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Abstract: With the advancement of storage and processing technology, an enormous amount of data is 

collected on a daily basis in many applications. Nowadays, advanced data analytics have been used to mine 

the collected data for useful information and make predictions, contributing to the competitive advantages 

of companies. The increasing data volume, however, has posed many problems to classical batch learning 

systems, such as the need to retrain the model completely with the newly arrived samples or the 

impracticality of storing and accessing a large volume of data. This has prompted interest on incremental 

learning that operates on data streams. In this study, we develop an incremental online multi-label 

classification (OMLC) method based on a weighted clustering model. The model is made to adapt to the 

change of data via the decay mechanism in which each sample’s weight dwindles away over time. The 

clustering model therefore always focuses more on newly arrived samples. In the classification process, 

only clusters whose weights are greater than a threshold (called mature clusters) are employed to assign 

labels for the samples. In our method, not only is the clustering model incrementally maintained with the 

revealed ground truth labels of the arrived samples, the number of predicted labels in a sample are also 

adjusted based on the Hoeffding inequality and the label cardinality. The experimental results show that 

our method is competitive compared to several well-known benchmark algorithms on six performance 

measures in both the stationary and the concept drift settings. 

Keywords: multi-label classification, incremental learning, online learning, clustering, data stream, 

concept drift 

 

1. Introduction 

Nowadays, an enormous amount of data is collected on a daily basis, from mobile devices to social 

networking sites. Data is growing at an astonishing rate according to IDC Research, at a compound annual 

growth rate of 42% through to 2020. This means that 90% of the data in the whole world has been created 

over the past two years. In recent years, ‘big data’ is one of the most popular terms mentioned in the media. 
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Realizing that data is a hidden resource, many companies have invested heavily in advanced data analytics 

to mine customer and sales data for useful information in order to gain a competitive edge. For example, 

about 35% of Amazon.com’s revenue is generated by its recommendation system. However, the 

tremendous growth in the volume of data has also posed many challenges to classical machine learning 

systems. First, batch learning performed on large volume of data is sometime impractical, resulting in more 

and more data not been processed [1]. In addition, learning models trained on existing data become outdated 

with the appearance of new data. Periodic re-training using the accumulated data can only be a temporary 

solution, and resulted in huge resource consumption [2, 3]. Learning models that are maintained 

incrementally by integrating new information acquired from newly arrived data are, therefore, more 

practical [3]. 

In this paper, we introduce an incremental online learning method for the multi-label classification (MLC) 

problem. The MLC problem arises from many real-world applications where an entity is described by 

multiple terms or having multiple semantic meanings. As a generalization of the multi-class classification 

problem, the task of MLC is to assign a set of labels to an object to express its semantics. In the literature, 

there are MLC algorithms for both the batch [4] and stream settings [5, 6]. In this study, we derive a 

clustering based MLC algorithm based on an online clustering algorithm adopted from [7] to solve the MLC 

problem. The proposed method can adapt to concept drift in the data stream by focusing more on the newly 

arrived samples using a decay mechanism [8]. In addition, the label distributions in the K closest clusters 

are used during the MLC to predict a set of labels for a newly arrived sample. In contrast to [5, 9] where an 

update of the number of labels assigned to each arrived sample is performed only after a fixed set of samples 

are received, our algorithm performs continuous update of the number of labels for each arrived sample.  

The main contributions of this paper are: 

 An online learning algorithm using the clustering model is proposed for the MLC problem.  

 The clusters in our algorithm evolve with time, giving higher attention to more recent samples than 

older samples through a weight decay mechanism. 

 A novel approach for learning the number of predicted labels for MLC based on the Hoeffding 

inequality and the label cardinality is proposed. 

 An empirical demonstration that our method is competitive to several well-known benchmark 

algorithms in both the stationary and concept drift settings. 

The paper is organized as follows. In Section 2, we briefly review several well-known learning algorithms 

for MLC in the supervised learning and stream learning settings. In section 3, we describe the proposed 

online MLC algorithm based on the online clustering model. The setting for experimental studies is 
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described in section 4. Section 5 presents the detailed experimental results and discussion. Finally, Section 

6 provides the conclusions and suggestions for further study. 

TABLE.1. SUMMARY OF MAIN NOTATION 

Notation Description 

� The stream of data 

�_� A mature cluster 

��_� An immature cluster 

�_� = {�_�} The set of all mature clusters 

� = ���� � = 1,… , � The center of a cluster 

� The radius of a cluster 

� The boundary of a cluster 

� Decay control parameter 

� = ���� � = 1,… , � A sample 

�� = {�} The label set of � 

��� The predicted label set for � 

� The label set 

� The mature weight of a cluster 

�� The threshold of mature weight 

� = ��(�)� � = 1,… , |�| The label distribution of a cluster 

�(�) �-nearest mature clusters of � 

ℎ The number of predicted labels 

� Label cardinality 

 

2. Background 

2.1. Multi-label classification 

Let �  denote the input space and � = {��|� = 1,… ,�} denote the label set. The purpose of a multi-label 

learning task is to search for a mapping function � from input space �  to output space 2� so that each 

sample � ∈ �  is assigned with a subset of the output space. This is a generalization of the traditional multi-

class classification problem in which each sample is associated with only a single label. 

MLC algorithms can often be categorized into two approaches: problem transformation and algorithm 

adaptation [4]. In the first category, the MLC problem is transformed into some well-established learning 
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problems such as binary classification. Two common approaches in this category are the Binary Relevance 

(BR) and Classifier Chains (CC) approaches, where a multi-label task is transformed into � binary 

classification tasks. The difference between BR and CC is that BR treats the labels independently in the 

learning process as each binary classification task is associated with a label in the label set. Meanwhile, CC 

creates the new training set for each binary problem by appending each instance with binary values that 

indicate which of the previous labels were assigned to that sample [4]. CC therefore has the advantage over 

BR of addressing label correlation. In practice, an ensemble of CC classifiers are generated via random 

orders over the label space instead of using a single CC to overcome the issue of label ordering in the chain. 

Several methods have also been introduced to improve CC’s effectiveness, such as replacing binary values 

by probabilistic outputs [10] and using recurrent neural networks focusing only on positive labels as an 

extension of probabilistic CC [11]. Kumar et al. [12] improved PCC by using beam search, a classical 

heuristic search algorithm, so that instead of evaluating on 2� possible labellings, only �� combinations 

need to be assessed (� is the beam width). The search also integrate to the learning algorithm to obtain the 

best order of labels. Ghamrawi and McCallum [13] modeled the dependencies between labels by 

constructing a graphical model to parameterize the pairwise relationships of feature-label, label-label, and 

feature-label-label triple. The Label Powerset (LP) is another popular method in this category which treats 

each different combination of labels as a single label [14]. Although LP can capture the label correlations 

in the learning model, it has high-complexity in training due to the exponential increase of the number of 

label combinations with the number of labels. LP is also unable to predict the label combinations that do 

not appear in the training set [6]. Read et al. [15] proposed the Pruned Set (PS) method which removes the 

samples belonging to the infrequent label sets to reduce the number of label combinations. Other MLC 

approaches considered the subsets of labels in a random way such as Random k-Labelsets [14], or in a 

deterministic way like in dependency network [16]. 

The algorithm adaptation approach is a group of methods that are adapted from multi-class classification 

algorithms to solve the MLC problem. Several methods can be mentioned, for example, k-Nearest Neighbor 

for MLC [17], Support Vector Machine for MLC [18], and Decision Tree for MLC [19]. 

In the era of big data, recent research on multi-label learning mainly focuses on dealing with large-scale 

multi-label data, especially on data with a large label set and data that come in the form of a stream. Ubaru 

and Mazumdar [20] used group testing and coding techniques to compress the label set to reduce the label 

dimension. Kapoor et al. [21] used compressed sensing in the Bayesian framework for label dimension 

reduction. SVD techniques was used to project the label vector onto a low dimensional space to reduce its 

dimension [22]. Besides, the performance of MLC systems can be enhanced by selecting an optimal subset 

of features to learn the MLC model. Some examples of feature selection method for MLC are feature rank-
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based stream feature selection method [23] and scalable relevance evaluation feature selection that 

measures feature dependency [24]. Several expansions of MLC for multi-dimensional classification (MDC, 

also known as multi-output classification) which is viewed as a general case of MLC where each label can 

take a number of discrete values. This setting increases the search space of the chain-sequences, resulting 

in costly testing time. Read et al. [25] proposed the classifier trellis to effectively capture the label 

correlation in MDC by sequentially placing the labels to the pre-defined trellis structure for the underlying 

graphical model.  Read et al. [26] introduced double Monte Carlo optimization technique to search for the 

best classifier chain in the training phase and best label vector for the test sample for MDC.  

2.2.  Multi-label classification for data stream 

The large volumes and the rapid growth of data have posed many challenges for traditional offline machine 

learning systems. First, it is often impractical or even infeasible for a learning algorithm to learn on the 

entire dataset at once. The newly arrived data also often make the model learned on the old data outdated, 

causing the degradation of the system performance. Although we can re-train the learning model with the 

arrival of new data, the re-training process on the continuously arriving data will consume much more time 

and resource. Incremental learning methods in which the learning model can be updated on-the-fly from 

the data stream are therefore highly desirable. 

The characteristics of data stream present unique challenges to the design of learning algorithms. Bifet and 

Gavaladà [27] defined four characteristics of learning on data stream: (1) the model must be ready to make 

prediction on any sequentially arriving samples, (2) there are potentially infinitely many samples which 

need to be processed with finite resources (time and memory), (3) the samples need not be statistically 

stationary (the appearance of concept drift), and (4) samples can only be processed one at a time, and can 

only be inspected once before it is discarded. In this study, we aim to develop an incremental OMLC method 

in which the current learning model trained on the old data is used to predict unlabelled data. Only samples 

where true label can be revealed is used to update the learning model. As a result, both prediction and 

training are considered in the proposed method. We also address the challenges of data stream’s 

characteristics in designing the proposed method. 

One of the earliest approaches that solves the MLC problem in the stream context is the batch-based 

incremental method [28]. In this method, an ensemble of BR-based classifiers is generated by learning the 

BR on each sequence of same-size-chunks. The outputs of these classifiers are concatenated to the original 

feature space as the meta-data which is learned by another BR to obtain the meta-classifier. Based on the 

dynamic classifier ensemble approach, the classifiers are weighted on each test sample via their 

performance on the test sample’s neighbors obtained from the latest chunk. A similar approach was 

introduced by Wang et al. [29] in which the data stream is divided into many fixed numbers of chunks. 
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Multi-label � Nearest Neighbor method [17] is then used to learn on these chunks to generate the ensemble 

of classifiers. These classifiers are also weighted and the weights are incrementally maintained based on 

the newly arrived chunks. Despite the ability to operate in both the stationary and concept drift settings, 

these methods face the memory-fill-up problem so they cannot satisfy the time and memory constraints of 

stream learning [5].  

Read et al. [5] adapted the Hoeffding tree [30], a well-known member of the decision tree family, for MLC 

problem on data stream. In their method, the arrived samples are temporarily kept and the Hoeffding bound 

is used to determine how many samples are needed to achieve a certain level of confidence for tree splitting. 

The PS classifier [15] was used to prune the label combination at each leaf node when the buffer of arrived 

samples is full at the node. That framework was also combined with ADWIN [31] to form a new algorithm 

named EaHTps which can handle concept drift. The Pruned Set-based label combination module of EaHTps 

was improved by Shi et al. [32] in which the new frequent label combinations are dynamically recognized 

to update the set of label combinations. Xioufis et al. [9] used BR to solve the MLC by transforming the 

multi-label task into several binary classification tasks. Concept drift was handled by maintaining two 

variable-size windows per label for positive and negative samples. Compared to the single window 

approach for each label, that method can oversample the positive sample by adding the previous positive 

samples to the associated window and undersample the negative sample by keeping only the most recent 

ones. Shi et al. [33] created the super-label which is a set of class labels grouped based on their 

dependencies. The generated super-labels are treated as new class labels to annotate each arrived sample. 

To handle concept drift, the authors first measured the distribution of features and new class labels by a 

multi-label entropy approach. The change of the distribution was then monitored by the difference of the 

entropy measure between the two windows that keep the old and the recent samples. These windows are 

resized when the difference exceeds a pre-defined threshold. Osojnik et al. [6] applied multi-target 

regression to multi-label learning on data stream. In their approach, the MLC problem and the multi-target 

regression problem are transformed back and forth as the solution is obtained by transforming the multi-

target regression problem back to the MLC problem to obtain the predicted labels. The four multi-target 

tree-based methods introduced in [6], however, are only focused on learning stationary concept. A 

comparative study between several MLC methods for data stream such as BR with different learning 

algorithms and multi-label Hoeffding tree (with PS and Naïve Bayes at the leaves) was made by Karponi 

and Tsoumakas [34]. However, the experiments were conducted on just one reduced dataset, and therefore 

the conclusion is not convincing. 

 

3. Proposed method 
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3.1. The online clustering model 

The change in data often makes the learning model that is built on old data inconsistent with the new data, 

therefore it is crucial to adapt a learning model to concept drift. In the literature, there are two main strategies 

to deal with concept drift, namely, using a sliding window or a decay function (also called weighted samples 

[8]) [31]. In the first strategy, the windows are maintained that keep the most recent samples inside while 

discarding the old samples outside. Several methods use a single window of a fixed size or of variable size. 

For example, in ADWIN, a well-known concept drift handling method, the window will grow or shrink 

depending on whether data changes or not. The improved version, ADWIN2, is more efficient than the first 

one in time and memory consumption [31]. Other research such as [32, 33] use two adjustable windows to 

represent old and new samples.  Xioufis et al. [9] used two windows per label to capture the positive and 

negative groups of samples. The decay function approach, meanwhile, use weights to mitigate or strengthen 

the importance of samples based on their age, i.e., the older sample is less important than the new one [35]. 

The learning model, therefore, can adapt to the changes that appear in the new data. 

In this study, we follow the decay function approach to develop an incremental online MLC method that 

adapts to the changes of data in the data stream. Our approach aggregates the information from incoming 

samples into clusters based on their proximity with each other as well as their time of arrival. We require 

that the weight of each sample decreases gradually over time. The incremental MLC, therefore, focuses 

more on the new samples than the old ones. Here the weight of each sample is decayed exponentially with 

time � via the fading function �(�)= 2��� where � > 0 is the parameter that controls the decay rate [7]. 

From these data points and their weights, we build the online clustering model for the incremental online 

MLC method. First, we define the online clustering model: 

Definition 1 (Mature cluster) [7]: A mature cluster � (�_�) at time � for the group of close points 

��, ��, … , �� , �� = (���, … , ���) with time stamps ��, ��, … , �� is defined as the 3-tuple ����, ���,�� in 

which the weight � = ∑ �(� − ��)
�
��� > ��, �� is a pre-defined mature threshold, ��� = ����

��, ���
� =

∑ �(� − ��)
�
��� ��� is the weighted linear sum of the ���  feature, , ��� = ����

��, ���
� = ∑ �(� − ��)

�
��� ���

�  

is the weighted squared sum of the ���  feature. The center of �_� is � = ����, �� =
���

�

�
, the radius of �_� 

is � = max���,…,� ��
���

�

�
− �

���
�

�
�
�

 � ≤ � 

Definition 2 (Immature cluster) [7]: A immature cluster � (��_�) at time � for the group of close points 

��, ��, … , �� , �� = (���, … , ���) with time stamps ��, ��, … , �� is defined as ����, ���,��. The definitions 

of ���, ���,�, �, and � are the same as those of �_�, however � ≤ ��. 
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From the definition 1 and 2, a cluster (mature or immature) is a set of data point bounded by the pre-defined 

threshold �. The center of a cluster is the weighted average of all data points inside the cluster whereas the 

radius is the maximum value among all standard deviations of the � features. We illustrate an example of 

the cluster evolution from immature to mature cluster on the EURON dataset in Fig 1. In this example we 

set  � = 0.25,�� = 2, and � = 0.495. At time � = 0, a cluster is generated with a newly arrived sample 

��� with time stamp 0. This is an immature cluster because its weight is 1 (equal to the weight of ���). At 

� = 2, a new sample ���� arrives to the cluster with the weight 1 and time stamp 2. Meanwhile, the weight 

of ��� is 1 × 2��.��×� = 0.7071. As the total weight of this cluster is smaller than ��, the cluster is still 

an immature cluster. At � = 3, we have a new sample  ���� which arrives with time stamp 3. The weights 

of ��� and ���� are 0.5946 and 0.8409, respectively. That makes the weight of the cluster greater than �� 

and the cluster becomes a mature cluster. It is noted that in all cases, the radius of the cluster must be smaller 

than the pre-defined maximum threshold of radius � = 0.495. 

In this model, the mature cluster is trusted more than the immature cluster so that only the mature clusters 

will be used during the classification process. It is noted that definitions 1 and 2 is for unsupervised learning, 

i.e. the samples do not have labels. For MLC, each sample in a cluster is associated with a set of labels. We 

extend the mature and immature cluster for MLC as: 

 

Definition 3 (Cluster for MLC): A cluster � (mature or immature) at time � for the group of close points 

��, ��, … , �� , �� = (���, … , ���) with time stamps ��, ��, … , �� is defined as the 4-tuple ����, ���,�, �� 

in which  ���, ���,�, �, and � are defined as in Definition 1 and � = ��(�)� � = 1, … , |�| is the label 

distribution of the points. 

 

In this definition, along with the components ���, ���, and �, we store the label distribution as the fourth 

component of each cluster. The distribution is approximated by the label frequency of all data points inside: 

�(�)=
∑ ⟦�∈��⟧�∈�

|�|
 (1) 

in which ⟦.⟧ returns 1 if the predicate holds and 0 otherwise. 
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Fig.1. An illustration of cluster evolution on the EURON dataset 

3.2. The model update 

From the arrived data points, we incrementally learned the clustering model to solve the MLC problem. In 

this section, we introduce a method to construct the clustering structure for the MLC problem. The 

incremental process that maintains the clustering structure include: 

 Update the cluster’s components: Due to the decay mechanism over the data points, the 

components of a cluster are updated over time, even if it does not receive any new data. In this work, we 

follow the update equations introduced in [7]. First, when the new data point � = ���� (its weight is 1) is 

merged into a cluster �, the new value of the first three components are computed as: 

�����
��

���
, ����

��
���

,���� � = �����
��

���
+ ��, ����

��
���

+ ��
�,���� + 1� (2) 

� 

�� 

� 

�� 

� 

�� 

 ��� 

 ����  

 ��� 

 ��� 

 ����  

 ����  

Immature cluster (weight = 1 < ��) 
� = 0 

 weight(���) = 1 

Immature cluster (weight = 1.7071 < ��) 

� =  0.492586 

weight(���)= 1 × 2��(���) = 1 × 2��.��×� = 0.7071 
weight(����)= 1 

Mature cluster (weight = 2.4355 > ��) 

� =  0.491942 

weight(���)= 1 × 2��(���) = 1 × 2��.��×� = 0.5946 
weight(����)= 1 × 2��(���) = 1 × 2��.��×� = 0.8409 
weight(����)= 1 

 � = 0  � = 2 

 � = 3 
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Whereas, after the time interval ��, if the cluster � does not receive any new points, its components will be 

decayed due to the fact that the weight of all data points decreases by a factor of 2���� in the interval: 

�����
��

���
, ����

��
���

,���� � = �2��������
��

���
, 2��������

��
���

, 2��������� (3) 

Based on the new values of these components, the new center and radius are updated respectively: 

����
���

=
����

��
���

� ���
 (4) 

���� = max���,…,� ��
����

��
���

� ��� − �
����

��
���

� ��� �

�

 � (5) 

The label frequency of the cluster that the data point is merged to is updated by using the ground truth labels 

if available. The incremental update of the label frequency is given by: 

���� (�)=
����(�)�⟦�∈��⟧

|�|��
 (6) 

 An immature cluster can become a mature cluster: When an immature cluster receives a new data 

point, its weight is increased by 1 (see Eqn. (2)). When the weight of the immature cluster is greater than 

the pre-defined mature threshold ��, this cluster will become a mature cluster. 

 A new immature cluster can appear: When a new data point cannot be merged into any cluster as 

it makes the radius of the cluster exceed the boundary threshold �, it becomes the first data point of a new 

immature cluster. In this case, the new cluster only has one data point which is also the center of this cluster. 

The radius of this cluster is 0 and the weight is 1. 

 A mature cluster can become an immature cluster: Over time, if a mature cluster does not get any 

new samples, its weight will gradually decrease as a consequence of the weight decay of all data points 

inside the cluster. The mature cluster will become an immature cluster when its weight is smaller than or 

equal to the threshold ��. In this case, we need to check the weight of all mature clusters to detect the 

change. Assume that after the time span ��, the weight of the mature cluster is 2����� (� > ��) (see 

Eqn. 2), and a mature cluster become an immature cluster, we obtain the inequality 2������ < 2����� ≤

��. Thus, the minimal time span for a mature cluster to become an immature cluster is �� =

�
�

�
�log�

� �

� ���
��� which is computed from the equation 2������ + 1 = ��. Hence, we only periodically 

check the mature clusters for every time period �� [7]. 

Algorithm 1 summarized the update process to build the incremental online clustering model for the MLC 

problem. For each arrived sample, we try to merge it into the nearest mature cluster. If the new radius is 

still smaller than the boundary of a cluster, the sample is successfully merged into this mature cluster (step 
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2-3). The three components, as well as the cluster center and radius, are updated using the features and 

weight of the new member (step 4). In contrast, if the new sample makes the mature cluster exceed the 

boundary, we try to merge this sample to the nearest immature cluster (step 7-9). In this case, we check the 

weight of the immature cluster that the sample merged into. If the new weight is larger than the pre-defined 

mature threshold, the immature cluster will become a mature cluster (step 10). If the sample cannot be 

merged into any cluster as it makes the cluster’s radius exceeds the boundary threshold, we build a new 

immature cluster for this sample (step 14-15). To complete the update process, we incrementally update the 

label frequency component of the cluster that the sample is merged into (step 18-20). Finally, we 

periodically check all clusters in the mature list. If there exist any clusters with weights smaller than or 

equal to the mature threshold, these clusters will become immature clusters (step 23-25). 

Algorithm 1: Incremental clustering model for MLC  

Input: Arrived sample � at the current time �  

Output The updated incremental learning model 

1 Try to merge � into the nearest �_� 

2 If (the new � (of �_�) ≤ �) 

3        Merge x into �_� 

4        Update �, �, and �� _�  of �_� 

5 Else 

6        Try to merge � into the nearest ��_� 

7         If (the new � (of ��_�) ≤ �) 

8                 Merge x into ��_� 

9                 Update new �, �, and ��� _�  of of ��_� 

10                 If (��� _� > ��) 

11                          ��_� → �� 

12                 End 

13         Else   

14                 Create a new immature cluster using � 

15                 Compute �, �, and � for the new cluster 

16         End 

17 End 

18 For each label � in �  

19         Update label frequency by (6) 

20 End 
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21 Set �� = �
�

�
�log�

� �

� ���
��� 

22 If(� mod ��)=0  

23          For each �_� in �_� 

24                     If(�� _� ≤ ��) 

25                                 �_� → ��_� 

26                      End 

27           End 

28 End 

 

3.3. The classification process 

Based on the constructed clustering model, we predict the labels for each newly arrived sample. As 

mentioned above, we trust the mature cluster more than the immature cluster so we only use the information 

of the mature clusters to assign labels for each newly arrived sample. In this study, we develop a 

classification method based on the similarity between the sample and the mature clusters. First, we measure 

the distances between the sample and all mature clusters. The top � mature clusters with the shortest 

distance are selected as the �-nearest neighbors of that sample. We then use the label frequencies of these 

� nearest neighbors to compute the posterior probability that the sample belongs to a class label. The top ℎ 

labels associated with the largest posterior probabilities are assigned to the sample as the prediction result. 

In detail, for sample �, let �(�) represent the set of its �-nereast neighbors in �_�. Generally, the similarity 

between the sample and the mature cluster �_� is measured with the Euclidean distance between the 

samples and the clusters’ center. 

�(�)= {�_��, 1 ≤ � ≤ �|� ∈ argsmallest_k{�(�, ��)}} (7) 

Here smallest_k(∙) returns the � shortest distances between � and the mature clusters in �_� and �(�, ��) 

is the distance between � and the cluster center ��. We calculate the posterior probability that the sample 

belongs to a label � as the sum of the products of the weight of �_�� and label frequencies of label � among 

all mature clusters in �(�): 

�(�|�)~
�

�
∑ �� _��

(�)�� _��� _��∈�(�)  (8) 

Let ��� denote the predicted label set for �. We obtain ��� by getting the labels associated with the ℎ-largest 

values of these posterior probabilities: 

��� = {� ∈ � |�(�|�) in top ℎ} (9) 
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Fig.2. The classification process based on the clustering model 

The proposed MLC algorithm is different to the �-nearest neighbor approach [17] and weighted �-nearest 

neighbor [36] approach in label assignment, although they all used the K-nearest neighbors for label 

assignment. In weighted �-nearest neighbor [36], each class label is assigned to the sample via the decision 

function computed from the posterior probability that the sample belongs to the considered label (positive 

label) or not (negative label) in the K neighboring samples. In our method, clustering is performed, then 

each mature cluster is treated as a single point having its mature degree and the distribution of label 

frequencies. Instead of selecting a label based on the decision function computed from the label’s posterior 

probability of positive or negative label, we select ℎ labels associated with the largest posterior probability, 

where ℎ is learned from the data sequence. In our method, the number of predicted labels is updated 

adaptively based on the revealed ground truth labels of the arrived samples. The update procedure for ℎ 

will be introduced in the next section. 

The proposed classification process is summarized in Algorithm 2. 

Algorithm 2: Predict labels based on weights of clusters 

Input: Sample �, the set of mature cluster �_�, ℎ, � 

Output Predicted labels for � 

1 For each �_� in �_� 

x 
� 

� 

� 

�� _��, �� _�� 
�� _��, �� _�� ��� _��, ��� _�� 

��� _��, ��� _�� 

��� _��, ��� _�� 

��� _��, ��� _�� 

�� 

�(�, ��) �(�, ��) 

�(�, ��) 

�� 

�� 

�� _��, �� _�� 



14 
 

2        Compute  �(�, �)  

3 End 

4 Select �(�) by (7) 

5 Initialize �(�|�)= 0 ∀� ∈ � 

6 For each � ∈ � 

7        For each �_� in �(�) 

8                 Compute �(�|�) by (8) 

9         End 

10 End 

11 Return ��� by (9) 

 

3.4. Label set learning 

We predict the ℎ labels associated with the top ℎ-posterior probabilities for the arrived sample. Very often, 

the number of labels to be learned is fixed beforehand. In general, however, the number of predicted labels 

for each sample should be flexible and depends on the sample itself. In this study, we propose a method to 

adjust the number of predicted labels by using the Hoeffding inequality [37] and the label cardinality. 

The label cardinality of a dataset is the average number of labels per sample in the dataset. It is independent 

of the number of labels �, and naturally can be used to quantify the number of predicted labels ℎ for each 

sample. In this study, not only the learning model but also the number of predicted labels are learned with 

the arrival of data samples. Here, we introduce an approach to incrementally learn the value of ℎ in which 

ℎ is adjusted if it is different from the label cardinality by more than a certain amount as determined by the 

Hoeffding inequality.  

In probability theory, the Hoeffding inequality provides a bound on the probability that the sum of 

independent random variables will deviate from its expected value by more than a certain amount [37]. We 

restate the result of the Hoeffding inequality as the theoretical basis of our approach: If ��  � = 1,… ,� are 

independent random variables and if �� ≤ �� ≤ ��, � = ∑ ��
�
��� , ��= � �⁄ , � = �[��] then for �> 0 

a) P{��− � ≥ �} ≤ exp�
������

∑ (�����)
��

���

� and P{� − ��≥ �} ≤ exp�
������

∑ (�����)
��

���

� 

b) P{|��− �|≥ �} ≤ 2exp�
������

∑ (�����)
��

���

� 
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Assume that we have a stream with � arrived samples (��, ��) � = 1,… ,�, in which the ���  sample  has |��| 

labels. Applying the Hoeffding inequality with the note that 0 ≤ |��|≤ � for all � = 1,… ,�, and � is the 

number of distinct labels of  the data stream, we have: 

P{|� −̅ �[�]̅|≥ �} ≤ 2exp�
������

���
� = 2exp�

�����

��
� (10) 

in which the label cardinality as the average number of labels of the stream is given by: 

� =̅
�

�
∑ |��|
�
���  (11) 

Denoting the right hand of Eqn. (10) by �, � is computed as: 

�= �
�� ��(� �⁄ ) 

��
 (12) 

Eqn. (10) becomes: 

P{|� −̅ �[�]̅|≤ �} ≥ 1 − � (13) 

If |ℎ − �|̅> �, based on the inequality |ℎ − �[�]̅|= |(ℎ − �)̅− (�[�]̅− �)̅|≥ |ℎ − �|̅− |�[�]̅− �|̅ and 

combine with Eqn. (12), we have: 

P{|ℎ − �[�]̅|> 0} ≥ 1 − � (14) 

That means ℎ is different from �[�]̅ with a probability of at least 1 − � if |ℎ − �|̅> �. The key idea of our 

approach is that we only update ℎ if there is a certain difference between ℎ and the current label cardinality 

�.̅ In this case, we update ℎ by ℎ = �����(�)̅.  

Fig 3 shows the proposed approach to determine the size of the predicted label set. We first initialize a value 

for ℎ. After receiving � − 1 samples in the sequence in which ��� sample has |��| true labels, the label 

cardinality of the stream at the (� − 1)�� sample, denoted by ��̅�� is given by: 

��̅�� =
�

���
∑ |��|
���
���  (15) 

After predicting for the new ���  sample, the label cardinality at the ��� sample is updated by: 

� =̅
�

�
∑ |��|
�
��� =

�

�
�∑ |��|

���
��� + |��|� =

�

�
�(� − 1)��̅�� + |��|� (16) 

For each arrived sample, we compute the current label cardinality � ̅ based on the size of the true label 

|��| and the previous label cardinality given by (15). We then check whether the difference between � ̅and 

ℎ is greater than the threshold �, and the value of ℎ used for the next sample will be re-calculated by the 

rounded value of current �.̅ If the update condition is met, we reset � =̅ 0, � = 0, and � = 0 to begin a 

period with the new value of ℎ.  
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In the literature, we found only three incremental MLC thresholding methods to determine the size of the 

predicted label set. In all of them, a label is selected if its associated confident score (e.g., posterior 

probability) is higher than a threshold. The threshold is initialized, and is employed to obtain the predicted 

labels, and is then re-calculated via sample adjustment [38] or batch adjustment [5, 9]. In [38], Read et al. 

performed small adjustment on the threshold on a per-sample basis depending on the predicted and the 

actual label cardinality. Xioufis et al. [9] by contrast incrementally adjusted a threshold for each label on 

each fixed window of samples so that the frequency of the predicted label approximates that of the ground 

truth label. In [5], Read et al. incrementally adjusted a threshold for all labels on each batch to ensure that 

the predicted label cardinality approximates the true label cardinality. Compared to the above methods, our 

approach is significantly different and is more flexible since the number of samples used to adjust ℎ is not 

fixed but is based on using a condition derived from the Hoeffding bound. 

 

Fig.3. Illustration of adjusting the number of predicted labels 

As mentioned before, we developed the incremental MLC method via the online learning paradigm. By this 

way, we performed the following three steps on each arrived sample �: 

 Predict labels: The current learning model is used to predict the label set ��� for �. 

 Compute the update condition: We update the learning model if the set of true labels �� of � can 

be revealed for the environment. 

 Update learning model: If the update condition is satisfied, the new classification model is obtained 

by updating from the previous one based on sample � and ��. 

The incremental learning algorithm based on the clustering model for OMLC is summarized as: 

 

 

Update sample 

(� − 1)�� ��� 

��̅�� � ̅

(� − 2)�� 

ℎ ℎ ℎ ℎ��� = �����(�)̅ 

1�� 1�� 

� =̅ 0 � = 0 

� = 0 
Normal sample 

Reset values 

��̅�� ��̅ 

ℎ = ℎ� 

… 

… 
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Algorithm 3: Incremental online multi-label classification based on a clustering approach 

Input: Data sequence � , �, �,��, � 

Output Predict labels for each arrived samples 

1 For each arrived sample � from �  

2          ℎ = ℎ�; 

3          Obtain ��� by Algorithm 2 

4          If (�� can be revealed from the environment) 

5                   Update clustering structure by Algorithm 1 

6          End 

7         Compute � ̅by (16) 

8         Compute � by (12) 

9         If (|� −̅ ℎ|> �) 

10                Update ℎ = �����(�)̅ 

11                � =̅ 0, � = 0, � = 0 

12         End 

13 End 

 

4. Experimental Studies 

4.1. Datasets 

To evaluate the performance of the benchmark algorithms and the proposed method, we selected 5 popular 

multi-label datasets [5, 6] for the stationary setting and generated 12 datasets for the concept drift setting, 

respectively. All these datasets were treated as sequential datasets by processing them in the order they 

were collected. 

[1] We generated a synthetic dataset named SynRTG using the Random Tree Generator (RTG) in MOA 

library (http://moa.cms.waikato.ac.nz). The RTG constructs a decision tree by randomly choosing 

attributes to split and assigning a random class label to each leaf. Once the tree is built, new data points are 

generated by assigning uniformly distributed random values to attributes which are then used to determine 

the class label via the tree. We generated a 5-level tree to create SynRTG. To generate the concept drift for 

SynRTG (named SynRTG-drift), all generation schemes used in our work are initialized as binary generators 

with parameters as in Read et al. [5]. For a dataset with N generated samples, the drifts are centred at the 

(�/4)�� , (�/2)��, and (3�/4)��  sample, extending over N/1000, N/100, and N/10 samples, respectively. 

In the first drift, only 10% of label dependencies are changed. In the second drift, the underlying concepts 
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are changed and more labels are associated on average with each sample (a higher label cardinality). In the 

third drift, 20% of label dependencies are changed. We also generated the ‘gradual’ drift version for the 

five multi-label datasets (named ENRON-drift, IMDB-drift, OHSUMED-drift, SLASHDOT-drift, and 

TMC2007-drift) by concatenating half of the samples from the original data and the other half generated by 

RTG. The gradual concept drift is formed by randomly choosing � samples around the joint from the 

original data and the synthetic data to transition the concept drift. We also generated the ‘break’ drift for 

the five multi-label datasets (named ENRON-break, IMDB-break, OHSUMED-break, SLASHDOT-break, 

TMC2007-break) using the similar scheme mentioned above except with � = 0 (Fig 4). The details of the 

experimental datasets are described in Table 2. 

 

TABLE 2. THE EXPERIMENTAL DATASETS 

Dataset # of samples # of features # of labels Label cardinality � 

ENRON 1702 1001 binary 53 3.4 - 

IMDB 120919 1001 binary 28 2.0 - 

OHSUMED 13929 1002 binary 23 1.7 - 

SLASHDOT 3782 1079 binary 22 1.2 - 

TMC2007 28596 500 binary 22 2.2 - 

ENRON-drift 3000 1001 binary 53 3.4 -> 5.0 150 

IMDB-drift 200000 1001 binary 28 2.0 -> 4.0 5000 

OHSUMED-drift 26000 1002 binary 23 1.7 -> 4.0 1300 

SLASHDOT-drift 7000 1079 binary 22 1.2 -> 3.0 350 

TMC2007-drift 56000 500 binary 22 2.2 -> 5.0 2800 

SynRTG-drift 1000000 30 binary  8 1.8 -> 3.0 - 

ENRON-break 3000 1001 binary 53 3.4 -> 5.0 0 

IMDB-break 200000 1001 binary 28 2.0 -> 4.0 0 

OHSUMED-break 26000 1002 binary 23 1.7 -> 4.0 0 

SLASHDOT-break 7000 1079 binary 22 1.2 -> 3.0 0 

TMC2007-break 56000 500 binary 22 2.2 -> 5.0 0 

SynRTG-break 1000000 30 binary  8 1.8 -> 3.0 - 
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Fig.4. Structure of datasets with concept drift 

4.2. Experimental Setup 

For each arrived sample, we first predict the labels for each arrived sample and then use this sample with 

its true labels to update the learning model. For the benchmark algorithms, we use the parameters set by the 

MOA library. For the proposed method, there are four parameters, i.e., �, �,��, and �, that need to be 

considered. In the next section, we evaluate the influence of � and � on each of the performance measures. 

Meanwhile, the mature weight �� was set to 3 in the experiment as in [7]. 

We set the cluster bound � for binary data since all datasets used in the experiment have only binary 

features. Assume that on the feature ��, � samples have value 1 and � − � samples have value 0. The 

standard variation computed on � samples on this feature is given by:  

����� = �����
�� − �����

�
= � �

�
− �

�

�
�
�
= � �

�
− �

�

�
−

�

�
�
�
≤

�

�
 (17) 

Since the inequality (17) holds on all features, we have the upper bound of the radius of the cluster given 

by � = max���,…,������� � ≤ 1 2⁄ . If the cluster bound � is set with a value greater than or equal to 0.5, 

step 2 in Algorithm 1 will always be satisfied and all samples will be merged into a single mature cluster. 

Therefore, � was set to 0.495. 

 

4.3. Performance Measures and Benchmark Algorithms 

In multi-label learning, each sample is associated with a set of labels. Zhang and Zhou [4] stated that the 

performance of MLC algorithms should be tested on a range of measures instead of only the one being 

optimized to ensure a fair evaluation. In our experiments, we compute six performance measures based on 

the predicted label ��� and the ground truth �� on each arrived sample � from the data sequence � . These 

measures are grouped into three groups: sample-based measures (accuracy and F1), label-based measures 

(micro F1 and macro F1), and ranking-based measures (average precision and ranking loss). The details of 

� 

�� 2⁄  from original data �� 2⁄  from SynRTG 
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the performance measures can be found in the Appendix. The running time including the time for prediction 

and update are also reported for all methods. 

Since our method is applicable for both the stationary and concept drift settings, we compared the proposed 

method with both well-known non-adaptive and adaptive incremental MLC algorithms. For the stationary 

setting, the proposed method was compared with the following well-known incremental MLC algorithms: 

incremental Classifier Chain (denoted by iCC), incremental Pruned Set (denoted by iPS), and Majority 

Label Set (denoted by MLS). The base classifier for these methods is the Hoeffding tree. All these 

benchmark algorithms were run with the default parameters as given in the MEKA library 

(http://waikato.github.io/meka). We also implemented incremental Binary Relevance with SVM as base 

classifier using the scikit-learn library (https://scikit-learn.org) (denoted by iBR(SVM)). The proposed 

method was also compared with four recent incremental multi-target tree based MLC algorithms introduced 

in [6] including the multi-target model trees (denoted by iSOUP-MT), multi-target regression tree (denoted 

by iSOUP-RT), online Bagging for iSOUP-MT (denoted by iSOUP-EBMT), and online Bagging for 

iSOUP-RT (denoted by iSOUP-EBRT). The parameters for these methods were set as recommended in [6]. 

The algorithms iCC, iPS, MLS, iBR(SVM) were combined with the state-of-the-art adaptive method named 

ADWIN2 [31] to adapt to concept drift in the data. However, the four incremental multi-target-tree based 

MLC algorithms [6] are only introduced for the stationary concept. Therefore, we omitted them from the 

comparison under the concept drift setting.  

 

4.4. Statistical Test 

To assess the statistical significance of the experimental results of incremental MLC methods, Read et al. 

[5] and Osojnik et al. [6] used the Friedman test [39] to test the difference between the performances of 

multiple methods on multiple datasets. The Friedman test is preferred over the ANOVA test for the 

following reasons. First, the Friedman test does not assume normal distribution as in the ANOVA test. 

Second, an important assumption of repeated-measures ANOVA is sphericity (similar to the requirement 

that the random variables have equal variance), which cannot be taken for granted because of the nature of 

learning algorithms and datasets [40]. Here the Friedman test is used to test the null hypothesis that “all 

methods perform equally”. If the null hypothesis is rejected, a post-hoc test is then conducted. Read et al. 

[5], and Osojnik et al. [6] used the Nemenyi test for all pairwise comparisons based on the rankings of 

algorithms on all datasets. The difference in performance of two methods is treated as statistically 

significant if the � − ����� computed from the post-hoc test statistic is smaller than an adjust value of 

confident level computed from Nemenyi’s procedure. The confident level of the test was set to 0.05. 
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5. Experimental Results 

5.1. The influence of parameters 

In this section, we examine the influence of two parameters, i.e., the number of nearest neighbors � and 

the decay rate � on the 6 performance measures. The value of � was set in the range of 

{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} to examine its influence on the 6 performance 

measures. Fig. 5 and Fig. 6 present the relationship between � and the 6 measures on the 5 datasets at � =

3 and � = 10, respectively. The up or down arrow beside each measure in Fig. 5 and 6 indicates whether 

a higher or lower value is better, respectively. It can be seen that the performance measures at � = 3 and 

� = 10 with the different values of � are nearly similar. Therefore, we only analyze the influence of � on 

the 6 measures at � = 3. 

We can observe that the 4 measures, i.e., sample-based F1, sample-based accuracy, micro-average F1, and 

average precision, remain nearly constant for different values of � for the datasets OHSUMED, IMDB, and 

SLASHDOT. However, for the TMC2007 dataset, the value of these 4 measures fluctuates and decreases 

to a minimum at � = 0.4 before slightly increases. For the ENRON dataset, these 4 measures show a 

fluctuating but generally still increasing trend with the increase of �. For the TMC2007 dataset, the macro-

average F1 decreases with the increase of � like the 4 measures mentioned above but the decrease here is 

more significant (decreases from 0.3 to 0.1). The ranking loss for TMC2007 increases slightly when � is 

between 0.05 and 0.5. The ranking loss for the SLASHDOT and IMDB datasets also remains nearly 

constant for different values of  �. For the OHSUMED dataset, the ranking loss decreases to a minimum at 

� = 0.15 and then fluctuates.  For the ENRON dataset, the ranking loss becomes better in general with the 

increase of �, reaching the best value at � = 0.5.  

Recall that the decay speed � determines how fast the model forgets the old samples as reflected by the 

reduction of the sample’s weight. Hence, this parameter significantly affects the clustering model. A large 

value of � would cause a significant reduction of the weights of old samples, reducing the number of mature 

clusters that would appear. Based on the observations from Fig 5 and 6, there does not exist a common 

value of � in which the proposed method would perform well on all the experimental datasets for all 6 

measures. Therefore, we set � = 0.25 when comparing the performance of the proposed method to the 

benchmark algorithms. 

Fig. 7 presents the relationship between � and the six measures on the 5 non-drift datasets with � = 0.25. 

In this study, the value of � was set to be in the range of {3, 5, 7, 10}. Generally, there is not a common 

trend of the performance values with the different values of � among the 5 datasets.  
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Fig.5. Performance measures (y-axis) for different values of � (x-axis) at � = � 

 

Fig.6. Performance measures (y-axis) for different values of � (x-axis) at � = �� 
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Fig.7. Performance measures for different values of  � nearest neighbors 
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Fig.8. Number of mature clusters (y-axis) generated on the sequence of samples (x-axis) under the 

stationary setting 

In detail, on the ENRON dataset, the different values of � almost do not affect the first three measures, and 

Macro-average F1 obtains the best value at � = 3 whereas average precision and ranking loss obtain the 

best value at � = 10. On the IMDB dataset, all six measures almost remain unchanged with different values 

of �. On the OHSUMED dataset, � has little influence on 5 measures except for ranking loss in which it 

obtains the best value at � = 10. On the SLASHDOT dataset, the proposed method obtains the best value 

at � = 3 for the first 5 performance measures. In contrast, it preforms the poorest on ranking loss at � = 3. 

Finally, on the TMC2007 dataset, on the first 5 measures, the performance of the proposed method reduces 

with the increase of �. Meanwhile, it performs the best at � = 5 for the ranking loss. In the next section, 

we will compare the performance of the proposed method using � = 3. 
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Fig 8 shows the number of mature clusters generated versus the sequence of arriving samples. It can be 

seen that the number of mature clusters fluctuates significantly because of the appearance of new mature 

clusters as well as the change of mature clusters to immature clusters.  

 

5.2. Comparison with weighted KNN  

In this section, we compare the effectiveness of the proposed method to the weighted KNN method [36], 

where we learn the number of labels ℎ for a sample from the data stream and [36] uses a decision function 

to decide whether a label should be included in the label set of a sample. The experimental results on 5 non-

drift datasets are shown in Fig 9. Comparison is only done on the non-drift datasets as the weighted KNN 

method is a batch learning method and is not designed to handle concept drift in data. Clearly, our method 

is better than weighted KNN on all datasets for the 4 performance measures: sample-based F1, sample-

based accuracy, macro-average F1 and mico-average F1. In particular, our approach is significantly better 

on 3 datasets IMDB, OHSUMED, and SLASHDOT. For instance, on the IMDB dataset, the sample-based 

F1 of our method is 0.3220 while that of weighted KNN is only 0.0055. For the average-prediction and 

ranking loss, our method is only very slightly worse than the weighted KNN method. The result is 

particularly noteworthy since, in general, batch learning algorithms have better performance than online 

learning algorithms due to having information available all at once. 

The success of the proposed classification method compared to the weighted KNN method originates from 

the effectiveness of our approach in predicting the number of labels ℎ for each sample. The number of 

predicted labels ℎ is learned from the true labels of the arrived samples. Here we assigned the top ℎ labels 

associated with the top ℎ values of the posterior probability to the sample. In our approach, the value of ℎ 

is adaptive since the number of samples used to adjust ℎ is not fixed, i.e., ℎ is adjusted if the adjust condition 

based on Hoeffding inequality is satisfied. 

 



26 
 

  

  

  
Fig.9. Performance of the proposed classification method and weighted KNN 

 

5.3. Comparative study under the stationarity setting 

5.3.1. Results on sample-based measures 

Table S3 in the supplement material shows the sample-based F1 and sample-based accuracy of the 

benchmark algorithms and the proposed method. The P-values computed based on the rankings with the 

Friedman test are 9.3060E-4 and 7.3760E-4 for F1 and accuracy, respectively, therefore we rejected the 

null hypotheses that the performances of all methods are equal. From the Nemenyi significance test results 

shown in Fig 10, there is a statistical difference in the pairwise comparison between iBR(SVM) and iSOUP-

EBRT. 
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In detail, iBR(SVM) ranks first for both measures (1.8 for both F1 and accuracy), followed by the proposed 

method and iCC (2.8 for both F1 and accuracy). On dataset IMDB, the proposed method obtains the best 

results for both F1 and accuracy. iBR(SVM) ranks first on three datasets SLASHDOT, EURON, and 

OHSUMED. Meanwhile, the four multi-target tree-based methods and MLS obtain poor results on the 

experimental datasets, ranking at the bottom positions. Especially on two datasets SLASHDOT and IMDB, 

the four multi-target tree-based methods are significantly poorer than the other methods. 

5.3.2. Results on label-based measures 

For the two label-based measures, i.e., micro-average F1 and macro-average F1, the P-values for the label-

based measures computed by the Friedman test are 4.0171E-4 and 2.1023E-4, respectively. Hence, we 

rejected the null hypotheses and conducted the post-hoc test for all pairwise comparisons among all the 

methods. On the micro F1 measure, iBR(SVM) ranks first (rank value 1.4), our method and iCC rank second 

(rank value 2.8), followed by iPS (rank value 4) and iSOUP-MT (rank value 5.6) (see Table S4 in the 

supplement material). Although on the macro F1 measure, the proposed method is worse than iCC and iPS 

(rank value 4.2 compared to 2.6 of iCC and 3.2 of iPS), our method continues to obtain better results on 

ENRON and IMDB. The four multi-target tree-based methods continue to perform poorly on IMDB and 

SLASHDOT. 
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Fig.10. Nemenyi test for the six measures under the stationary setting 

5.3.3. Results on ranking-based measures 

The performance of the benchmark algorithms and the proposed method for the average precision and 

ranking loss are shown in Table S5 in the supplement material. We again conducted the Nemenyi post-hoc 

test and reported the results in Fig 10 for the pairwise comparison. The iSOUP-RT method performs the 

worst among all methods for the average precision measure, and Nemenyi test shows that it is worse than 

the proposed method and iBR(SVM) for the average precision measure. For the average precision measure, 

the proposed method is ranked the second (rank value 1.8) after iBR(SVM) (rank value 1.6), while iPS and 

iCC are ranked the third and fourth, respectively. The four multi-target tree-based methods continue to 

perform poorly for the average precision measure, ranking at the four bottom positions. 

Surprisingly, the four multi-target tree-based methods perform well on all datasets for the ranking loss 

measure. The ranking loss of the proposed method is in the middle while iCC, iPS, and MLS obtain poor 

results (rank values are 6.6, 7, and 7.4 respectively). iBR(SVM) is the poorest among all methods (rank 

value 8.6). Based on the Nemenyi test, MLS and iBR(SVM) are worse than iSOUP-EBMT and iSOUP-

EBRT. 

 

5.4. Comparative study under the concept drift setting 

Table S6, S7, and S8 in the supplement material show the experimental results of all methods for the six 

measures under the concept drift setting. Based on the Nemenyi test, the proposed method is better than 

MLS on 5 measures except for the sample-based accuracy (Fig 11). The proposed method is also better 

than iCC on the average precision and better than iBR(SVM) on the ranking loss, while there is no statistical 

difference between ours and iPS. 

In detail, the proposed method ranks first on 2 measures, i.e., average precision and ranking loss, and ranks 

second on two label-based measures. iPS is a competitive MLC method in handling concept drift which 
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ranks first on 2 measures, i.e., two sample-based measures and ranks second on 3 measures, i.e., micro-

average F1, average precision and ranking loss. Although iBR(SVM) ranks first on two label-based 

measure, it performs the poorest for the ranking loss. MLS meanwhile is the weakest among all methods 

on 5 measures. 

Unsurprisingly, the benchmark algorithms iPS and iCC obtain better performance on SynRTG-drift and 

SynRTG-break than the proposed method for the two sample-based measures, i.e., micro-average F1, and 

average precision. The SynRTG-drift and SynRTG-break are generated based on the decision tree 

generator, and in the experiment, we used the Hoeffding tree (an incremental decision tree) as the base 

classifier of these two methods. The performance difference between our algorithm and iCC and iPS for 

these two synthetic datasets, however, are not statistically significant for the average precision and ranking 

loss whereas the proposed method outperforms all benchmark algorithms for the macro-average F1.  
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Fig.11. Nemenyi test for the six measures under the concept drift setting 

5.5. Discussion 

The four multi-target tree-based methods and MLS perform poorly on the experimental datasets. While 

MLS ranks at the bottom on 5 measures except for the average precision, the four multi-target tree-based 

methods only perform well for the ranking loss measure. In fact, multi-target tree-based methods are highly 

threshold-dependent. In these methods, the threshold is used twice, i.e., once in converting muti-target 

prediction to multi-label prediction and then in updating the regressor. It is noted that the sample-based 

measures and label-based measures are threshold-based measures. Therefore, multi-target tree-based 

methods could underperform on these measures if a sub-optimal threshold is used. MLS method, 

meanwhile, is the simplest multi-label classifier which assigns the most common label set from the training 

data for all test samples. It, therefore, is an uncompetitive incremental classifier for most of the performance 

measures.  

iCC and iPS, especially iPS, are competitive MLC methods for all measures except the ranking loss. 

Because of taking into account the label correlation in the learning model, these methods can choose 

suitable labels to assign to each arrived sample, resulting in good MLC performance. In fact, iCC and iPS 

compare the prediction scores to a threshold to select the predicted labels. In this paper, we followed (Read 

et al., 2012) by adjusting the threshold via a batch-based approach on the predicted and true label 

cardinality. The dependence on choosing the appropriate threshold and the less flexible adjustment for the 

number of predicted labels per sample could have caused the under-performance of these methods on some 

datasets. iBR(SVM) meanwhile is a very high-performing MLC methods in both settings because of the 

fact that SVM is a state-of-the-art supervised learning algorithm. This method ranks first on 5 measures 

except for the ranking loss in the non-concept drift setting and ranks first on the 2 label-based measures and 

in the concept drift setting. However, it under-performs compared to the proposed method for the ranking 

loss. 

The proposed method is competitive to the other benchmark algorithms like iBR(SVM) and iPS. In the 

concept drift setting, it ranks first on the two ranking based measures and ranks second on the two label-

based measures. Although iBR(SVM) has higher ranking than the proposed method on 5 measures on the 

non-concept drift setting, the proposed method is a better choice as it always attain high ranks and does not 

rank last on any measures. In the proposed method, the clustering model is maintained properly with the 

arrival of each sample based on its ground truth label set. The classification stage, therefore, can benefit 

when computing the posterior probability that a sample belongs to a class label based on the weight of the 

mature clusters. The weight of each cluster is decayed exponentially with time so that the model can be 
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adaptive to the concept drift. Moreover, the number of predicted labels is learned based on the Hoeffding 

inequality and the label cardinality to ensure that each sample is assigned with an adequate set of labels. 

The proposed method, therefore, performed well in our experiments. 

6. Conclusions 

In this paper, we have introduced an incremental online learning method to solve the online MLC problem. 

In detail, we aggregate information in the arriving samples through a clustering process that takes into 

account the sample’s time of arrival to compute the sample’ weight. Each cluster’s weight is then computed 

from the weights of the samples inside. The clustering process also builds up a distribution of labels in each 

cluster that would be later used for MLC. To handle concept drift, we proposed a decay mechanism on the 

sample’s weight so that the influence of old samples is reduced over time while attention is put on the new 

ones. The classification process on each sample is conducted by using the mature clusters and their weights 

to compute the posterior probability that the sample belongs to a class. For MLC, the ℎ labels associated 

with the top ℎ classes of posterior probabilities (computed from the cluster’s label distributions) are selected 

to assign labels for the sample. The number of predicted labels ℎ is determined adaptively in our algorithm. 

Specifically, given a confidence level, we conduct the adjustment if there is a certain difference between ℎ 

and the current label cardinality �.̅ The difference needed for the update is computed based on the Hoeffding 

inequality. The clustering model and the number of predicted labels are updated on-the-fly with the arrived 

samples and their ground truth labels. Due to the incremental learning nature of our algorithm, the incoming 

samples do not need to be stored once they are processed. 

The proposed method and the benchmark algorithms were evaluated on five popular multi-label datasets in 

the stationary setting, and twelve multi-label datasets in the concept drift setting. The experimental results 

showed that our method is highly competitive compared to several benchmark algorithms, especially under 

the concept drift setting. The proposed method is high desirable in practice as it always maintains the high 

ranks and does not rank last on any measures 

The performance of the proposed method can be enhanced by integrating label correlation [4] in the learning 

model. For MLC problems, label correlation is an important factor that can enhance the prediction quality. 

For example, if a sample has been assigned with the label ‘indoor’, labels like ‘table’ and ‘chair’ should 

have more chance of been assigned to the sample than labels like ‘car’ and ‘grass’. By considering the 

semantic relationship between the labels, we can choose the proper set of labels in the prediction process. 

In the streaming context, moreover, the label correlation will need to be updated with the incoming of each 

sample. Several methods capturing the label correlation such as classifier trellis [25] and graphical model 

for feature-label-label relationship triple [13] can be combined with the proposed method to enhance the 
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performance of MLC task. Moreover, the proposed method can be expanded to handle the more general 

learning paradigm like MDC [25]. These will be our future works. 
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Appendix 

The performance measures 

In this paper, the comparisons of the proposed method and the benchmark algorithms are based on six well-

known performance measures: sample-based F1/accuracy, label-based micro-averaged F1/macro-averaged 

F1, and ranking-based average precision/ranking loss. We briefly describe each measure supposing that � 

examples ��, ��, … , �� are received with ground truth label sets ��, ��, �� and prediction label sets 

���, ���,… , ���, respectively. 

 

Sample-based measures 

Sample-based measures evaluate the performance of a MLC algorithm on a per-sample basis. They are 

calculated for each sample and then averaged over all of them.  



35 
 

Sample-based accuracy is the average proportion of label values correctly classified out of the total number 

(predicted and true) of labels:  

Sample− based accuracy= 
�

�
∑

���∩����

���∪����
�
���  (A1) 

The sample-based F1 is the harmonic mean of sample-based precision and recall: 

Sample− based F1 = 2/�
�

��.���������
+

�

��.������
�  (A2) 

Here,  

Ex.Precision= 
�

�
∑

���∩����

�����
�
���  (A3) 

Ex.Recall= 
�

�
∑

���∩����

|��|
�
���  (A4) 

The greater the sample-based accuracy and F1 of an MLC algorithm (with an optimal value of 1), the better 

its classification performance over different samples. 

 

Label-based measures 

Label-based measures evaluate the performance of a MLC algorithm on a per-label basis. They are 

calculated for each label and then averaged over all of them. Definitions of many of the label-based 

measures are based on four basic quantities named true positive (TP), true negative (TN), false positives 

(FP) and false negative (FN), which are calculated as follows for label � ∈ �: 

��� = ������ ∈ �� ∧ � ∈ ���, 1 ≤ � ≤ ��� (A5) 

��� = ������ ∉ �� ∧ � ∉ ���, 1 ≤ � ≤ ��� (A6) 

��� = ������ ∉ �� ∧ � ∈ ���, 1 ≤ � ≤ ��� (A7) 

��� = ������ ∈ �� ∧ � ∉ ���, 1 ≤ � ≤ ��� (A8) 

The value of F1 can be obtained in the form of macro-averaged or micro-averaged: 

Macro− average F1 =
�

�
∑ �1(���, ���, ���, ���)�  (A9) 

Micro− average F1 = �1�∑ ���� , ∑ ���� , ∑ ���� , ∑ ���� � (A10) 

Here, 

�1(��, ��, ��, ��) = 
���

���������
 (A11) 

Clearly, the greater the micro F1 and macro F1 (with an optimal value of 1), the better the predictive 

performance over different labels obtained by the learner. 

 

Ranking-based measures 
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Ranking-based measures analyze the confidence outputs �(��, �)∈ ℝ, � ∈ � of a MLC methods directly, 

i.e. independent of the thresholding procedure. For ��, �����(��, �) returns the rank of � in � based on the 

descending order induced from �(��,⋅). That means label � is considered to be ranked higher than �′, i.e. 

�����(��, �) ≤  �����(��, �
�) if �(��, �)> �(��, �

�). 

Ranking loss evaluates the fraction of reversely ordered label pairs when an irrelevant label is ranked higher 

than a relevant label: 

Ranking Loss= 
�

�
∑

�

|��||���|
|{(�, ��)|�(��, �)≤ �(��, �

�), (�, ��)∈ �� × ��� }|
�
���  (A12) 

where ��� is the complementary set of �� in �. Small values of ranking loss are desired. 

Average precision evaluates the average fraction of labels ranked above a particular label � ∈ �� which 

actually are in ��.  

Avegrage Precision= 
�

�
∑

�

|��|
∑

����������(��, �
�) ≤  �����(��, �), �

� ∈ ����

�����(��,�)
�∈��

�
���  (A13) 

Average precision reaches the maximum value of 1 when � ranks the labels for all samples perfectly so 

that there is no sample �� for which a label not in �� has higher rank than a label in ��. 
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*The up/down arrow beside the measure indicates that a higher/lower value is preferred for that measure. 

TABLE S1. PERFORMANCE MEASURES FOR DIFFERENT VALUES OF K NEAREST 
NEIGHBORS 

Sample-based F1(↑) 
 K=3 K=5 K=7 K=10 
ENRON 0.4053 0.4049 0.4023 0.4013 
IMDB 0.3220 0.3212 0.3212 0.3213 
OHSUMED 0.2356 0.2375 0.2403 0.2415 
SLASHDOT 0.1623 0.1504 0.1527 0.1515 
TMC2007 0.5187 0.5026 0.4914 0.4797 

Sample-based Accuracy (↑) 
 K=3 K=5 K=7 K=10 
ENRON 0.3016 0.2999 0.2983 0.2981 
IMDB 0.2354 0.2348 0.2349 0.2350 
OHSUMED 0.1784 0.1795 0.1819 0.1827 
SLASHDOT 0.1547 0.1432 0.1447 0.1439 
TMC2007 0.4044 0.3888 0.3781 0.3668 

Micro-average F1 (↑) 
 K=3 K=5 K=7 K=10 
ENRON 0.4083 0.4105 0.4083 0.4101 
IMDB 0.3232 0.3224 0.3226 0.3226 
OHSUMED 0.2531 0.2551 0.2577 0.2591 
SLASHDOT 0.1557 0.1447 0.1479 0.1463 
TMC2007 0.5236 0.5073 0.4963 0.4845 

Macro-average F1 (↑) 
 K=3 K=5 K=7 K=10 
ENRON 0.0761 0.0733 0.0651 0.0618 
IMDB 0.0473 0.0457 0.0447 0.0440 
OHSUMED 0.0460 0.0451 0.0448 0.0449 
SLASHDOT 0.1199 0.1097 0.1125 0.1109 
TMC2007 0.1601 0.1331 0.1198 0.1054 

Average Precision (↑) 
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 K=3 K=5 K=7 K=10 
ENRON 0.5404 0.5507 0.5575 0.5597 
IMDB 0.4728 0.4729 0.4730 0.4734 
OHSUMED 0.3812 0.3820 0.3827 0.3836 
SLASHDOT 0.3588 0.3502 0.3507 0.3506 
TMC2007 0.6622 0.6500 0.6385 0.6269 

Ranking Loss (↓) 
 K=3 K=5 K=7 K=10 
ENRON 0.2486 0.2077 0.1859 0.1691 
IMDB 0.1770 0.1758 0.1752 0.1747 
OHSUMED 0.2754 0.2676 0.2650 0.2626 
SLASHDOT 0.2581 0.2554 0.2488 0.2460 
TMC2007 0.1321 0.1262 0.1279 0.1323 

 

TABLE S2. PERFORMANCE MEASURES AND RANKINGS OF THE PROPOSED 
CLASSIFICATION METHOD AND WEIGHTED K-NN 

  Sample-based F1(↑) Micro-average F1 (↑) Average Precision (↑) 

  Proposed 
Method 

Weighed 
KNN 

Proposed 
Method 

Weighted 
KNN 

Proposed 
Method 

Weighted 
KNN 

ENRON 0.4053 (1) 0.3371 (2) 0.4083 (1) 0.3538 (2) 0.5404 (2) 0.5448 (1) 

IMDB 0.3220 (1) 0.0055 (2) 0.3232 (1) 0.0090 (2) 0.4728 (2) 0.4743 (1) 

OHSUMED 0.2356 (1) 0.0057 (2) 0.2531 (1) 0.0103 (2) 0.3812 (2) 0.3815 (1) 

SLASHDOT 0.1623 (1) 0.0162 (2) 0.1557 (1) 0.0269 (2) 0.3588 (1) 0.3588 (2) 

TMC2007 0.5187 (1) 0.4655 (2) 0.5236 (1) 0.5038 (2) 0.6622 (2) 0.6653 (1) 

Averaged Rank 1 2 1 2 1.8 1.2 

  Sample-based Accuracy (↑) Macro-average F1 (↑) Ranking Loss (↓) 

  Proposed 
Method 

Weighed 
KNN 

Proposed 
Method 

Weighted 
KNN 

Proposed 
Method 

Weighted 
KNN 

ENRON 0.3016 (1) 0.2603 (2) 0.0761 (1) 0.0650 (2) 0.2486 (2) 0.2454 (1) 

IMDB 0.2354 (1) 0.0045 (2) 0.0473 (1) 0.0026 (2) 0.177 (2) 0.1738 (1) 

OHSUMED 0.1784 (1) 0.0048 (2) 0.0460 (1) 0.0040 (2) 0.2754 (2) 0.2737 (1) 

SLASHDOT 0.1547 (1) 0.0160 (2) 0.1199 (1) 0.0999 (2) 0.2581 (2) 0.2566 (1) 

TMC2007 0.4044 (1) 0.3731 (2) 0.1601 (1) 0.1586 (2) 0.1321 (2) 0.1296 (1) 

Averaged Rank 1 2 1 2 2 1 
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TABLE S3. THE SAMPLE-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER STATIONARY SETTING 

Sample-based F1(↑) 

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.4053 (2) 0.3296 (4) 0.2411 (8) 0.2530 (7) 0.3221 (5) 0.3933 (3) 0.2021 (9) 0.2778 (6) 0.4792 (1) 

IMDB 0.3220 (1) 0.0227 (6) 0.0031 (8) 0.0008 (9) 0.0037 (7) 0.0915 (5) 0.2483 (2) 0.2420 (3) 0.2175 (4) 

OHSUMED 0.2356 (4) 0.1767 (6) 0.1829 (5) 0.1280 (8) 0.1156 (9) 0.2425 (3) 0.1432 (7) 0.3316 (2) 0.3914 (1) 

SLASHDOT 0.1623 (3) 0.0049 (6) 0.0003 
(7.5) 0.0000 (9) 0.0003 (7.5) 0.2425 (2) 0.1484 (4) 0.1438 (5) 0.4100 (1) 

TMC2007 0.5187 (4) 0.4303 (7) 0.4335 (5) 0.4307 (6) 0.4175 (8) 0.6146 (1) 0.2166 (9) 0.5696 (3) 0.5942 (2) 

Averaged Rank 2.8 5.8 6.7 7.8 7.3 2.8 6.2 3.8 1.8 

Sample-based Accuracy (↑)  

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.3016 (2) 0.2438 (4) 0.1797 (8) 0.1887 (7) 0.2379 (5) 0.2979 (3) 0.1680 (9) 0.2246 (6) 0.3659 (1) 

IMDB 0.2354 (1) 0.0187 (6) 0.0026 (8) 0.0007 (9) 0.0031 (7) 0.0710 (5) 0.2081 (2) 0.2032 (3) 0.1606 (4) 

OHSUMED 0.1784 (4) 0.1563 (6) 0.1611 (5) 0.1143 (8) 0.1035 (9) 0.2110 (3) 0.1270 (7) 0.2902 (2) 0.3190 (1) 

SLASHDOT 0.1547 (3) 0.0049 (6) 0.0003 
(7.5) 0.0000 (9) 0.0003 (7.5) 0.2110 (2) 0.1458 (4) 0.1407 (5) 0.3706 (1) 

TMC2007 0.4044 (4) 0.3448 (6) 0.3479 (5) 0.3439 (7) 0.3317 (8) 0.5185 (1) 0.1786 (9) 0.4804 (3) 0.4929 (2) 

Averaged Rank 2.8 5.6 6.7 8 7.3 2.8 6.2 3.8 1.8 

 

TABLE S4. THE LABEL-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER STATIONARY SETTING 

Micro-average F1 (↑) 

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.4083 (2) 0.3374 (4) 0.2251 (8) 0.2385 (7) 0.3270 (5) 0.3990 (3) 0.1427 (9) 0.2547 (6) 0.4818 (1) 

IMDB 0.3232 (1) 0.0350 (6) 0.0057 (7) 0.0012 (9) 0.0056 (8) 0.1263 (5) 0.2379 (3) 0.2309 (4) 0.2398 (2) 

OHSUMED 0.2531 (4) 0.2325 (6) 0.2399 (5) 0.1724 (7) 0.1564 (8) 0.3206 (3) 0.1374 (9) 0.3297 (2) 0.4233 (1) 

SLASHDOT 0.1557 (3) 0.0084 (6) 0.0004 
(7.5) 0.0000 (9) 0.0004 (7.5) 0.3206 (2) 0.1411 (4) 0.1379 (5) 0.4408 (1) 

TMC2007 0.5236 (4) 0.4651 (6) 0.4732 (5) 0.4642 (7) 0.4484 (8) 0.6346 (1) 0.1988 (9) 0.5731 (3) 0.6101 (1) 

Averaged 
Rank 2.8 5.6 6.5 7.8 7.3 2.8 6.8 4 1.4 

Macro-average F1 (↑)  

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.0761 (2) 0.0364 (5) 0.0199 (8) 0.0217 (7) 0.0340 (6) 0.0440 (4) 0.0090 (9) 0.0464 (3) 0.1881 (1) 

IMDB 0.0473 (2) 0.0113 (6) 0.0023 (7) 0.0004 (9) 0.0019 (8) 0.0452 (3) 0.0245 (5) 0.0277 (4) 0.1356 (1) 

OHSUMED 0.0460 (8) 0.1210 (5) 0.1269 (4) 0.0745 (6) 0.0617 (7) 0.2589 (2) 0.0135 (9) 0.1478 (3) 0.3229 (1) 

SLASHDOT 0.1199 (4) 0.0041 (6) 0.0002 
(7.5) 0.0000 (9) 0.0002 (7.5) 0.2589 (2) 0.1030 (5) 0.1267 (3) 0.3788 (1) 

TMC2007 0.1601 (5) 0.1503 (6) 0.1605 (4) 0.1228 (7) 0.1110 (8) 0.4456 (2) 0.0232 (9) 0.1905 (3) 0.5082 (1) 

Averaged 
Rank  4.2  5.6  6.1  7.6  7.3 2.6  7.4  3.2 1 
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TABLE S5. THE RANKING-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER STATIONARY SETTING 

Average Precision (↑) 

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.5404 (1) 0.1131 (6) 0.1023 (9) 0.1024 (8) 0.1125 (7) 0.3709 (3) 0.2409 (5) 0.2934 (4) 0.4560 (2) 

IMDB 0.4728 (1) 0.1986 (5) 0.1901 (8) 0.1907 (7) 0.1972 (6) 0.1841 (9) 0.3003 (3) 0.2959 (4) 0.3028 (2) 

OHSUMED 0.3812 (3) 0.1846 (7) 0.1806 (9) 0.1836 (8) 0.1848 (6) 0.3684 (4) 0.2700 (5) 0.4220 (2) 0.4576 (1) 

SLASHDOT 0.3588 (3) 0.1586 (6) 0.1529 (9) 0.1585 (7) 0.1565 (8) 0.3684 (2) 0.2912 (4) 0.2843 (5) 0.5083 (1) 

TMC2007 0.6622 (1) 0.1992 (9) 0.2001 (8) 0.2121 (6) 0.2016 (7) 0.6423 (3) 0.2860 (5) 0.5953 (4) 0.6429 (2) 

Averaged 
Rank 1.4 5.6 7.6 6.2 5.8 3.2 3.4 2.8 1.6 

Ranking Loss (↓) 

  Proposed 
Method 

iSOUP-
MT iSOUP-RT iSOUP-

EBRT 
iSOUP-
EBMT iCC MLS iPS iBR 

(SVM) 

ENRON 0.2486 (5) 0.1208 (4) 0.1181 (2) 0.1183 (3) 0.1165 (1) 0.3803 (6) 0.5095 (9) 0.4594 (7) 0.5022 (8) 

IMDB 0.1770 (4) 0.1878 (5) 0.1737 (3) 0.1708 (2) 0.1705 (1) 0.4934 (8) 0.4514 (6) 0.4532 (7) 0.7158 (9) 

OHSUMED 0.2754 (5) 0.2254 (4) 0.2163 (3) 0.2024 (1) 0.2110 (2) 0.3652 (7) 0.4376 (8) 0.3350 (6) 0.5688 (9) 

SLASHDOT 0.2581 (5) 0.2202 (2) 0.2216 (4) 0.2206 (3) 0.2185 (1) 0.3652 (6) 0.3678 (7) 0.3732 (8) 0.5420 (9) 

TMC2007 0.1321 (5) 0.1220 (4) 0.1158 (3) 0.1012 (1) 0.1132 (2) 0.2254 (6) 0.5848 (9) 0.2826 (7) 0.3728 (8) 

Averaged 
Rank 4.8 3.8 3 2 1.4 6.6 7.8 7 8.6 
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TABLE S6. THE SAMPLE-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER THE CONCEPT DRIFT SETTING 

 

Sample-based F1 (↑) 

 Proposed Method iCC MLS iPS iBR (SVM) 
ENRON-drift 0.2312 (3) 0.2073 (4) 0.1082 (5) 0.2376 (2) 0.2607 (1) 
ENRON-break 0.2329 (2) 0.2075 (4) 0.1070 (5) 0.2325 (3) 0.2617 (1) 
IMDB-drift 0.2293 (1) 0.0577 (5) 0.1325 (4) 0.1741 (2) 0.1628 (3) 
IMDB-break 0.2299 (1) 0.0467 (5) 0.1323 (4) 0.1753 (2) 0.1632 (3) 
OHSUMED-drift 0.2040 (3) 0.1203 (5) 0.1254 (4) 0.2308 (1) 0.2153 (2) 
OHSUMED-break 0.2040 (3) 0.1201 (4) 0.0740 (5) 0.2343 (1) 0.2169 (2) 
SLASHDOT-drift 0.1447 (3) 0.0222 (5) 0.0991 (4) 0.1469 (2) 0.2288 (1) 
SLASHDOT-break 0.1440 (3) 0.0213 (5) 0.0992 (4) 0.1482 (2) 0.2337 (1) 
SynRTG-drift 0.4453 (4) 0.4763 (2) 0.4490 (3) 0.5000 (1) 0.3817 (5) 
SynRTG-break 0.4465 (3) 0.4765 (2) 0.3469 (5) 0.5021 (1) 0.3826 (4) 
TMC2007-drift 0.3450 (2) 0.3124 (4) 0.1142 (5) 0.3522 (1) 0.3374 (3) 
TMC2007-break 0.3457 (2) 0.3124 (4) 0.1084 (5) 0.3574 (1) 0.3392 (3) 
Averaged Rank 2.50 4.08 4.42 1.58 2.42 

Sample-based Accuracy (↑) 

 Proposed Method iCC MLS iPS iBR (SVM) 
ENRON-drift 0.1698 (3) 0.1582 (4) 0.0904 (5) 0.1837 (2) 0.1952 (1) 
ENRON-break 0.1710 (3) 0.1585 (4) 0.0894 (5) 0.1804 (2) 0.1959 (1) 
IMDB-drift 0.1616 (1) 0.0484 (5) 0.1099 (4) 0.1385 (2) 0.1148 (3) 
IMDB-break 0.1620 (1) 0.0361 (5) 0.1097 (4) 0.1396 (2) 0.1151 (3) 
OHSUMED-drift 0.1461 (3) 0.1038 (4) 0.1007 (5) 0.1918 (1) 0.1607 (2) 
OHSUMED-break 0.1459 (3) 0.1037 (4) 0.0652 (5) 0.1945 (1) 0.1620 (2) 
SLASHDOT-drift 0.1216 (3) 0.0182 (5) 0.0916 (4) 0.1261 (2) 0.1913 (1) 
SLASHDOT-break 0.1206 (3) 0.0174 (5) 0.0918 (4) 0.1272 (2) 0.1949 (1) 
SynRTG-drift 0.3370 (4) 0.3866 (2) 0.3577 (3) 0.4137 (1) 0.2812 (5) 
SynRTG-break 0.3388 (3) 0.3870 (2) 0.2868 (4) 0.4169 (1) 0.2826 (5) 
TMC2007-drift 0.2575 (3) 0.2622 (2) 0.0935 (5) 0.2852 (1) 0.2595 (3) 
TMC2007-break 0.2581 (3) 0.2626 (2) 0.0894 (5) 0.2894 (1) 0.2613 (3) 
Averaged Rank 2.92 3.67 4.42 1.5 2.5 
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TABLE S7. THE LABEL-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER THE CONCEPT DRIFT SETTING 

 

Micro average-F1 (↑) 
 Proposed Method iCC MLS iPS iBR (SVM) 

ENRON-drift 0.2289 (4) 0.2618 (2) 0.0898 (5) 0.2324 (3) 0.2811 (1) 

ENRON-break 0.2303 (4) 0.2623 (2) 0.0893 (5) 0.2320 (3) 0.2820 (1) 

IMDB-drift 0.2165 (1) 0.0616 (5) 0.1181 (4) 0.1499 (3) 0.1698 (2) 

IMDB-break 0.2172 (1) 0.0625 (5) 0.1182 (4) 0.1502 (3) 0.1703 (2) 

OHSUMED-drift 0.2052 (2) 0.1427 (4) 0.1211 (5) 0.1981 (3) 0.2140 (1) 

OHSUMED-break 0.2052 (2) 0.1424 (4) 0.0709 (5) 0.2020 (3) 0.2152 (1) 

SLASHDOT-drift 0.1381 (3) 0.0344 (5) 0.0826 (4) 0.1506 (3) 0.2038 (1) 

SLASHDOT-break 0.1374 (3) 0.0328 (5) 0.0827 (4) 0.1524 (3) 0.2108 (1) 

SynRTG-drift 0.4659 (3) 0.4960 (2) 0.4641 (4) 0.5204 (1) 0.4115 (5) 

SynRTG-break 0.4674 (3) 0.4963 (2) 0.4099 (5) 0.5228 (1) 0.4127 (4) 

TMC2007-drift 0.3208 (3) 0.3721 (1) 0.1062 (5) 0.3162 (4) 0.3253 (2) 

TMC2007-break 0.3213 (3) 0.3717 (1) 0.1046 (5) 0.3195 (4) 0.3273 (2) 

Averaged Rank 2.67 3.17 4.58 2.67 1.92 

Macro average-F1 (↑) 
 Proposed Method iCC MLS iPS iBR (SVM) 

ENRON-drift 0.0834 (2) 0.0412 (4) 0.0081 (5) 0.0621 (3) 0.1407 (1) 

ENRON-break 0.0871 (2) 0.0412 (4) 0.0083 (5) 0.0588 (3) 0.1416 (1) 

IMDB-drift 0.1204 (2) 0.0299 (4) 0.0183 (5) 0.0506 (3) 0.1399 (1) 

IMDB-break 0.1211 (2) 0.0331 (4) 0.0184 (5) 0.0466 (3) 0.1404 (1) 

OHSUMED-drift 0.1211 (4) 0.1302 (2) 0.0141 (5) 0.1272 (3) 0.1831 (1) 

OHSUMED-break 0.1211 (4) 0.1297 (3) 0.0118 (5) 0.1380 (2) 0.1844 (1) 

SLASHDOT-drift 0.0960 (2) 0.0317 (4) 0.0096 (5) 0.0757 (3) 0.1740 (1) 

SLASHDOT-break 0.0950 (2) 0.0307 (4) 0.0096 (5) 0.0730 (3) 0.1820 (1) 

SynRTG-drift 0.3598 (1) 0.3376 (4) 0.2982 (5) 0.3441 (3) 0.3592 (2) 

SynRTG-break 0.3614 (1) 0.3394 (4) 0.2792 (5) 0.3464 (3) 0.3601 (2) 

TMC2007-drift 0.2049 (3) 0.2315 (2) 0.0193 (5) 0.1687 (4) 0.2591 (1) 

TMC2007-break 0.2059 (3) 0.2314 (2) 0.0220 (5) 0.1737 (4) 0.2610 (1) 

Averaged Rank 2.33 3.42 5 3.08 1.17 
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TABLE S8. THE RANKING-BASED MEASURES AND RANKINGS OF THE BENCHMARK 
ALGORITHMS AND THE PROPOSED METHOD UNDER THE CONCEPT DRIFT SETTING 

 

Average Precision (↑) 
 Proposed Method iCC MLS iPS iBR (SVM) 

ENRON-drift 0.3324 (1) 0.2488 (4) 0.1811 (5) 0.2558 (3) 0.2837 (2) 
ENRON-break 0.3323 (1) 0.2493 (4) 0.1806 (5) 0.2534 (3) 0.2838 (2) 
IMDB-drift 0.3524 (1) 0.1904 (5) 0.2346 (4) 0.2464 (2) 0.2440 (3) 
IMDB-break 0.3527 (1) 0.1827 (5) 0.2348 (4) 0.2470 (2) 0.2444 (3) 
OHSUMED-drift 0.3290 (2) 0.2826 (4) 0.2573 (5) 0.3296 (1) 0.3025 (3) 
OHSUMED-break 0.3301 (2) 0.2823 (4) 0.2368 (5) 0.3316 (1) 0.3029 (3) 
SLASHDOT-drift 0.3112 (2) 0.2343 (5) 0.2528 (4) 0.2720 (3) 0.3431 (1) 
SLASHDOT-break 0.3104 (2) 0.2327 (5) 0.2529 (4) 0.2728 (3) 0.3468 (1) 
SynRTG-drift 0.5997 (3) 0.6053 (2) 0.5837 (4) 0.6178 (1) 0.5539 (5) 
SynRTG-break 0.6011 (3) 0.6054 (2) 0.5768 (4) 0.6192 (1) 0.5553 (5) 
TMC2007-drift 0.4738 (1) 0.4418 (2) 0.2611 (5) 0.4191 (4) 0.4274 (3) 
TMC2007-break 0.4734 (1) 0.4418 (2) 0.2644 (5) 0.4227 (4) 0.4291 (3) 
Averaged Rank 1.67 3.67 4.5 2.33 2.83 

Ranking Loss (↓) 
 Proposed Method iCC MLS iPS iBR (SVM) 

ENRON-drift 0.4848 (3) 0.4440 (2) 0.5125 (4) 0.4315 (1) 0.7262 (5) 
ENRON-break 0.4868 (3) 0.4431 (2) 0.5123 (4) 0.4331 (1) 0.7265 (5) 
IMDB-drift 0.3727 (1) 0.5091 (4) 0.4895 (3) 0.4823 (2) 0.8224 (5) 
IMDB-break 0.3723 (1) 0.5086 (4) 0.4895 (3) 0.4829 (2) 0.8221 (5) 
OHSUMED-drift 0.4064 (1) 0.4443 (3) 0.4666 (4) 0.4192 (2) 0.7685 (5) 
OHSUMED-break 0.4047 (1) 0.4445 (3) 0.4776 (4) 0.4177 (2) 0.7671 (5) 
SLASHDOT-drift 0.4147 (1) 0.4620 (4) 0.4450 (3) 0.4353 (2) 0.7519 (5) 
SLASHDOT-break 0.4159 (1) 0.4630 (4) 0.4450 (3) 0.4350 (2) 0.7474 (5) 
SynRTG-drift 0.3872 (2) 0.3883 (3) 0.4157 (4) 0.3704 (1) 0.6176 (5) 
SynRTG-break 0.3861 (2) 0.3882 (3) 0.4191 (4) 0.3683 (1) 0.6033 (5) 
TMC2007-drift 0.3290 (1) 0.3728 (2) 0.5530 (4) 0.4045 (3) 0.6502 (5) 
TMC2007-break 0.3301 (1) 0.3732 (2) 0.5526 (4) 0.4009 (3) 0.6483 (5) 
Averaged Rank 1.5 3 3.67 1.83 5 
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