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An Outlier Ranking Tree Selection Approach to
Extreme Pruning of Random Forests

Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan

School of Computing Science and Digital Medial, Robert Gordon University,
Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom

Abstract. Random Forest (RF) is an ensemble classification technique
that was developed by Breiman over a decade ago. Compared with other
ensemble techniques, it has proved its accuracy and superiority. Many
researchers, however, believe that there is still room for enhancing and
improving its performance in terms of predictive accuracy. This explains
why, over the past decade, there have been many extensions of RF where
each extension employed a variety of techniques and strategies to improve
certain aspect(s) of RF. Since it has been proven empirically that en-
sembles tend to yield better results when there is a significant diversity
among the constituent models, the objective of this paper is twofold.
First, it investigates how an unsupervised learning technique, namely,
Local Outlier Factor (LOF) can be used to identify diverse trees in the
RF. Second, trees with the highest LOF scores are then used to create
a new RF termed LOFB-DRF that is much smaller in size than RF,
and yet performs at least as good as RF, but mostly exhibits higher per-
formance in terms of accuracy. The latter refers to a known technique
called ensemble pruning. Experimental results on 10 real datasets prove
the superiority of our proposed method over the traditional RF. Un-
precedented pruning levels reaching as high as 99% have been achieved
at the time of boosting the predictive accuracy of the ensemble. The
notably extreme pruning level makes the technique a good candidate for
real-time applications.

1 Introduction

Ensemble classification is an application of ensemble learning to boost the ac-
curacy of classification. Ensemble learning is a supervised machine learning
paradigm where multiple models are used to solve the same problem [28] [29]
[20]. Since single classifier systems have limited predictive performance [38] [28]
[21] [29], ensemble classification was developed to yield better predictive per-
formance [28] [21] [29]. In such an ensemble, multiple classifiers are used. In its
basic mechanism, majority voting is then used to determine the class label for
unlabeled instances where each classifier in the ensemble is asked to predict the
class label of the instance being considered. Once all the classifiers have been
queried, the class that receives the greatest number of votes is returned as the
final decision of the ensemble.
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Three widely used ensemble approaches could be identified, namely, boosting,
bagging, and stacking. Boosting is an incremental process of building a sequence
of classifiers, where each classifier works on the incorrectly classified instances
of the previous one in the sequence. AdaBoost [13] is the representative of this
class of techniques. However, AdaBoost is proned to overfitting. The other class
of ensemble approaches is the Bootstrap Aggregating (Bagging) [5]. Bagging
involves building each classifier in the ensemble using a randomly drawn sample
of the data with replacement, having each classifier give an equal vote when
labeling unlabeled instances. Bagging is known to be more robust than boosting
against model overfitting. Random Forest (RF) is the main representative of
bagging [7]. Stacking (sometimes called stacked generalization) extends the cross-
validation technique that partitions the data set into a held-in data set and a
held-out data set; training the models on the held-in data; and then choosing
whichever of those trained models performs best on the held-out data. Instead of
choosing among the models, stacking combines them, thereby typically getting
performance better than any single one of the trained models [37]. Stacking has
been successfully used in both supervised learning tasks (regression) [6], and
unsupervised learning (density estimation) [33].

The ensemble method that is relevant to our work in this paper is RF. RF
has been proved to be the state-of-the-art ensemble classification technique. In
a recent evaluation study made by [11] where 179 classifiers arising from 17 fam-
ilies were evaluated, RF has proven to be the best family of classifiers. Since
RF algorithms typically build between 100 and 500 trees [36], it would be useful
to reduce the number of trees participating in majority voting and yet achieve
better performance both in terms of accuracy and speed. In this paper, we pro-
pose an unsupervised learning approach to improve speed and accuracy of RF.
For speed, our approach avoids having all trees participate in majority voting
as only a small subset of the trees is selected. For accuracy, since it has been
proven empirically that ensembles tend to yield better results when there is a
significant diversity among the models [20] [9] [1] [34], our approach ensures that
diverse trees in the ensemble are selected.

We will utilize the Local Outlier Factor (LOF) [8] for the first time ever to
extreme prune RF ensembles by assigning each tree an LOF value and then
selecting the top k (where k is a predefined integer) trees with the highest LOF
scores as shown in Figure 1. In this figure, an 80% pruning level has been achieved
since the top 4 trees were picked from a total of 20 trees in the initial ensemble
to form the pruned ensemble.

This paper is organized as follows. First we discuss related work in Section
2. Section 3 covers preliminaries related to motivation and introduction to RF.
Section 4 describes the Local Outlier Factor that will be utilized in our proposed
extension of RF. Section 5 formalizes our proposed method and corresponding
algorithm. Experimental study demonstrating the superiority of the proposed
technique over the traditional RF is detailed in Section 6. The paper is then
concluded with a summary and pointers to future directions in Section 7.
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Fig. 1. Extreme Pruning via Local Outlier Factor

2 Related Work

Several attempts have been made in recent years in order to produce a sub-
set of an ensemble that performs as well as, or better than, the original en-
semble. The purpose of ensemble pruning is to search for such a good subset.
This is particularly useful for large ensembles that require extra memory usage,
computational costs, and occasional decreases in effectiveness. Grigorios et al.
[35] recently amalgamated a survey of ensemble pruning techniques where they
classified such techniques into four categories: ranking based, clustering based,
optimization based, and others. Ranking based methods, that are relevant to
us in this paper, are conceptually the simplest. Since using the predictive per-
formance to rank models is too simplistic and does not yield satisfying results
[27] [39], ranking based methods employ an evaluation measure to rank models.
Kappa statistic measure x was used in [22] for pruning AdaBoost ensembles.
For bagging ensembles, however, kappa has proven to be non-competitive [25].
For bagging ensembles, [24] developed an efficient and effective pruning method
based on orientation ordering where the classifiers obtained from bagging are
reordered and a subset is selected for aggregation.
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An interesting issue that remains after ranking the models is to determine
the models that will be chosen to form the pruned ensemble. For this, two ap-
proaches can be used. The first approach is to use a fixed user-specified amount
or percentage of models. A second approach is to dynamically select the size
based on the evaluation measure or the predictive performance of ensembles of
different sizes. In this paper, the models will be ranked according to their Local
Outlier Factor (LOF) values and the models with the top k (where k is a multiple
of 5 ranging from 5 to 40) values will be selected to form the pruned ensemble.
As outlined in the experimental section (Section 6), the size of the parent RF to
be created is 500 trees. Since, as stated above, k is multiple of 5 ranging from
5 to 40, this means that the pruning levels will be in the range 99% to 92%
respectively, which we consider a reasonable range for extreme pruning.

2.1 Diversity Creation Methods

Because of the vital role diversity plays on the performance of ensembles, it had
received a lot of attention from the research community. G. Brown et al. [9]
summarized the work done to date in this domain from two main perspectives.
The first is a review of the various attempts that were made to provide a formal
foundation of diversity. The second, which is more relevant to this paper, is a
survey of the various techniques to produce diverse ensembles. For the latter,
two types of diversity methods were identified: implicit and explicit. While im-
plicit methods tend to use randomness to generate diverse trajectories in the
hypothesis space, explicit methods, on the other hand, choose different paths in
the space deterministically. In light of these definitions, bagging and boosting in
the previous section are classified as implicit and explicit respectively.

G. Brown et al. [9] also categorized ensemble diversity techniques into three
categories: starting point in hypothesis space, set of accessible hypotheses, and
manipulation of training data. Methods in the first category use different start-
ing points in the hypothesis space, therefore, influencing the convergence place
within the space. Because of their poor performance of achieving diversity, such
methods are used by many authors as a default benchmark for their own meth-
ods [21]. Methods in the second category vary the set of hypotheses that are
available and accessible by the ensemble. For different ensembles, these methods
vary either the training data used or the architecture employed. In the third cat-
egory, the methods alter the way space is traversed. Occupying any point in the
search space, gives a particular hypothesis. The type of the ensemble obtained
will be determined by how the space of the possible hypotheses is traversed.

In this paper, we propose a new diversity creation method based on unsuper-
vised learning. The method utilizes an existing unsupervised learning technique
that, to the best of our knowledge, has not been used before in the production
of pruned ensembles.
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2.2 Diversity Measures

Regardless of the diversity creation technique used, diversity measures were de-
veloped to measure the diversity of a certain technique or perhaps to compare
the diversity of two techniques. Tang et al. [34] presented a theoretical analysis
on six existing diversity measures: disagreement measure [32], double fault mea-
sure [14], KW variance [19], inter-rater agreement [12], generalized diversity [26],
and measure of difficulty [12]. The goal was not only to show the underlying rela-
tionships between them, but also to relate them to the concept of margin, which
is one of the contributing factors to the success of ensemble learning algorithms.

We suffice to describe the first two measures as the others are outside the
scope of this paper. The disagreement measure is used to measure the diversity
between two base classifiers h; and hy, and is calculated as follows:

NlO +N01
N11+N10+N01+N00

di Sjk =
where

— N'0: means number of training instances that were correctly classified by
h;, but are incorrectly classified by hy,

— N9 means number of training instances that were incorrectly classified by
h;, but are correctly classified by hy

— N': means number of training instances that were correctly classified by h;
and hy

— NY: means number of training instances that were incorrectly classified by
h; and hy,

The higher the disagreement measure, the more diverse the classifiers are. The
double fault measure uses a slightly different approach where the diversity be-
tween two classifiers is calculated as:

NOO
N11 _|_N10 + NO1 + 0o

DFj; =

The above two diversity measures work only for binary classification (AKA
binomial) where there are only two possible values (like Yes/No) for the class
label, hence, the objects are classified into exactly two groups. They do not work
for multiclass (AKA multinomial) classification where the objects are classified
into more than two groups.

3 Preliminaries

3.1 Motivation

As mentioned before, RF algorithms tend to build between 100 and 500 trees
[36]. Our research aims at producing child RFs that are significantly smaller in
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size and yet, have accuracy performance that is at least as good as that of the
parent RF from which they were derived. The classification speed of each child
is guaranteed to be much faster than that of the parent RF because 1) it has
much fewer trees and 2) any tree used in the child is also in the parent (i.e., no
new trees were introduced in the child).

3.2 Random Forest

RF is an ensemble learning method used for classification and regression. De-
veloped by Breiman [7], the method combines Breiman’s bagging sampling ap-
proach [5], and the random selection of features, introduced independently by Ho
[15] [16] and Amit and Geman [2], in order to construct a collection of decision
trees with controlled variation. Using bagging, each decision tree in the ensemble
is constructed using a sample with replacement from the training data. Statisti-
cally, the sample is likely to have about 64% of instances appearing at least once
in the sample. Instances in the sample are referred to as in-bag-instances, and the
remaining instances (about 36%), are referred to as out-of-bag instances. Each
tree in the ensemble acts as a base classifier to determine the class label of an
unlabeled instance. This is done via majority voting where each classifier casts
one vote for its predicted class label, then the class label with the most votes
is used to classify the instance. Algorithm 1 below depicts the RF algorithm [7]
where N is the number of training samples and S is the number of features in
data set.

Algorithm 1 Random Forest Algorithm

{User Settings}
input N, S
{Process}
Create an empty vector ﬁ
fori=1— N do
Create an empty tree T;
repeat

Sample S out of all features F’ usigg Bootstrap sampling

Create a vector of the S features Fs

Find Best Split Feature B(I*Tg)

Create A New Node using B(175>) in T;
until No More Instances To Split On
Add T; to the RF

end for
{Output}
A vector of trees RE
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4 Local Outlier Factor

The Local Outlier Factor (LOF) algorithm was developed by Breunig et al. [8]
to measure the outlierness of an object. The higher the LOF value assigned
to an object, the more isolated the object is with respect to its neighbors. It is
considered a very powerful anomaly detection technique in machine learning and
classification. Earlier work on outlier detection was investigated in [3] [30] [18]
[17], however, the work was limited by treating an outlier as a binary property
to classify an object as an outlier or not, without assigning it a value to measure
its outlierness as was done in [8].

The LOF can be used as a method to achieve diversity. It was one of 3 strate-
gies used to obtain diversity when constructing an ensemble for the KDDCup
1999 dataset [10]. Schubert et al. [31] proposed methods for measuring similarity
and diversity of methods for building advanced outlier detection ensembles using
LOF variants and other algorithms.

Formally, Breunig et al. [8] introduced the concept of reachability distance in
order to calculate the LOF. If the distance of object A to the k nearest neighbor
is denoted by k-distance(A), where the k nearest neighbors is denoted by Ny (A),
the following equation defines the reachability distance (rd):

rdi(A, B) = max{k—distance(B),d(A, B)} (1)

where d(A4, B) is the distance between objects A and B. The local reachability
density of object A is then defined by

rdg(A, B
Ird(A) = EBGNFJ(\}Z)( A;'( ) (2)

Using the local reachability density of object A as defined in the previous equa-
tion, the LOF for object A is given by:

D " Ird(B)
BENk(A) Ird(A
LOFi(4) = =000 (4) (3)

5 LOF-Based Diverse Random Forest (LOFB-DRF)

In this section, we propose an extension of RF called LOFB-DRF that spawns
a child RF that is 1) much smaller in size than the parent RF and 2) has an
accuracy that is at least as good as that of the parent RF. In this extension,
we use the LOF discussed in Section 4. As shown in Figure 2, each tree pre-
dictions on the training dataset (denoted by the vector C(t;,T")) is assigned an
LOF value that indicates the degree of its outlierness. The top k (k=5,10,...,40)
trees corresponding to these predictions with the highest weighted LOF values
(to be discussed next) are then selected to become members of the resulting
LOFB-DRF. In the remainder of this paper, we will refer to the parent/original
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traditional Random Forest as RF, and refer to the resulting child RF based on
our method as LOFB-DRF.

Based on Figure 2, we formalize the LOFB-DRF algorithm as shown in
Algorithm 2 where T is the training set, and N refers to the number of training
samples. The constant k refers to the number of trees that will have the highest
weighted LOF values as will be discussed later. As aforementioned, the domain
of this constant is multiple of 5 in the range 5 to 40. This way and as we shall

see in the experiments section, we can compare the performance RF with an
LOFB-DRF of different sizes.

Algorithm 2 LOFB-DRF Algorithm

{User Settings}

input T, N, k

{Process}

Create an empty vector treesPredictions

Create an empty vector LOF B — RE

Using N, call Random Forest Algorithm 1 above to create RE

for i =1 — RF.size() do
treesPredictions = treesPredictions U C(RF.tree(i), T)

end for

for i = 1 — treesPredictions.size() do
assignNormalized LOF (trees Predictions.element(i))

end for

for i = 1 — treesPredictions.size() do
assignWeight (¢rees Predictions.element(i))

end for

Select the top k instances in treesPredictions with highest weighted LOF values

Select the corresponding trees from RF and add them to LOF' B — DRF

{Output}

A vector of trees LOFB — DRF

5.1 Selection of Trees

With reference to Algorithm 2, the selection of trees in RF' that will become
members of LOFB-DRF proceeds as follows. First, predictions of each tree
on the training dataset T is computed as a vector and added to the vector
treesPredictions. At the conclusion of the first for loop, treesPredictions be-
comes a super vector containing vectors where each vector stores the predic-
tions of each tree. By the second for loop, each instance in treesPredictions
is then assigned a normalized LOF value between 0 and 1. This way, each nor-
malized value describes the probability of the instance being an outlier [10].
By the third for loop, each instance is assigned a weight that is the prod-
uct of the normalized LOF value and the accuracy rate of the corresponding
tree on the training data. Formally, let ¢; be an instance in the super vector
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Fig. 2. LOFB-DRF Approach

treesPredictions, NormalizedLOF (¢;) be the normalized LOF value assigned to
this instance, and AccuracyRate(Tree(c;),T) be the accuracy rate of Tree(c;) on
the training dataset T where Tree(c;) is the tree that corresponds to the instance
¢;- The weight assigned to this instance is given by:

weight = Normalized LOF (¢;) x AccuracyRate(Tree(c;),T) (4)

The instances are then sorted in descending order by this weight and the corre-
sponding top k trees are then selected.

6 Experiments

For our experiments, we have used 10 real datasets with varying characteristics
from the UCI repository [4]. To use the holdout testing method, each dataset
was divided into 2 sets: training and testing. Two thirds (66%) were reserved for
training and the rest (34%) for testing. Each dataset consists of input variables
(features) and an output variable. The latter refers to the class label whose
value will be predicted in each experiment. In Figure 2, the initial RF' to produce
LOFB-DRF had a size of 500 trees, a typical upper limit setting for RF ensembles
[36].
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The LOFB-DRF algorithm described above was implemented using the Java
programming language utilizing the API of Waikato Environment for Knowledge
Analysis (WEKA) [23]. We ran this algorithm 10 times on each dataset where
a new RF was created in each run. We then calculated the average of the 10
runs for each resulting LOFB-DRF to produce the average for a variety of met-
rics including accuracy rate, minimum accuracy rate, maximum accuracy rate,
standard deviation, FMeasure, and AUC as shown in Table 3. For RF, we just
calculated the average accuracy rate, FMeasure, and AUC as shown in the last
3 columns of the table.

6.1 Results

Table 3 compares the performance of LOFB-DRF and RF on the 10 datasets
used in the experiment. To show the superiority of LOFB-DRF, we have high-
lighted in boldface the average accuracy rate of LOFB-DRF when it is greater
than that of RF. With the exception of the audit and wote datasets (last 2
datasets), we find that LOFB-DRF performed at least as good as RF. Interest-
ingly enough, of the 10 datasets, LOFB-DRF, regardless of its size, completely
outperformed RF on 3 of the datasets, namely, squash-stored, eucalyptus, and
sonar.

6.2 Pruning Level

In ensemble pruning, a pruning level refers to the reduction ratio between the
original ensemble and the pruned one. For example, if the size of the original
ensemble is 500 trees and the pruned one is of size 50, then 100% — 55—(?0 x 100% =
90% is the pruning level that was achieved in the pruned ensemble. This means
that the pruned ensemble is 90% smaller than the original one. Table 1 shows the
pruning levels where the first column shows the maximum possible pruning level
for an LOFB-DRF that has outperformed RF, and the second column shows the
pruning level of the best performer LOFB-DRF. We can see that with extremely
healthy pruning levels ranging from 95% to 99%, our technique outperformed
RF. This makes LOFB-DRF' a natural choice for real-time applications, where
fast classification is an important desideratum. In most cases, 100 times faster
classification can be achieved with a 99% pruning level, as shown in the table. In
the worst case scenario, only 16.67 times faster classification with 95% pruning
level in the squash-unstored dataset. Such estimates are based on the fact that the
number of trees traversed in the RF is the dominant factor in the classification
response time. This is especially true, given that RF trees are unpruned bushy
trees.

6.3 Analysis

For each dataset, Figure 3 shows the number of LOFB-DRF's outperforming RF.
As shown in the figure, with the exception of the audit and vote datasets, we
have at least one LOFB-DRF outperformer for each dataset.
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Table 1. Maximum Pruning Level with Best Possible Performance

Dataset Maximum Pruning Level Best Performance Pruning Level
breast-cancer 97% 95%
squash-unstored 95% 93%
squash-stored 99% 98%
eucalyptus 99% 99%
soybean 98% 97%
diabetes 96% 96%
car 99% 99%
sonar 99% 99%
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Fig. 3. Number of LOFB-DRFs Outperforming RF

6.4 Outperformance Range

Tables 2 below depicts the outperformance range of LOFB-DRF over RF. A
negative number indicates that RF was superior to LOFB-DRF and the absolute
value of this number refers to the performance difference between RF and best
performer LOFB-DRF. Taking a closer look at this table, we can see that LOFB-
DRF outperformed RF on 8/10 datasets with a maximum outperformance range
of 12.11%.

7 Conclusion and Future Directions

Research conducted in this paper was based on how diversity in ensembles tends
to yield better results [20] [9] [1] [34]. We have adopted the Local Outlier Factor
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Table 2. Outperformance Range of LOFB-DRF over RF

Dataset Range

breast-cancer  0.21% - 0.73%
squash-unstored 2.22% - 6.11%
squash-stored  0.55% - 3.88%

eucalyptus 1.08% - 5.88%
soybean 0.86% - 1.98%
diabetes 0.12% - 0.16%
car 0.09% - 1.91%
sonar 1.69% - 12.11%
audit -0.05%

vote -0.27%

method to select diverse trees in an RF and then used these trees to form a
pruned ensemble of the original one. The selection was based on both the LOF
value and the predictive accuracy of each tree. Experimental results have shown
the potential of this method, with extreme pruning levels of Random Forests
that can outperform the original population of trees, reaching as high as 99%.
This makes the pruned ensemble a suitable candidate for real-time applications.

We have selected trees that correspond to the instances with the top k&
weighted LOF values. Another interesting variation would be to use a hybrid
approach that combines LOF with clustering to boost diversity up. Using this
approach, we first create clusters of trees then from each cluster, we select a
representative that corresponds to the instance with the highest weighted LOF
value. The current implementation also gives equal importance to the peculiarity
of the tree as measured by the LOF score and the predictive accuracy, repre-
sented by the percentage of correctly classified instances for the tree. However,
tuning this significance can play an important role in enhancing the classifier.
At one hand, choosing trees with higher predictive accuracy can lead to model
overfitting, and on the other hand, using LOF only can lead to leaving out trees
that are most representative of the dataset. Balancing between the two can result
in an ensemble that is diverse enough to boost the accuracy.

Table 3: Predictive Accuracy Metrics of LOFB-DRF & RF

LOFB-DRF AVG | MIN [MAX] SD [FMeasure[AUCJAVG FMeasure AUC]
breast-cancer
5 67.01 |[61.86 74.23 [|3.16 0.65 0.57 [[71.13 0.65 0.58]]
10 67.22 [[64.95 69.07 [[1.71 [[0.66 0.58
15 71.34(|67.01 76.29 [|3.12 0.65 0.58
20 69.48 [[67.01 73.20[[2.62 []0.66 0.58
25 71.86(|69.07 74.23 [|1.46 0.65 0.58
30 70.41 [[68.04 72.16 [[1.53 0.65 0.58
35 70.62 |[65.98 73.20 [|1.91 0.65 0.58
40 69.18 ||64.95 72.16 [|2.14 0.65 0.58
squash-unstored
5 58.89 [[44.44 83.33([12.47][0.58 0.66 [[61.11 0.52 0.64]]
10 54.44 |/33.33 66.67[[9.56 [[0.56 0.66
15 60.56 [[50.00 83.33|[8.77 0.55 0.65
20 60.00 [[50.00 66.67 [[5.98 [[0.54 0.66
25 63.33|[55.56 77.78 [|7.93 0.54 0.65
30 58.33 [[44.44 77.78 |[8.70 0.53 0.65
35 67.22[[50.00 83.33 [[10.08[[0.54 0.66
40 57.78 [|50.00 66.67|[6.19 0.53 0.65

Continued on next page
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LOFB-DRF AVG | MIN [MAX] SD [FMeasure[AUCJAVG FMeasure AUC]
squash-stored
5 56.67||38.89 66.67|/9.56 0.57 0.59 [[55.56 0.51 0,56“
10 59.44[[44.44 66.67 [|7.05 0.54 0.58
15 58.33([50.00 66.67 |[4.48 0.54 0.58
20 58.33((50.00 61.11[|3.73 0.55 0.58
25 58.33[(50.00 66.67[|5.12 [[0.53 0.57
30 56.67([55.56 61.11][2.22 0.52 0.56
35 56.11[(55.56 61.11[]1.67 [[0.52 0.57
40 56.11([55.56 61.11|[1.67 0.52 0.56
cucalyptus
5 25.80((11.20 40.40 |[8.73 0.26 0.60 [|19.92 0.21 0,57“
10 21.00[[12.40 28.40([4.70 0.24 0.59
15 24.32(|14.80 32.00[]|5.01 0.24 0.58
20 24.48([15.60 29.60 |[4.55 0.23 0.58
25 24.68(|21.20 29.60(|2.35 [[0.23 0.58
30 24.80((14.80 33.60|[5.13 0.23 0.58
35 23.96[[20.00 34.40[|4.20 [[0.23 0.58
40 21.16([15.20 28.00|[3.69 0.22 0.57
soybean
5 77.28 [[60.78 85.781]6.80 [[0.79 0.88 [[77.59 0.73 0.85]]
10 78.45[(70.69 85.34 [|5.46 0.75 0.87
15 79.57[[72.84 83.62(|3.50 [[0.76 0.87
20 76.85 ||74.57 78.88 [|1.26 0.74 0.86
25 76.90 [[74.14 79.31[[1.88 |[0.74 0.86
30 76.85 ||72.41 81.47|[2.43 0.74 0.86
35 77.33 [[71.98 82.33][3.66 0.73 0.86
40 76.59 [[71.98 81.03|[2.59 0.73 0.85
diabetes
5 80.80 ||74.71 84.29(|3.53 [[0.72 0.68 [[81.26 0.71 0.67]]
10 81.15 [[74.71 84.29|[3.56 0.71 0.68
15 79.85 [[77.39 83.14(|1.96 [|0.71 0.67
20 81.42([79.31 83.14 |[1.24 0.71 0.67
25 80.96 ||78.93 82.76 [|1.31 0.71 0.67
30 80.88 |[78.54 82.76 |[1.14 0.71 0.67
35 79.81 [[77.39 81.99[|1.40 0.71 0.67
40 81.38(|80.08 83.14[|0.94 0.71 0.67
car,
5 64.17((62.41 67.52(]1.33 [[0.56 0.78 [[62.26 0.56 0.78]]
10 63.01[(61.56 64.29|[0.75 0.56 0.78
15 62.36((60.71 64.29 [|1.12 [[0.56 0.78
20 62.35|(61.22 63.78|]0.82 0.56 0.78
25 62.69|(60.88 63.95|[0.85 0.56 0.78
30 62.18 ||61.05 63.10(/0.82 [[0.56 0.78
35 61.96 |[60.88 63.61[0.72 0.56 0.78
40 61.99 [|61.05 62.59(/0.54 [[0.55 0.78
sonar
5 12.25[[7.04 18.31[|3.34 [[0.26 0.00 [[0.14 0.29 0.00 ]
10 9.15 0.00 16.90|[5.20 0.28 0.00
15 6.34 0.00 14.08 [[4.47 0.29 0.00
20 3.38 0.00 8.45 2.76 [|0.29 0.00
25 3.10 0.00 7.04 2.42 0.28 0.00
30 1.83 0.00 4.23 1.27 |[0.28 0.00
35 3.38 0.00 4.23 1.29 0.28 0.00
40 3.38 0.00 9.86 2.69 [[0.28 0.00
audit
5 95.63 ||94.26 96.47 [|0.72 0.91 0.89 [[96.31 0.90 0.88]]
10 95.74 [[95.00 96.18 |[0.35 0.90 0.88
15 95.99 [[95.29 96.47[|0.35 0.90 0.88
20 96.06 ||95.29 96.76 [{0.39 ]]0.90 0.88
25 96.22 |[95.88 96.471[0.25 0.91 0.89
30 96.03 [[95.59 96.47(]0.25 [[0.90 0.88
35 96.26 [[95.88 96.47|[0.18 0.90 0.88
40 96.00 [|95.59 96.47[]0.27 [[0.90 0.87
vote
5 96.82 |[95.27 97.97[/0.80 0.96 0.98 [[97.97 0.95 0.97]]
10 97.09 [|95.27 97.97(]0.86 [[0.96 0.97
15 97.57 |[96.62 97.971[0.45 0.95 0.97
20 97.43 ||96.62 97.97(]0.51 0.95 0.97
25 97.57 |[96.62 97.97]0.45 0.95 0.97
30 97.70 [[97.30 97.97[{0.33 ]]0.95 0.97
35 97.64 |[96.62 97.97]0.45 0.95 0.97
40 97.64 ||96.62 97.97[/0.45 0.95 0.97
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