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HIGHLIGHTS

« High temperature rapid biomass combustion is studied based on single particle model.
« Particle size changes in devolatilization and char oxidation models are addressed.

« Time scales of various thermal sub-processes are compared and discussed.

« Potential solutions are suggested to achieve better biomass co-firing performances.
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Biomass co-firing is becoming a promising solution to reduce CO, emissions, due to its renewability and
carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combus-
tion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD)
combustion model of a single biomass particle is employed to study high-temperature rapid biomass
combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass
devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used
for those two models were from high temperatures and high heating rates tests. The particle size changes
during the devolatilization and char burnout are also considered. The mass loss properties and temper-
ature profile during the biomass devolatilization and combustion processes are predicted; and the time-
scales of particle heating up, drying, devolatilization, and char burnout are compared and discussed.
Finally, the results shed light on the effects of particle size on the combustion behavior of biomass
particle.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

large percentages of biomass co-firing in existing pulverized coal
boilers.

Biomass is a sustainable fuel that can deliver a significant
reduction in net carbon emissions when compared with fossil
fuels, and environmental and social benefits could also be
expected [1]. However, due to high volatile contents and low
energy densities, the combustion properties of biomass are signif-
icantly different from those of coals, limiting the biomass substi-
tution ratios in co-firing boilers. Currently, biomass co-firing
levels are mostly below 5% on energy basis, while more than
10% biomass substitution are seldom commercialized [2,3]. An
efficient biomass co-firing solution is therefore required to attain
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When entering a pulverized-fuel flame, biomass particles are
rapidly heated to a final temperature in the range of 1400-
1600 °C at a rate of approximately 10% °C/s [4,5]. However, most
common analysis based on TGA is not able to determine the
accurate kinetics of biomass combustion at real furnace condi-
tions, due to the relatively low temperatures (<1000 °C) and
low heating rate (<1 °C/s) [5]. Therefore, there is a clear lack of
a suitable biomass combustion model with feasibility of repre-
senting more faithfully a true boiler or furnace condition, in
which biomass particles are heated rapidly to high temperatures.
Accordingly, the study of biomass thermal behavior at real
combustion conditions is the first step in understanding biomass
combustion behavior and possibility of large percentage co-firing
with coals.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Symbols

pre-exponential factor in Arrhenius expression (1/s)
carbon content (%, dry ash free basis)
diffusion rate coefficient (m?/s)

particle diameter (m)

activation energy (J/kmol)

faction of heat absorbed by solid residuals
kinetic constant (kg/m? Pa s)

thermal conductivity (W/m K)

mass (kg)

moisture content (%)

reaction order (-)

pressure (Pa)

particle radius (m)

gas universal constant 8.3143 J/(mol K)
char specific surface (m?/kg)

temperature (K)

mass conversion (-)

particle size evolution exponent (-)
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Subscripts

B biomass

Char char

dry drying

devo devolatilization
exp experimental
g gas phase

M moisture

mod modeled

0X char oxidation
p particle

s solid remains
vola volatile

w furnace wall

0 initial value

Biomass combustion has widely been studied based on a single
particle model [6-18]. For example recently, Porteiro et al. [13]
employed a single particle model to investigate the biomass ther-
mal conversions, considering both intra-particle combustion and
extra-particle transport processes to describe the thermal deration
of biomass particles; the impacts of structure changes on the heat
transfer properties of wood was also studied in their further work
[12]. To study the combustion properties of a woody biomass par-
ticle, Haseli et al. [14] upgraded a one-dimensional particle model
accounting for particle heating-up, devolatilization, char oxidation,
and gaseous phase reactions. Lu et al. [15,16] reported the effects
of particle size and particle shape on the devolatilization and com-
bustion performance of biomass employing a one-dimensional
particle model and discussed with their experimental results.
Yang et al. [18] studied combustion characteristics of a wide range
of sizes biomass (10 pm to 20 mm) using same single particle mod-
eling approaches.

This paper studies biomass combustion properties at a high
temperature and high heating rate that are similar to the condi-
tions in a real furnace. A computational fluid dynamics (CFD) com-
bustion model of a single biomass particle is employed, and the
existing devolatilization and char oxidation models are upgraded
to study high-temperature rapid biomass combustion behavior.
Biomass devolatilization reaction rate and the amount of released
volatiles are governed by a two-competing-rate model, considering
the swelling properties of biomass particle during its devolatiliza-
tion process. The biomass char oxidation rate is controlled by both
kinetics and oxygen diffusion combining an empirical method for
predicting particle size changes with char burnout. The mass
loss properties and temperature profile during the biomass
devolatilization; and combustion processes are predicted, and the
timescales of particle heating up, drying, devolatilization, and char
burnout are discussed.

2. Fuel and method
2.1. Fuel and kinetics
The studied woody biomass is palm kernel shell (PKS), and its

proximate and ultimate properties are listed in Table 1. The appar-
ent kinetics of devolatilization and char oxidation of biomass have

been previously determined by a series of tests in an isothermal
plug flow reactor (IPFR) [4,5], as also presented in Table 1.

2.2. Modeling approach

This numerical study concerns exposing a woody biomass par-
ticle in a high temperature furnace; the oxidizing agent, air, comes
from one side of the furnace, and the flue gas flows out from the
other side. The whole combustion process includes the particle
heating-up, drying, devolatilization, and char oxidation. Once
exposed in the high temperature furnace, the biomass particle is
heated up by the surrounding furnace wall and oxidizing agent
via radiation and convection, resulting in a rise in the surface tem-
perature of the biomass particle. The released heat is then trans-
ferred from the particle surface to its center by conduction. The
moisture and volatile matter are released once the particle temper-
ature has reached a reactive temperature, and the drying and
devolatilization rates depend on the particle temperature.

The amount of released volatile matter depends on the fuel type
and devolatilization conditions, and the volatiles mainly consist of
gaseous hydrocarbons at high temperatures. However, due to the
complexities in the chemical reactions, the kinetics of individual
gaseous species released during the devolatilization are still not
well understood. It is reasonable to represent the volatile matters
by a single virtual material, although in practice it contains many
kinds of species [19]. A surface reaction model is applied for the
char oxidation process that takes place on the particle surface,
while an empirical shrinking model is applied to simulate the par-
ticle size changes.

2.3. Mass and energy conservations

The equations presented below describe the evolution of solid
components including dry biomass and char. Ash is not considered
in this simulation due to its small amount.

0
% = *kdeyopB (1)
0
% = (1 = Vvola)Kdevo P — KoxPchar @
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Table 1

Fuel properties and kinetics of studied biomass.
Proximate analysis (Wt.%) Ultimate analysis (wt.%) LHV®® (M]/kg)
Moisture®* Volatiled® FCdb Ashdb cdv HeP o Ndb
7.20 72.78 22.99 4.23 51.83 6.28 37.03 0.44 17.28

Devolatilization kinetics [4]

Char oxidation kinetics [5]

Al(sT) A (s E; (kJ/mol) E; (kJ/mol)

v Vs, Ac(s™h) Ec (kJ/mol) n

602 8000 42.5 130

0.86 0.96 0.39 47.5 0.29

The moisture is considered separately as a liquid component,
and when the local temperature reaches the vaporization temper-
ature, the drying process starts and its rate is control by kinetics:

omu
ot
The local moisture content is readily calculated with the follow-
ing equation:

= —KaryMu 3)

C= _ Pu (4)
pB + pChar + pM
The conservation of energy for the solid phase accounting accu-
mulation, conduction, radiation, and heat released from both
homogeneous and heterogeneous reactions is shown in Eq. (5).

aT,

St (PuCran + PosCros) + Penar Crichar))

_19 (rzk’a—T”> +Q (5)

T r2or or

2.4. Devolatilization

The yielded amount of high temperature volatile matter
(HTVM) is commonly more than that of standard volatile matter
[4]. Two-competing-rate model is employed to simulate the
devolatilization and then predict the high temperature volatile
matter yield [20], in which the first reaction (A, E1, and o) is used
to calculate the devolatilization rate at lower temperatures, while
the second reaction (A,, E;, and o) plays a dominant role at higher
temperatures. The two Kkinetic rates are weighted to yield an
expression of weight loss during the devolatilization process:

m,(t)
My

- '/Ot(oc] ki + oizk) exp (7 /Ot(lﬁ + kz)dt> dt (6)

where m,(t) is the volatile yield over time, and m, ¢ is the initial par-
ticle mass at injection. The kinetic rates are all expressed in
Arrhenius form.

2.5. Swelling coefficient

Based on the fuel and char morphological analysis by
comparing the average particle diameter of biomass before and
after high-temperature devolatilization, the swelling coefficient
was determined as 0.7, representing the biomass particle shrinkage
during its devolatilization process. The diameter of a particle may
change significantly during devolatilization based on its swelling
coefficient is calculated from

dp(t) o _ (1 7fw,o)mpv0 -mp
dP.o =1 * (CSW 1) fv.o(l _fw.a)mp-ﬂ

where the second term in the right hand side is the ratio of the mass
that has been devolatilized to the total volatile mass of the particle.

(7)

2.6. Char oxidation

Models based on apparent kinetics have frequently been used to
model char oxidation rates under conditions limited by the com-
bined effects of chemical kinetics and diffusion. According to this
model, the char oxidation rate can be predicted as [21]:

dm, dm, 1\"
& =5 (Po G 50) ®)

The evaluated diameter is modeled according to the following
equation:

d _

==X ©)

where d,, is the particle diameter (the subscript 0 indicates the ini-
tial value), and X is the degree of burnout. The limits of the burning
mode are 0 < « < 4, where o =0 refers to a constant particle size
with a decreasing density and o =1 corresponds to a decreasing
particle size with a constant density throughout the conversion. It
is also important to note that the burning mode of a function of par-
ticle size and combustion conditions. Due to the impacts of burning
mode on the burnout prediction is mainly at late combustion
stages, to the burning mode is fixed as 0.25 in this simulation [22].

3. Results and discussions

The models with the determined kinetic parameters used for
high-temperature rapid devolatilization and char oxidation pro-
cess have been validated in previous work, by comparing the pre-
dicted mass loss of studied biomasses with their corresponding
experimental values at the varying temperatures [4,5].

Fig. 1 presents the general view of the total combustion of 1 mm
spherical biomass particle, as well as the individual mass loss pre-
dictions of drying, devolatilization and char oxidation processes,
which are known as the three main stages occurred during
biomass combustion. The drying process terminates quickly less
than 1 s compared to about 3 s for the completion of devolatiliza-
tion. It is also noticed that the char production increases gradually
with the volatile release and reaches a peak after the completion of
the volatile matter release, then the char oxidation starts
immediately and continues until the produced char is consumed
completely in approximately 7 s. In addition, Fig. 1 clearly shows
that, after drying and devolatilization, the char oxidation curve
overlaps the total biomass combustion curve, because the solid
remain is char and ash is not considered in the total mass weight
in this simulation.

3.1. Heating up of biomass particle

After being exposed to a high temperature combustion furnace,
biomass particle is heated up quickly by both radiation and con-
vection heat transfer. The biomass surface temperature could be
easily calculated according to the total heat flux onto the biomass
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particle. The surface temperature of biomass particle is important
to the biomass combustion, which determines the total heat flux
conducting from the particle surface into particle center, and thus
finally governs the drying and devolatilization processes along the
biomass particle radius.

The effects of particle size and furnace temperature on the bio-
mass surface temperature have been investigated in this work.
Fig. 2a shows that the particle of 1 mm could be heated up to the
furnace temperature much faster than a 10 mm size biomass par-
ticle. Thus, it could be concluded that the heating up process
becomes more important for larger size biomass particles, because
it requires more time to be heated up which subsequently slows
down the combustion process.

Fig. 2b compares the heating history of the two different sizes of
particle (1 mm and 4 mm) exposed into the combustion chamber
at two different temperatures (700°C and 900 °C). It can be
observed that a higher temperature accelerates the heating
up process for studied two particles, especially for larger size
particles.

dp=1 mm biomass @ 973 K

100
= Combustion process
80
——Devolatilization
oy \
S 60 \ === Char oxidation
8 |
(73
_3 ===Drying
(]
(7]
<
p=

0 1 2 3 4 5 6 7 8
Residence time [s]

Fig. 1. Mass loss curves in biomass particle combustion.
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(a) 990

890
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3.2. Drying process

The moisture is considered, in this work, separately as a liquid
component, and when the local temperature reaches the vaporiza-
tion temperature, the drying process starts and its mass loss rate is
governed by kinetics. Fig. 3a shows that larger biomass particle
requires more time to complete the drying process at a fixed fur-
nace temperature, for example, 1 mm biomass particle is dried
completely in less than 1s, while a 10 mm biomass particle
requires 2.5 s in its drying process when both of them are exposed
into a 700 °C furnace. Thus the drying process requires more resi-
dence time in drying for larger biomass particles. Fig. 3b compares
two different sizes particle (1 mm and 4 mm) exposed into com-
bustion chamber at temperatures of 700 °C and 900 °C. It is clearly
observed that an elevated temperature significantly accelerates the
biomass particle drying process for both particles.

3.3. Devolatilization process

The volatile matter yielded at high temperature is higher than
the standard volatile matter revealed by proximate analysis. An
accurate prediction of the volatile matter yield with temperature
is thus important for chosen combustion model. In the previous
work [4], high-temperature rapid devolatilization tests of pulver-
ized biomass samples were carried out in the IPFR reactor to deter-
mine realistic devolatilization kinetics based on a two-competing-
step model. The determined kinetics are employed to simulate
devolatilization and predict the HTVM yields in this work. Fig. 4a
shows that, larger biomass particle requires more time to complete
the devolatilization process, for instance, 1 mm biomass is dried
completely in 3 s, while a 10 mm biomass particle requires more
than 5s to complete its devolatilization process when they are
placed into a 700 °C combustion chamber. Fig. 4b compares two
different sizes particle (1 mm and 4 mm) exposed into the combus-
tion chamber at different temperatures of 700 °C and 900 °C, and it
is clearly observed that the higher temperature favorites the
biomass particle devolatilization process for both particles.
In addition, when increasing the furnace temperature from 700
to 900 °C, the devolatilization rate of the 4 mm biomass particle
shows a greater acceleration than that of the 1 mm biomass
particle.

Particle surface temperature [K])

---1mm@ 973K
-=-=-4mm @ 973K
—1mm @ 1173K
—4mm @ 1173K

04 0.5 0.6 0.7 0.8 0.9 1

Residence time [s]

Fig. 2. Effects of particle size and furnace temperature on the particle heating up.
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Fig. 3. Effects of particle size and furnace temperature on the drying rate.
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Fig. 4. Effects of particle size and furnace temperature on the devolatilization rate.

3.4. Char oxidation process

In the combustion process of woody biomass, the rate of char
oxidation is typically slow [23]. As evidenced in Fig. 1, the
completion of char oxidation requires more residence time than
the drying and devolatilization processes, and thus the rate of
char oxidation determines the overall combustion progress. In
the previous study [5], the reactivity of biomass chars were ana-
lyzed in IPFR reactor, and the char oxidation kinetic parameters
based on a kinetic/diffusion model were determined using a
parametric optimization method. Fig. 5 shows that the char oxi-
dation rate of the smaller size biomass particle is higher than
that of the larger one. Similar to drying and devolatilization,
an elevated temperature also significantly accelerates the char
burnout process.

3.5. Timescales comparison of studied thermal processes

The timescales for the energy conservation inside the particle,
the internal heat transfer, the chemical decomposition, and the
external heat transfer at the surface are commonly characterized
to recognize the importance of individual thermal process [24].
Table 2 compared the required residence time for heating the bio-
mass particle surface temperature to furnace temperature, which
is 973 K in this case; the residence time for moisture remain less
than 0.01% during the drying process; the residence time for the
volatile releasing over 99.99%; and the residence time for over
99% char consumption for the 4 different biomass particles
combusting with air at 973 K. Obviously, the drying process is com-
pleted before the biomass particle reaches to furnace temperature,
expect the 1 mm biomass particle, this might be the radiation heat



754 J. Li et al. / Applied Energy 156 (2015) 749-755

40

m973K m1173k @ Air

30

20

10
o L i
1 2 4 10

Particle size (mm)

Char burnout time (s)

Fig. 5. Effects of particle size and furnace temperature on the char oxidation rate.

Table 2
Residence time required to complete thermal processes at 973 K and air condition.

Biomass  Required residence time (s)

Eii:;de Heating the Drying Devolatilization ~ Char
particle surface  (wt.%<0.01%) (wt.%<0.01%) oxidation
temp. to 973 K (wt.% < 1%)

1 mm 0.733 0.817 4.405 5.07

2 mm 1.274 1.081 4.736 7.66

4 mm 2.174 1.557 5351 15.59

10 mm 4.558 2.749 7.043 37.77

A 0.463 0.234 0.307 3.417

P

flux get through the particle center quickly for very small particle,
while the drying process governed by kinetics could not be
completed. The volatile matters releasing and char oxidation are
still ongoing after the particle reached to furnace temperature.
Compared to other studied thermal processes, the char oxidation
requires a longest residence time, meaning that the char oxidation
is the determined step in biomass combustion. This tendency is
observed more clearly for larger particles combustion.

Furthermore, the larger the biomass particle, the greater the
ratio of the char oxidation and devolatilization time is. When con-
sidering a co-firing purpose of biomass with coal blend, a larger size
biomass particle would be expected to have a similar flame to that of
pulverized coal particles, because coal typically contains less vola-
tile but riches in char, and therefore a larger ratio of the char oxida-
tion time and devolatilization time is also formed. Accordingly, once
a similar flame profile in co-firing cases is obtained, the impacts on
the heat exchangers surfaces, i.e. over/under heat load, inside a coal-
fired boiler could be avoided.

Additionally, an average ratio of time difference over particle
size difference, AATTP, is employed to discuss the increases of required
time for various thermal process, which is defined as:

At
Ad,

_t (10)
d.—d.;
ijii>j pit pJ
ij=1.2.4,10 mm
where 7 is the characterize time for varying thermal process,
including heating, drying, devolatilization and char oxidation; d,
is particle diameter; subscripts i,j represent the different particle
sizes (1, 2, 4, 10 mm).
The calculated results of the average ratio of time difference
over particle size difference are listed in Table 2. When increasing
the particle diameter by 1 mm, the residence time requires 0.463 s,

0.243 s, 0.307 s, and 3.417 s more to compete the studied thermal
processes of heating, drying, devolatilization, and char oxidation
respectively at furnace temperature of 973 K and air combustions.
It could be concluded that the particle size shows less impacts on
drying process, followed by devolatilization, heating, and char oxi-
dation. This can be easily explained as the drying process is started
at relative low temperature (105 °C), which could be completed
before finishing the other thermal processes. Similarly, the volatile
matter releasing normally starts when particle temperature is over
approximate 300 °C and may keep releasing process through and/
or after the entire heating up process, depending on the fuel types
and final temperature. It is reported that the volatile matter
yielded at high temperature is higher than the standard volatile
matter revealed by proximate analysis, and thus an extended
amount of volatile could be yielded, which requires an extra time.
Char oxidation, controlled by both kinetics and oxygen diffusions,
is a relative slow heterogeneous reaction at solid surface. And
therefore, the char oxidation process is most sensitive to the parti-
cle size, an extra 3.417 s is needed for a 1 mm large in diameter
biomass particle.

4. Conclusion

Biomass combustion properties at high temperatures have been
characterized based on a upgraded single particle model in this
work. The biomass devolatilization reaction was simulated by a
two-competing-rate model and the biomass char burnout rate
was controlled by both the kinetics and diffusion to predict the
particle size changes. The results showed the char oxidation pro-
cess required a longer residence time compared to the heating
up, drying and devolatilization. In addition, an elevated tempera-
ture significantly enhanced all the processes occurring in biomass
combustion. Moreover, it is concluded that the particle size shows
most significant impacts on char oxidation, followed by heating
and devolatilization, while less impacts of particle size is noticed
on drying process. With an aim to potentially co-fire blend fuels,
a relative larger biomass particle is expected to have a flame
property similar to that of pulverized coal particles.
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