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Abstract: The Siamese Neural Network (SNN) is a neural network archi-
tecture capable of learning similarity knowledge between cases in a case base by
receiving pairs of cases and analysing the di�erences between their features to
map them to a multi-dimensional feature space. This paper demonstrates the
development of a Convolutional Siamese Network (CSN) for the purpose of case
similarity knowledge generation on the SelfBACK dataset. We also demonstrate
a CSN is capable of performing classi�cation on the SelfBACK dataset to an
accuracy which is comparable with a standard Convolutional Neural Network.
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1 Introduction

Similarity knowledge is an essential component of an e�ective Case-Based Rea-
soning (CBR) system, but its generation can be a daunting task. Large complex
datasets, where inter-feature relationships may exist, present a challenge to tra-
ditional similarity generation measures. Although similarity-based retrieval can
o�er numerous advantages during the retrieval phase, this can have a large initial
cost. It is little wonder that recent research is targeting methods of harnessing
deep learning methods to improve similarity knowledge generation.

A Siamese Neural Network (SNN) is a deep learning architecture which can
learn similarity knowledge at a case-to-case level. SNNs have proven e�ective at
learning similarity knowledge for a range of di�erent domains including smart-
phone gesture classi�cation and face veri�cation [2, 4]. This paper presents the
application of an SNN architecture to the SelfBACK1 dataset2, which contains

1The SelfBACK project is funded by European Union's H2020 research and innovation pro-
gramme under grant agreement No. 689043. More details available: http://www.selfback.eu

2The SelfBACK dataset associated with this paper is publicly accessible from
https://github.com/selfback/activity-recognition



the accelerometer data for 34 users labelled with one of 6 activities. The main
contribution of this paper is to demonstrate the successful application of an SNN
as a means to develop similarity knowledge within a case base. In addition, this
paper demonstrates that an SNN can perform a classi�cation task on a level
which is competitive with a typical Convolutional Neural Network (CNN).

This paper is organised into the following sections. Section 2 gives an
overview of the research regarding learning similarity measure for use in CBR,
as well as the SNN architecture and how it may be used as a means to develop
similarity knowledge between cases which can be used for classi�cation. Section
3 contains a description of the SelfBACK dataset and how it was used within
the context of the presented research. Section 3 also describes our evaluation
and details the setup of our experiments, including our classi�cation method
and network architecture, as well as pair creation method. Section 4 contains
the results of our experiments and Section 5 highlights further work we aim to
complete within this research area.

2 Related Works

2.1 Learning Similarity Measures

Learning e�ective similarity measures between cases can counter many of the
issues that plague the retrieval phase of CBR systems, such as retrieving suitable
results from extremely large and complex case bases, or retrieving results for
cases where some features cannot be explicitly described [10]. However, the
process of learning similarity knowledge can itself present an issue, and as such
it has been the focus of much research.

Knowledge-Intensive Similarity Measures (KISMs) have been shown to im-
prove retrieval in case bases where domain-speci�c knowledge is a key component
[11]. While the main intention of standard similarity measures is to numerically
quantify the simillitude between two cases based upon explicit feature values,
K-ISMs use domain-speci�c knowledge to weight more important features for
return [5]. This has been shown to improve retrieval accuracy in complex do-
mains, and domains that rely on expert knowledge to query. However, the
acqusition and encoding of domain-knowledge into similarity measures is an ex-
tremely expensive process which can often require the input of a domain expert.
One of the advantages of the presented SNN architecture is that it can weight
features automatically without the input of a domain expert and is signi�cantly
less time-consuming.

2.2 The Siamese Neural Network Architecture

An SNN architecture consists of two neural networks that share identical weights
and are joined at one or more layers. SNNs receive case pairs as input to both
the training and testing phases to develop simlarity knowledge at an object-to-
object level. An example architecture is shown in Figure 1. During the training
phase, these pairs are labelled as either `genuine' (if the examples share the



same class) or `impostor' (if the examples are of di�erent classes). This allows
the network to develop a multi-dimensional space based upon cases features,
where `genuine' pairs are pushed closer together and `impostor' pairs are pulled
further away from each other. The output of the identical neural networks (or
`sub-networks') are feature vectors for each member of the input pair. The
distance between these vectors is measured at the similarity layer to ascertain
whether they belong to the same class based upon a threshold.

Figure 1: Siamese Neural Network Architecture

SNNs use `contrastive loss', which was introduced in [4]. Contrastive loss is
calculated by summing the results of the individual loss formulas for genuine
and impostor pairs. Genuine pairs are penalized by loss LG for being too far
apart, while negative pairs are penalized by LI if their distance falls within the
given margin value. Sub-network weights are then updated by backpropagating
the loss with respect to the weights. This means that genuine pairs are pushed
closer together over the course of training, whilst ensuring that impostor pairs
maintain at least a set distance apart. The similarity metric is therefore directly
learned by the network, as it is implicitly de�ned by the loss function.

The equations for contrastive loss are detailed in Equations (1), (2) and (3).
YA and YP are binary values which are equal to 0 for genuine pairs and 1 for
impostor pairs, where YA is the actual label, YP is the predicted label and M
is the margin.

LG = (1− YA)YP 2 (1)

LI = YA(max(M − YP , 0))2 (2)

L = LG + LI (3)



2.3 Similarity and Classi�cation in SNNs

Initially made popular by [4] to identify similarities for face veri�cation, many
research e�orts have taken advantage of an SNN's capability to develop simi-
larity knowledge, in areas ranging from smartphone gesture classi�cation [2], to
similar text retrieval [11]. In [11], the authors demonstrate that their SNN can
outperform state-of-the-art text similarity measures by mapping term vectors to
a low dimensional space. Their results indicate that the SNN can signi�cantly
outperform other methods on both low and high dimensional data. The draw-
back was that the algorithm did not scale well to large amounts of examples.

Although introduced as a method of signature veri�cation and binary clas-
si�cation [3], recent research has shown that SNNs are able to generalise to
multiclass classi�cation. In [6], the authors demonstrate that a Convolutional
Siamese Network (CSN) can achieve very close to the state of the art and hu-
man levels of recognition in a one-shot learning setting on the omniglot dataset,
which contains 40 distinct classes. A CSN is a type of SNN where the parallel
neural networks are replaced with two identical Convolutional Neural Networks
(CNNs). A CNN itself is a feed forward neural network which arranges its neu-
rons in multiple dimensions in order to operate e�ectively on high dimensional
data. One of the main advantages of using CNNs is that they can learn local
feature detectors and are fairly robust to distortions of network input [7].

In [1], the authors demonstrated visual search on multiple domains by per-
forming nearest neighbour on the output feature vectors from an CSN. Their
�ndings showed that CSNs could be used to learn the similarity between im-
ages and that a nearest neighbour algorithm could be performed to retrieve the
most similar images for a given example. Their �ndings demonstrated that the
feature vectors produced by a CSN have potential use as a means to increase
utility of more conventional classi�cation techniques.

We can observe from the range of examples above that SNNs are capable of
learning similarity knowledge and performing classi�cation upon a wide range
of domains. However, there remain areas which require further exploration. In
particular, literature regarding the structuring of pair creation is lacking, as is
research which utilises SNNs within ensemble classi�ers.

3 Evaluation

The aims of this paper are two-fold; to show that an SNN could generate simi-
larity knowledge within a case base, and to demonstrate the performance of an
SNN as a method of human activity classi�cation. To this end, we performed
two experiments upon the SelfBACK dataset.

3.1 The Dataset

The SelfBack dataset consists of time series data collected from 34 users per-
forming di�erent activities over a short period of time. Data was collected by



mounting a tri-axial accelerometer on the thigh and right-hand wrist of partic-
ipants at a sampling rate of 100Hz as they completed a script of set activities,
performing each for an average of three minutes [9]. Frequency coe�cients were
obtained by applying Discrete Cosine Transforms (DCT) and Discrete Fourier
Transforms (FFT) to the raw accelerometer data.

Our experiments used the thigh dataset due to time limitations. Data was
split into 5 second windows, meaning that there were between 160 and 180 cases
per user and 1,500 features per case. This resulted in 6,084 cases of thigh data.
These were then labelled as one of 6 activities (standing, upstairs, downstairs,
walking, jogging, sitting) to create the full dataset.

3.2 Experimental Setup

Firstly, we implemented a Convolutional Siamese Network (CSN) upon the raw
accelerometer thigh data, DCT thigh data and FFT thigh data. Pairs of cases
were fed into the CSN and the convolutional sub-networks of the CSN learned to
produce representative feature vectors of each case. We tested that the network
had learned feature vectors which were representative of the original cases by
measuring the euclidean distance between pair vectors at the similarity layer and
comparing this to a threshold to identify whether a pair of examples belonged
to the same class (a genuine pair) or to di�erent classes (an impostor pair). If
we identi�ed that the distance between the genuine pair was less than a certain
threshold (i.e. the space that should exist between cases of opposing classes)
and the distance between the impostor pair was greater than this threshold,
then we could reasonably assume that the case had been mapped to the correct
space (or a very close approximation of it). We therefore used the percentage
of correctly identi�ed pairs as our accuracy metric.

Secondly, we implemented a CSN and CNN to perform classi�cation on the
raw thigh accelerometer data. The raw data was used in order to demonstrate
a comparison between the two architectures which was una�ected by prepro-
cessing of the data. For this experiment, we completed a similar process to the
previous experiment until the CSN had learned representative feature vectors
for each case in the test set. Each feature vector from the test set was then
compared with 6 randomly selected class representative vectors generated from
cases in the training set. The distance between the unlabelled test vector and
each class representative vector was measured, and the test case was identi�ed
as belonging to the same class as the nearest class representative vector. The
accuracy of the experiment was the percentage of correctly classi�ed cases.

3.3 Network Architecture

A CSN was constructed from 2 sub-networks, which had 2 convolutional layers,
a �attening layer and 2 fully connected layers. The �rst layers used tanh activa-
tion functions, while the �nal layer used a softmax function. The network was
optimised using Stochastic Gradient Descent and the hyperparameters in Table
1. The output of the sub-networks was a representative feature vector for each



case member of the pair. Euclidean distance between these vectors could then
be measured and compared with the threshold.

Parameter Value

Learning Rate 0.01

Learning Decay 0.000001

Nesterov Momentum 0.9

Table 1: CSN Hyperparameter Settings

In order to be comparable with the CSN, the CNN created for comparison
purposes was a close replica of one of the sub-networks outlined above. The only
major di�erence was the use of categorical cross-entropy for the loss function
and backpropagating this loss with respect to the weights.

Implementations were run for10 epochs as the loss had reached a su�ciently
low value by this point. Experiments were repeated 5 times and a mean per-
centage of accuracy calculated. There were many random elements at numerous
stages of all implementations and so running for multiple iterations and taking
the mean of the result accuracy was the only method to ensure that results were
legitimately indicative of network performance.

3.4 Splitting the Dataset into Training and Testing

Data was split between train and test sets using leave-p-out cross-validation
(LPOCV), meaning that the test set comprised of cases from p users, while
all remaining users made up the training set. LPOCV was used due to the
real-world constraints of the SelfBACK project, which involves being able to
identify users' activities based upon their similarity to other users. This o�ered
an improvement in accuracy over randomly splitting the dataset, though the
larger training set caused minor over�tting. Experiments were completed with
p set to 5 and 10, to test the e�ect that increasing test set size had on results.

At run time, the dataset is normalised using standard normal distribution,
Equation (4), where µ is the mean of the training set and σ is the standard
deviation of the training set. These values were taken from the training set
because the test data represented a population of unknown size and distribution.

x ∈ X | x− µ
σ

(4)

3.5 Pair Creation

Pair creation in all experiments was completed after the data had been split into
training and test sets to ensure that there was no cross contamination which
could e�ect the results. For pair creation, we de�ned d as the number of cases



in the full dataset and p as the number of cases to be left out for testing. The
training set therefore contained n = d− p cases.

Initially, we attempted to exhaustively create all pairs by matching every case
with every other case. However, this resulted in the creation of

∑d
1 cases, which

made pair formation extremely slow. Instead, two pairs were created for every
case in the dataset; a genuine pair (with a random case of the same class) and an
impostor pair (with a random case of a di�erent class). This meant that every
case was represented at least twice. We enforced equal genuine and impostor
pair creation because generating truly random pairs led to an imbalance of more
impostor pairs than genuine, at a ratio of approximately 5:1, and had a negative
e�ect on classi�cation. The number of training and test pairs were therefore 2n
and 2p respectively.

4 Results

4.1 Learning Similarity Knowledge with a CSN

The CSN was able to develop good similarity knowledge for all three time and
frequency representations of the thigh dataset, though best results were obtained
from the thigh DCT data. This is indicated by the percentage of correctly
identi�ed pair relationships, which is shown in Table 2.

SelfBACK Thigh Data Test User Set Pair Identi�cation Accuracy

Raw 5 93.57

DCT 5 94.33

FFT 5 93.87

Raw 10 92.17

DCT 10 94.30

FFT 10 93.00

Table 2: CSN Pair Identi�cation Accuracy on the Thigh Dataset

Even the minimum result of 92.17% obtained on the raw thigh dataset using
L10OCV demonstrates that more than 92% of test cases have been mapped to
appropriate feature vectors. With this in mind, distance between these vectors
can act as a proxy for similarity measurements at a case-to-case level. These
results support the argument that cases of the same class are grouped closer
together within the feature space and lend evidence to the idea that the CSN
can be used to form the basis for similarity-based retrieval in a CBR system.

4.2 Comparing a CSN and CNN on the SelfBACKDataset

As a classi�er, the CSN did not perform as well as the CNN, although it acheived
over 90% classi�cation accuracy on both experiments. Although the CSN per-



formed competitively on the L5OCV, the CNN displayed much higher accuracy
on the L10OCV experiments, as shown in Table 3.

Architecture Test User Set Classi�cation Accuracy

CSN 5 90.75

CNN 5 91.77

CSN 10 90.03

CNN 10 92.60

Table 3: CSN and CNN Comparison on Human Activity Classi�cation

These results indicate that the CSN requires more training data to be able
to classify cases than a typical CNN does. The low variance in results across
iterations, and resistance to increasing test set size, by both architectures, sup-
ports the idea that they generalise well even to large test sets. Although the
CSN did not perform as well at classifying cases as the CNN, we argue that
the generation of similarity knowledge as a by-product of the classi�cation pro-
cess is a non-negligible contribution. The main bene�t of using the CSN over
a traditional CNN implementation is that the output of the CSN produces fea-
ture vectors of the original case base which are good representations of how
each case �ts into the case base as a whole and allows direct, accurate distance
measurements as a proxy for measuring similarity between cases.

On re�ection, there may be a couple of reasons that the CSN did not perform
as strongly on the classi�cation task as the CNN. A more structured method
of classifying the output test feature vector, such as exhaustive k-nn sorting or
informed class representative selection, could potentially o�er better classi�ca-
tion results and may be worth further study. It is a distinct possiblity that
the class representative which was randomly selected for comparison with the
test vector was a poor representative of the class, and that may have in�uenced
the classi�cation of test cases. Exhaustively comparing the test case with all
training cases, or using a method of selection to pick class representatives may
improve classi�cation accuracy.

5 Conclusion and Further Work

We have demonstrated that a CSN is capable of learning similarity knowledge
on the SelfBACK dataset. In addition, we have demonstrated that a CSN can
use this similarity knowledge to perform human activity classi�cation on the
SelfBACK dataset and can perform competitively with a CNN on this task.

In future work we would like to further explore SNN's capacity to develop
simlarity knowledge between cases in order to determine whether this could be
used in some manifestation to develop similarity knowledge between features.
Our end goal is to use this similarity knowledge in order to populate the simi-



larity arcs which exist between information entities in a Case Retrieval Network
(CRN) [6]. If this could be applied, it would o�er an inexpensive method to
develop e�cient coverage of extensive case bases and reduce the initial cost of-
ten associated with CRNs in this task. In addition, it would be interesting to
explore di�erent methods of pair generation and di�erent methods of utilising
the similarity knowledge generated by a CSN for classi�cation.
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