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This work investigated the microbial content of nodules 
from alders to determine how many ribotypes of 
Frankia were present and which, if any, other bacteria 
existed within nodes from the nodules. The bacterial 
content of alder nodules was investigated by 454 se-
quencing of 16S rDNA genes. Over half of the sequences 
were from a single ribotype of Frankia, with nearly all 
other sequences coming from the chloroplast of the host 
plant, and other sequences (including other ribotypes of 
Frankia) being at < 1%. It is concluded that a single ribo-
type of Frankia is the major, although not unique, bacte-
rium present in an individual lobe from an alder no-
dule. 
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Introduction 
Many species of alders (e.g. Alnus glutinosa, A. rubra) have 
been planted in forestry plots to facilitate growth of the trees 
planted with them (Wheeler and Miller 1990) due to fixation 
of atmospheric nitrogen taking place in their root systems. 
In addition to this principal role of facilitating growth of 
other trees, alders have been used in land reclamation (e.g. 
as a biological sink for removal of heavy metals in soil which 
remain following open cast mining and which is being re-
turned to agricultural/forestry use) (Roy et al. 2007). 

The fixation of atmospheric nitrogen in the root system 
is due to the existence of Frankia, a nitrogen-fixing actino-
mycete which exists in nodules on the roots of alder trees 
and other actinorhizal plants; a diverse group of shrubs and 
woody plants. Strains of Frankia often show a high level of 
promiscuity and are often able to infect a wide range of 
plants species.  

A mature alder tree will commonly have numerous nod-
ules associated with its root system, and it is well-estab-
lished that an actinorhizal plant can have more than one 
strain of Frankia found in the various nodules around its 
root system (Dobritsa and Stupar 1989). Although there can 
be infection by different strains on a single root system, the 
level of diversity within a particular environment may be 
relatively low (Kennedy et al. 2010) and may vary in a tem-
poral manner (Anderson et al. 2013). Despite both Alnus and 
Casuarina plants having a similar mode of infection; via the 
root hair (Berry et al. 1986; Callaham et al. 1979), there were 
originally suggestions that Casuarina plants were likely to 
contain more than one strain of Frankia (Reddell and Bowen 
1985), whilst A. glutinosa nodules contained only a single 
Frankia strain (Faure-Raynaud et al. 1991). More recently it 
has become evident that Myrica rubra, another actinorhizal 
plant where infection is via the root hair (Callaham et al. 
1979) also has nodules which can contain more than one 
strain of Frankia and that the different strains can actually 
be relatively divergent (He et al. 2004) and that more than a 
single strain of Frankia was observed in A. nepalensis nod-
ules (Dai et al. 2004). These observations regarding Alnus 
nodules were based on either PCR-RFLP (Dai et al. 2004), 
which relies on differences between sequences either gain-
ing or losing a restriction enzyme digestion site, or isozyme 
patterns (Faure-Raynaud et al. 1991). Due to the methods 
involved, and their detection thresholds, it is possible that 
they may actually under-estimate the extent of multiple 
strains being present in nodules. 

To date, all studies where DNA sequencing has investi-
gated the microbial diversity of single nodules have used the 
Sanger method. Although it is possible to undertake large-
scale sequencing investigations via this technology, the prac-
ticalities of cloning, plasmid extraction and sequencing of 
numerous clones means that the process can become both 
time-consuming and costly. The development of next gener-
ation sequencing eases this task somewhat by generating 
thousands of sequences within a single run, meaning that 
evaluation of the composition of complex ecosystems can be 
undertaken more readily. The work presented here is the 
first application of next generation sequencing to investigate 
the composition of the bacterial community within nodules 
on Alnus glutinosa roots in an effort to determine if there is 
the potential for more than one strain to inhabit a single no-
dule, albeit with one at a very low abundance. In addition, 
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rather than making an effort to target specific bacteria by 
concentrating on genes involved in nitrogen-fixation (e.g. 
Dai et al. 2004; Welsh et al. 2009) the examination extends 
to a broader range of bacteria by using 16S rDNA primers.  
 
 
Materials and methods 
Collection of nodules 
Nodules were harvested from Alnus glutinosa plants grown 
in a Eutric Cambisol soil at the Henfaes Experimental Station, 
Abergwyngregyn, Gwynedd, Wales (53°14’N, 4°01’W) for 3 
years prior to harvesting of nodules. The nodules were har-
vested during August 2008 and collected from soil which 
was approximately 5 cm below the surface. Nodules har-
vested had 2-3 lobes present and had an external healthy ap-
pearance. These criteria were adopted in an effort to ensure 
that nodules were well-developed, but to reduce the poten-
tial for nodule senescence having taken place.  Following col-
lection, nodules were stored at - 80°C until ready for DNA 
analysis. 
 
Performing PCR on nodule material 
Thawed nodules were surface-washed to remove bacteria 
loosely associated with the surface of the nodule in an at-
tempt to reduce contamination from bacteria other than 
those integral to the nodule. The periderm was peeled to re-
move the outer layer from two nodules from different trees. 
Individual lobes from each of these peeled nodules were 
used for DNA analysis. 

Lobes were ground in a microfuge tube with a mini-pes-
tle in sterile molecular-grade water, followed by incubation 
at 95°C for 15 min and centrifugation at 13000 g for 10 min. 
The supernatant was removed and 1µl was added directly to 
a FastStart high fidelity PCR system master mix. Performing 
PCR directly on cellular material (Hofmann and Brian 1991) 
has been applied previously to Frankia DNA analysis 
(McEwan and Wheeler 1995) with the 95°C incubation rup-
turing even relatively robust actinomycetes such as Frankia. 
PCR was performed using the following conditions recom-
mended by the manufacturer (Roche) for FastStart PCR for 
16S rDNA amplicons for 454 sequencing: 95°C, 2 min (Hot-
start) followed by 30 cycles of 95°C for 30 s, 55°C for 30 s 
and 72°C for 2 min with a final extension of 72°C for 7 min. 
The primer CCTATCCCCTGTGTGCCTTGGCAGTCTCAGAGAG 
TTTGATCMTGGCTCAG, E. coli position 27, was used as the 
forward primer for both PCR reactions. Two different re-
verse primers were used – one for each of the reactions (i.e. 
one per nodule) being investigated, meaning that by check-
ing the primer allowed identification of the source nodule; 
CCATCTCATCCCTGCGTGTCTCCGACTCAGTCTCTATGCGCTG
CTGCCTYCCGTA or CCATCTCATCCCTGCGTGTCTCCGACTCA 
GTGATACGTCTCTGCTGCCTYCCGTA, with both correspond-
ing to E. coli position 357 (Caporaso et al. 2011). Primers 
were used at a final concentration of 400 nM and the reac-
tion volume was 25 μl. The PCR amplicons were checked by 
electrophoresis on a 1% TAE agarose gel to verify successful 
amplification and that amplicons were around 300 bp, the 
approximate size predicted when using these primers. 

Following size verification, the sample concentration 
was normalized by mixing the two PCR products in equimo-
lar concentrations. Both replicates within the tube went 
through a final concentration measurement and the sample 
was stored at – 20°C until ready for 454 sequencing. 

Quantification of the sample was carried out using the 
Quant-iT™ PicoGreen® dsDNA reagent (Invitrogen) and a 

CFX 96™ real-time system (Bio-Rad) to measure relative flu-
orescence. Concentrations were calculated using a standard 
curve and the reactions normalized and pooled. Agencourt® 
AMPure® XP beads (Beckman Coulter) were used for PCR 
purification following the standard manufacturer’s protocol 
to remove unincorporated dNTPs and primer dimers. The 
pooled and purified libraries were re-quantified and diluted 
to a final concentration of 107 molecules/µl. 
 
Sequencing and bioinformatical analysis 
DNA sequencing was performed using a Genome Sequencer 
FLX, 454 Life Sciences (Roche) and following sequencing, 
data analysis was performed on a Dell PowerEdge T710 with 
Biolinux Ubuntu 10.04 base running QIIME (Caporaso et al. 
2010). Raw input sequences were de-replicated and filtered 
according to multiplex (primer) identifiers, minimum qual-
ity score, length, ambiguous bases, homopolymer runs and 
primer mismatches. Operational taxonomic units (OTUs) 
were picked using UCLUST (Edgar 2010) at 97% identity 
and Ribosomal Database Project (RDP) (Cole et al. 2005) 
was used to assign taxonomy. For both samples, Good’s cov-
erage and rarefaction curve were determined using rich (a 
package run in R) for both samples to assess if the number 
of sequences appeared to be an appropriate representation 
of the population (Rossi 2011).  
 
 
Results 
The abundance of each sequence obtained is shown in Table 
1. In both nodules, the major organism was Frankia, repre-
senting 58.3 and 54.0% of the total respectively. In the case 
of the first nodule, this Frankia representation was due to 2 
different ribotypes being present; one constituting 57.5% of 
all strains and the other constituting 0.8%, with identity le-
vels of 98%. In the second nodule, both of these ribotypes 
were again present (53.6% and 0.3%, respectively) but a 
third ribotype was also present at lower abundance (0.1%), 
with 99% identity to the major ribotype and 98% identity to 
the other. 

The next most abundant sequence detected was that of 
the 16S rDNA sequence from the host plant’s chloroplasts 
(40.6% and 45.2%, respectively). Although there was a dif-
ference in the number of sequences obtained 8267 and 
1002, rarefaction curves were beginning to plateau and 
Good’s coverage for both data sets showed that samples 
were representative of their respective populations, with 
values of 99.8% and 99.4%. All other sequences detected 
were present at low levels and included sequences from the 
following genera: detected in both nodules (Delftia, Propion-
ibacterium, Brevundimonas, Ochrobactrum, Burkholderia 
and uncultivated members of the Lachnospiraceae); specific 
to nodule 1 (Bradyrhizobium, Agromyces and Pedobacter); or 
specific to nodule 2 (Escherichia, Leifsonia, Stenotrophomo-
nas, Pseudomonas, Rhodococcus, Williamsia, Aeromicrobium, 
Streptococcus, Devosia and Mesorhizobium). However, in 
each of these cases the sequences constituted only a minor 
component of the microbial community, never exceeding 
0.3% of the total. All DNA sequences have been submitted to 
the EBI database. 
 
 
Discussion 
This work demonstrates that the most abundant organism 
present in the nodules of the alder plants is indeed Frankia.  
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Table 1: Source of 16S rDNA sequences detected in the two Alnus glutinosa nodules investigated. ND = not detected 

Organism detected Sequences in nodule 1 Sequences in nodule 2 
Frankia strain 1 576 4435 
Frankia strain 2 8 22 
Frankia strain 3 ND 9 
Alder chloroplast 407 3741 
Delftia 3 4 
Propionibacterium 1 10 
Brevundimonas strain 1 1 7 
Brevundimonas strain 2 ND 1 
Brevundimonas strain 3 ND 1 
Ochrobactrum 1 4 
Burkholderia 1 1 
Bradyrhizobium 1 ND 
Agromyces 1 ND 
Pedobacter 1 ND 
Escherichia ND 9 
Leifsonia strain 1 ND 2 
Leifsonia strain 2 ND 1 
Leifsonia strain 3 ND 2 
Stenotrophomonas ND 3 
Pseudomonas ND 2 
Rhodococcus ND 1 
Williamsia ND 1 
Aeromicrobium ND 1 
Streptococcus ND 1 
Devosia ND 1 
Mesorhizobium ND 1 
Uncultivated Lachnospiraceae sequence 1 1 1 
Uncultivated Lachnospiraceae sequence 2 ND 5 
Uncultivated bacterium ND 1 
Total number of sequences 1002 8267 

 
 
It also corroborates the findings of Normand et al. (1996), 
who reported half (5 out of 10) of the 16S rDNA sequences 
obtained from nodular material may be from the plant’s 
chloroplasts. 

The current findings re-iterate observations that more 
than a single strain of Frankia can occupy a single nodule, 
together with a low level of additional ribotypes being pre-
sent. It is interesting to note that in one of the examples used 
here, there are three Frankia ribotypes detected, which is in 
keeping with the observation of Pokharel (2009). However, 
despite the presence of these additional strains, the levels at 
which they are present would be supportive of only one ri-
botype playing a major role in the physiological activities of 
the nodule. The observations made regarding single isozyme 
patterns (Faure-Raynaud et al. 1991) would also be likely in 
the current work, as the minor strains of Frankia are likely 
to be below detection-level threshold. However the true ge-
neric level of additional sequences from minority strains of 
Frankia requires extension beyond the current work which 
is based on two samples. 

The final point of interest is that in general there are very 
few additional (non-Frankia) sequences detected within the 
nodules, with only sequences from Delftia ever exceeding 
0.1% of the total community. It is possible that one or more 
of these sequences resulted from surface contamination 
from the nodules which was harvested during the pealing 
process, despite the steps taken at the start of the extraction 
procedure. Equally, the concept that the sequences detected 
were genuinely from within the nodule cannot be precluded. 
In either event, it is clear that levels of non-Frankia sources 

of bacteria are extremely low in the nodule – at the level 
which would necessitate that next generation sequencing be 
used to detect any such organism at a molecular level. 

This suggests that the process of nodule development is 
not associated with any long-term co-colonisation by signif-
icant levels of other bacterial species. This observation is 
probably as expected, since the mode of nodule develop-
ment in Alnus involves root hair infection (Berry et al. 1986), 
as opposed to the epidermal infection process described in 
some other actinorhizal symbioses (e.g. Miller and Baker 
1985; Lui and Berry 1991). It is also interesting to note the 
presence of more than a single ribotype of Frankia in both 
nodules investigated here, as well as in previous work. The 
mechanism by which this multiple strain infection arises 
merits further investigation, as sampled data do not permit 
(i) differentiation between co-colonisation by two strains 
where one out-competes the other, (ii) co-colonisation but 
with unequal numbers at the outset or (iii) secondary colo-
nisation of a nodule following establishment by the original 
ribotype. 

In conclusion, the application of next generation se-
quencing has investigated the number of ribotypes of bacte-
ria in two small nodules. A single Frankia ribotype is pre-
dominant, with at least one minor Frankia ribotype being 
found in both examples investigated. The previous issue of 
chloroplast contamination constituting a major number of 
sequences (Normand et al. 1996) was also observed here, il-
lustrating that earlier reports were not due to errors built in 
to smaller sampling sizes. Moreover, the internal structure 
of the nodule is relatively free of any microbes other than 
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Frankia, with levels of other bacterial species detected being 
low enough to be uncertain if they are genuine occupants of 
the nodule or potential contaminants detected during the 
isolation process. 
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