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Abstract : 

 

Functional surfaces are extensively being designed for specific purposes within various industries. 

The inspiration for many of such surfaces has been derived from biological entities such as shark skin 

etc. In industry, various surfaces are created by physio-chemical properties of materials with 

appropriately aligned micro and nanostructures, and sophisticated solutions are found for range of 

problems. Many drag reducing organisms employ functional surfaces that control near-wall flow 

characteristics thus affecting their global flow performance. This study focuses on the inverse design 

of functional surfaces for targeted global flow related effects. At its core, the discussed methodology 

embeds low fidelity model for surface and corresponding flow events. Desired geometrical parameters 

are iteratively solved to achieve target flow characteristics. 

 

Mots clefs : Proper Orthogonal Decomposition (POD), Gappy POD, Inverse 

Design, Functional Surfaces. 

 

1 Introduction 

 

Nature inspired designs potentially offers optimised and innovative solutions for engineering 

problems. Shark skin, pangolin, lotus leafs, springtails, dessert beetles, moth, butterfly etc. are known 

to inspire solutions for well-known engineering problems of friction, wettability and reflectively. 

Riblets discovered on shark skin aided drag reduction [1, 2]. Soil borrowing pangolin has scaled 

surface to reduce abrasive wear [3]. Lotus leaf employs superhydrophobic surface to keep surface dry 

and clean. Camouflaged Glasswing butterfly wings embed antireflective functional surface [4]. Moth’s 

eye has antireflective surface with fine array of structures [5]. 

 

Extensive literature is available on the application of nature inspired designs. Varanasi et al. [6] 

employed nanograss and micropillars to enhance critical heat flux of industrial boiler. Study also 

reported that nanopillars, when applied on top of micropillars, decreased liquid-solid contact angle. 

Elyyan [7] conducted DNS and LES studies on heat transfer enhancement of dimpled and protruded 
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fins. Larger fin pitch observed higher heat transfer enhancement. In the same study, perforation 

introduced inside imprint encouraged mixing and enhanced heat transfer. 

 

Numerical simulations have been extensively used to device innovative solution strategies for 

industrial design. As a result, data driven fluid flow system design has become focal point with 

increase in computing power. The process to improve on design requirement by optimising given 

aerodynamic shape within computational manifold is termed as Aerodynamic Shape Optimization 

(ASO). ASO framework integrates fluid flow model evaluating aerodynamic shape performance 

subject to flow field or geometric constraints. Additionally, framework embeds mathematical scheme 

to describe aerodynamic shape with the help of design variables. Numerical optimisation algorithm 

perturbs design variable resulting in aerodynamic surface change. Fidelity of ASO based results 

depends on modular components of the framework. For example, high fidelity model capturing true 

flow physics is important to produce desirable aerodynamic design. 

 

In inverse design methodology, surface characteristics results from specified target flow field. 

Established iterative process maps changes in flow field to geometry. Under each iteration, developed 

low fidelity model computes flow characteristics at much lower computational expense. Low fidelity 

models are types of reduced order models derived by projecting partial differential equation (PDE) 

solutions on to reduced space spanned by orthogonal basis. This particular method termed as 

“snapshot method” uses sets of instantaneous flow solutions to compute modes by Proper Orthogonal 

Decomposition (POD). Derived reduced order model for unsteady aerodynamic application [6-9] have 

applied this method of snapshot. 

 

POD also sometimes known as principle component analysis, computes empirical orthogonal mode. 

These modes describe dominant features present within dataset. Variety of applications such as image 

processing [8], inviscid airfoil design [9] and computation of reduced order dynamic system [10] have 

previously utilized POD. Everson and Sirovich [11] extended and applied modified POD method to 

handle incomplete dataset. Termed Gappy POD, the modified version reconstructs incomplete data 

sets by solving linear system of equations. Wilcox et al. [12] adopted this method to handle incomplete 

aerodynamic data and inverse design problem. In this manuscript inverse design of functional surface 

for targeted near wall flow characteristics is described. 

 

2 Proper Orthogonal Decomposition 
 

POD is procedure by which optimal linear basis are obtained to reconstruct original multidimensional 

data. This reconstruction reduces the order of system from large number to approximate its dynamic 

behaviour by small number of basis. Basics of POD is briefly summarized. A finite dimensional 

representation of function u(x) is sought in terms of basis vectors phi(x) as follows: 

 

                                                                (1) 

 

Basis are computed from the ensemble of N empirical PDE solutions denoted by . Choice of  

 is made such that these basis best describes the functions within the ensemble . In 

other words, the average inner product between the field and the basis is maximised as follows: 
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                                                                     (2) 

 

Here, denotes and denotes the L2 norm. This can be solved by calculus of variations in which 

 is maximised subject to constraint =1. Subject to some algebra [10], the basis function 

that are being sought should satisfy following equation: 

 

                                                (3) 

 

where  is a Lagrange multiplier. Hence eigenfunction  of above equation is sought whose kernel is 

an average autocorerelation function  . When ensemble of functions  

becomes collection of finite N-dimensional vectors, autocorrelation function becomes autocorrelation 

tensor. The integral eigen value problem reduces to: 

 

                                                                  (4) 

 

The basis vectors and corresponding eigen values are hence computes from above problem yielding 

the expansion of original function: 

 

                                                       (5) 

 

For fluid flow problems, eigenvalues represent energy contain within corresponding modes. The 

ensemble could represent snapshots of various flow variables obtained via experiments or expensive 

computation. Thus, ordering of eigenvectors as per corresponding eigenvalues computes truncated 

model of the flow variable.  

 

Gappy POD is an extension of existing POD for missing data reconstruction. The first step is ‘data 

masking’ that for a particular flow vector describes where data is available and where it is missing. For 

a flow snapshot , mask vector is defined as: 

 

                

 
 

Here denotes the ith element of snapshot vector . To start the process, zero values are assigned 

to the missing elements in vector . A pointwise multiplication is defined as . 

A Gappy inner product is hence defined as , while the induced norm is 

 . 

 

For a completely known snapshot set , let  be the POD basis. Consider g to be another 

solution vector that has some elements missing with corresponding mask vector n. Assuming that 

behaviour of vector g can be described by existing snapshot set, a complete reconstruction of 

incomplete g can be represented in terms of p POD basis as: 

 

                                                            (6) 
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Here  is intermediate repaired vector. POD coefficients  are computed by minimising error E 

between original and repaired vectors using gappy norm so that only original existing elements in  

are compared : 

 

                                                            (7) 

 

By differentiating above equation w.r.t coefficients  to minimise error E leads to linear system of 

equations  

                                                                  (8) 

 

Here , and . By solving above equations, coefficients can be obtained 

to repair intermediate repaired vector . To apply gappy POD for inverse design problem, the 

snapshots are redefined. Rather than containing only flow characteristics, each snapshot is augmented 

to contain surface parameter. This methodology is adopted to obtain surface parameters based on the 

mean velocity profile supplied. 

 

4 Results and Discussions 

 

Application of gappy POD to the inverse design problem is considered. The flow solutions to 

construct a database is obtained from high fidelity Lattice Boltzmann Method (LBM). A standard grid 

of 100x100 lattice units has been considered with bounce-back condition for wall. The aim of gappy 

POD is then to produce functional surface design parameters that dictates target near wall flow 

characteristics that is not contained within the snapshot collection. 

 

Figure 1 shows mean velocity profile at different design points.  Frictional velocity corresponding 

each design is used to obtain non-dimensional form of mean velocity profiles. Here elemental viscous 

scaled spacing and height for different functional surface is  and  

respectively (  = frictional velocity;  = viscocity). Inverse design is based on the ensemble of these 

velocity profiles.  

 

 
Figure 1. Mean Velocity profiles for different designs. 
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Figure 2 shows the mean velocity profiles that formed an input to gappy POD inverse design process. 

These inputs are formed by averaging  two distinct velocity profiles from the ensemble.  Figure 3 

shows the obtained inverse designs for three different mean velocity profile input.  It can be seen the 

Sx+ obtained by inverse design process showed a difference of 5% with that is obtained from high 

fidelity LBM simulations. About 7% difference is noted between the h+ obtained from inverse design 

and LBM simulation. 

 

 
Figure 2. Mean Velocity Profile Input. 

 

 
Figure 3. Design Comparision. 

 

Figure 4 shows the mean vecoity profile obtained at the end of inverse design process. As can be seen 

from the figure, the obtained velocity at the end of inverse design is well correlated with that of target 

profile. Table 1 shows the corresponding gappy normal error from the inverse design process. It can be 

seen that Velocity1 has the highest gappy normal error as a target velocity profile.  
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Figure 4. Mean velocity comparision. 

 

Table 1. Gappy nomral error for different mean velocity input. 

Velocity Gappy Error (E) 

Velocity1 0.9428 

Velocity2 0.3167 

Velocity3 0.4764 

 

5 Conclusions 
 

Low fidelity based inverse design process is introduced for functional surface. The process of inverse 

design is converted into a problem ‘missing data’ within an ensemble. Ensemble is further expressed 

in terms of orthogonal basis. The ‘missing data’ is reconstructed by combining linear basis with 

appropriately computed coefficients. The propsed method shows a good accuracy of inverse design 

process for functional surface. The proposed method obtained design parameters within 6% for most 

of flow range. 
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