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Abstract

Despite the growing prevalence of multimorbidi-
ties, current digital self-management approaches
still prioritise single conditions. The future of out-
of-hospital care requires researchers to expand their
horizons; integrated assistive technologies should
enable people to live their life well regardless of
their chronic conditions. Yet, many of the cur-
rent digital self-management technologies are not
equipped to handle this problem. In this position
paper, we suggest the solution for these issues is
a model-aware and data-agnostic platform formed
on the basis of a tailored self-management plan
and three integral concepts - Monitoring (M) mul-
tiple information sources to empower Predictions
(P) and trigger intelligent Interventions (I). Here we
present our ideas for the formation of such a plat-
form, and its potential impact on quality of life for
sufferers of chronic conditions.

1 Introduction
Chronic health conditions currently incur over 80% of all
healthcare spending in the United Kingdom. Living with
one or more chronic illnesses almost certainly means major
changes in one’s life; the latter can be minimised with ef-
fective self-management. Studies show that the capability to
self-manage (chronic) health conditions effectively promises
lower associated healthcare costs and more efficient use of
primary and secondary care [Wolff et al., 2002].

Although the number of individuals living with multiple
morbidities is predicted to increase significantly over the
coming years [Barnett et al., 2012], current self-management
solutions prioritise single conditions. A 2018 study from the
UK National Institute of Health Research (NIHR) predicted
that two-thirds of people aged 65 and over will have multi-
ple morbidities by 2035, and 17% with four or more condi-
tions. One third of these people will have a mental illness
(e.g. dementia or depression). Increased life expectancy for
both men and women means people will spend a longer time
living with multiple morbidities, placing increased demand
on the healthcare system.

Integrated assistive technologies promises a to enable peo-
ple to live their life well regardless of their chronic condi-
tions. Advances in telecommunications and Artificial Intelli-
gence (AI) technologies paves the way for personalised vir-
tual health companions that provide a intelligently-on con-
nection between the patient and those providing their care.
Such companions should be an intermediary, supporting pa-
tients with confidently managing their condition(s), proac-
tively engaging with health care professions only when nec-
essary, reducing their workload and replacing the current re-
active patient-clinician interaction. This can be achieved by
reasoning with data from automated observations of patient’s
progress along their healthcare plan using real-time predic-
tions to trigger appropriate proactive interventions. Chronic
patients have to live with their conditions 24/7, so it is natural
that their care should reflect that.

This position paper presents our framework for multi-
morbidity virtual health companions, each tailored to the
unique health needs of individuals, assisting them to take
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tions. Advances in telecommunications and Artificial Intelli-
gence (AI) technologies paves the way for personalised vir-
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nection between the patient and those providing their care.
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an assured, active role in managing their health.The frame-
work is based on a configurable architecture comprising mul-
tiple reasoning components for Monitoring, Prediction and
Intervention (MPI). This will provide a plug and play model
enabling the bespoke integration of existing and yet-to-be-
created devices, along with modes of reasoning as neces-
sary in a library of AI skills. For example, humanoid-
robot driven conversational dialogue systems, autonomous
image and video analysis, analysis of real-time wearable
and implant-generated data, and advanced telecommunica-
tion networks (e.g. 5G) for remote interactions.

This paper is structured as follows. In Section 2 we discuss
related work within digital self-management. In Section 3 we
present our concepts on requirements for a generic framework
with emphasis on reasoning centered around Monitoring, Pre-
diction and Intervention (MPI) components, and detail how
these can be expanded to cover multiple morbidities. In Sec-
tion 4 we describe several technologies which we expect to be
key players in the future and explore their integration within
a data agnostic framework. Finally, in Section 5 we provide
some conclusions.

2 Related Work
Self-management is a set of approaches which aim to enable
people living with long-term conditions to take control of
their care and manage their own health. Assistive technology
can support self-management on several levels:

1. Problem-solving (e.g. coping with flare-ups or adapting
plan activities);

2. Decision-making (e.g. when to seek support or help
with decisions around positive behaviour changes like
improving diet, reducing alcohol consumption, quitting
smoking or increasing physical activity and social inter-
action);

3. Resource utilisation (e.g. making best use of healthcare
and other resources, including 3rd sector, peer-support,
web-based resources and other sources of information or
advice);

4. Forming patient-healthcare provider relationships and
encouraging patients to interact with their healthcare
provider appropriately. This would ideally occur before
emergency or crisis situations arise to prevent decline in
health and/or hospital admission.

5. Action planning and self-tailoring (e.g. encouraging pa-
tient participation in creating their own self-management
plan (which might include physical activity, specific
exercises, relaxation) and tailoring it to their specific
needs, improving patient’s knowledge of their condi-
tions.

The goal of self-management is to encourage behaviour
change in sufferers of chronic conditions. A systematic re-
view of interventions to promote physical activity [Morris et
al., 2014] illustrated that interventions involving behaviour
change strategies are more effective for sustaining longer-
term physically active lifestyles than time-limited interven-
tions involving structured exercises alone.

These interventions are commonly delivered face to face
by healthcare practitioners. However current studies indicate
that healthcare time is extremely limited and of short dura-
tion. Without ongoing support, patient physical activity lev-
els decline as maintaining motivation is difficult [Morris et
al., 2012]. Innovative, person-centred strategies to monitor
and predict physical activity and exercise behaviours, to scan
and anticipate environmental barriers to activity, and to pro-
vide social and motivation support are required. These must
support evidence-based, personally tailored behaviour change
strategies by monitoring and providing feedback on perfor-
mance; provide virtual real-time social support for activity;
provide feedback on physical performance and evaluation of
environmental barriers to physical activity.

2.1 Case-based reasoning for self-management
Previous work has demonstrated the effectiveness of apply-
ing decision support and reasoning systems to the manage-
ment of a specific chronic disease. For instance Case-based
reasoning (CBR) which is an AI approach that solves new
problems using specific knowledge extracted from previously
solved problems, has been successfully used to incorporate
evidence-base practices. Here, reasoning is facilitated by a
collection of cases, a unique set of past experiences stored
in a case base. However to the best of our knowledge CBR
has only been applied in self-management of single chronic
diseases.

CBR has been applied to managing diabetes types 1 and
2, using records that provide details about periodical vis-
its with a physician in a case consisting of features that
represent a problem (e.g. weight, blood glucose level),
its solution (e.g. levels of insulin) and the outcome (e.g.
hyper/hypo(glycemia)) observed after applying the solu-
tion [Marling et al., 2012; Montani et al., 2000]. More re-
cent work [Chen et al., 2017], explored the management of
diabetes type 1 to support monitoring of blood glucose levels
before, during and after exercises. Interventions recommend
carbohydrate intake based on similar cases retrieved from the
case base. In related work on self-management of low-back
pain (LBP) [Bach et al., 2016], CBR recommends care plans
from similar patients. Management involves a human activity
recognition (HAR) component to monitor the patient activity
using sensor data that is continuously polled from a wearable
device. Patient reported monitoring is used by the SelfBACK
system to manage exercise adherence. Monitoring allows the
system to detect periods of low activity behaviour, at which
point a notification is generated to nudge the user to be more
active - the intervention. An important contribution of this
work is the integration of behaviour change techniques such
as goal setting to focus the expected level of activity. There-
after comparison of expected and actual behaviours analyse
goal achievement.

Evidence for self-management of patients with multimor-
bidities is limited, despite the prevalence of co-occurring
conditions and its impact on patients and healthcare sys-
tems [Smith et al., 2012]. Interventions tend to have mixed
effects requiring careful design underpinned by evidence-
based practice. Personalisation is important to ensure that
care plans are tailored to the needs of the individual. Al-
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though there has been recent work on personalised learning
using state-of-the-art learning architectures (e.g. matching
networks) more work is needed when applying them to in-
dividuals with multimorbidities [Sani et al., 2018].

2.2 Pervasive and ubiquitous self-management
Pervasive and ubiquitous AI enabled devices are arguably
best placed to continuously monitor a person’s adherence
to self-management plans, make real-time predictions about
the likelihood of adherence and the impact of that. How-
ever intervention requires a good understanding of human be-
haviours and direct inspection by health providers, which al-
though valuable, cannot be scaled to large and diverse groups
of people. Wearables, such as smart watches or phones, are
the most common form of physical activity monitoring de-
vices and sources of delivering digital interventions. These
are embedded with inertial measurement devices (e.g. ac-
celerometers or gyroscopes) that generate time-series data
which can be exploited for human activity recognition of am-
bulatory activities, activities of daily living, gait analysis and
pose recognition [Sani et al., 2018; Reiss and Stricker, 2012;
Chavarriaga et al., 2013].

Although commercial wearable activity trackers such as
Fit-Bit are increasingly being used to monitor levels of phys-
ical activity and provide feedback to users, their utility is lim-
ited. Accuracy in determining activity in people who walk at
slow ambulatory speeds in free living conditions is low [Fee-
han et al., 2018], and evidence of effects on physical activ-
ity levels are uncertain [Lynch et al., 2018]. They have lim-
ited interactive and personalisation options, due in part to a
reliance upon text notifications as the intervention method.
As a direct result, current wearable technologies struggle to
understand and address individual barriers to promoting be-
haviour change in individuals with complex disabilities, pro-
vide insufficient information to determine specific rehabilita-
tion activities (such as exercises), and are not adapted to peo-
ple with communication impairments. Importantly, provision
of real-time information on outdoor environmental hazards
(e.g. stairways) and mental health issues (such as anxiety or
lack of confidence) which are likely to impact physical activ-
ity behaviours in patients is limited.

Another promising solution is to develop and employ so-
cial robots that can be designed to offer psychological sup-
port. In this context, Socially Assistive Robotics (SAR) is a
rapidly growing domain that aims to enhance psychological
well-being through human interactions with a robot. Robots
can be programmed to perceive and interpret human actions
and nonverbal cues, and provide assistance both at the level
of goal setting and tracking and socio-emotional communi-
cation through personalised conversational dialogues. The
usefulness of social robots in mental healthcare contexts has
been investigated by a number of previous works [Rabbitt et
al., 2015]. However, most of the available therapeutic robotic
platforms target supporting either children with special condi-
tions such as autism or assisting elderly people in their daily
lives. In particular, robotic platforms for patient education
and self-management interventions are still scarce. There are
a few lines of work focusing on self-management and aware-
ness of type 1 diabetes in children [Kruijff-Korbayová et al.,

2014; van der Drift et al., 2014] and motivation coaching for
healthy living, weight loss and exercise [Leme et al., 2019].
To the best of our knowledge, the application of social robots
in supporting individuals suffering multiple conditions has re-
mained an unexplored area.

Computer vision can be used to detect, track, and re-
identify patients without the need for any specific sensors or
markers to be worn or carried. In their place, technical re-
quirements include the need for the computer to infer the lo-
cation, pose and movement of the trainee (and other people in
its vicinity). Person following [Honig et al., 2018] is a key ca-
pability for the machine to be able to observe and guide a pa-
tient. For this purpose, unmanned aerial vehicles (commonly
referred to as drones) may present a flexible solution; rather
than fast-flying quad-copters, blimps may offer a more stable
and safer platform [Yao et al., 2019]. Their use in related ap-
plications such as monitoring older people in care homes has
been suggested (but not yet developed) [Srisamosorn et al.,
2016]. However, the computer vision systems used need to be
made more robust and reliable before a flying socially-aware
robot for monitoring patients could be deployed and trialled,
especially in less controlled environments outside the clinic.

A further potential solution in this field is Ambient As-
sisted Living (AAL), which targets the use of multiple de-
vices and sensors around the home to support personal health-
care monitoring. AAL offers an opportunity for non-intrusive
tracking of patient condition through smart home technol-
ogy [Forbes et al., 2019]. Though traditionally difficult to
apply this for accurate patient monitoring (particularly in
open areas), recent advancements demonstrate detailed activ-
ity profiling can be gained from non-intrusive RFID chips sit-
uated in locations around an individual’s home [Oguntala et
al., 2019], even in large rooms [Obeidat et al., 2019]. Though
work has targeted AAL to support assisted living and fall pre-
diction for the elderly [Massie et al., 2018], we are unaware
of any current AAL approaches which comprehensively sup-
port multimorbidities in every age group.

3 Generic self-management framework

Generic self-management frameworks need to be capable of
covering a wide range of devices and conditions in order
to support personalisation, if trained models are to move
away from the current one-size-fits all systems driven by cen-
tralised datasets. Further they must ensure patient privacy
and data security despite the large volumes of data needed
for training machine learning models that will provision edge
computing devices and intelligent decision support systems.
Frameworks must also be flexible, able to react to changes
in the environment and adapt reasoning appropriately. We
argue the key to addressing these requirements is treating
self-management as an AI planning problem; where AI meth-
ods support and recommend interventions centred around the
likely achievement of goals and actions recorded in plans. To
achieve this we need constructs that can be configured to a
given self-management plan; and a generic architecture that
can support the reuse of these constructs to enable evidence-
based community care.
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Figure 1: Instance of a blueprint for stroke rehabilitation configured with two Monitor-Predict-Intervene (MPI) component paths.

3.1 Reasoning with the MPI Cycle
We propose inclusion of three components: digital Moni-
toring (M) to track patient condition(s) and underpin antic-
ipatory Predictions (P) to trigger real-time Interventions (I)
for additional support when it is required. We refer to the
combination of these components as an MPI. Reasoning is
facilitated by a self-management plan consisting of guide-
lines, health recommendations, patient goals, decisions and
a trace of previous lessons learned. These lessons learned
data supports tailoring of plans to an individual. Given a self-
management plan (e.g. level and frequency of exercise, tar-
geted levels of anxiety), the MPI cycle monitors adherence
by a combination of patient self-reported outcome measures
(e.g. pain) and automated real-time monitoring (e.g. of phys-
iological response) by a variety of existing and yet-to-be-
created devices (e.g. wearables, implants, in-home sensors,
drones, robots). Differences in observed and expected adher-
ence, combined with environmental and personal factors can
be used to predict likely trends and outcomes. Thereafter, au-
tonomous and remotely supported proactive interventions by
health professionals are initiated and plans are adapted col-
laboratively, replacing the current reactive patient-clinician
interaction.

An evidence-based approach to self-management is facili-
tated by having access to previous plans and lessons learned
as well as reusing care-plans from similar patients that have
been successful in relation to outcome measures. The rea-
soning capability of the MPI increases with increasing adop-
tion of the framework. As the richness of the evidence base
grows (from initial guidelines to personalised plans) the im-
pact on the community and their common self-management
conditions will be improved.

Thus MPIs form the building blocks for a multi-faceted
self-management plan - a plan that can cater for multimor-
bidities. For example, consider Figure 1, which features
two MPIs created to support stroke rehabilitation. Stroke
survivors commonly struggle with freedom of movement in
their joints and have a tendency to develop depression dur-

ing treatment. In this image, a patient is managing their joint
strengthening exercises using an exercise-MPI (consisting of
the components shaded orange), while managing their mood
through an emotion-MPI (shaded blue). The exercise-MPI
monitors bending of the joint via machine vision technology
and a smart phone camera. Reasoning on the monitored data
allows the system to predict whether the exercises are being
performed correctly (e.g. the angle of movement is satisfac-
tory). The system can then intervene by actuating haptic feed-
back through a patient’s wearable sensor, guiding the patient
to perform the exercise correctly. Similarly, the emotion-MPI
monitors mood by reasoning on the patient’s responses to
questionnaires. If mood is predicted to be below the threshold
determined by a clinician, an intervention can organise clini-
cal help before this evolves into depression. However if mood
is above this threshold, no intervention is necessary. The goal
of each MPI is to Observe (O) the patient through monitor-
ing to predict a comparison with the Expected (E) outcome
as established by their clinician. If the observed actions de-
viate sufficiently from the expected, then an intervention is
necessary to minimise the difference (min(δ(O,E))).

3.2 Reusing self-management plans
We propose the idea of a blueprint through which an indi-
vidual’s self-management plan for multimorbidities can be
formulated. Essentially a blueprint is a combination of one
or more MPIs and their relationships (e.g. contraindica-
tions) which has been configured jointly with a clinician. As
an example, the aforementioned Figure 1 shows a patient’s
blueprint for the self-management of stroke rehabilitation, as
it combines the exercise-MPI and the emotion-MPI.

The reasoning necessary when combining multiple differ-
ent MPIs is an important area of research; it must ensure ad-
herence to a patient’s collective self-management plans and
suggest interventions that are suitable for all the multimor-
bidities, whilst maintaining knowledge of any contraindica-
tions between those conditions. Central to this is a knowl-
edge structure, an MPINet ontology, where known MPI re-
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lationships can be recorded and used to form generalised
blueprints. These can be refined by co-occurrences inferred
from collected data.

A shared community of blueprints is formed from individ-
uals who share the same or a similar set of co-occurring con-
ditions. Configurations embedded in blueprints can then be
reused and adapted to suit new individuals joining that com-
munity (see Figure 2). In this image, blueprints have been
extracted from members of the community who are similar
to the new individual, where ϕ is a reuse function containing
adaptation knowledge. The output is a blueprint configured
to the individual’s needs founded on evidence-based practice.
This can be formalised as:

O′, E′ = ϕ[(O,E)1, (O,E)2, ...] (1)

where O′ the configuration for what is to be observed and E′
represents the modified expectations in this new blueprint.

, …
=

,M                      P                      I   M                      P                      I   M                      P                      I   
ϕ

Figure 2: Reuse of blueprints from similar individuals.

Personalisation of blueprints is achieved through the rec-
ommendation of contextually-relevant MPIs and customis-
ing general community blueprints. Similarities in self-
management goals within a community can be used for per-
sonalisation and to anticipate known common complications
of a condition, which can be extended to enable forecasting
for healthcare service demand. Metric learning algorithms
that are suited for evidence-based reasoning lend well to
learning personalised models on the basis of similarity com-
putations, and also lend themselves well to few-shot learning
approaches. Recent advances in similarity driven attention
mechanisms currently use simplistic metrics, hence in future
research we must establish how similarity on the basis of the
user contexts can be computed in a differentiating manner.

Configuration of blueprints shares many similarities with
On-Line Case-Based Planning (OLCBP). Both require con-
tinuous monitoring of expected versus observed and acting
upon deviations in a timely manner. Much like the snippets
that exist within a plan [Ontanón et al., 2010], MPIs act as
the basic constituent pieces of a blueprint and are configured
with individual goals. Though failure to achieve individual
MPI goals does not necessarily define the failure of a self-
management plan, we suggest this is an early warning of the
need for additional care. Importantly recording such failures
and the follow-on adaptation of both the self-management
goal and agreed activities are useful experiential content that
are crucial when developing evidence-based practices for the
community.

3.3 Role of federated machine learning
Ideally, MPI models will learn from the data generated by all
users of the system, i.e. in a distributed manner. This requires
us to adopt ideas from Federated Learning (FL) [McMahan et
al., 2017] and meta-learning. Specifically maintaining con-
trol of device data, where training involves a shared global

model under the coordination of a central server acting as a
curator, selecting which participating devices (i.e. the fed-
eration) to incorporate when training models. This form of
learning is ideal for community health care ensuring privacy
by default, respecting data ownership, and maintaining lo-
cality of data (without centralising data) for application de-
ployment at scale. An interesting direction of research here
is to the use of data provenance records combined with met-
rics evaluating quality and trust of individuals to influence
the global computational curator’s decisions on sampling of
MPIs on devices. With complex model architectures there is
also a need to share and describe the architectural properties
so as to inform the curator about compatibility. This perhaps
calls for a meta-language for architectural descriptors. Learn-
ing from few labelled data is important for technology to op-
erate at scale. It will be useful to extend the FL paradigm
to evidence-based reasoning methods such as matching net-
works [Vinyals et al., 2016] to enable few-shot learning while
using a federated strategy.

This type of environment is potentially suitable for im-
plementing a multi-agent framework [Moreno A, 2003],
whereby autonomous, adaptive and interactive software com-
ponents, provide notions that specifically meet the MPI
challenges to form the base of a robust and scalable self-
management infrastructure. A multi-agent framework will
also enable the collection of patient-reported well-being in-
formation (as done in [Ibrahim et al., 2015]), integrating
them with sensor and device-generated data via API-based
real-time data collection and streaming platforms such as the
in-house build RADAR-base platform [Ranjan et al., forth-
coming 2019]. The combination will yield an intelligent and
real-time framework for schematised, secure and role-based
data collection, harmonisation and integration based on uni-
fied temporal intervals from all devices, sensors and individ-
uals.

4 The Future of Digital Self-Management
Tackling self-management of multimorbidities requires a
model-aware and data-agnostic machine learning platform -
a modular digital health ecosystem, where multiple monitor-
ing technologies enable comprehensive predictions that trig-
ger the most appropriate intervention strategy from a broad
range of possibilities. With that in mind, we suggest the pro-
posed MPI architecture could answer many of the research
challenges discussed for individual technologies in Section 2
and greatly improve the self-management experience from a
user perspective. However, there is also a need to consider
how this architecture could be practically utilised at scale
while preserving patient privacy.

4.1 Wearables and Haptic Feedback
We aim to develop a framework to allow wearable technolo-
gies to provide real-time haptic feedback to support users ef-
fectively perform rehabilitation exercises and physical activ-
ities. Haptic feedback uses digital cues to stimulate the feel-
ing of touch in users. Whereas current wearable technolo-
gies are reliant on the user reacting to textual notifications
or messages, haptic feedback provides an opportunity to cor-
rect execution of exercises on-the-fly. The result would be
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a decreased reliance on the external technology of a smart
phone and less expectation for users to continually refer to
their phone throughout an exercise session.

There are two primary challenges to provisioning haptic
feedback remotely; (1) currently, haptic feedback for therapy
is performed one-to-one, either with a healthcare professional
activating the necessary feedback while locally observing the
patient or the skeleton following a pre-programmed set of in-
structions; and (2) current telecommunication networks do
not have the throughput required to enable such feedback re-
motely at scale. We believe that the former research chal-
lenge could be answered through development of a learned
model which can provide activation of the necessary compo-
nents to actuate haptic feedback. The latter challenge may be
answered with effective advanced networking infrastructures,
such as 5G.

4.2 Robots and Conversational Dialogue
The use of therapeutic robots to support community-dwelling
individuals participate in rehabilitation, fitness exercises, so-
cial engagement and outdoor physical activities are not only
a viable solution to the problem of shortage in care resources,
but also potentially address loneliness in the elderly. How-
ever, current SAR systems are limited in their capability to of-
fer truly personalised support. They do not take the user state
into consideration, beyond verbal and interaction logs, suffer
from low engagement, and uni-directional information flow.
Expanding this to exchange more information between the
user and the system through multiple modalities will enable a
more versatile and natural interaction, ensuring that the user
maximally benefits from the system. In addition, it provides a
means to build a richer user-context that can help to improve,
structure and personalise a robot’s behaviours and conversa-
tional dialogue. To address these issues, novel methods are
needed for semantically integrating various data sources re-
lating to (1) mood evaluations based on visual cues (i.e., fa-
cial, bodily cues); (2) physical performance, psychological
variables and environmental variables collected from wear-
ables; and (3) adaptive activity programmes and behaviour
change strategies in real-time. Integrated information can be
then used to build effective reasoning and intervention mech-
anisms for the interactive robot companion that can support
citizens to lead active and social lives.

4.3 Autonomous Computer Vision
Computer-vision models can provide visual feedback to sup-
port patients with rehabilitation activities. This involves the
analysis of large volumes of imagery data, recognition of
fine-grained human movement details and generation of vi-
sual feedback interventions. Drones could offer a rich source
of information for on-going monitoring and observation of
patients in different contexts, including both indoor self-
management activities and outdoor exercises. Utilising a vi-
sual source that captures patient’s movement and behaviours
from different angles provides a unique opportunity for learn-
ing and improving practices, but at the same time poses some
key challenges. These are due to the inherent vision prob-
lem, in particular, performing accurate detection, tracking
and classification under different poses and light conditions,

which can be exacerbated by the freedom of movement af-
forded to a drone. Additionally, the anticipated skewed dis-
tribution of the data will pose another challenge that needs
to be addressed. In particular, having enough representative
training examples that captures the different scenarios of a
specific case study or patient can potentially be very diffi-
cult, meaning that few-shot learning strategies are likely to be
very relevant here. The benefits for patients go beyond sup-
port with performing exercises and documenting their self-
management progress; for example, people with movement
difficulties are often anxious about walking in unfamiliar en-
vironments as they are unaware of any obstacles they may
face - this can lead them to withdrawing from social activities
and an increased feeling of loneliness. Being accompanied
by a drone that advises them of upcoming obstacles and how
they can be avoided, may reduce anxiety associated with such
situations.

4.4 Ambient Assisted Living
We aim to use Ambient Assisted Living (AAL) technology to
support non-intrusive monitoring of patients within their own
home. Several interesting research challenges arise from this
field. In particular, it will be interesting to see how the con-
stant monitoring of AAL devices allows the identification of
self-management activities as they take place within aspects
of daily living. For example, if a patient has climbed the stairs
5 times in an afternoon as part of cleaning their home, this
action may cover some of the ambulatory physical activity
scheduled as part of managing their lower-back pain condi-
tion. Understanding the situations in which daily living activ-
ities can replace self-management exercises (or alternatively,
the situations in which they cannot) is an intriguing avenue
for exploration. Furthermore, there is the technical challenge
of being able to seamlessly change monitoring devices that
feed into a single MPI e.g. as the patient transitions from
one room to the next. A comprehensive self-management
solution involving AAL devices should maximise comfort
of the patient and ensure that they are able to relax within
their home without feeling like they are being continually
observed. Developing an individual’s trust requires further
understanding of human machine interfaces by bringing to-
gether behavioural psychologists and computer scientists.

4.5 A Comprehensive Self-Management Solution
The distributed MPI model comprises a number of devices
collaborating autonomously, and a substantial amount of real-
time data generated passively by sensors and devices or ac-
tively reported by the users (e.g. well-being reports) for a sin-
gle non-fragmented self-management solution. As such, the
MPI framework constitutes a decentralised, heterogeneous
and open environment that operates on multiple computing
systems to manipulate, share and analyse strictly-confidential
patient records. Moreover, to build a platform to continu-
ously inform patients using their own records, requires mech-
anisms to mine the ‘big’ and heterogeneous data for relevant
knowledge, and learn the adapted and personalised recom-
mendations and possible interventions in real-time to aid in
self-management. These methods are underpinned by the
growing availability of advanced networking technology (e.g.
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5G), where the faster connection speeds promise huge bene-
fits to future healthcare systems. Such advances allow high-
intensity data processing to be supported by near real-time
decision-making. We believe these will play a crucial role in
supporting at-home care (e.g. wearable sensors applications
and online consultations) and remote treatments (e.g. digital
diagnosis). In particular, 5G will facilitate the transfer of ex-
pertise over a great distance in real-time using technologies
such as robotics and haptic feedback.

To give an example, a stroke survivor patient may use AAL
sensors for non-intrusive tracking of physical activity and in-
teract with a SAR to self-report on their pain and mental
condition while in the home. When journeying outside the
house, the patient initially uses a drone with computer vi-
sion capabilities to monitor their journey, before transitioning
to use of a wearable technology as their walking ability im-
proves. The combination of monitoring technologies to em-
power interventions is a comprehensive solution to their self-
management. We believe that not only will this greatly im-
prove adherence to the various aspects of a self-management
plan, it will also have an irreplicable effect on patient quality
of life. Furthermore, integration with the MPI framework will
bring AI power to off-the-shelf hardware rather than building
expensive devices, thus encouraging socially-inclusive care.

5 Conclusion
In conclusion, in this position paper we have discussed the
need for an affordable comprehensive self-management solu-
tion to improve quality of life for patients living with multiple
morbidities. We have presented our ideas towards the cre-
ation of MPI components - constituent pieces of wider-scale
framework which allows a configurable and personalised self-
management plan for individual patients, while encouraging
reuse plans from within a community of similar patients and
morbidities. The platform and MPIs potentially offer sev-
eral interesting avenues of research, not only around how new
and existing technologies can be integrated, but also around
areas such as comparing the similarity of MPIs and under-
standing the ramifications of using them for reuse and adap-
tation. Most importantly, we believe that a wide-scale inte-
grated framework of devices is necessary for supporting pa-
tients with confidently managing their condition(s), improv-
ing their quality of life in the future.
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Gerhard Tröster, José del R Millán, and Daniel Roggen.
The opportunity challenge: A benchmark database for
on-body sensor-based activity recognition. Pattern
Recognition Letters, 34(15):2033–2042, 2013.

[Chen et al., 2017] Yoke Yie Chen, Nirmalie Wiratunga,
Stewart Massie, Jenny M Hall, Kate Stephen, Amanda
Croall, Jacky MacMillan, Lesley Murray, Geoff Wilcock,
and Sandra M MacRury. Designing a personalised case-
based recommender system for mobile self-management
of diabetes during exercise. In In Workshop proceedings
of the 2nd Knowledge Discovery from Health Workshop at
the International Joint Conference on AI, 2017.

[Feehan et al., 2018] Lynne M Feehan, Jasmina Geldman,
Eric C Sayre, Chance Park, Allison M Ezzat, Ju Young
Yoo, Clayon B Hamilton, and Linda C Li. Accuracy
of fitbit devices: Systematic review and narrative syn-
theses of quantitative data. JMIR mHealth and uHealth,
6(8):e10527, 2018.

[Forbes et al., 2019] Glenn Forbes, Stewart Massie, and Su-
san Craw. Fall prediction using behavioural modelling
from sensor data in smart homes. Artificial Intelligence
Review, pages 1–21, 2019.

[Honig et al., 2018] S. S. Honig, T. Oron-Gilad, H. Zaichyk,
V. Sarne-Fleischmann, S. Olatunji, and Y. Edan. To-
ward socially aware person-following robots. IEEE
Transactions on Cognitive and Developmental Systems,
10(4):936–954, Dec 2018.

[Ibrahim et al., 2015] Zina Ibrahim, Lorena Fernández de la
Cruz, Argyris Stringaris, Robert Goodman, Michael Luck,
and Richard Dobson. A multi-agent platform for automat-
ing the collection of patient-provided clinical feedback. In
Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, page 831–839,
2015.
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