [15,18,23,41,74]. 

 

Wei et al. performed cellulose I dissolution experiments in aqueous TBAH at different 

temperatures to determine the effect of temperature on the production of cellulose II [75]. 

They dissolved 376 mg cellulose I in 5 ml aqueous TBAH (40 and 60 wt.%) in a temperature 

range of 16 – 28 OC for 60 minutes. It was determined that better solubility of cellulose I was 



achieved with 40 wt.% TBAH at 16 OC. Although, cellulose I dissolved at 16 OC showed 

superior solubility, upon regeneration using hot water, all the samples showed a peak shift in 

the XRD spectra thereby suggesting the conversion to cellulose II. Since the ionic structure 

of TBAH was stable at a lower temperature, it was suggested that a strong hydrogen bond 

network was formed between the onium hydroxide and cellulose I enabling higher solubility.  

 

To emphasise the amphiphilicity of cellulose I and TBAH, Alves et al. compared the 

dissolution of cellulose I in aqueous TBAH and NaOH [41]. A concentration of 1 wt.% 

cellulose I was dispersed in 8 wt.% aqueous NaOH and frozen at -20 OC for 24 hours, 

followed by thawing at room temperature with gentle mixing. Similarly, 1 wt.% cellulose I was 

mixed with 40 wt.% aqueous TBAH at room temperature for 30 minutes. After dissolution, 

dilute H2SO4 was added to the mixture to precipitate and regenerate cellulose II. A clear 

cellulose I solution was obtained when both TBAH and NaOH were used as solvents 

indicating complete dissolution when observed with the naked eye. When viewed under a 

polarised light microscope, however, cellulose I fragments were seen in the aqueous NaOH 

solution but not in the case of aqueous TBAH solution. Furthermore, SEM images revealed 

that needle-like crystallite structures were observed in NaOH solution and a wrinkled film like 

morphology was observed in the TBAH solution indicating that complete cellulose I 

dissolution occurred in the latter but not the former. Dynamic light scattering measurements 

revealed that the average particle size in the TBAH system was between 10 – 20 nm whereas 

in the case of the NaOH system it was 200 nm. Additionally, the lower crystallinity index of 

the TBAH extracted cellulose II when compared to cellulose I and NaOH extracted cellulose 

II supported their results. Thus it can be seen that near molecular level dissolution was 

achieved when TBAH was used as a solvent. The authors attributed this to the amphiphilic 

nature of cellulose I and TBAH emphasising the superiority of onium hydroxides over alkalis 

as solvents for dissolving cellulose I. The advantage of using onium hydroxides over alkali 

metal hydroxides and (aqueous) ionic liquids for cellulose I dissolution was established by 

Abe et al. and is shown in Fig. 9 [73]. 

 

Fig. 9 

 

 



3.2.3 Phosphoric acid treatment 

Jia et al. dissolved cellulose I in phosphoric acid and produced cellulose II via 

regeneration with the addition of water [76]. They prepared a range of cellulose I - phosphoric 

acid concentrations with 0.5 – 3% wt./v cellulose I and 77 – 85 wt.% phosphoric acid in the 

temperature range of 5 – 75 OC. An esterification reaction occurred when cellulose I was 

mixed with phosphoric acid forming a cellulose I - phosphoric acid ester. Upon dissolution, 

when water was added to regenerate cellulose II, phosphoric acid in the complex was 

displaced by the water molecules. The transformation of cellulose I to cellulose II was 

confirmed with the XRD and FTIR (Fourier Transform Infrared spectroscopy) spectra. 

Furthermore, they determined that a higher concentration of phosphoric acid (≥ 83 wt.%) was 

required to completely dissolve cellulose I whereas in any other lower concentration, only 

swelling occurs. In addition, they also established that up to 3% wt./v cellulose I could be 

dissolved in phosphoric acid and any concentration above that would cause the dispersion 

of cellulose I but not dissolution in phosphoric acid. When dissolution experiments were 

performed under different temperatures, it was determined that complete dissolution was 

favoured at lower temperatures as monitored by an UV-visible spectrometer. 

 

3.2.4 Trifluoroacetic acid treatment 

Zhao et al. introduced a new non-derivatising method to produce cellulose II from 

cotton linters using trifluoroacetic acid (TFA) at low temperatures [77]. Cotton linters was 

mixed in 99% TFA in mass ratios of 1:15 at different temperatures ranging from 0 – 65 OC for 

3 hours. The swollen samples were washed with water to remove traces of TFA and recover 

cellulose II. The production of cellulose II was confirmed using XRD measurements. They 

observed an inverse temperature effect for the production of cellulose II using TFA as the 

solvent. At 0 OC, cellulose I was completely converted to cellulose II whereas with an increase 

in temperature only partial conversion was observed. The reason for this partial conversion 

was attributed to the lack of TFA cyclic dimer formation at higher temperatures. As proposed, 

TFA tend to form cyclic dimers at lower temperatures but not at higher temperatures. Weak 

interactions were suggested to be formed between the C=O of the TFA dimers and cellulose 

I at 0 OC. These interactions could disrupt the hydrogen bonding network thereby facilitating 

cellulose I decrystallisation, but the TFA monomers formed at higher temperatures were not 

able to disrupt the hydrogen bonds favouring only partial conversion. In addition, SEM 



analysis showed that the supramolecular structure of cellulose was undisturbed before and 

after TFA treatment which confirms that treatment with TFA would only partially produce 

cellulose II. Although the inverse temperature effect for cellulose II production was 

established, risks involved in the handling and use of TFA makes it a less preferred solvent 

for cellulose II production. 

 

3.2.5 Supercritical water solubilisation 

Sasaki et al. proposed a new method for cellulose II production from native cellulose 

(cellulose I) using near and supercritical water as a solvent [78]. A concentration of 10 wt.% 

cellulose I was mixed with water in a microreactor and rapidly heated for 0.02 – 0.6 s at 320 

– 400 OC and 25 – 33 MPa pressure. It was determined that at 320 OC and 25 MPa, cellulose 

II was not produced instead, soluble saccharides of cellulose were formed. In the range of 

360 – 380 OC, partial cellulose I dissolution occurred and in the range of 375 – 380 OC, 50% 

cellulose I conversion was achieved accounting for both cellulose II and soluble saccharides 

of cellulose. At 400 OC cellulose I disappeared within 0.02 s and both cellulose II and soluble 

saccharides of cellulose were obtained.  It was further established that at temperatures higher 

than 380 OC, cellulose I conversion was constant and was independent of the pressure.  

 

At the near and supercritical water temperatures, the intermolecular and 

intramolecular hydrogen bonds become weaker in cellulose I thereby facilitating bond 

cleavage. Also, at higher temperatures, the density and dielectric constant of water 

decreases with the increase in hydrophobicity and diffusion coefficient which favours the 

partial dissolution and hydrolysis of cellulose I. Although advantages such as the use of 

environment friendly solvent (water) and one pot cellulose II production was emphasised by 

the authors, the disadvantages such as non-selectivity, decomposition of desired products at 

high temperatures and high energy input overshadow its advantages. 

 

4. Fermentable sugar and biofuel production with cellulose II 

With a view towards biofuel production, Mittal et al. dissolved four types of cellulose I 

obtained from various sources (Avicel PH-101, α-cellulose, cotton linters and cellulose 



extracted from corn stover) in 16.5 wt% aqueous NaOH at 25 OC under a nitrogen 

atmosphere [47]. Upon dissolution and precipitation, the cellulose I samples were found to 

be converted to cellulose II. In addition to the conversion, they tested the enzymatic 

digestibility of these cellulose I and cellulose II samples using Genencor GC220 cellulase 

enzyme preparation. They determined that the enzymatic digestibility of cellulose II was 

superior to that of cellulose I from their experiments. The initial enzymatic hydrolysis rate of 

cellulose II was found to be two times faster than cellulose I. The superior digestibility was 

attributed towards the increased non-crystalline regions present in cellulose II as a result of 

mercerisation.  

 

 Ma et al. used pyrrolidonium based ionic liquids to extract regenerated cellulose from 

corn stalk for fermentable sugar production via enzymatic hydrolysis [79]. Ionic liquids such 

as N-methyl-2-pyrrolidonium hydrogen sulfate (MPHS), N-methyl-2-pyrrolidonium 

dihydrogen phosphate (MPDP), N-methyl-2-pyrrolidonium chloride (MPC) and N-methyl-2-

pyrrolidonium methanesulfonate (MPMS) and their respective aqueous solutions were 

synthesised for dissolving the lignocellulosic feedstock. A concentration of 0.05 wt% corn 

stalk was added to the ionic liquids and the mixture was heated to 90 OC and stirred for 30 

minutes. Then 20 ml of 1:1 acetone/deionised water solution was added to the mixture to 

precipitate regenerated cellulose. Reduced crystallinity of the regenerated cellulose samples 

was confirmed using the FTIR spectra obtained. These regenerated cellulose samples (1 

g/ml) were subjected to enzymatic hydrolysis for the production of fermentable sugars. 

Commercial Aspergillus niger cellulase (0.02 g) was used for enzymatic hydrolysis. The 

enzymatic hydrolysis experiments were performed at 50 OC for 72 hours at a pH 4.8, 

maintained using 0.1 M sodium citrate buffer. Highest yield of fermentable sugars of 91.81% 

followed by 73.59% and 70.18% were produced from regenerated cellulose obtained with 

aqueous MPC, MPMS and MPC treatment respectively. These high sugar yields were 

attributed to the hydrogen bonding capability and the acidity of the ionic liquids which 

effectively removed the bound hemicelluloses and lignin in the corn stalk in addition to the 

reduced crystallinity of the obtained regenerated cellulose. 

Shafiei et al. dissolved either spruce wood chips or powder in ionic liquids EMIM-Ac, 

and 1-butyl-3-methylimidazolium acetate (BMIM-Ac) and an organic solvent N-

methylmorpholine-N-oxide (NMMO) [68]. Wood chips or powder (5%) was mixed with the 



ionic liquids at 120 OC in an oil bath for varied experiment times. Upon dissolution, 20 ml of 

boiling water was added to the solution to precipitate cellulose II from the mixture. The 

precipitated cellulose II was filtered through a filter paper and washed with excess water to 

remove any bound ionic liquids. As a result of ionic liquid pre-treatment, cellulose II was 

formed with lower crystallinity than the untreated wood samples. Furthermore, enzymatic 

hydrolysis of cellulose II and cellulose I (wood chips and powder) samples was carried out at 

45 OC for 72 h in citrate buffer with a mixture of cellulase and β-glucosidase enzymes. The 

fermentable sugar yield from EMIM-Ac (66%) and BMIM-Ac (57%) treated wood chips 

samples were found to be significantly higher than the NMMO (38%) treated and untreated 

samples (2%). After hydrolysis, the hydrolysates were separated and subjected to ethanol 

fermentation using Saccharomyces cerevisiae CCUG53310 at 32 OC for 24 hours.  A higher 

yield of ethanol production for EMIM-Ac (67%) and BMIM-Ac (52%) in comparison to NMMO 

(36%) treated and untreated (3%) samples upon fermentation was observed. The reason for 

a higher yield of fermentable sugars and bioethanol production was attributed towards the 

lower crystallinity of the raw material, cellulose II. 

 

In addition to the example mentioned above and various well documented evidences 

mentioned earlier on the use of ionic liquids for cellulose II production, there has also been a 

techno-economic study published by Klein-Marcuschamer et al. in 2011 on the feasibility of 

ionic liquids for ligno-cellulosic biorefineries [80]. Based on their study it can be inferred that 

the key barrier to scale-up is the cost of ionic liquids needed for cellulose I dissolution which 

dominates the proportion of total costs involved followed by the cost of ionic liquid loading 

and the rate of ionic liquid recycling. In order to compensate for the ionic liquid loading, 

aqueous ionic liquid mixtures have been used by Fu and Mazza [63]. They dissolved triticale 

straw in 5%, 25%, 50% and pure EMIM-Ac to obtain cellulose II for enzymatic hydrolysis. As 

can be seen from their results in Fig. 10, when pure EMIM-Ac was used to dissolve straw, 

almost complete cellulose II hydrolysis was seen after approximately 8 hours, with decreasing 

the ionic liquid loading to 50%, cellulose II hydrolysis fell from 100% to 80% at 8 hours. With 

a further decrease in the EMIM-Ac loading to 25% and 5%, an even lower cellulose II amount 

was hydrolysed. According to the feasibility study conducted by Klein-Marcuschamer et al., 

there has to be an optimum trade-off between the ionic liquid loading and the hydrolysate 

produced. Furthermore, their economic analysis also revealed that the revenue generated by 

the lignin by-products could offset a part of the investment costs. 



Fig. 10 

 

5. Conclusion 

Current global energy scenario demands an increase in the use of renewable 

energy to mitigate emissions, particularly in the transportation sector. The use of 

biofuels for transportation would help to achieve the emission targets. To make 

biofuels attractive, the price of it must however match the current oil price. This would 

be feasible when biofuel industries turn into biorefineries and offset the costs by 

(i) improving the biofuel yields and  

(ii) producing value added by-products. 

 

To improve the yield of biofuels, especially bioethanol, a more easily accessible 

cellulose feedstock has to be input. It is evident from this review that cellulose II has 

distinct advantages over cellulose I (and lignocellulosic biomass) as feedstock for 

biofuel production. When lignocellulosic materials are used in biorefineries, interfering 

lignin network hinders the complete utilisation of cellulose. Even though when 

cellulose I is separated from lignin using appropriate pre-treatment methods such as 

steam explosion, ammonia explosion or acid/alkali hydrolysis [81], the crystalline 

structure of native cellulose combined with the hydrophobic interactions and the intra 

and intermolecular hydrogen bond network makes it difficult to process further via 

microbiological, enzymatic or chemical routes.  

 

To overcome this problem, lignocellulose pre-treatment focussing on 

delignification combined with simultaneous production of cellulose II have been used. 

Cellulose II could be produced by simply dissolving cellulose I or lignocellulosic 

feedstock in an appropriate amphiphilic solvent followed by regeneration using an anti-

solvent such as water, ethanol, methanol, dilute acids or acetone. Cellulose II has 

been well established to have a lower crystallinity than cellulose I. The former is also 

said to have the highest wettability, porous volume and surface area than cellulose I 

[20,34,36]. These advantages make cellulose II an easily digestible polymorph of 



cellulose, however it has not been used extensively for biofuel production purposes. 

Though the use of cellulose II as biofuel feedstock has not been comprehensively 

studied, the limited results reported have strongly established the fact that cellulose II 

is a better feedstock than native cellulose (and lignocellulosic wastes) for biofuel 

production.  

 

A range of solvents have been used for the production of cellulose II. With 

mercerisation dating back to 1850’s, until today, there has been significant 

developments in the field of dissolution and regeneration of cellulose. Of all the 

solvents used, molecular level dissolution could be achieved only when ionic liquids 

or onium hydroxides are used as solvents. This is because of the amphiphilic nature 

of both the cellulose I and the solvents, however an optimum solvent loading is 

required to make biorefineries profitable. Ionic liquids’ cellulose I dissolving ability is 

affected when they come in contact with water and hence aqueous onium hydroxide 

solution can be used as a substitute for ionic liquids. Also from an energy perspective, 

onium hydroxides offer an advantage over ionic liquids as preferred solvents for 

cellulose I dissolution due to their high cellulose I dissolving capacity at room 

temperature. Although there are room temperature ionic liquids available for cellulose 

dissolution, their high viscosity limits its use. 

 

The prospect of using cellulose II as feedstock for biofuel production has been 

experimented but requires more research considering the advantages it offers. 

Literature evidence available suggests that the potential of cellulose II for biofuel 

production is higher than cellulose I as discussed in this review. These initial results 

from most researchers are promising but several research gaps such as the scalability, 

selectivity, recyclability of cellulose I solvents, use of wet biomass for integrated biofuel 

production and economic viability needs to be addressed to proceed further. Hence 

cellulose II needs to be seriously considered as an alternative feedstock option if 

cellulosic biorefineries are to become a feasible reality. 
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Fig. 1. Cumulative investment in renewables-based power generation, 2013-2035, where 

OECD stands for Organisation for Economic Co-operation and Development, [2] (Reprinted 

with permission from “IEA Publishing. OECD/IEA© 2013,”). 

Fig. 2. Structure of Cellulose I 

Fig. 3. Hydrophilic and hydrophobic sides of Cellulose I: (a) top view of glucopyranose ring 

plane; (b), front view of glucopyranose ring plane, [20] (Reprinted with permission from 

“Macmillan Publishers Ltd: Polymer Journal, copyright 2006”). 

Fig. 4. Cellulose polymorphs 

Fig. 5. Intermolecular and intramolecular hydrogen bonding in cellulose I and cellulose II, [31] 

(Reprinted with permission from “John Wiley and Sons, copyright 1998”). 

Fig. 6. Crystallinity index and cellulose II content of mercerised jute fibres by aqueous NaOH 

for 4 hours, [54] (Reprinted with permission from “The Royal Society of Chemistry”). 

Fig. 7. XRD profiles for cellulose samples treated at 120 OC [65] (Reprinted with permission 

from “American Chemical Society, Biomacromolecules, Copyright 2011”) 

Fig. 8. Influence of temperature and shaking on the dissolution of 4 wt.% Avicel in EMIM-Ac 

[69] (Reprinted with permission from “Elsevier, Bioresource Technology, Copyright 2009) 

Fig. 9. Cellulose I solubility in various solvents [73] (Reprinted with permission from 

“American Chemical Society, Sustainable Chemistry and Engineering, Copyright 2015”). 

Fig. 10. Cellulose hydrolysis [63] (Reprinted with permission from “Elsevier, Bioresource 

Technology, Copyright 2011). 

 

Table 1: Cellulose I content of various bioethanol feedstocks [82-86] 

Table 2: Cellulose II production methods 
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Table 1 

Material % cellulose I content 

(wt./wt.) 

Green algae 20-40 

Cotton, flax, etc. 80-95 

Grasses 25-40 

Hardwoods 45±2 

Hardwood barks 22-40 

Softwoods 18-38 

Softwood barks 42±2 

Corn stalks 39-47 

Wheat straw 37-41 

Newspapers 40-55 

Chemical pulps 60-80 

Rice straw 46.5±1.5 

Wheat straw 35-37 

Rice husk 25-35 

Bagasse 32-43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. 

Treatment type Solvent used Temperature (OC) Method synopsis Reference 

Alkali 

Aqueous NaOH solution - 

Cellulose xanthogenate prepared from 
pulp is dissolved in aqueous NaOH and 
precipitated out of solution (viscose 
process). 

[42-44] 

0-30% aqueous NaOH solution 70 OC/85 OC 

Cellulose I was dissolved in NaOH 
aqueous solution followed by 
precipitation and purification 
(mercerisation). 9 – 15% NaOH 
aqueous solution was found to produce 
better cellulose II yields than other 
concentrations at 85 OC. 

[46,54] 

6% aqueous NaOH solution -8 OC to -20 OC 

Cellulose I was dissolved at sub-zero 
temperatures and after 10 minutes of 
dissolution at -15 OC cellulose II started 
to appear. 

[50] 

Ionic liquid 

1-ethyl-3-methylimidazolium acetate 
(EMIM-Ac) 

120 OC/160 OC 

Avicel, switchgrass, eucalyptus and 
pine samples were dissolved in EMIM-
Ac at the 120 OC /160 OC and upon 
dissolution, cellulose II was 
precipitated out using hot water. Higher 
rate of cellulose II formation was 
observed with higher temperature. 

[65] 

21 different ionic liquids 50 OC/80 OC 

Avicel, α-cellulose, spruce wood, silver 
fir, common beech and chestnut wood 
of 1- 5 wt.% was dissolved in 21 
different ionic liquids at 50 OC and upon 
dissolution cellulose II was 
precipitated. EMIM-Ac was found to 
dissolve standard cellulose I samples 
and 1-allyl-3-methylimidazolium-

[69] 



chloride (AMIM-Cl) dissolved the wood 
samples. 

imidazolium based ionic liquids 
containing odd or even numbered 
alkyl side chains in combination with a 
range of anions 

100 OC 

8 wt.% of Avicel PH 101 was dissolved 
in ionic liquids at 100 OC. Upon 
dissolution, excess methanol was used 
to precipitate cellulose II. It was 
determined that ionic liquids with 
shorter even numbered side chains (2 
or 4) combined with chloride anions 
showed good cellulose I dissolving 
properties. 

[70] 

Onium hydroxide 

Aqueous solutions of 
tetrabutylammonium hydroxide 
(TBAH) and tertabutylphosphonium 
hydroxide (TBPH). 

25 OC 

Cellulose I was dissolved in 40 – 70 
wt.% aqueous TBAH and TBPH 
solution. Hot ethanol was added to the 
solution to precipitate cellulose II.  It 
was determined that a concentration 
range of 50 – 60% TBAH and 50 – 70% 
TBPH in water was required for 
complete cellulose I dissolution at room 
temperature 

[40] 

TBAH 16 OC – 28 OC 

Cellulose I was dissolved in 40 and 60 
wt.% TBAH at different temperatures. 
Precipitation and regeneration of 
cellulose II was performed by the 
addition of hot water. It was determined 
that cellulose I dissolved better at 16 OC 
due to the stable ionic structure of 
TBAH at lower temperatures. 

[75] 

TBPH, tetraethylphosphonium 
hydroxide (TEPH), tri-n-
hexylphosphine 
tetramethylammonium hydroxide 
(THTMAH), tetraethylammonium 
hydroxide (TEAH), TBAH, tri-n-

25 OC 

Cellulose I was dissolved in various 40 
wt% onium hydroxide aqueous 
solutions. A concentration of 15 wt% 
cellulose I was found to be dissolved in 
all the onium hydroxides, whereas 
TBPH and TBAH dissolved 20 wt% 

[73] 



butylmethylphosphonium hydroxide 
and tetra-n-hexylammonium 
hydroxide 

cellulose I. THTMAH and TEAH did not 
dissolve any cellulose I. 

Phosphoric acid 77 – 85 wt.% phosphoric acid 5 OC – 75 OC 

0.5 – 3% wt./v cellulose I was dissolved 
in 77 – 85 wt.% phosphoric acid in the 
temperature range of 5 – 75 OC. 
Regeneration was performed with the 
addition of water. They determined that 
a higher concentration of phosphoric 
acid (≥ 83 wt.%) was required to 
completely dissolve cellulose I. 

[76] 

Trifluoroacetic acid  99% Trifluoroacetic acid (TFA) 0 OC – 65 OC 

Cotton linters were mixed in 99% TFA 
in mass ratios of 1:15 at different 
temperatures ranging from 0 – 65 OC 
for 3 hours. The swollen samples were 
washed with water to recover cellulose 
II. Complete conversion to cellulose II 
was only observed at 0 OC. 

[77] 

Supercritical water 
solubilisation 

Supercritical water 320 OC – 400 OC 

A 10 wt.% cellulose I was mixed with 
water in a microreactor and rapidly 
heated for 0.02 – 0.6 s at 320 – 400 OC 
and 25 – 33 MPa pressure to obtain 
cellulose II. It was determined that at 
temperatures higher than 380 OC, 
cellulose I conversion was constant 
and was independent of pressure. 

[78] 
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