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Abstract—We describe and compare two steady state asyn-
chronous parallelization variants for DECMO2++, a recently
proposed multi-objective coevolutionary solver that generally
displays a robust run-time convergence behavior. The two asyn-
chronous variants were designed as trade-offs that maintain only
two of the three important synchronized interactions / constraints
that underpin the (generation-based) DECMO2++ coevolutionary
model. A thorough performance evaluation on a test set that
aggregates 31 standard benchmark problems shows that while
both parallelization options are able to generally preserve the
competitive convergence behavior of the baseline coevolutionary
solver, the better parallelization choice is to prioritize accurate
run-time search adaptation decisions over the ability to perform
equidistant fitness sharing.

Index Terms—multi-objective optimization, asynchronous co-
evolution, master-slave parallelization, performance analysis

I. INTRODUCTION

Formally, a multi-objective optimization problem (MOOP)
can be defined as:

minimize F (x) = (f1(x), . . . , fm(x))T , (1)

where x ∈ Dn ⊂ Rn and the m single-objective functions
contained in F need to be optimized simultaneously and are
usually conflicting. The general solution to a MOOP is a
Pareto-optimal set (PS) that contains all the individual solution
candidates x∗ ∈ Dn with the property that there is no single
element in Dn that is better than x∗ with regard to all m
considered objectives. In most cases, MOOP solvers settle for
discovering high-quality Pareto non-dominated sets (PNs) that
provide a near-perfect approximation of the PS using a limited
number of solution candidates.

Since multi-objective evolutionary algorithms (MOEAs) are
designed to generate full PNs after single optimization runs,
these approaches have become very successful in tackling
complicated MOOPs [1]. Nevertheless, when the optimization
problems stem from real world scenarios, the (fitness) evalua-
tion of a potential solution candidate (i.e., individual) x ∈ Dn

can be very computationally-intensive due to required sim-
ulations or even on-site experimentation. This is problematic
because MOEAs usually need to perform a rather high number
of fitness evaluations (nfe) in order to discover useful PNs.

Whenever the optimization scenario allows it, the easiest way
to speed-up the MOEA-based optimization is to parallelize
fitness evaluations. In its simplest form, this parallelization
follows the master-slave paradigm in which:
• the process running on the master node contains the

main algorithmic logic (population initialization, parent
selection, application of genetic operators to generate
offspring, replacement strategy, etc.);

• processes running on the slave nodes are only responsible
for evaluating the fitness of one individual at a time.

Master-slave MOEAs can adopt either a classic synchronous
generation-based parallelization or an asynchronous paral-
lelization strategy that is more similar to a steady-state evo-
lutionary cycle. The generation-based parallelization aims to
preserve the (µ + λ) evolutionary model implicitly assumed
by most solvers where the µ parent individuals of generation
(i.e., iteration) t are selected from the union between the µ
parent and the λ offspring individuals of generation t−1 after
all the offspring have been previously evaluated on the slave
nodes. The asynchronous parallelization, on the other hand,
generates a new individual as soon as an offspring has been
evaluated on a slave node so the evolutionary models becomes
(µ+ 1). Some of the pros and cons of asynchronous MOEAs
have been investigated in [2], [3], and [4].

The analysis in [5] highlights the difference between syn-
chronous and generation-based MOEAs starting from two
simple observations:
• given a fixed wall-clock computational budget, the asyn-

chronous parallelization will be able to compute more
individuals than its generational counterpart (i.e., quanti-
tative aspect);

• given a fixed nfe computational budged, the generation-
based parallelization is very likely to deliver higher-
quality PNs than the steady-state asynchronous paral-
lelization across most MOEAs (i.e., qualitative aspect).

This dual point of view is useful because the quantitative as-
pects tend to depend on the software and hardware constraints
of the parallel or distributed computing environment, while the
qualitative aspects depend on the MOEA-MOOP interaction.



One key (empirical) finding from [5] that was confirmed in
subsequent studies – e.g., [6] – was that a high level of
variance in the time-wise distribution of the fitness evaluation
function clearly favors the asynchronous parallelization.

A. Motivation and approach

One idea to help MOEA practitioners successfully tackle
complicated industrial problems is to develop coevolutionary
multi-objective solvers that focus on robustness – i.e., gen-
erally effective run-time convergence across a wide range of
MOOPs when using a fixed parameterization. Examples of
such solvers can be found in [7], [8], and [9]. The increase
in robustness advocated by coevolutionary methods usually
comes at the expense of structural simplicity, which in turn
makes even a master-slave parallelization attempt challenging,
as one aims to preserve the efficient convergence behavior.

The main motivation for this paper stems from the re-
quirement to develop an asynchronous steady-state version
variant of the DECMO2++ [9] coevolutionary solver. While
the highly competitive and robust early-phase convergence
behavior of DECMO2++ has been confirmed on comprehen-
sive test sets featuring both benchmark and industrial multi-
objective optimization problems, the structural complexity of
this solver and the carefully orchestrated interactions between
its components proved rather problematic when switching
to an asynchronous (µ + 1) evolutionary cycle. Therefore,
in Section II, an analysis of the coevolutionary interactions
that characterize DECMO2++ is presented, as based on this,
two asynchronous parallelization variants were developed. The
two variants were thoroughly tested using the performance
evaluation strategy described in Section III and the results and
their implications are discussed in detail in Section IV.

II. ASYNCHRONOUS COEVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION

The architecture of the generation-based coevolutionary
model we aim to efficiently parallelize is presented in Figure 1.
The two steady-state asynchronous parallelization options we
investigate are described in Sections II-C (equidistant fitness
sharing) and II-D (sub-population-centered fitness sharing).

A. The baseline coevolutionary strategy: DECMO2++

The generation-based DECMO2++ [9] solver follows the
same structural design of its predecessor [10] as it aims
to integrate three different multi-objective space exploration
paradigms via dedicated solution sets (i.e., sub-populations)
that are coevolved during the optimization run.

The members of the first coevolved sub-population (marked
by P ) are obtained via the SPEA2 [11] evolutionary model
that revolves around the environmental selection operator – a
selection for survival mechanism that trims a set of individuals
(e.g., the |P | parent individuals of generation t−1 and all their
offspring created at generation t) to a desired size (e.g., the
|P | individuals that will form the preliminary parent set of
generation t). Environmental selection uses Pareto dominance
as a primary selection metric and a crowding distance in

Fig. 1. The architecture of the DECMO2++ coevolutionary model.

objective space as a secondary (tie-breaking) metric. At each
generation, offspring are created from the parent set using sim-
ulated binary crossover (SBX) [12] and polynomial mutation
(PM) [13] – the two genetic operators that were popularized
by NSGA-II [14].

The second coevolved sub-population (marked by Q) is
focused on exploiting the very good performance displayed
by the differential evolution paradigm [15] on continuous
optimization problems with real-valued objective functions.
More precisely, Q implements an evolutionary model that is
very similar to the one proposed by GDE3 [16] and DEMO
[17] as it maintains the usage of a Pareto-based selection for
survival operator (i.e., environmental selection), but replaces
the SBX and PM operators with the DE/rand/1/bin strategy.

DECMO2++ also features an archive (marked by A) that is
maintained according to a decomposition-based principle that
uses a weighted Tschebyscheff distance measure to ensure
the uniform objective-wise spacing of stored solutions. This
approach is similar to the one proposed in MOGLS [18]
and mainstreamed by the success of MOEA/D [19]. While
new individuals are periodically evolved directly from A, the
archive has a mainly passive purpose and its main role inside
the solver is two-fold:

1) preserve an accurate well-spread approximation of the
Pareto-optimal set;

2) act as a run-time estimator of the comparative suc-
cess of the three optimization strategies coevolved by
DECMO2++. This is achieved by computing at the end
of each odd-numbered (test) generation the correspond-
ing archive insertion ratio of each paradigm – i.e.,



the percentage of individuals generated by each of the
three strategies that warranted an archive insertion for
improving the existing approximation of the PS.

The archive insertion ratios are extremely important
for ensuring the robust and fast convergence behavior of
DECMO2++ as they are used to:

1) actively pivot the search towards the more successful
strategy. Thus, at each even-numbered generation, a
number of B bonus individuals will be created by the
strategy/strategies that achieved the highest insertion
ratios in the previous test generation.

2) support a self-diagnostics logic that attempts to identify
during the run the current stage of convergence: “early”,
“middle” (when the insertion ratios of both P and Q
drop below 0.5), or “late” (when the insertion ratio of
A constantly outperforms those of P and Q).

The search behavior of DECMO2++ is influenced by the
estimated convergence state as: in the “early” stage, a special-
ized directional intensification operator is used when evolving
individuals directly from A; in the “middle” stage, the number
of bonus individuals is halved; in the “late” stage, the bonus
individuals are created at every generation directly from A.

The main population-size parameter of DECMO2++ is the
size of the archive (i.e., |A|) while the sizes of the various
sets of individuals used inside the coevolutionary model are
obtained using (2).|B| =

{
|A|
5 , if convergence stage = “early”
|A|
10 , if convergence stage 6= “early”

|P | = |Q| = |A|−|B|
2

(2)

As with most coevolutionary methods, efficient fitness shar-
ing is crucial for enabling an effective integration of the
coevolved components. The fitness sharing mechanism used by
DECMO2++ at the end of each generation is highly elitist as
it entails a two-fold application of the environmental selection
operator. First, the operator is used to extract a total number
of |B| elite individuals, from the union of P , Q, and A.
Afterwards, environmental selection is also used to integrate
these elite individuals in sub-populations P and Q.

B. The dilemma of an asynchronous DECMO2++ variant

It is very important to note that the (generation-based)
DECMO2++ model intrinsically determines three perfectly
synchronized coevolutionary interactions / constraints between
key parts of the optimization strategy, regardless of the level
of time-wise variance related to fitness evaluation:
CI1 The fitness sharing stages are tightly linked with the

archive insertion ratios as the latter are always computed
between two consecutive fitness sharing stages. For
example, the archive insertion ratios are reset directly
before starting the computation of generation t, they are
calculated using all the newly generated individuals of
generation t, they are used by the self-diagnostics logic
of generation t and, finally, for determining the bonus
allocation of generation t+ 1.

CI2 The fitness sharing stages are equidistant with regard
to the total number of evaluated individuals (i.e., they
are performed after every batch of |A| newly evaluated
individuals).

CI3 The generation-based fitness sharing stages always allow
for a predetermined number of individuals to be evalu-
ated and used for determining archive insertion ratios
for each DECMO2++ sub-population: e.g., between the
fitness sharing stages of generations no. t and no.
t+ 1, DECMO2++ will evaluate exactly LP individuals
generated using the SPEA2 evolutionary model, exactly
LQ individuals generated using the GDE3 / DEMO
evolutionary model, and exactly LA individuals evolved
directly from the decomposition-based archive A.

Using a set of limited but systematic benchmark tests spread
across 31 MOOPs, we determined that the synchronous coevo-
lutionary interaction between the fitness sharing stages and
computation and usage of archive insertion ratios (i.e., CI1)
must be maintained when aiming for asynchronous evaluation
in order to preserve the generally robust convergence behavior
exhibited by DECMO2++. This should not come as a surprise
since the orchestrated interaction between these two features
defines the active run-time search adaptation mechanism that
truly sets DECMO2++ apart from other coevolutionary multi-
objective optimization approaches like [8] and [20].

The (steady-state) asynchronous evolutionary model makes
it impossible to simultaneously maintain both the CI2 and
CI3 coevolutionary interactions, especially when considering
a large time-wise variance of the fitness evaluation function.
This is because the strict enforcement of both CI2 and CI3
(e.g., by introducing waiting times on the master process)
means that (3) must hold and this would transform the
asynchronous evolutionary model into a fully synchronous one
(i.e., generation-based with a generation size of |A|):

LP + LQ + LA = |A| (3)

However, it is possible to simultaneously couple either CI1
with CI2 (as described in Section II-C) or CI1 with a softer
version of CI3 (as described in Section II-D) while preserving
the basic (steady-state) asynchronous parallelization schema
investigated in [10] and [6].

C. Equidistant fitness sharing

When opting to simultaneously enforce the CI1 and CI2 co-
evolutionary interactions described in Section II-B, we obtain
an asynchronous DECMO2++ variant (E-aDECMO2++) that,
similarly to the generation-based baseline, features equidistant
fitness sharing stages that take place after every batch of
|A| individuals has been evaluated. Therefore, during any
optimization run, E-aDECMO2++ will contain as many fitness
sharing stages as DECMO2++.

During an E-aDECMO2++ optimization run, the sub-
population archive insertion ratios are determined after a
random number of individuals (marked by RP , RQ, and RA)
have been evaluated for each corresponding sub-population.
By enforcing CI2, we have that RP +RQ+RA = |A| meaning



that the three random numbers are reset to 0 immediately after
a fitness sharing stage (i.e., after a new batch of |A| individuals
has been evaluated).

It should be noted that during an E-aDECMO2++ run,
in some cases, RP , RQ, and RA can be much smaller than
their generation-based correspondent (i.e., LP , LQ, and LA

defined in Section II-B). This in turn impacts the accuracy of
the associated archive insertion ratio. In an attempt to alleviate
this effect, we allow the |B| bonus individuals to improve1 the
archive insertion ratios of sub-populations P and Q. This is a
change from the generation-based DECMO2++ model where
bonus individuals cannot contribute to the insertion ratios of P
and Q since the ratios are only computed at the end of (odd-
numbered generations) and the bonus individuals are assigned
to P and Q only during even-numbered generations.

D. Sub-population-centered fitness sharing

When choosing to simultaneously enforce CI1 and (a softer
version of) CI3, the obtained asynchronous DECMO2++
variant (S-aDECMO2++) features fitness sharing stages
that are sub-population-centered – i.e., only take place af-
ter a minimum predetermined number of individuals (i.e.,
LP , LQ, and LA) has been evaluated for each sub-population.
In this case, the DECMO2++ constraint from (3) still holds.

In S-aDECMO2++, the sub-population archive insertion ra-
tios are also determined after a random number of individuals
(i.e., RP , RQ, and RA) have been evaluated for each sub-
population. The difference is that, in light of the softer version
of the CI3 coevolutionary interaction, (4) must hold and thus
the insertion ratios associated with RP , RQ, and RA should
be as accurate as those of DECMO2++.

RP ≥ LP

RQ ≥ LQ

RA ≥ LA

(4)

The downside of S-aDECMO2++ is that from (3) and (4) it
immediately follows that RP +RQ+RA ≥ |A| and this means
that given a fixed number of fitness evaluations that are to be
computed during the optimization run, S-aDECMO2++ will
benefit from fewer fitness sharing stages than DECMO2++.

To sum everything up, by not enforcing either CI2 or
CI3 (even in a softer version), the search behavior of both
asynchronous variants of DECMO2++ will be impacted when
compared to the baseline coevolutionary strategy as:

• E-aDECMO2++ will have less accurate insertion ratios;
• S-aDECMO2++ will have fewer fitness sharing stages.

The main aim of the present work is to highlight which of
these downsides is more serious , especially when considering
different levels of variance in the time-wise distribution of the
fitness evaluation function.

1When computing the ratios, the bonus individuals are counted in the nu-
merator if successfully inserted into A, but are not counted in the denominator
(i.e., RP or RQ).

III. PERFORMANCE EVALUATION

In order to determine the convergence behavior of E-
aDECMO2++ and S-aDECMO2++, we used a pseudoparallel
computational environment similar to the ones described in
[5] and [21] as this enables an exact control of the numerical
experiment, especially concerning the time-wise distribution of
the fitness function. The pseudoparallel computational environ-
ment has one master node and λ =200 slave nodes. While all
the tasks required to generate one new individual on the master
node (are simulated to) take ts = 1 unit of time, the duration
of fitness evaluations is sampled from a normal distribution
with the mean tp = 1000 and the standard deviation cv × tp.
By changing cv – i.e., the coefficient of variation – such
that cv ∈ {0.0, 0.05, 0.1, 0.2}, the time-variance of the fitness
evaluation function can be easily controlled while maintaining
the parallelization ratio r = d tpts e fixed.

We performed optimization runs on an extensive benchmark
suite that aggregates 31 standard MOOPs:
• all five real-valued problems from the ZDT test set [22];
• Kursawe’s function [23]: 10 variables and 2 objectives;
• all seven problems from the DTLZ test set [24];
• all nine problems proposed in the LZ09 problem set [25];
• all nine problems from the WFG test set [26].
We made 100 independent repeats for each MOEA-MOOP

combination. We only report over averaged results and, in
some cases, we apply statistical significance testing when
analyzing the observed differences.

A. Evaluation criteria

In this work, the quality indicator used for comparing
optimization results is the (normalized) hypervolume metric
[27] (notation IndH ). The theoretical proof of a monotonic
convergence behavior [28] for IndH makes this unary indica-
tor of Pareto convergence an attractive basis for more advanced
application-specialized comparative indicators.

For instance, in both [5] and [21], when wishing to compare
an asynchronous and a synchronous (i.e., generation based)
version of a MOEA from a qualitative point of view, IndH -
based indicators are defined for measuring the differences in
nfe-count or evaluation time requirements needed to reach a
certain level of the true hypervolume (i.e., the one associated
with the PS). In the present experiments we adopt the ∆qual(p)
indicator from [5] that measures the relative percentage of
individuals that must be computed by an asynchronous MOEA
(when compared to its generation-based baseline) in order
to reach a PN with a hypervolume that is p% of the true
hypervolume for a given problem. Concretely, ∆qual(p) is
usually positive (as the asynchronous versions need to compute
more individuals) and is calculated as follows:

∆qual(p) =

(
nfeasync(p)

nfegen(p)
− 1

)
× 100 (5)

where nfeasync(p) represents the number of fitness evalu-
ations required by the asynchronous version of the MOEA
to reach a PN of at least p% IndH -measured quality and



nfegen(p) represents the corresponding number of fitness
evaluation required by the generation-based variant.

B. Hypervolume-ranked performance curves

Another application-specialized comparison indicator comes
in the form of hypervolume-ranked performance curves
(HRPCs). They were proposed in [10] to facilitate the run-time
comparison of the convergence behavior of (several) MOEAs
across test sets containing many MOOPs.

The idea is to rank the algorithms tasked to solve a MOOP
based on IndH -measured quality at various (pre-defined)
stages during the run – e.g., after evaluating a new batch
of 1000 individuals. Concretely, at a given comparison stage,
when using the basic ranking schema, the worst performer
among ns algorithms will receive the rank ns and the best
performing algorithm will receive the rank 1. Keeping in
line with [10], a bonus rank of 0 is awarded to a MOEA
that is estimated to have fully converged on a problem (i.e.,
IndH > 0.99) while a penalty rank of ns+1 is awarded while
the MOEA has not discovered a relevant PS approximation for
the given MOOP (i.e., IndH < 0.01). By simply averaging
(MOEA-wise and stage-wise) the ranks achieved on individual
MOOPs, one can easily illustrate the comparative convergence
behavior across an entire benchmark problem set.

At each comparison stage, HRPCs rely on making two-by-
two MOEA comparisons in increasing order of performance
and, in order to highlight certain convergence bahaviors, apart
from the basic ranking, we also apply:
• a pessimistic ranking schema that only awards differ-

ent ranks when the stage-wise differences between the
average performance of two MOEAs is larger than a
predefined threshold2 marked by th;

• a statistical ranking schema that only awards different
ranks when the stage-wise differences between the aver-
age performance of two MOEAs is deemed statistically
significant by a one-sided Mann-Whitney-Wilcoxon test
[29] with a considered significance level of 0.025.

C. Tested algorithms and parameterizations

We analyzed the performance of E-aDECMO2++ and
S-aDECMO2++ when comparing both to their DECMO2++
baseline and to other well-known generation-based MOEAs:
• SPEA2 and GDE3 – the original MOEAs that proposed

the search paradigms emulated by the P and Q sub-
populations of DECMO2++;

• NSGA-II [14] – the best known and most widely applied
MOEA (when considering the number of citations);

• MOEA/D-DE with Dynamic Resource Allocation [30] –
a state-of-the-art solver that delivers highly competitive
solutions for many MOOPs.

Across all optimization runs, the tested MOEAs used their
(fixed) literature-recommended parameterization. The popula-
tion / archive size was set to 200 (except for MOEA/D-DE

2For example, a value of th = 0.05 would require a minimal 5% difference
between average IndH values to award different ranks.

where a special archive size that depends on objective-count is
the standard parameterization) and each MOEA was awarded
a computational budget of nfe=50,000 per optimization, irre-
spective of MOOP.

IV. RESULTS AND INTERPRETATION

In the left-hand plot from Figure 2 we present the average
IndH -measured performance over the 31 benchmark MOOPs
of the E-aDECMO2++ asynchronous variant3 and of the
DECMO2++ generation-based baseline. With regard to the
convergence behavior of the two coevolutionary approaches,
it is important to observe that the generation-based algorithm
performs better in the early phases of the optimization runs
(i.e., nfe < 15.000). When considering the latter part of the
optimization runs (i.e., nfe > 15.000) the performance of E-
aDECMO2++ and DECMO2++ appears to be largely similar.

In the right-hand plot from Figure 2 we use the ∆qual(p)
metric defined in (5) to better characterize the difference
in performance between E-aDECMO2++ and DECMO2++
(especially when considering variance). Thus, the solid black
line (cv = 0) directly corresponds to the left-hand plot
and highlights that (on average, across the 31 benchmark
MOOPs) in order to obtain a PN with a hypervolume that
is between p = 30% and p = 70% of the true hypervolume,
E-aDECMO2++ must evaluate ≈ 30− 40% more individuals
than DECMO2++. When aiming for a PN that has p = 80%
of the true hypervolume, E-aDECMO2++ must evaluate only
≈ 20% more individuals than its baseline. In order to generally
reach the best possible average performance of DECMO2++
(i.e., ≥ 90% of the true hypervolume), E-aDECMO2++ needs
up to 10% less fitness evaluations than DECMO2++.

When considering a fairly limited amount of variance
(i.e., cv = 0.02) in the time-wise distribution of the fitness
evaluation function, all the previous observations regarding
E-aDECMO2++ still hold, as the impact on the associated
∆qual(p) is barely noticeable. However, whenever there are
high levels of variance (i.e., cv = 0.10 and cv = 0.20), the
convergence behavior of E-aDECMO2++ is visibly improved
as, on average, E-aDECMO2++ must evaluate:

• only ≈ 20− 25% more individuals than DECMO2++ in
order to reach PNs that have between 30% and p = 70%
of the true hypervolume;

• only ≈ 10% more individuals to reach PNs that have 80%
of the true hypervolume;

• still 10% less individuals to match DECMO2++ peak
performance.

It is very important to note that when not allowing bonus in-
dividuals to positively contribute to (i.e., improve) the archive
insertion ratios of E-aDECMO2++, the positive impact of high
variance (cv = 0.10 and cv = 0.20) on the convergence
performance of E-aDECMO2++ is completely canceled and
the cv = 0 convergence behavior becomes standard.

3When considering a constant time-wise distribution of the fitness evalua-
tion function.
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In the two plots from Figure 3 we present the average IndH
and ∆qual(p)-measured performance of the S-aDECMO2++
asynchronous parallelization variant. Two observations are
extremely important:

1) The average convergence behavior of S-aDECMO2++
across the 31 benchmark MOOPs is largely invariant
with regard to the time-wise distribution of the fitness
function (especially when aiming for PNs with hyprvol-
umes that are at least 30% of the true hypervolume).

2) The average convergence behavior of S-aDECMO2++
matches the one exhibited by E-aDECMO2++ under
high variance (and, implicitly, is superior to that of
E-aDECMO2++ under low variance in the time-wise
distribution of the fitness evaluation function).

In light of all the aforementioned results and interpretations,
S-aDECMO2++ is on average the better (i.e., more robust)
asynchronous parallelization variant of DECMO2++. Further-
more, when also considering the reason behind the improved
performance of E-aDECMO2++ when having large variance
in the time-wise fitness distribution, it becomes obvious that,
inside the baseline coevolutionary solver, maintaining even
a softer version of the CI3 coevolutionary interaction (i.e.,

the accuracy of the insertion ratios) is more important than
maintaining CI2 (i.e., the number of fitness sharing stages).

While all the performed experiments indicate that both
asynchronous parallelization variants of DECMO2++ have
higher run-time nfe requirements than their generation-based
coevolutionary baseline, it is important to view this aspect in a
proper context. Therefore, in Figure 4 we present the average
IndH -measured convergence behavior of E-aDECMO2++ and
S-aDECMO2++ when comparing with four other well-known
generation-based MOEAs. The plots indicate that even when
using an asynchronous parallelization paradigm, the coevo-
lutionary approaches remain quite competitive (especially in
the early phases of the optimization runs). Furthermore, the
magnitude and statistical significance of the observed dif-
ferences in convergence behavior are confirmed by the four
complementary HRPCs from Figure 5.

The fact that S-aDECMO2++ is generally competitive with
generation-based MOEAs when evaluating based on required
nfe (i.e., qualitative aspect) is extremely important when
also considering that in real-life optimization scenarios the
asynchronous MOEA benefits from a structural computational
speed-up that is likely to be improved by the presence of
variance in the time-wise distribution of the fitness evaluation
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function (i.e., quantitative aspect).

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed two asynchronous parallelization
variants for the DECMO2++ multi-objective coevolutionary
solver. Our analysis revealed that each parallelization option
infringed on one of three key (synchronized) coevolution-
ary interactions enforced by the generation-based (baseline)
model. When also considering the impact of having variance
in the time-wise distribution of the fitness function, choosing
to operate with a more accurate estimation of the comparative
performance of the three coevolved sub-populations (i.e., the
S-aDECMO2++ variant) proved more successful than the strict
enforcement of equidistant fitness sharing stages (i.e., the
E-aDECMO2++ variant) during the optimization run.

Future work will revolve on improving both the testing
methodology and the range of considered asynchronous par-
allelization options suitable for coevolutionary solvers. Thus,
we believe that the simulations performed on the pseudoparal-
lel computational environment should also consider potential
slave node failure, time-wise fitness distributions that are not
normally distributed and, more importantly, scenarios where
the time-wise and quality-wise distributions of the fitness
evaluation functions are correlated (e.g., solutions with better
fitness take longer to evaluate). From an algorithmic perspec-
tive, coupling DECMO2++ with more advanced parallelization
options, like the adaptive semi-asynchronous strategy intro-
duced in [21], is expected to deliver multi-objective solver
variants that are even more competitive than S-aDECMO2++.
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