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Abstract  

Novel glass tracers, organic and inorganic polymers based on narrow band 

atomic fluorescence, have been developed for deployment as environmental 

tracers.  The use of discrete fluorescent species in an environmentally stable host 

has been investigated to replace existing toxic, broad band molecular dye 

tracers.  The narrow band emission signals offer the potential for the tracing of a 

large numbers of signals in the same environment; this has been investigated by 

examining multiple doped tracers which have the potential for coding to specific 

effluent sources or particulates.   

 

The concept of using lanthanide doped glasses as environmental tracers has 

been demonstrated.  The spectral characterisation and concentration studies of 

the lanthanide doped tracer allow the selection of parameters to produce future 

tracers and detection systems for particular applications.   Therefore by altering 

the chosen lanthanide dopant, number of dopants, dopant concentration and 

using selective excitation and emission wavelengths there are a huge number of 

possible unique tracer combinations.   The significantly narrower bandwidth 

emission peaks of the lanthanide based tracers achieve more selective detection 

of multiple tracers without overlap interference and gives the potential to 

selectively and simultaneously monitor many different tracers in the same 

location.   The spectral lifetime characteristics of the lanthanide tracers are very 

different from the lifetime of background fluorescence which is typically 

molecular in origin.   This is an extra discrimination against background 

interference and is an important additional advantage of using lanthanide based 

tracers.  

 

Overall this work shows that a very large number of unique environmental 

tracers can be obtained by varying the concentration, the number of lanthanide 

ions in a glass and also the possibility of using organic and inorganic lanthanide 

chelate doped tracers.     
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Glossary: 

 

g - Gram 
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mol % - Mole percent 
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Nd:YAG - Neodymium Yttrium Aluminium Garnet 

OPO - Optical Parametric Oscillator 

nm - Nanometer 

PED - Polymer encapsulated dye 

PHEN - 1,10-phenanthroline 

TEOS - Tetraethyl Orthosilicate 

TTFA  Thenoyltrifluoroacetone 

TOAFFED - Taguchi Orthogonal Array Fractional Factorial Experimental 

Design 

µs - Microsecond 

UV - Ultra-voilet 
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1 INTRODUCTION  

The use of compounds or materials in the environment, whether naturally 

occurring or a by-product of human activity, as “environmental tracers” is well 

documented with some having been used successfully for more than half a 

century [1-4].   These include the tracing or tracking of chemicals using 

compounds indicative of spillage or discharge.  Tracing sediments using 

fluorescent or radioactive particles, tracing soils where the transport of 

agricultural compounds is monitored and water flow where the application of a 

fluorescent dye allows visual observation of movement.  The type of materials 

used for these range from naturally occurring isotopes [5-7], fluorescent dyes 

[8], fluorescent particles [9], chemical indicators and geochemical indicators 

[10].     

 

This research project aims to develop novel narrow band fluorescent glass, silica 

sol gel and polymer tracers in the application of multiple source environmental 

monitoring of environmental parameters/pollutants.   The application examples 

and tracer types found in the literature will be examined more closely to 

determine the potential applications for novel narrow band fluorescent glass 

tracers.   

 
 

1.1 Tracer Types and Applications 
 

Environmental tracing is a vital scientific field in studying the fate of substances 

in aqueous or soil/sediment environments.   This can range from monitoring the 

fate of industrial and domestic effluents [11] in ecological systems by adding a 

dye tracer to outflow sources and studying the dispersion, dilution and travel of 

discharge [10] to monitoring the waste suspension from fish farming and its 

effect on the local environment [12].  Currently typical fluorescent dye tracers 

rely on molecular fluorescence for detection which may produce an intense signal 

but is very broad, typically 80-120nm bandwidth [13-15].  This has several 

major disadvantages as only a small number of target species can be monitored 

simultaneously  because there is spectral overlap of the broad tracer bandwidths, 

secondly as these fluorescent molecular dyes have been used as tracers for 

many years the background levels of these dye tracers in many areas are 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 1 - Introduction 

 

Commercial in Confidence 2 

elevated, making it very difficult to use then to carry out further tracer studies in 

areas of need, e.g. contaminant and sediment tracer studies in harbours where 

temporal studies are needed sometimes requiring comparative tracer studies 

over 10 or 20 years [16].    

 

                 

(a)                       (b) 

 

Figure 1 (a) Produced water discharge; (b) Tracer doped discharge 

 

One of the largest problems associated with fluorescent dye tracers is their eco-

toxicological effects within the environment and their effect on human health.  

Commonly used tracers such as Fluorescein, Lissamine Flavine FF, Rhodamine 

WT, Rhodamine B, Sulpho Rhodamine G, Sulpho Rhodamine B, eosin, among 

others, have all been studied for the toxicological effects [5][17].     Many of 

these may have breakdown products and synergistic effects with compounds 

within aqueous systems that could produce increased dangers to human health 

and the environment.   Therefore the need for a new type of tracer which can 

provide environmental stability and minimal toxicological effects is great.   Also 

the application of such tracers in sediment transport monitoring in the North Sea 

environment where there already exist a large number of possible background 

contaminant sources such as hydrocarbons [18, 19], which exhibit broad band 

emission spectra, make monitoring molecular fluorescent tracers challenging.  

Figure 1 (a) shows an example of produced water discharge from an off shore oil 

platform and (b) show the use of a molecular fluorescent tracer in produced 

water.  

In an environment where there is the possibility of multiple sources of 

contamination, e.g. many platforms and cuttings piles [20, 21], the use of 
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multiple tracers exhibiting discrete fluorescent atomic emissions with wavelength 

and lifetime discrimination would be a distinct advantage allowing the monitoring 

of the origin of contaminants from more than one source.  Not only allowing real 

time fluorescence measurements to be made with reduced background 

interference, but also many studies can be carried out in the same area.   

 

Sediment transport occurs through natural processes such as currents, tides and 

waves, and through anthropogenic activities such as dredging, damn building 

and sub sea constructions.  These can be studied by placing tracers into the 

sediment layer to monitor movement and travel [22-24].   With the present 

public focus on energy conservation and sustainability, governments all over the 

world are funding projects for wind, tidal and wave energy devices.  The trend of 

placing turbines in coastal waters is causing increasing concern with the general 

public, not only for aesthetic properties but for their impact upon the local 

marine environment.   The localised effect of sub sea manmade structures on the 

sea bed can be studied by the monitoring of sediment distribution and movement 

around the structure [25]. The interrupted movement of sediment on the sea 

bed can directly impact upon fish [26], crustaceans and other bottom dwelling 

creatures. 

 

 

               

Figure 2 Particulate dye tracer deployment in Bowmore Harbour 

 

In the case of dredging, companies undertaking such activity aim to minimise the 

amount of disturbed sediment entering the water column and its impact upon the 

local environment [27].    Figure 2 shows the deployment of a particulate dye 
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tracer for sediment tracing.  Tracing allows the close study of where this 

disturbed sediment may be carried by ambient water currents and where it 

settles particularly in sensitive areas such as shell fish beds or areas of 

biodiversity.  

 

This of course needs to be a comparable tracer in terms of size to the particles in 

the target sediment. The development of the novel tracers allows control of 

physical properties such as size and density.   This can be engineered to mimic 

the naturally occurring sediment particles and therefore provide a far closer 

replication of particle behavior [28].   Glass provides an ideal material for use as 

an environmental tracer where the tracer may be exposed to varying degrees of 

chemical and biological attack as it protects the lanthanide tracer from water 

quenching external influences and degradation. 

 

1.1.1 Fluorescent Dyes 

 

The most common environmental tracers currently used are molecular dye based 

tracers, normally applied in simulated release studies.    For example, 

applications of dye tracers can be found in the study of groundwater in the 

Missouri Ozarks where there is reliance upon an abundant supply of potable 

water found in fractured bedrock [29].  Petroleum products which are stored in 

underground storage tanks pose a threat to this potable water if a release occurs 

with contaminated ground water commonly found more than 2000 metres from 

the source.   In this study four of the most commonly used fluorescent tracers, 

Fluorescein, Rhodamine-WT, Tinopal CBS-X and Pyranine were deployed either 

singly or used in combinations of two.   The samples were analysed by 

spectrofluorimetery, but it was determined that the background fluorescence 

from hydrocarbons was too great.   Finger printing of the hydrocarbons was 

utilised instead, this shows the limitation of a molecular broad band tracer. 

 

Rhodamine WT has also been used in the study [9] of residence time of water 

and suspended particles at Fort Point Channel, a region of Boston Harbour, which 

contains a combined sewer outflow with highly contaminated sediments.  The 

study involved measured disappearance of fluorescent tracers from the water 
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column by fluorescence spectroscopy of water samples collected over 7 days.   

Rhodamine was also used to create fluorescent pigment particles which were 

used to mimic the sewage particles of interest. 

 The fluorescent dye Tinopal CBS-X has been used to develop a method for the 

determination of pesticide residue on soils.  It has been estimated that up to 

one-third of the total amount sprayed onto a crop can be lost to the soil at the 

time of application, the volume of which is dependant on soil and crop type.  A 

major limitation for use of such fluorescent compounds was found when solutions 

of Tinopal CBS-X degraded in sunlight by 9.4% in 100 min, making it unreliable 

for field testing [30]. 

 

Onsite sewage and disposal systems are the most common means of wastewater 

treatment in many countries and are also the source of groundwater 

contamination. In the American state of Florida an estimated 450 million gallons 

of wastewater is discharged daily.    As part of a study [31] to examine the flow 

of onsite sewage effluent from a mounded drainfield to a discharge point, several 

different tracers were employed. Two fluorescent tracers (Fluorescein and 

Rhodamine WT), an inert gas (sulphur hexafluoride) and a viral tracer 

(bacteriophage PRD-1) were used in the study.          

Sediment transport studies [22] have been undertaken using dyed sediment 

particles to study the sediment transport pathways at the Ancão Inlet (southern 

Portugal).   An orange fluorescent ink, Glycero Orange Fluo, was used to dye 

sediment collected from the study area.    Determination of tracer presence in 

the study area was determined by ultra-violet light.  For analysis the grain-size 

was examined to compare the natural sand and the tracer from the study area 

by computer program.  For certain sample areas the fluorescent tracer was 

manually counted under ultra-violet excitation and for others an automatic 

system was used.   This allowed generation of tracer distribution maps.     

Although many users of tracer dyes such as Rhodamine WT and Fluorescein 

claim them to be safe and non-toxic, with little or no effect on marine life, there 

has been some research into their potential ecotoxicity effects [32].   10 other 

dyes have also been examined for their eco-toxicity; Lissamine Flavine FF, 

Rhodamine B, Sulpho Rhodamine G, Sulpho Rhodamine B, Eosin, Pyranine, 
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Phorwite BBH Pure, Tinopal 5BM GX, Tinopal CBS-X, and Diphenyl Brilliant 

Flavine 7GFF - and a dye-intermediate, Amino G Acid.    Based on set criteria for 

human health and acute ecotoxicity, the study indicated that these tracers have 

low to moderate levels of concern.   This is an interesting observation as the 

Rhodamine family of dyes and in particular Rhodamine 6G is well documented as 

a highly toxic compound which has been used for surface water tracing studies. 

 

1.1.2 Fluorescent Particulate Tracers 

 

Fluorescent particle tracers can be created by dyeing [5] a naturally occurring 

material such as pebbles, sands and sediments.  The application of such 

fluorescent particles can range from sediment mass transport monitoring [2, 9, 

22] to the investigation of sub sea manmade structures [25] on the sea bed, but 

in general particle tracing is usually sediment based monitoring of some form. 

 

For example over the past few decades, damage to reefs from pollution has 

accelerated alarmingly, it has been suggested that the reefs of Eilat on the Red 

Sea have been undergoing deterioration due to pollution.  Pollution sources in 

that region are located 5-8 Km from the coral reefs and it is theorised that 

current derived mass transport may be responsible for bringing the pollutants in 

to contact with the coral [33].   To determine the possible occurrence of pollutant 

pathways and modes of transport fluorescently labelled tracers have been 

deployed.   These were developed to examine mass transport in coastal marine 

environments.    The particle sizes examined ranged from fine sediment particles 

of 5–10 µm to coarse particles of 100–200 µm. 

 

Fluorescent particle tracing is the main environmental tracing application to 

which novel fluorescent glass tracers could be easily applied.   This is due to the 

ease at which particle size ranging from 5 µm – 10 mm can be produced and also 

the potential for tracing large numbers of signals to be monitored in the same 

environment.   The narrow band emission signals will give increased data 

accuracy allowing for multiple source environmental monitoring which will give a 

significant competitive advantage over existing dye based particle tracers. 
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1.1.3 Natural Tracers (non injected) 

 

As previously mentioned naturally occurring tracers are materials or compounds 

which are already present in the environment.    Lanthanides are already utilised 

as environmental tracers in groundwater flow and soil erosion studies [34-38]. 

 

1.1.4 Lanthanide Tracers 

 

Soil erosion is a global problem which sees in the region of 2 – 6.8 billion tonnes 

of soil lost every year in the US alone.   Erosion can be a very visible effect on a 

localised environment, yet extremely difficult to measure.  A monitoring 

technique investigated has been that of using lanthanides as tracers.  The rare 

earth elements trivalent state and ionic radii allow them to be easily adsorbed 

onto clays.  They are found in many soils in concentrations of up to tens of parts 

per million with organic soils usually richer in lanthanides than mineral soils. 

Lanthanide compounds show low toxicity ratings and often are accumulated by 

plants through roots, although the uptake is too low to cause considerable 

change in concentration of lanthanide elements in soil. The solubility of these 

elements tends to increase with decreasing pH, which is a key factor in their 

mobility in soil [34].     

Another use of lanthanides as tracers has been in the investigation of 

groundwater flow.   The study of water mixing from various sources has been 

undertaken by examining the “shale-normalised” lanthanide patterns.   The 

calculated lanthanide concentrations were subsequently used to determine 

mixing ratios, the results of which coincided with the initial calculations as well as 

the previous studies. The results of this study suggest that solution complexation 

of the lanthanide is sufficient to overcome, to a certain degree, the affinity of the 

lanthanides to be adsorbed onto surface sites in the aquifers such that distinctive 

lanthanide signatures develop and persist in solution in ground waters from 

different aquifers  [35]. 

Another example of lanthanide oxides being used as tracers is in the 

investigation of their suitability to be used as a sediment tracer for coarse 

textured soils.  This study showed that lanthanides could be successfully used to 

study soil loss from erosion, but also showed a limitation of using a rare earth 
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oxide as a tracer.    Their ability to bind and form complexes has been shown to 

be extremely high.  This therefore limits the accuracy of such tracing techniques 

when a percentage of the applied tracer may be lost to non-genuine soil loss, but 

to complexation with components in the soil [36] 

Lanthanide elements have also been used in the study of the distribution of fine 

sedimentary deposits.   A study along the coast of the Bay of Biscay, and was 

undertaken by studying the deposit sources of the Loire, Gironde and Adour 

rivers [37].  An estimated 2.4 million tonnes of fine sediments are carried to the 

Atlantic from these rivers with 80% of this total coming from the Gironde.   

Analysis of lanthanides by ICP-MS allowed effective characterisation of 

continental sources of sediments deposited. 

Monitoring of a flow system to investigate the behaviour of lanthanides at 

different stages in fractured basalt and sedimentary aquifers was examined [38].   

It was shown that the lanthanide patterns reflect the different types and rates of 

reactions taking place to those controlling major ion chemistry.   In areas where 

recharge is through sediments, lanthanide concentrations are high and localised 

processes control lanthanide patterns and concentrations.    The observed 

increase of lanthanide concentrations in ground waters was found to be the 

result of early stage mobilisation of the lanthanides in the flow system.      Lower 

lanthanide concentrations in the groundwater may be due to progressive 

lanthanide sorption. 

 

These examples above show how lanthanides are currently employed in tracing 

applications.   They are all very different from the way lanthanides are to be 

used in this proposed research project.   However, interestingly they do 

demonstrate the low toxicity of rare earths making them suitable for 

environmental monitoring purposes. 
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1.1.5 Isotope Tracers 

 

Naturally occurring isotopes are used for different environmental studies; Table 1 

shows an example for 5 different isotopes.     

 

Isotope Application 

11B 

Natural sodium borate minerals are used for world 
production of sodium perborate, an industrially 
manufactured bleaching agent added to a variety of 
detergent formulations and cleaning products. During 
end use, water-soluble boron compounds are 
discharged with domestic aqueous effluents into 
sewage treatment plants, where little or no boron is 
removed and, hence, the anthropogenic boron load is 
almost entirely released into the aquatic environment. 
[39] 

15N  

Increased aquaculture production along the eastern 
Adriatic coast has created some environmental 
problems by releasing large amounts of effluents into 
the coastal environment.  The negative environmental 
impacts related to fish farming are due to the 
increased amounts of dissolved and particulate 
nutrient loads, especially of organic phosphorus (P) 
and nitrogen (N) in the form of ammonia that might 
easily induce eutrophication. [40] 

129I  

The natural radioisotope 129I covers an important age 
range for applications in geological systems, 
particularly for fluids derived from or associated with 
organic material. Crucial for the application of this 
isotopic system is the initial ratio used for the 
calculation of ages, the marine input ratio of 129I/I.  
Determinations of this ratio, R, in recent marine 
sediments led to a value Ri = (1500 ± 150) × 10

−15 
[41] 

230Th and 238U 

Rates of transport and interaction processes in the 
ocean can be evaluated with the radioactive decay of 
the natural Uranium–Thorium radioactive decay series 
(U–Th). Isotopes of soluble U decay to isotopes of 
highly particle-reactive Th.  In seawater, 234Th and 
230Th are removed from the water column by 
adsorption onto settling particles (scavenging). The 
resulting U/Th disequilibria can be used to constrain 
the transport rates of particles and reaction processes 
between the solution and particulate phases. [42] 

 

Table 1 Isotopes and their tracing applications 
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1.2 Tracer Matrices 
 

The development of novel fluorescent environmental tracers will examine 

borosilicate glass, silica sol gel hydrolysis and polymer formation as potential 

carriers for fluorescent species. 

 

1.2.1 Glass Matrix 

 

The most ideal glass host matrix for use as an environmental tracer would be 

pure silica, because of its low thermal expansion, high thermal stability and high 

UV transmission.      Pure silica however, requires a high temperature furnace of 

more than 2000 oC because the Si-O bonds are so strong their melting 

temperature is 1750 oC, this renders silica unworkable for an environmental 

tracer host due to the dangerous working temperatures and cost. 

 

Based on previous work carried out within the Centre for Research in Energy and 

the Environment (CREE) at The Robert Gordon University funded by NCR Ltd, a 

borosilicate glass matrix was found to be a suitable host material for lanthanide 

based security taggants [43].  The adaptation of these security taggants for 

applicability as an environmental tracer will be investigated in this proposed 

research project.  However, it is also known that altering the host matrix can 

alter the spectral response of the rare earth ions [44, 45].  This is due to the 

change in the surrounding environment of the rare earth ions and the amount of 

splitting of their energy levels.  Changes in this environment can therefore be 

used to alter the fluorescence peak intensity, fluorescence lifetime and 

fluorescence peak width of the rare earth ions, such as praseodymium [46], 

europium [47], holmium [48] and samarium [49].  This could potentially produce 

new fluorescent emissions using the same concentration of the rare earth ions. 

The narrow band emission signals offer the potential for tracing of an even larger 

numbers of signals in the same environment.  This will give significant 

competitive advantage and increased data accuracy and also allow multiple 

source environmental monitoring of environmental parameters. 
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1.2.2 Borosilicate Glass 

 

The current glass matrix which was developed for security applications is a 

borosilicate glass matrix.   It provides an environmentally stable host into which 

the lanthanide ions can be placed.     The use of borosilicate as a glass host for 

lanthanide doping has been studied with eight rare earths which exhibit a visible 

fluorescent emission e.g. europium, terbium, dysprosium, serium, samarium, 

praseodymium, erbium and thulium [50].   A typical borosilicate glass consists of 

silicon dioxide, boric oxide, sodium oxide and alumina [51] the ratio of these 

components can affect the glass network formed and therefore the emission 

wavelengths from dopant ions.   When compared with phosphate or fluoride 

based glasses [52] borosilicate is far more stable in the presence of water.   It 

has been seen though that the use of a phosphate or fluoride composition will 

yield stronger fluorescence emissions. 

  

1.2.3 Borosilicate Glass and Sensitisers 

 

In order to enhance the spectral response of the rare earth ions the addition of 

suitable sensitisers can be examined.   The addition of sensitisers would involve 

the excitation of the donor ion which then transfers its energy to the acceptor ion 

which then undergoes its emission at the desired wavelength.   This energy 

transfer or fluorescence enhancement is not only observed within glass matrices 

containing rare earth ions [45], but also within polymer matrices [53].   This can 

increase the emission intensity of the acceptor ion without increasing its 

concentration whilst simultaneously decreasing the emission intensity of the 

donor ion [54].   This effect has been observed with dysprosium enhancing 

terbium [55, 56] and terbium enhancing europium [57].   Energy transfers can 

produce higher fluorescent emissions from multi-ion doped glasses from lower 

doping concentrations.    The energy transfer effect can also a stimulation of 

additional emissions, further enhancing the potential coding aspect of lanthanide 

ion doped tracers.  This effect shall be studied in more detail by undertaking 

multiple ion doping experiments to examine the energy transfer in multiple 

doped tracers between europium, terbium and dysprosium.   Other energy 

transfers have been seen with terbium enhancing holmium [58] and samarium 

enhancing europium [59, 60]. 
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1.2.4 Polymers 

1.2.4.1 Inorganic Polymers - Sol Gel  

 

Conventional glass fabrication requires the melting of component materials, 

mixed into a homogeneous powder, at high temperatures with rapid cooling.   

This process restricts the choice of substances which can be incorporated into the 

glass matrix.   Only some inorganic salts and metal oxides can survive the 

melting process for borosilicate glass, which has a maximum pouring 

temperature of 1250 oC.  This makes the substitution of the lanthanide salt e.g. 

EuCl3 6.H2O, with an organic chelated lanthanide [61, 62] complex impossible as 

the organic complex cannot resist the high temperature and will be destroyed.   

 

An alternative approach to the glass melt fabrication method is the generation of 

colloidal suspensions (sol) which are converted to gels and then solid or spherical 

materials [63, 64].   The sol-gel method is based on the hydrolysis of liquid 

precursors and the formation of colloidal solids.   Stöber [65] showed in 1968 the 

process of producing silica spheres in the region of 800 nm from an 

organosilicate precursor (tetraethyl orthosilicate, TEOS) with a base catalyst.   

Sol gel methods have been documented which show the incorporation of 

traditional dyes such as Rhodamine 6G and B [66, 67], into TEOS based acid 

hydrolysis thin films.       

 

The choice of a sol-gel method for the fabrication of doped spheres is important 

due to the size control possible allowing finer sediment to be easily replicated.   A 

limitation of glass particle size production is sub 5 -10 µm, the effort required to 

produce smaller particles becomes incredibly labour intensive.  With the sol-gel 

process it is possible to produce pure silica spheres in the 50 nm region [68]. 

 

1.2.4.2 Organic Polymers 

 

Reviewing polymer literature for spherical polymerisation preparations has 

provided several different starting formulations for the production of polymer 

spheres.   These have ranged from polymer sphere production for biomedical 

applications such as drug carriers [69, 70] and immunoassays [71-74] to 

polymer optical fibers which are doped [74-76] with lanthanides for 
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telecommunication developments.     The existing use of lanthanide chelates 

doped into polymer matrices shows the feasibility of the method, although not in 

combination with sphere formulations.     

The majority of polymerisation reactions to produce spheres are monodisperse 

[77-79] or emulsion reactions [75], which will generally produce spheres in the 

range of 100 nm – 10 µm.   It is possible to have a core and shell [76] formation 

for a polymer sphere whereby a core could contain the fluorescent species and 

the shell could provide protection from aggressive attack.   

Some polymer particles exist which have been produced containing Rhodamine 

6G [77] (already known as a tracer and also as a toxic species) for flow tracing, 

electronic inks, cell labeling and diagnostic reagents.  Another method by which 

polymer spheres can be produced is by aerosol [78] where instead of a typical 

monodisperse or emulsion reaction, a vibrating-orifice generator is used which 

can produce spheres in the region of 5 – 50 µm.   It is also possible to produce 

magnetic micron sized polymer sphere through the encapsulation of iron (Fe) 

particles [79].   This has wide application in the development of new materials 

for pollutant removal, water treatment, cell labeling, drug targeting and 

immunoassaying.     

An advantage of using a polymer based carrier for a fluorescent tracer is its 

ability to be easily modified allowing for surface group alterations [80] which 

could be used for alternative tracing applications.  

 
 

1.2.5 Chelates 

 

Chelating agents are organic compounds capable of forming coordinate bonds 

with metals through two or more atoms from within the organic compound.   The 

complex formed with the binding of chelating agent and metal is called a chelate.   

Chelating agents such as 1,10-phenanthroline [81] and thenoyltrifluoroacentone 

[62, 82] are bidentate chelating agents [83, 84] as they have two coordination 

atoms.   The development of spherical polymer and sol gel formulations as 

potential environmental tracers requires the investigation of lanthanide chelate 

complex formation.   The use of a chelating compound with a lanthanide will 

produce an organic molecule which can be utilised in polymerisation of organic 

and inorganic sphere formation.   A chelate will absorb energy in the ultra violet 
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region of the electromagnetic spectrum and transfer the energy to the lanthanide 

ion [81, 85-87].   By doing this a far higher fluorescence signal can be generated 

from a much lower concentration of lanthanide ions than would be found in a 

doped glass sample using only lanthanide chloride.  Although the stability and 

resistance to environmental parameters are undefined for these chelated 

compounds and therefore may not prove suitable for application as 

environmental tracing materials.  

 

The synthesis of lanthanide chelated compounds is well documented [61, 73, 74, 

81, 86, 88-90] and has been investigated for many years.   An initial review of 

existing literature regarding the use of chelated lanthanides has shown that it is 

possible for these compounds to be used in combination with both polymer [91, 

92] and sol gel (sphere and thin film) [61, 88] matrices.   

 

 

1.3 Project Aim and Milestones 

1.3.1 Project Aim 

 

The overall aim of this project is the development of novel tracers, based on 

narrow band atomic fluorescence which will be examined for deployment as 

environmental tracers.  The use of discrete fluorescent species in an 

environmentally stable host will be investigated to replace existing mildly toxic, 

broad band fluorescent, molecular dye tracers.  The narrow band emission 

signals emitted from lanthanide doped glass offer the potential for the tracing of 

a large numbers of signals in the same environment.   This in turn should give 

significant competitive advantage and increased data accuracy and also allow 

multiple source environmental monitoring of environmental parameters.    An 

initial sediment study will be undertaken to provide particle size information from 

a real field site. 
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1.3.2 Project Milestones 

 

Milestone 1: Literature review of current environmental tracing techniques and 

tracers, glass and polymer fabrication and their potential for application in 

environmental tracing. 

 

Milestone 2: Development of current security glass matrix for use as an 

environmental tracer. 

 

Milestone 3: Concentration study of lanthanide doping in to current borosilicate 

glass matrix Glass 1. 

 

Milestone 4: Investigation of new glass matrix Glass 2. 

 

Milestone 5: Investigation of chelates for the formation of organic lanthanide 

complexes for use with polymer and silica sol gel spheres. 

 

Milestone 6: Investigation of polymer sphere formation. 

 

Milestone 7: Investigation of silica sol gel sphere formation. 

 

Milestone 8: Investigation of polymer spheres doped with organic lanthanide 

complexes. 

 

Milestone 9: Investigation of silica sol gel spheres doped with organic lanthanide 

complexes. 

 

Milestone 10: Measurement of novel tracers using a proposed trial detection 

system. 

 

Milestone 11: Determination of sediment particle size from a potential field site. 
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1.4 Summary 
 

The use of compounds or materials in the environment, whether naturally 

occurring or a by-product of human activity, as “environmental tracers” is well 

documented with some having been used successfully for more than half a 

century.  The type of materials used for environmental tracing range from 

naturally occurring isotopes, fluorescent dyes, fluorescent particles, chemical 

indicators and geochemical indicators.     

 

Environmental tracing is a vital scientific field in studying the fate of substances 

in aqueous or soil/sediment environments.   Currently typical fluorescent dye 

tracers rely on molecular fluorescence for detection which may produce an 

intense signal but is very broad, typically 80-120nm bandwidth.  This has several 

major disadvantages as only a small number of target species can be monitored 

simultaneously because there is spectral overlap of the broad tracer bandwidths.    

 

One of the largest problems associated with fluorescent dye tracers are their 

eco-toxicological effects within the environment and their effect on human 

health.   Many of these may have breakdown products and synergistic effects 

with compounds within aqueous systems that could produce increased dangers 

to human health and the environment.   So the need for a new type of tracer 

which can provide environmental stability and minimal toxicological effects is 

great.    

 

In an environment where there is the possibility of multiple sources of 

contamination the use of multiple tracers exhibiting discrete fluorescent atomic 

emissions with wavelength and lifetime discrimination would be a distinct 

advantage allowing the monitoring of the origin of contaminants from more than 

one source.  Not only allowing real time fluorescence measurements to be made 

with reduced background interference, but also many studies can be carried out 

in the same area.   

 

Glass provides an ideal material for use as an environmental tracer where the 

tracer may be exposed to varying degrees of chemical and biological attack as it 
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protects the lanthanide tracer from water quenching external influences and 

degradation. 

 

Based on previous work carried out within CREE at The Robert Gordon University 

funded by NCR Ltd, a borosilicate glass matrix was found to be a suitable host 

material for rare earth based security taggants.  The adaptation of these security 

taggants for applicability as an environmental tracer will be investigated in this 

proposed research project.  However, it is also known that altering the host 

matrix can alter the spectral response of the rare earth ions.  This is due to the 

change in the surrounding environment of the rare earth ions and the amount of 

splitting of their energy levels.  Changes in this environment can therefore be 

used to alter the peak intensity, fluorescence lifetime and peak width of the rare 

earth ions.  Therefore, this potentially could produce new fluorescent emissions 

using the same concentration of the rare earth ions.   

 

Conventional glass fabrication though requires the melting of component 

materials, mixed into a homogeneous powder, at high temperatures with rapid 

cooling.   This makes the substitution of the lanthanide salt e.g. EuCl3 6.H2O, 

with an organic chelated lanthanide complex impossible as the organic complex 

cannot resist the high temperature and will be destroyed.   

An alternative approach to the glass melt fabrication method is the generation of 

colloidal suspensions (sol) which are converted to gels and then solid or spherical 

materials.   The Sol-gel method is based on the hydrolysis of liquid precursors 

and the formation of colloidal solids.   Sol gel methods have been documented 

which show the incorporation of traditional dyes.   

The choice of a sol-gel method for the fabrication of doped spheres is important 

due to the size control possible allowing finer sediment to be easily replicated.   A 

limitation of glass particle size production is sub 5 -10 µm, beyond which 

becomes incredibly labour intensive.    The existing use of lanthanide chelates 

doped in to polymer matrices show the feasibility has already been carried out, 

although not in combination with sphere formulations.    An advantage of using a 

polymer based carrier for a fluorescent tracer is its ability to be easily modified 

allowing for surface group alterations which could be used for alternative tracing 

applications.  



Development and Application of Novel Tracers for Environmental Applications 
Chapter 1 - Introduction 

 

Commercial in Confidence 18 

The use of a chelating compound with a lanthanide will produce an organic 

molecule which can be utilised in polymerisation of organic and inorganic sphere 

formation.   A chelate will absorb energy in the ultra violet region of the 

electromagnetic spectrum and transfer the energy to the lanthanide ion.     By 

doing this a far higher fluorescence signal should be generated from a much 

lower concentration of lanthanide, than would be found in a doped glass sample.  

The stability and resistance to environmental parameters are undefined for these 

chelated compounds and therefore may not prove suitable for application as 

environmental tracing materials.  
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2 THEORY 

 
2.1 Fluorescence 

 

Fluorescence is a phenomenon where the absorption of light of a given 

wavelength by an atom or molecule is followed by the emission of light at longer 

wavelengths [93]; high energy photons in with lower energy photons out.   The 

absorption of electromagnetic radiation causes the promotion of an electron from 

its energy level to a higher energy level.   If it loses some of its energy by non 

radiative decay before returning back down to its ground state it is said to 

fluoresce.   The proton emitted is a lower energy than absorbed.     Fluorescence 

is a highly sensitive technique allowing very low concentrations to be measured, 

in comparison to measuring the difference between two large signals (I and Io) in 

absorption spectrometry.   Also, the fluorescence intensity can be increased by 

increasing the incident radiation Io which therefore increases sensitivity, 

increasing the incident radiation has no effect on absorption as I is 

simultaneously increased proportionally therefore no increase in sensitivity.   

Even with the increased sensitivity of fluorescence methods, they are much less 

widely applicable than absorption because of the relatively limited number of 

chemicals that show appreciable fluorescence.   More traditional methods of 

analysing chemical samples such as Gas Chromatography-Mass Spectroscopy 

(GC-MS), Fourier Transform Infra Red Spectroscopy (FT-IR), Nuclear Magnetic 

Resonance Spectroscopy (NMR) and Flame Atomic Absorption Spectroscopy 

(FAAS) are suitable for laboratory situations, but for field analysis where real 

time data acquisition is required fluorescence spectroscopy is ideal. 

 
 

2.1.1  Molecular Fluorescence 

 

When a molecule absorbs radiation (excitation energy) to create an excited 

state, not only electronic transitions occur, but also energy changes in the 

vibrational and rotational energy levels.  This excited state is the first excited 

singlet state.   A molecule in a high vibrational level of the excited state will 

quickly fall to the lowest vibrational level of this state by losing energy to other 
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molecules through collisions and the molecule will also dissipate the excess 

energy to other modes of vibration and rotation non radiative loss of energy.     

 

Fluorescence occurs when the molecule returns to the electronic ground state, 

from the excited singlet state, with the emission of a photon [94] which is a 

lower energy and consequently a longer wavelength, Figure 3.   Fluorescence is 

measured at right angles to the excitation source to avoid swamping the 

fluorescent signal with incident radiation.    

Once a molecule has been excited to a higher energy level, there are several 

processes which can occur that causes the molecule to lose the excess energy.   

The most important of these mechanisms are non-radiative relaxation and 

fluorescence emission.   The non-radiative relaxation methods are: vibrational 

relaxation which occurs during collisions between excited molecules and 

molecules of the solvent or lattice and internal conversion which is the process of 

non-radiative relaxation between the lower vibrational levels of an excited 

electronic state and the higher vibrational levels of another electronic state. 

 

Most fluorescence transitions occur from the lowest excited electronic state to 

the ground state.  Fluorescence only usually occurs between the lowest 

vibrational level of E1 to various vibrational levels of E0 because internal 

conversion and vibrational relaxation processes are very rapid in comparison to 

fluorescence.   Therefore a fluorescence spectrum usually consists of only one 

band with many closely spaced lines representing transitions from the lowest 

vibrational level of the excited state to the many different vibrational levels of 

the ground state.    
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Figure 3 Energy levels showing radiative and non-radiative emissions 

 

 

Figure 3 shows the process of fluorescence, showing internal conversion and 

vibrational relaxation.   Figure 3 (a) shows the excitation of electrons from the 

ground state (Eo) to various vibrational energy levels of E1 and E2.   Figure 3 (b) 

shows the mechanism of non-radiative processes including vibrational relaxation 

and internal conversion.   Figure 3 (c) shows fluorescence from the higher 

energy levels back down to the ground state. 

 
 
The energy from the absorbed radiation promotes an electron from the outer 

shell of the atom to a higher energy level.    Equation 1 states that the energy of 

a photon is proportional to its frequency and to Planck’s constant. 
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Equation 1:   λ
hchvE ==

 

 

Where: 

E = energy of a photon 

h = Planck’s constant 6.63 x 10-34 Js 

v= frequency / Hz 

c = velocity of light 2.998 x 108 ms-1 

λ = wavelength / nm 
 
 

2.1.2 Concentration and Fluorescence Intensity 

 

Radiant power of fluorescence (F), Equation 2, is proportional to the radiant 

power of the excitation beam absorbed (I0-I) and the fluorescence efficiency (∅) 

of the fluorescent species (quantum yield): 

 

Equation 2:                          )( IIF o −= φ  

 

Where: 

I0= radiant power of beam incident on the sample 

I = power after it traverses a path length l of the medium 

∅ = fluorescence quantum efficiency = ratio of number of photons fluorescing to 

the number absorbed 

 

To relate the fluorescence intensity to the concentration requires Beer’s law, 

Equation 3: 

 

Equation 3:                          lcIILog o ε=)/(   

 

Where: 

ε  = molar absorptivity of the fluorescence species / m2
 mol 

lcε  = absorbance 
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By multiplying both sides of Log(Io/I)=elc by -1 and taking the antilog, this can 

be written as: 

 

I/Io = 10
-elc 

 

1-(I/Io)= 1 - 10
-elc 

 

(Io /Io)- (I/Io)= 1 - 10
-elc 

 

Io – I = Io (1 - 10
-elc) 

 

Substituting this into F=∅(I0-I): 

 

Equation 4:                           )101(
lc

oIF
ε

φ −−=  
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2.1.3 Atomic Fluorescence 

 

The fluorescence studied in this work is atomic since the lanthanide ions doped in 

to the borosilicate glass, silica sol gel and polymers are Eu3+, Tb3+ and Dy3+with 

the observed emissions being that of lanthanide energy transitions.  Unlike 

molecular fluorescence which has a broad band excitation and emission due to 

the large number of vibrational and rotational states, atomic fluorescence 

produces narrow band fluorescence, Figure 4.   

 

 

 

 

Figure 4 Atomic fluorescence peaks from a glass sample doped with 

europium, terbium and dysprosium 

 

 

This is because the fluorescence is caused only by the electronic transitions of 

the outmost electrons.  Figure 5 show an example of the energy levels of the 

lanthanide ions europium, terbium and dysprosium [95].   The closeness of the 

4f-4f energy levels strongly influence the sharp nature of the emissions.    Only 

Lanthanides and Actinides exhibit these narrow atomic fluorescence emissions 

because of closeness of the band levels in their 4f-4f and 5f-5f energy levels 

respectively.   However Actinides are radioactive and thus were not investigated 

as this research is aimed at the development of more environmentally friendly 

tracers. 
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Figure 5 Energy Levels of Lanthanide 3+ Ions europium, terbium and 

dysprosium, modified Dieke diagram 

 
 
 

The lanthanides discrete fluorescence process occurs because of electronic 

transitions from their 4ƒ electrons.    For any electronic transition to occur, there 

are certain selection rules that need to be obeyed [96]: 

 

Spin electron rule:  ∆S=0 (changes in multiplicity are forbidden) 

Laporte selection rule (transition rule): there must be a change in parity 

 

 

� Allowed transitions: g↔u (g=even and u=odd) 

� Forbidden transitions: g↔g u↔u 
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This leads to the selection rule: ∆1=±1 (where 1 is the orbital quantum 

number and determines the shape of the atomic orbital) 

 

� Allowed transitions are: s→p, p→d, d→f 

� Forbidden transitions are: s→s, p→p, d→d, f→f, s→d, p→f, etc 

 

Figure 6 shows an example of the general set of 4ƒ –orbitals.  

 

 

  

  

 

Figure 6 Examples of general set of ƒ-orbitals 
 

 

The f-f transitions occur due to spin-orbit coupling [97], which is more significant 

than crystal-field splitting [98].   Crystal-field splitting is due to the arrangement 

and type of ligands surrounding the ion which have differing strengths of effect 

on the different atomic orbitals of the ion.   If the effect was spherical, then all 

the energies of the electrons would be affected by the same amount and raised 

uniformly, although this is not generally the case [99].   If the effect was 
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octahedral, then this causes the energy of electrons in the 4f level that point 

directly at the ligand to be raised whilst lowering those electrons that point 

between the ligands with respect to the spherical field [100].   Spin orbit 

coupling (also called LS coupling) involves the interaction, when several electrons 

are present in a subshell, between the total orbital angular quantum number L 

and the spin quantum number S.   L due to the overall effect of individual orbital 

angular momentum, l and S, due to the overall effect of individual spins, ms. 

 

This effect splits the terms into a number of levels (J) with J=L+S, L+S-1, …[L-

S] [101].   The spin multiplicity is equal to 2S+1 and follows the rules: 

 

� For less than half-filled shells, smallest J lies lowest 

� For more than half-filled shells, largest J lies lowest 

 

Therefore the full level term symbol is written as 2S+1LJ. 

 

As the f orbital of the lanthanides are well shielded by the surrounding 5s and 5p 

electrons, the various states from the fn configurations are only split by 

approximately 100 cm-1 by external fields (caused by ligand vibrations).    

Therefore, the f→f electronic transitions from one J state to another J state of the 

same configuration results in vary sharp absorption bands similar to the free 

atom and have weak intensities due to the low probability of the f→f transitions. 

 

As l=3 for an f electron, ml can be 3, 2, 1, 0, -1, -2 or -3 and can give rise to 

high values of L for certain lanthanide ions.   For example, praseodymium (Pr3+) 

has two f electrons and the highest values for ML of 6, 5, 4, 3, 2, 1 and 0.  For 

two electrons the highest S value is +1 (as each electron can be +1/2 or -1/2) 

making 2S+1=3, and the highest L value with S=1 would be 5.   According to 

Hund’s rule, where the term with the highest S value lies lowest in energy and if 

there are several terms with the same S, the one with the highest L lies lowest, 

the ground sate of Pr3+ is 3H4.   Furthermore, the terms S, P, D, F, G and I are 

also possible (relating to ML values of 0, 1, 2, 3, 4 and 6 respectively) and each 

having many different values of J.   Even taking into account the selection rules 

mentioned above, the number of possible transitions is large, and therefore, the 

number of lanthanide absorptions can be large.   Furthermore, some lanthanide 
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M3+ ions with greater or equal to three f electrons have one or more transitions 

that show an increase in intensity when H20 is replaced by other ligands.   This is 

because hydroxyl groups have a strong absorption band, which when nearby the 

lanthanide ion, allows a non-radiative decay mechanism that causes fluorescence 

quenching. 

 

Although there are a large number of energy transitions possible from lanthanide 

ions, the number that will produce fluorescent emissions are influenced by the 

matrix into which the particular ion is doped and also the conjugated chelate 

molecule.     

 

 

2.2 Lanthanides 
 

 

The first discovery of the rare earth element yttria by Johann Gadolin in 1794 

and later ceria by M.H. Klaproth, J.J. Berzelius and W. Hisinger heralded the 

beginning of lanthanide chemistry.   These two, yttria and ceria were later 

separated in to the rare earth elements erbium, terbium, ytterbium, cerium and 

lanthanum [102].      

  

The lanthanides are f block elements and are in the periodic table from 57 – 71, 

lanthanum, cerium, praseodymium, neodymium, promethium, samarium, 

europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, 

ytterbium and lutetium.    Of these, 10 have potentially useful visible fluorescent 

emissions, with the remainder being unusable due to their emissions being in the 

infrared, their radioactive nature or toxicity. 

 

The ions of most lanthanide elements absorb in the ultraviolet and visible region 

of the electromagnetic spectrum.  Compared to the spectroscopic behaviour of 

most inorganic and organic absorbers, their spectra consist of narrow, very well 

defined absorption peaks.   These characteristics are highly stable under varying 

conditions, glass matrix, chelate matrix etc.   This makes them ideal for use as a 

dopant in varying carrier compositions as their spectral outputs are relatively 

unaffected by host.   
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2.2.1 Lanthanide Energy Levels 

 

 
Europium exhibits several energy transitions which result in a visible fluorescent 

signal.    The strongest of these energy transitions for europium is the 5D0 to 
7F2 

which leads to the emission at 615 nm, Figure 7.    

 
 

 
 
 

Figure 7 Europium energy levels showing the transition of 5D0 to 
7F2 

which leads to the emission of 615 nm 
 

 

 

Europium also exhibits visible fluorescence from four other transitions, Table 2.    

All of these emissions can be clearly seen as discrete fluorescent peaks. 
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Europium Energy Transition Emission Wavelength / nm 
5D1 to 

7F1 535 
5D0 to 

7F2 615 
5D0 to 

7F3 635 
5D0 to 

7F1 592 
5D0 to 

7F4
 702 

 

Table 2 Energy transitions and emission wavelengths for europium 
 

 

 

Terbium, like europium, also exhibits several energy transitions which result in a 

visible fluorescent signal.    The strongest energy transition for terbium is the 5D4 

to 7F5 which leads to the emission at 542 nm is shown in Figure 8.     

 

 

 
 

Figure 8 Terbium energy levels showing the transition of 5D4 to 
7F5 which 

leads to the emission of 542 nm 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 2 - Theory 

Commercial in Confidence 31 

Terbium also exhibits visible fluorescence from four other energy transitions, 

Table 3.    These can be clearly observed as visible emissions. 

 

 

Terbium Energy Transition Emission Wavelength / nm 
5D4 to 

7F6 385 
5D4 to 

7F5 542 
5D4 to 

7F3 546 
5D4 to 

7F4 588 
5D3 to 

7F3
 622 

 

Table 3 Energy transitions and emission wavelengths for terbium 
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Dysprosium also exhibits several energy transitions which result in a visible 

fluorescent signal.    Dysprosium energy levels showing the transition of 4F9/2 to 

6H13/2 which leads to the emission at 575 nm is shown in Figure 9 .   

 

 

 
 
 

Figure 9 Dysprosium energy levels showing the transition of 4F9/2 to 
6H13/2 which leads to the emission of 575 nm 
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Dysprosium also exhibits visible fluorescence from three other energy transitions, 

Table 4.    These can be clearly observed as visible emissions. 

 

 

 

Terbium Energy Transition Emission Wavelength / nm 
4F9/2 to 

6H15/2 483 
4F9/2 to 

6H13/2 575 
4F9/2 to 

6H11/2   662 
4F9/2 to 

6H9/2
 756 

 

Table 4 Energy transitions and emission wavelengths for dysprosium 
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2.2.2 Lanthanide Energy Transfer 

 

It is possible for lanthanide ions within the same host matrix to transfer energy 

from one ion to that of another.   For example an energy transfer from terbium 

to europium will occur from a 485 nm excitation resulting in a 615 nm emission 

(5D4 – 
5D0), and also an energy transfer from dysprosium to terbium where a 452 

nm excitation will result in a 545 nm emission (5D4 – 
4F9/2), Figure 10.    

 

 

 

 

Figure 10 Energy level diagram showing the energy transfer process 

from dysprosium to terbium [59] 
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These energy transfer effects will be investigated in triple doped glass samples 

containing europium, dysprosium and terbium.  

 

 

2.3 Chelates 

 

Chelating agents are organic compounds capable of forming coordinate bonds 

with metals through two or more atoms from within the organic compound.   The 

complex formed with the binding of chelating agent and metal is called a chelate.    

Chelating agents such as 1,10-phenthroline and thenoyltrifluoroacentone are 

bidentate chelating agents as they have two coordination atoms.   Figure 11 

shows an example of what this structure coordination looks like. 

 

 

 

 

Figure 11: Example of a bidentate chelating agents: 1,10-phenanthroline 

and thenoyltrifluoroacetone bonded to a Eu3+ ion. 

 

2.3.1 Chelate Energy Transfer 

 
 
The fluorescent emission observed from lanthanide ions although intense, can be 

further enhanced with the addition of an organic chelate.   The mechanism of 

luminescence of a lanthanide chelate is shown in Figure 12 [102].   This shows 

an electron promoted to an excited singlet state in the chelate upon absorption 

of energy, in this case ultraviolet light.    This photon drops back to the lowest 

state of the excited singlet, from where it can return to the ground state directly 

Eu 
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(chelate fluorescence) or follow a non-radiative path to a triplet state of the 

chelate.  From the triplet state it may either return to the ground state by 

phosphorescence or alternatively undergo non-radiative intersystem crossing, 

this time to a nearby excited state of a lanthanide ion, where it can return to the 

ground state either by non-radiative emission or by metal ion fluorescence. 

 
 

 
 

Figure 12 Luminescence in lanthanide chelate complexes 
 
 
 
 
2.4 Glass Formation 

 

 
Glass is defined as an amorphous solid which does not exhibit an exacting 

symmetrical structure.    Typically a glass is a sum of its constituent parts, 

mainly oxides, which play different roles in the glass formation.    The 

borosilicate glass used in this work consists of SiO2, Na2O, CaO, Al2O3, MgO, FeO, 

Fe2O3, K2O and B2O3.   These compounds fall into three categories for glass 
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formation; network (glass) formers, conditional glass formers and network 

(glass) modifiers [103]. 

E.g. 

Network formers - SiO2 and B2O3 

Condition glass formers - Al2O3 

Network modifiers - Na2O, CaO, MgO, FeO, Fe2O3 and K2O  

 

The network formers can form glasses on their own, B2O3 for example; will form 

a pure borate glass.   While the conditional glass formers will not form glasses in 

their own right, they can form glasses when combined with network modifiers.   

Network modifiers cannot alone form glasses, but in combination with network 

formers or conditional formers will affect the structure and glass melt properties 

[104].   These affects include lowering the glass melt temperature [105, 106], 

for example in the case of pure silica which has a glass melt temperature of 

1715oC, the addition of network modifiers can lower this temperature to below 

1000oC [103].   A tertiary phase diagram for the SiO2-B2O3-Na2O system, 

borosilicate glass can be seen in Figure 13.   This shows the comparison of Na2O, 

K2O and Li2O within a borosilicate system and their effect on melting temperature 

each component has. 

 

 

 

Figure 13 Phase diagram for an SiO2-B2O3-Na2O system [107] 

 

In addition to the affect of network modifiers adding B2O3 to a silica based glass 

will allow the glass structure to become more open, forming triangular units 
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compared to the tetrahedral units of silicates.  This will therefore aid the 

likelihood of producing a glass matrix which could accept a high level of 

lanthanide doping.    The use of B2O3 further lowers the silica melting point to 

below 800oC.   The use of alkali metals (network modifiers) further reduces the 

glass melting temperature and introduces non-bridging oxygens [108].   The 

available oxygens aid in providing bonding sites for the lanthanide, and can also 

directly affect the characteristics of the glass e.g tendency to become 

hydrophilic.     

 

The strongest influence on the ability of lanthanide ions within a glass matrix to 

emit fluorescence is the phonon energy of the glass [109-111].    A phonon is a 

vibrational motion in which a structure, in this case glass, uniformly oscillates at 

the same frequency [112].   Thus a low phonon energy glass will be directly 

linked to the strength of the structure and conversely high phonon energy will be 

linked to a more rigid structure.  The lowest phonon energy glasses are fluoride 

and phosphate glasses, soft structure, but these are not environmentally stable.    

Both fluoride and phosphate have a tendency to absorb water, becoming opaque 

as the glass absorbs more water, but also potentially allowing doped materials to 

leach out.    Low phonon energy allows more energy transitions to take place 

within the lanthanide ion, which in turn allows more emissions to occur.     

 

High phonon energy glasses such as silicates or borates have a more rigid 

structure which provides an extremely robust host for environmental stability 

and immense physical strength, e.g. Pyrex is a borosilicate glass.   This high 

phonon energy comes at a price for lanthanide doping; the higher energy 

compromises the number of possible transitions which can occur.    This limits 

the potential number of fluorescent emissions which could be used for tracing 

studies. 

 

The glass formulation is critical in tailoring the phonon energy, for example 

Schott 8830 borosilicate glass contains a high percentage of SiO2 (80.6%) which 

would create a high phonon energy glass.     The glass formulation used in this 

work contains 51.8 % of SiO2 which reduces the phonon energy of the glass 

structure and still produces a glass which exhibits environmental stability. 
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2.5 Polymerisation 
 

 

Polymerisation can be divided into organic and inorganic polymer formation.   

Polyethylene glycol dimethacrylate (p-EGDMA) forms an organic polymer [113, 

114], tetraethyl orthosilicate (TEOS), silica sol gel precursor, forms an inorganic 

polymer [115].   The use of monodisperse organic and inorganic polymerisation 

methods allows the synthesis of size controlled spheres.    

 

2.5.1 Inorganic Polymerisation – Silica sol gel 

 

The sol gel method is a colloidal precipitation technique that has its origins in the 

development of low temperature fabrication methods for glass and ceramics.    

The use of TEOS provides inorganic silica which produces particles of pure silicon 

dioxide, highly stable and environmentally robust, an ideal host for a lanthanide 

doping. 

 

A sol is a dispersion of colloidal particles suspended within a fluid where the 

particles range between 1 nm and 1000 nm.   The formation of particles is 

influenced by the gravitational and frictional forces upon them and this can be 

calculated by examining the sedimentation rate and assuming the particles to be 

spherical [116]. 

 

Equation 5:     Sedimentation rate    
 

 

                                                   ( )( )[ ] ηπρρπ rgrdtdx 6/'3/4/ 3 −=  

 

                                                             ( )[ ] ηρρ 9/'2 2 gr −=  

 
Where η  = viscosity of surrounding medium / Nm−2

s 

 
          ρ = density of surrounding medium / kg m³ 

 

         'ρ  = density of colloid particle material / kg m³ 

 

          r  = radius of colloid particle / nm 
 
         g  = gravity 9.81 m/s2 
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The structure of the sol gel prepared silica sphere will take that of a typical 

amorphous SiO2 matrix, Figure 14 shows a 2 dimensional schematic of this 

formation.        

 
 

 
 

Figure 14 Schematic 2-dimensonal drawing of the structure of a silicon 
dioxide matrix 
 
 

2.5.2 Doped Sol Gel Sphere Formation 

 

Following the same principles of the pure silicon dioxide sphere formation, the 

doped spheres are predicted to follow the Zachariasen random network theory 

[103] of structure formation.     

 

 
 
 
Figure 15 Schematic 2-dimensonal drawing of the structure of a 

lanthanide chelate doped silicon dioxide matrix 
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As a sphere forms the oxygen will bond with the chelate molecule, acting almost 

as a network modifier within the silica network.    The rules of phonon energy 

apply to silica sol gel particles as it would to silica glasses, resulting in a silica 

particle having high phonon energy. 

 

As a result experimentally it was found that terbium did not exhibit the 5D4 to 
7F5 

transition which in the borosilicate glass matrix results in a 543 nm (green) 

emission.      

 

2.5.3 Organic Polymerisation 

 
 
Polymerisation is the process of reacting monomer molecules together to form 

either long chains or networks.   This follows two forms of polymerisation, 

addition polymerisation and condensation polymerisation. Addition 

polymerisation is where single monomer molecules are bonded together to form 

long chain molecules without the loss of any atoms, such as ethylene which 

forms polyethylene.  Condensation polymerisation is where multiple monomers 

form structures with molecules like polyethylene glycol dimethacrylate and 

methacrylic acid (a cross linking monomer) form polyethylene glycol 

dimethacrylate-co-methacrylic acid, Figure 16.    

 

 

Figure 16 Cross linked polymer, polyethylene glycol dimethacrylate 

 

 

 

The actual formation of a cross linked polymer is not as structural as indicated by 

the figure, condensation cross linked polymers take on a randomised “spaghetti 
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like” form.  The use of a cross linking condensation polymerisation reaction 

allows a great possibility for doping in to the polymer network.    The chelated 

lanthanide molecule will replace the cross linker in the formation of the polymer 

network.     

 
 
Figure 17 Doped cross linked polymer, polyethylene glycol dimethacrylate 
 

A basic structure layout is shown in Figure 17, this indicates the hypothesised 

location of the lanthanide chelate within the polymer structure. 

 

 

2.6 Particle Size 
 

Particle size determination for sediment samples was determined using a Malvern 

Mastersizer E.   The instrument utilises laser ensemble light scatter as a means 

of particle size distribution determination.    This is based upon two theories of 

light scattering behaviour, the Fraunhofer Model and the Mie Theory [117].   The 

Fraunhofer theory can predict the scattering pattern that is created when a solid, 

opaque disc, of a known size passes through a laser beam.    The Mie theory was 

developed to predict the way light is scattered by spherical particles and deals 

with the way light passes through, or is adsorbed by, the particle. 

 

A Helium Neon laser (632 nm) is fired through a beam expander to collimate the 

beam to 18 mm.    This collimated laser beam will pass through the sample cell 

where any particles present in suspension will scatter the laser light.   The 

scattered laser pass through the receiver lens which operates as a fourier 

transform lens, forming the far field diffraction pattern of the scattered light at 

its focal plane.   The detector used is a series of 31 concentric annular sections 
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and gathers the scattered light over a range of solid angles of scatter.   The 

unscattered light is focused on the detector and passed through a small aperture 

in the detector and passes out of the optical system.   This process is monitored 

to allow the determination of the sample volume concentration.   Due to the 

range lens configuration it keeps the diffraction pattern stationary and centered 

on its optical axis wherever the particle is in the analyser beam.   This means it 

does not matter if the particle is moving through the analyser beam, such as it 

would in an aqueous suspension. During an analysis many particles are 

simultaneously present in the beam path and the scattered light measured, 

equals the sum of all the individual patterns overlaid on the central axis.   

Typically the number of particles needed in the beam simultaneously to obtain an 

adequate measurement of the scattering would be 100-10,000 dependent on 

their size.   Therefore measurements are not done by one instantaneous 

measurement but are averaged over time as the material is continuously passed 

through the beam, e.g. 2000 in 1 ms. 

 

When the particles scatter the light, they produce unique light intensity 

characteristics with an angle of observation.  The resulting measured peak 

energy intensity on the detector results in a specific scattering angle related to 

its diameter.    Large particles have peak energies in small angles of scatter 

while small particles have peak energies in high angles of scatter. 

 

The terms of interest, D [v,0.5], D [4,3], D [v.0.1] and D [v,0.9] can be defined 

as: 

 
• D [v,0.5] – Volume median diameter.  This figure has 50 % of the 

distribution above and 50 % below this value.  It divides the distribution 

exactly in half. 

• D [4,3] – Volume mean diameter.  This is the diameter of the sphere that 

has the same volume as an ideal sphere.  
3

4]3,4[
d

dD
∑

∑=  

• D [v.0.1] and D [v,0.9] – These are 90 % and 10 % cut-offs respectively 

for the distribution.  Where D [v,0.9] has 90 % of the distribution below 

this value and D [v,0.1] has 10 % of the distribution below this value. 
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A typical particle size distribution plot for a sediment sample from the Case 

Study of Bowmore Harbour can be seen in Figure 18. 

 

 

 

 

Figure 18 Example of particle size analysis results. 

 

 

 

2.7 Experimental Design : Chemometrics 

 
Statistical designs of experiment (DOE) are used to optimise the number of 

experiments that need to be carried out to successfully investigate a given 

problem.   The principle application is to use a statistical planned approach to 

investigate the influences of variables (called factors in experimental design) on 

the measurement response, rather than a trial and error approach, which can 

often lead to a waste of time and can lead to experiments where inadvertently 

more than one parameter has changed thus making it impossible to assign a 

cause for any change in response observed [118-121].     
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2.7.1 Taguchi Orthogonal Array Fractional Factorial Experimental Design 

 

In experimental design a factor is defined as any experimental variable that can 

affect the result of the ‘experiment’.   The result or value obtained from an 

‘experiment’ is called a response.   The response in this work is complicated in 

that it includes wavelength, peak intensity and lifetime.  The factors known from 

previous experience are; furnace time, furnace temperature, annealing time and 

annealing temperature.   The different values of a factor are referred to as 

different levels, so for example in the investigation of the influence of lanthanide 

concentration (a factor) on the tracer response, some concentration levels will 

need to be chosen to input into the experimental design.   These concentrations 

were chosen from previous experience with a small input from general trends 

observed in literature [122-124]. 

 

There are a variety of designs; one suitable design uses a complete systematic 

experimentation, i.e. The Full Design of Experiment, where an experiment is 

carried out for every combination of factor and level.   For example if 

experiments were carried out to investigate the influence of 5 factors at 3 levels 

this would require 35 experiments (243) excluding replicates to comprehensively 

quantify the dependence, however this is far too many experiments.   Statistics 

can be used further to modify the design to optimise the number of experiments 

actually required.   This full factorial DOE utilises all the main effects and 

interactions up to order 5 however statistically it is the main to second order 

effects which are important, this is what is used in the Half Fractional Factorial 

DOE.    

 

In a Fractional Factorial design, the lower order and higher order effects are 

paired, and are said to be aliases of each other because they are 

indistinguishable or confounded.   Probability plots are carried out by the DOE 

software and an array of the statistically significant experiments that have to be 

carried out to provide a statistically meaningful prediction of the effect being 

studied is produced. 
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3 MATERIALS AND METHODS 

3.1 Glass Tracer Fabrication 

3.1.1 Blank Glass  

 
For the production of blank standard borosilicate glass a standard composition 

was used [104, 125]. Crushed soda lime silica glass (Sigmund Lindner, S-Type 

Thermal Rounded Soda Lime Glass Beads) and boric acid (Aldrich, 99.99%, 

339067-500G) were processed in an Agate ball mill for a total of 8 minutes to 

produce a homogeneous mixture, which was then transferred to a platinum 

crucible to produce a 7 g batch.     

The composition of the 7 g batch being thus: 

 

5 g Soda lime silica glass  

2 g Boric Acid  

X g Lanthanide  

 

The breakdown of component materials of the silica glass with boric acid and 

their percentage weight can be seen in Table 5 below: 

 

Borosilicate Component Weight / % 

SiO2 51.8 

Na2O 9.8 

CaO 7 

Al2O3 0.3 

MgO, FeO, Fe2O3 and K2O 2.5 

B2O3 28.6 

  

Table 5 Component materials of the borosilicate glass matrix 
 
 

The platinum crucible was then placed in to a high temperature muffle furnace 

where the sample was heated to 550 oC for 30 minutes to allow the boric acid to 

melt without expansion brought on by rapid heating.  The temperature was then 

raised to 900 oC, 1000 oC and 1100 oC, holding for 1 hour at each point before 

being raised to pour temperature at 1250 oC.   The sample was then poured in to 
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a brass mould which has been pre-heated on a hot plate to reduce possibility of 

thermal shock and therefore cracking. 

 

3.1.2 Concentration Study Doped Glass Tracer 

 
For the production of the environmental glass tracer used in the concentration 

study the appropriate mol % of lanthanide salt (All Aldrich EuCl36H2O, 99.9%, 

212881-25G, TbCl36H20, 99.9%, 212903-25G, DyCl3.6H20, 99.9%, 289272-25G), 

Table 6, was added to the soda lime silica glass and boric acid to produce a 7 g 

batch as described in 3.1.1. 

 

Mol % of 
Dopant 

Weight of 
EuCl3.6H20 / g 

Weight of Tb 
Cl3.6H20 / g 

Weight of Dy 
Cl3.6H20 / g 

2.0 0.8324 0.8484 0.8565 

1.8 0.7492 0.7636 0.7709 

1.6 0.6659 0.6787 0.6852 

1.4 0.5827 0.5939 0.5996 

1.2 0.4994 0.5090 0.5139 

1.0 0.4162 0.4242 0.4283 

0.8 0.3330 0.3393 0.3426 

0.6 0.2497 0.2545 0.2570 

0.4 0.1665 0.1697 0.1730 

0.2 0.0832 0.0848 0.0857 

 

Table 6 Concentration study doping concentrations 
 

 

Taking the weight of component raw materials (weighed by difference) which 

were placed in the ball mill and what was then transferred to the crucible, after 

the ball milling process, it was possible to calculate the fabrication loss error 

which came from the production of the glass.    An average of 20 samples 

showed a loss of 0.47 % or an average of 40 mg.     This shows that direct 

comparison of samples is possible as the error from manufacture is extremely 

small. 
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3.2 Experimental Design – Chemometrics For Multi-Ion Doping 

3.2.1 Taguchi Orthogonal Array Fractional Factorial  

 

The Fraction Factorial Design of Experiment was chosen to optimise the number 

of experiments in this work because it confounds the interactions and allows a 

fraction of the experiments to be carried out and still give a statistically 

meaningful prediction of response.   Using MATLAB 14 a Taguchi Orthogonal 

Array Fractional Factorial Experimental Design (TOAFFED) was used and 

produced the DOE arrays shown in Table 7, that optimise the number of 

experiments required to gain detailed spectral and time resolved fluorescence 

characterisation of single and multiple lanthanide doped host matrices.   The 

response factors previously identified namely; wavelength, lifetime and intensity, 

will be measured for the following experiments. 

 

3.2.2 Design of Experiment to investigate the concentration dependence of the 

fluorescence lanthanide response and glass host dependence 

 

To find the concentration dependence of the fluorescence lanthanide response 

(peak wavelength, intensity and lifetime) tracers of the same glass host under 

the current fabrication method and parameters would have to be made 

containing different concentration levels of multiple lanthanides and the samples 

would have to be characterised.   The chosen 3 lanthanides used as dopants (or 

sensitiser) are factors in an experimental design and the 5 concentration levels in 

the Fractional Factorial Design of Experiment.  A half fractional design requires 

53-1 experiments (25) which are achievable and still utilised second order effects, 

i.e. it is still using the statistically significant effects.  The chosen TOAFFED in 

Table 7 shows the significant experiments that have to be carried out to provide 

a statistically meaningful prediction of the effect being studied which in this case 

is the concentration dependence of the fluorescence lanthanide response and by 

repeating the array of experiments with a second host it will also show the effect 

on the response factors of the different glass hosts.   
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Where: 

A  Europium 

B  Terbium 

C  Dysprosium 

 

 Glass 1 Glass 2 

1 0.5 mol% 0 mol% 

2 1.0 mol% 0.5 mol% 

3 1.5 mol% 1.0 mol% 

4 2.0 mol% 1.5 mol% 

5 2.5 mol% 2.0 mol% 

 

 

Experiment A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 1 5 5 

6 2 1 2 

7 2 2 3 

8 2 3 4 

9 2 4 5 

10 2 5 1 

11 3 1 3 

12 3 2 4 

13 3 3 5 

14 3 4 1 

15 3 5 2 

16 4 1 4 

17 4 2 5 

18 4 3 1 

19 4 4 2 

20 4 5 3 

21 5 1 5 

22 5 2 1 

23 5 3 2 

24 5 4 3 

25 5 5 4 

 

 

Table 7 Taguchi Orthogonal Array Fractional Factorial Design of 

Experiment for Glass1 and Glass 2 
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3.2.3 Design of Experiment to investigate the effects of fabrication parameters 

on the glass 

 

The chosen experimental design, TOAFFED was applied to optimise the 

experiments required to investigate the effects of factors associated with the 

fabrication of the glass.   Using existing knowledge of glass fabrication 4 factors 

were identified, furnace temperature, furnace time, annealing temperature and 

annealing time with the effects of these factors on the spectral emissions  will be 

examined at 2 levels.    The experiments required are shown in Table 8.     

For these experiments each fabrication factor, A, B, C and D will be altered, e.g. 

increase time or temperature, Table 9. 

 

Experiment A B C D 

1 1 -1 1 -1 

2 1 1 1 1 

3 -1 1 -1 1 

4 -1 -1 1 1 

5 -1 1 1 -1 

6 1 -1 -1 1 

7 1 1 -1 -1 

8 -1 -1 -1 -1 

Where:  

Experiment Parameter Setting 

1 1300 oC 
A 

-1 1200 oC 

1 60 min 
B 

-1 15 min 

1 450 oC 
C 

-1 350 oC 

1 60 min 
D 

-1 30 min 

 

Table 8 Taguchi orthogonal Array Fractional Factorial Design of 

Experiment for fabrication parameter variation 

 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 3 – Materials and Methods 

Commercial in Confidence 51 

Experiment A / oC B / min C / oC D / min 

1 1300 15 450 30 

2 1300 60 450 60 

3 1200 60 350 60 

4 1200 15 450 60 

5 1200 60 450 30 

6 1300 15 350 30 

7 1300 60 350 30 

8 1200 15 350 30 

 

 

Table 9 Experimental Conditions required for Taguchi Orthogonal Array 

Fractional Factorial Analysis 

 

The fluorescence properties were studied using single scans since this glass 

contained only dysprosium which had been previously fully characterised in the 

concentration study, also the dysprosium concentration remained constant.  The 

wavelength used for excitation was 452 nm and the emission peak of interest 

was at 575 nm.  

 

 

3.3 Glass Tracer Fabrication 
 
The use of constituent component compounds ball milled together with a 

lanthanide dopant to produce a homogenous glass matrix is described here.  This 

mixture, when heated to 1250 oC, produces a borosilicate glass melt which is 

then moulded using the cast and quench method to create reproducible glass 

samples which can be easily analysed using spectroscopic techniques.  
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3.3.1 Borosilicate Glass 1 Multiple Ion Doped Glass Tracer 

 
To examine the effect of multi-ion doping in the glass tracer the appropriate 

mol % of lanthanide salt was added to the soda lime silica glass and boric acid to 

produce a 7 g batch as described in 3.1.1.    Using experimental design, the 

following concentration combinations were used to produce a range of samples,  

Table 10. 

 

 

Glass 1 
Sample 

mol % of Eu mol % of Tb mol % of Dy 

G1-1 0.5 0.5 0.5 

G1 2 0.5 1.0 1.0 

G1-3 0.5 1.5 1.5 

G1-4 0.5 2.0 2.0 

G1-5 0.5 2.5 2.5 

G1-6 1.0 0.5 1.0 

G1-7 1.0 1.0 1.5 

G1-8 1.0 1.5 2.0 

G1-9 1.0 2.0 2.5 

G1-10 1.0 2.5 0.5 

G1-11 1.5 0.5 1.5 

G1-12 1.5 1.0 2.0 

G1-13 1.5 1.5 2.5 

G1-14 1.5 2.0 0.5 

G1-15 1.5 2.5 1.0 

G1-16 2.0 0.5 2.0 

G1-17 2.0 1.0 2.5 

G1-18 2.0 1.5 0.5 

G1-19 2.0 2.0 1.0 

G1-20 2.0 2.5 1.5 

G1-21 2.5 0.5 2.5 

G1-22 2.5 1.0 0.5 

G1-23 2.5 1.5 1.0 

G1-24 2.5 2.0 2.0 

G1-25 2.5 2.5 1.5 

 
Table 10 Concentration (mol %) combinations for multiple ion doped 

borosilicate glass 1 samples 
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The masses of europium. terbium and dysprosium used for the multiple ion 

doped glass 1 experiments can be seen in Table 11. 

 
 

Glass 1 
Sample 

Mass of 
EuCl3.6H20 / g 

Mass of 
TbCl3.6H20 / g 

Mass of 
DyCl3.6H20 / g 

G1-1 0.2081 0.2121 0.2141 

G1 2 0.2081 0.4242 0.4282 

G1-3 0.2081 0.6363 0.6423 

G1-4 0.2081 0.8484 0.8564 

G1-5 0.2081 1.0605 1.0705 

G1-6 0.4162 0.2121 0.4382 

G1-7 0.4162 0.4242 0.6423 

G1-8 0.4162 0.6363 0.8564 

G1-9 0.4162 0.8484 1.0705 

G1-10 0.4162 1.0605 0.2141 

G1-11 0.6243 0.2121 0.6423 

G1-12 0.6243 0.4242 0.8564 

G1-13 0.6243 0.6363 1.0705 

G1-14 0.6243 0.8484 0.2141 

G1-15 0.6243 1.0605 0.4282 

G1-16 0.8324 0.2121 0.8564 

G1-17 0.8324 0.4242 1.0705 

G1-18 0.8324 0.6363 0.2141 

G1-19 0.8342 0.8484 0.4282 

G1-20 0.8324 1.0605 0.6423 

G1-21 1.0405 0.2121 1.0705 

G1-22 1.0405 0.4242 0.2141 

G1-23 1.0405 0.6363 0.4242 

G1-24 1.0405 0.8484 0.6423 

G1-25 1.2081 0.4242 0.4282 

 

Table 11 Concentration combinations for multiple ion doped borosilicate 
glass 1 samples 

 

 

3.3.2 Borosilicate Glass 2 Multiple Ion Doped Glass Tracer 

 

It has been seen [126] that the incorporation of the fluoride ion in to a glass 

matrix is said to increase the maximum concentration of dopant in the glass in 

comparison to other glass matrices containing other halide elements.   This could 

also lead to increased fluorescence emission from lower concentrations of 

dopants.  This was done by adding 5 mol % (0.2385 g) of sodium fluoride (NaF, 

Adrich, 99.99%, 450022-25G) to the existing borosilicate glass matrix.  As this new 
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glass composition has not been analysed before, the same Taguchi factorial 

design of experiment as used for Glass 1 was employed here, except this time 

sample 1 equalled 0 mol %, see Table 12.  This enabled double lanthaide doped 

samples to be produced without increasing the number of samples, thereby 

allowing the investigation of any differences in peak wavelengths with the 

change in host matrix. 

 

 

Glass 2 
Sample 

mol %of Eu mol % of Tb mol % of Dy 

G2-1 0.0 0.0 0.0 

G2-2 0.0 0.5 0.5 

G2-3 0.0 1.0 1.0 

G2-4 0.0 1.5 1.5 

G2-5 0.0 2.0 2.0 

G2-6 0.5 0.0 0.5 

G2-7 0.5 0.5 1.0 

G2-8 0.5 1.0 1.5 

G2-9 0.5 1.5 2.0 

G2-10 0.5 2.0 0.0 

G2-11 1.0 0.0 1.0 

G2-12 1.0 0.5 1.5 

G2-13 1.0 1.0 2.0 

G2-14 1.0 1.5 0.0 

G2-15 1.0 2.0 0.5 

G2-16 1.5 0.0 1.5 

G2-17 1.5 0.5 2.0 

G2-18 1.5 1.0 0.0 

G2-19 1.5 1.5 0.5 

G2-20 1.5 2.0 1.0 

G2-21 2.0 0.0 2.0 

G2-22 2.0 0.5 0.0 

G2-23 2.0 1.0 0.5 

G2-24 2.0 1.5 1.5 

G2-25 2.0 2.0 1.0 

 
Table 12 Concentration (mol %) combinations for multiple ion doped 

borosilicate glass 2 samples 

 
 
The Glass 2 samples were analysed using the same measurement parameters as 

used for glass 1. The mass of europium, terbium and dysprosium used for the 

multiple ion doped glass 2 experiments can be seen in Table 13. 
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Glass 2 
Sample 

Mass of        
EuCl3.6H20 / g 

Mass of 
TbCl3.6H20 / g 

Mass of 
DyCl3.6H20 / g 

G2-1 0 0 0 

G2-2 0 0.8484 0.8564 

G2-3 0 0.4242 0.4282 

G2-4 0 0.6363 0.6423 

G2-5 0 0.8484 0.8564 

G2-6 0.2081 0 0.2141 

G2-7 0.2081 0.2121 0.4282 

G2-8 0.2081 0.4242 0.6423 

G2-9 0.2081 0.6363 0.8564 

G2-10 0.2081 0.8484 0 

G2-11 0.4162 0 0.4282 

G2-12 0.4162 0.2121 0.6423 

G2-13 0.4162 0.4242 0.8564 

G2-14 0.4162 0.6363 0 

G2-15 0.4162 0.8484 0.2141 

G2-16 0.6243 0 0.6423 

G2-17 0.6243 0.2121 0.8564 

G2-18 0.6243 0.4242 0 

G2-19 0.6243 0.6363 0.2141 

G2-20 0.6243 0.8484 0.4282 

G2-21 0.8324 0 0.8564 

G2-22 0.8324 0.2121 0 

G2-23 0.8324 0.4242 0.2141 

G2-24 0.8324 0.6363 0.4282 

G2-25 0.8324 0.8484 0.6423 

 

Table 13 Concentration combinations for multiple ion doped borosilicate 
glass 2 samples 

 

 

 

3.4 Fabrication of Tracer Particles 
 

 
For a material to be used as a particle tracer it must be of a functional size and 

fit for purpose, which for a glass based tracer requires the melted glass to be 

reduced in size through mechanical grinding.    This production paradigm, 

although true for glass based tracers is not the case for all tracer particles, e.g. 

sol gel or polymer spheres.    To turn bulk glass samples of glass into powder 

they must be ball milled using the same agate ball mill to reduce the possibility 

of contamination.   The pieces of bulk glass are reduced in size using a 

mechanical fracture method to produce pieces in the region of 2-6 mm in 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 3 – Materials and Methods 

Commercial in Confidence 56 

diameter.   These pieces are far easier to ball mill as they will break down in to 

smaller fragments faster compared to a larger piece of glass which would begin 

to “round off” much like a pebble on a beach. 

 

3.4.1 Ball Milling 

 
 
An agate ball mill was used to grind the glass pieces.   The mill comprises two 

end pieces, two cork o-rings, two agate balls and a central cylinder.   One of the 

end pieces is placed on the bench, the cork o-ring is put in place and the central 

cylinder is set on top of the cork ring.  The glass pieces are added, the second 

cork o-ring is placed on the central cylinder and the mill is closed by setting the 

second end piece on top.   This is then placed inside Gier Creston ball mill.   This 

device contains an electric motor which drives a belt connected to a steel sample 

holder.   It is this sample holder in to which the agate mill is placed.    The ball 

mill is turned on for 5 minutes and then the agate mill is removed from the 

holder and emptied. 

 

3.4.2 Size Fractioning 

 

To separate the glass particles into size fractions which could be used as 

environmental tracers it is necessary to sieve the glass powder.    The first pass 

of ball milled glass will have a particle distribution of mainly 45 µm and above, 

this is separated using a Fritsch Analysette shaker.    As the particle distribution 

becomes <20 µm the Endecotts Sonic Sifter is used to separate the particles to 

<5 µm. 

 

3.4.2.1 Shaker 

 
A Fritsch Analysette 3E used for sifting ball milled glass powders in to different 

size fractions.   Sieves of 75 µm, 45 µm, 32 µm and 20 µm sized mesh were 

used.    These are arranged in a stack with the 75 µm sieve on top and the 20 

µm on the bottom, which is placed on to a collection pan.   The stack is placed on 

to the Analysette shaker and held by using a perspex domed top with has 
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retaining straps.    The instrument is adjusted for amplitude by observing the 

motion of the powder on the top sieve and the time is set for between 5 and 15 

minutes.    After each period of time it is necessary to examine the fractions in 

each sieve to ensure the mesh has not become blocked.     After 2 or 3 x 15 

minute timed shaking the sample which remains in the 75 µm sieve is re-ball 

milled to reduce the particle size.   This is repeated for each of the size fractions.     

 

3.4.2.2 Sonic Sifter 

 
Once the glass powder has been sifted to a size fraction of less than 20 µm it is 

necessary to use a different instrument as there is a particle filtration limitation.   

These samples are placed in an Endecotts Sonic Sifter.   The machine uses 10 

µm and 5 µm sieves and a collection bag, which as with the shaker, are arranged 

in a stack.     The sieving action of the sonic sifter is controlled by the motion of 

a vertical column of air which is made to oscillate.    The oscillation is variable 

and can be augmented with mechanical “tapping” on the side of the column to 

liberate particles which may block the mesh.     After 120 minutes 5 µm particles 

are collected from the bag at the bottom of the stack.    This method is slow, 

laborious and inefficient as the volume of glass powder is very limited. 

 

 

3.5  Particle Size Analysis 

 

To determine the particle size distribution and average particle size of the ball 

milled glass, a Malvern Mastersizer/E, Particle Size Analyser was used.    The 

instrument comprises a laser source, focusing optics, sample cell and detector.   

For the size range 0.5 – 180 µm the focusing lens of 100 mm was used.    The 

sample for analysis is placed in the sample cell which contains a small stirrer to 

maintain sample suspension.    The suspension media is degassed water or 

degassed water containing a drop of surfactant to maintain an even dispersion of 

particles.  Using the Malvern Particle Size Software the instrument is calibrated 

on a blank sample of degassed water, using the calibration controls to adjust the 

“laser intensity” by moving the alignment optics.   Once a good signal is obtained 

powder sample can be added to the sample cell.    There is an optimum quantity 

of sample which should be added and this is found by adding powder a fraction 
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at a time.   Upon the ideal concentration of sample being reached, analysis runs 

for 15 seconds and is completed with a particle distribution graph and table. 

 

Although the mesh sizes of the sieves which are used for the glass particle 

sieving, it is important to know the particle distribution within the size fraction.     

 

 

3.6 Inorganic Silica Polymers 
 

 

Following a literature review of silica sol gel sphere techniques and methods, the 

Stöber Method is known [127-133] to be the foundation from which the majority 

of silica sol gel sphere preparations are based upon.   The sol-gel method is 

based on the hydrolysis of liquid precursors and the formation of colloidal solids.    

 

3.6.1 Silica Sol Gel Spheres 

 

Stöber showed in 1968 the process of producing 800 nm sized silica spheres 

from simple reaction of an organosilicate precursor, tetraethyl orthosilicate 

(TEOS, Aldrich, 99%, 86578-1L) with a base catalyst, ammonium hydroxide 

(NH4OH, Aldrich, 28-30% NH3, 320145-1L) 30%, in absolute ethanol (AE, 

Aldrich, 99.8%, 02875-2.5L).   The size of the produced spheres being controlled 

by the ratio of AE : TEOS : NH4OH.   This degree of control allows the possible 

production of spheres down to a minimum size of 50 nm. 

 

3.6.1.1 Silica Sol Gel Spheres 800 nm 

 

The following combinations of compounds were used to produce 800 nm size 

range silica sol gel spheres:  

 

18.7 ml absolute ethanol 

7.0 ml ammonium hydroxide 

1.3 ml TEOS in 5 ml absolute ethanol 
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The ethanol was added to a small beaker upon a stirring plate where the 

ammonium hydroxide and TEOS in ethanol was also added.  A precipitate begins 

to form within 15 minutes and reaction reaches completion after 1 hour.      

 

3.6.1.2 Silica Sol Gel Spheres 200 nm 

 

To produce smaller spheres the ratio of ammonium hydroxide:TEOS was 

adjusted to: 

 

18.7 ml absolute ethanol 

2 ml ammonium hydroxide 

1.3 ml TEOS in 5 ml absolute ethanol 

 

From this formulation 200 nm spheres were produced and for all subsequent 

silica sol gel experiments this ratio was used. 

The silica spheres were removed from solution by filtration, 0.2 µm Whatman 

nylon filter membrane. 

 

 

3.6.1.3 Doped Sol Gel Spheres 

 

To make doped silica spheres using the chelated lanthanides the formulation 

used was 18.7 ml absolute ethanol into which 0.2 g of Eu[ttfa][phen] was 

dissolved: 

 

18.7 ml absolute ethanol 

2 ml ammonium hydroxide 

1.3 ml TEOS in 5 ml absolute ethanol 

 

The doped silica spheres were removed from solution using filtration, 0.2 µm 

Whatman filter membrane. 
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3.7 Organic Polymers  
 

3.7.1   Poly-EGDMA-co-MAA 

 

Following a literature review of monodisperse polymerisation reactions the 

following preparation was chosen: 

 

70 ml Distilled acetonitrile 

10 ml absolute ethanol 

1.2 ml ethylene glycol dimethacrylate (EGDMA) 

0.8 ml methacrylic acid (MAA) 

0.04 g azobisisobutyronitrile (AIBN) 

 

A distillation set up was prepared and a 150 ml round bottom flask was used as 

the reaction vessel.  To this the Acetonitrile (Aldrich, 99.8%, 271004-2L) was 

added, along with the ethanol, EGDMA (Aldrich, 98%, 335681-500ML), MAA 

(Fisher, 99.5%, 16831-5000) and the AIBN (Aldrich, 98%).   The flask was 

swirled to dissolve the AIBN/initiator and then placed in a heating mantle which 

was set to a temperature at which distillation of the acetonitrile will begin.   The 

solution will start to turn cloudy when the temperature reaches 80 oC.  After 15 – 

25 minutes the reaction reached completion. 

 

3.7.2  Poly-EGDMA-co-HEMA 

 

The polymer spheres produced from this reaction are very similar to that of poly-

EGDMA-co-MAA, except they have carboxyl functional groups on the surface.      

 

The following preparation was used: 

 

70 ml Distilled acetonitrile 

10 ml absolute ethanol 

1.2 ml EGDMA 

0.8 ml hydroxyethyl methacrylate (HEMA) 

0.04 g AIBN 
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A distillation set up was prepared and a 150 ml round bottom flask was used as 

the reaction vessel.  To this the acetonitrile was added, along with the ethanol, 

EGDMA, HEMA (Aldrich, 99%, 477028-100ML) and the AIBN.   The flask was 

swirled to dissolve the AIBN/initiator and then placed in a heating mantle which 

was set to a temperature at which distillation of the acetonitrile will begin.   The 

solution will start to turn cloudy when the temperature reaches 80 oC.  After 15 – 

25 minutes the reaction reached completion. 

 

 

3.8  Doped Polymer Spheres 
 

3.8.1 Doped Poly-EGDMA-co-MAA 

 

Following a literature review of monodisperse polymerisation reactions and the 

success of experiments examining undoped morphology it was decided to use the 

following methodology. 

 

70 ml Distilled acetonitrile 

10 ml absolute ethanol 

1.2 ml EGDMA 

0.8 ml MAA 

0.04 g AIBN 

0.2 g Eu[ttfa][phen] 

 

A distillation set up was prepared and a 150 ml round bottom flask was used as 

the reaction vessel. To this, 0.2 g of Eu[ttfa][phen] was dissolved into the 10 ml 

of absolute ethanol (as Eu[ttfa][phen] is only partially soluble in Acetonitrile).  

The acetonitrile was the added, along with EGDMA, MAA and the AIBN.   The 

flask was swirled to dissolve the AIBN/initiator and then placed in a heating 

mantle which was set to a temperature at which distillation of the acetonitrile will 

begin.   The solution will start to turn cloudy when the temperature reaches 80 

oC.  After 15 – 25 minutes the reaction reached completion. 
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3.9 Chelates 
 

The use of chelates combined with lanthanides to enhance the fluorescent 

emission has been well documented and the lanthanide complexes have been 

used in various materials [73, 81, 88, 134].   From literature the following 

chelate compounds were examined.   Europium and terbium were chosen as the 

test lanthanides as they have typically a strong visible fluorescence emission of 

red and green which made it easier for quick visual analysis as to whether the 

experiments were working.  The experiments using trifluoroacetone were 

unsuccessful as they did not yield a precipitate which could be used. 

 

 

Chelate Abbreviation Structure 

trifluoroacetone TFA 

 

 

2,6-pyridinedicarboylic 

acid 
PDA 

 

 

thenolytrifluoroacetone TTFA 

 

 

1,10-phenanthroline PHEN 

 

 

 

Table 14 Chelate Compounds Investigated 
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3.9.1  Chelate: 2,6-Pyridinedicarboxylic Acid  

 

In to 30ml of distilled water 0.2836 g of EuCl3 6.H2O was added, dissolved using 

a sonic bath and then placed on a hot plate.   The water was heated to around 

50 oC at which point PDA was added in a molar ratio of 3:1.  The pH on the 

solution was raised to 8 from a starting pH of 3 using Sodium Hydroxide solution.   

At the correct pH the PDA completely dissolved to give a clear solution, at this 

point the liquid was removed from the hot plate and decanted to a Pyrex petri 

dish where the water was allowed to evaporate.   The removal of water yielded a 

crystalline solid which under UV excitation produced a bright red glow. 

 

The same process was followed to produce Tb[pda]3, Sm[pda]3,  Dy[pda]3, 

Gd[pda]3, Ce[pda]3, Er[pda]3 and Nd[pda]3. 

 

Experiments using 2,6-pyridinedicarboxylic acid produced highly fluorescent 

precipitates which were crystalline in structure.   These had limited application in 

the formation of doped silica or polymer spheres as they could not be dissolved 

in the preparation solutions.  A variety of solvents were examined e.g. butanol, 

propanol, ether, chloroform, dichloromethane, but none were suitable.   Water 

was the only solvent in which Lanthanide X[pda] dissolved; future investigation 

of H2O based polymerisation reactions may yield a useable method. 

 

3.9.2  Chelate: Trifluoroacetone  

 

In to 50ml of Absolute Ethanol 0.5672 g of EuCl3 6.H2O was dissolved, to this 

solution Trifluoroacetone was added in a 3:1 molar ratio.   No precipitate formed.   

TTA is a highly volatile liquid which made it difficult to work with.   This was not 

carried forward for any further testing. 
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3.9.3  Chelate: 1,10-Phenanthroline  

 

In 50 ml absolute ethanol 1.4180 g of EuCl3 6.H2O was dissolved, to which 1,10-

phenanthroline (Aldrich, 99%, 131377-25G) was added in a 2:1 molar ratio.   

The solution was stirred for 60 minutes, during this time a heavy precipitate 

formed which was collection via filtration with a Whatman 0.2 µm membrane 

filter.   This was allowed to dry in a desiccator overnight before using to remove 

all ethanol.  

 

Initial testing of Eu[phen]2  proved to be highly promising until it was discovered 

that 1,10-phenanthroline was destroyed by water.   This would not only cause 

problems for the main compound, but also for doped spheres as they may come 

in contact with water and therefore have their fluorescence destroyed. 

 

3.9.4  Chelate: Thenolytrifluoroacetone  

 

In 50 ml of absolute ethanol 0.4163 g of EuCl3 6.H2O was dissolved, to which 

thenoyltrifluoroacetone (Aldrich, 99%, T27006-25G) was added in a 3:1 molar 

ratio.  The solution was stirred for 60 minutes before removing the ethanol with 

a rotary film evaporator (RFE).  This produced a sticky residue in the flask which 

was collected and placed in a desiccator to dry.  The sample of Eu[ttfa]3 was 

again a promising sample, bright fluorescence but as it would not full dry it was 

difficult to accurately weigh for comparable doping levels. 

 

3.9.5  Chelate: Thenolytrifluoacetone and 1,10-Phenanthroline  

 

Eu[phen]2 was prepared as the method previously described.  To 50 ml of 

absolute ethanol 0.2 g of Eu[phen]2 was added, to which TTFA was added in a 

1:1 molar ratio.   The solution was stirred for 60 minutes during which time the 

initially cloudy Eu[phen]2 solution became clear with the addition of the TTFA.   

The solution was placed in a RFE where the majority of the ethanol was removed 

to leave a powder product.   This was collected and placed in a desiccator to dry 

fully.   The combination of 1,10-phenanthroline and thenoyltrifluoroacetone 
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moved the problems of each individually.   The lanthanide chelate Eu[ttfa][phen] 

was a dry powder which was easy to weigh and also resistant to water. 

 

 

3.10 Background Study Samples 

3.10.1 Dye Tracers 

 

Fluorescein (Aldrich, 46955-500G-F) and Rhodamine 6G (Aldrich, R4127-100G) 

molecular dye samples were prepared with distilled water to produce a stock 

solution of concentration 1 x 10-4 M (Fluorescein, 0.0332 g in 1L; Rhodamine 6G, 

0.0479 g in 1L)  from which further dilutions to 1 x 10-5 M were made in 100 ml 

volumes.    

The sample spectroscopic analysis was carried out using an Edinburgh 

Instruments FLS920P Spectrophotometer. 

 

3.10.2 Crude Oils 

 

Gullfaks and Brent crude oil samples were prepared in dichloromethane (Aldrich, 

99.9%, 650463-1L), 0.1ml in 20ml and 5µl in 10ml for the background 

experiments. 

 

All sample spectroscopic analysis was carried out using an Edinburgh 

Instruments FLS920P Spectrophotometer for the doped bulk glass samples, 

molecular dyes and oil samples. 

 

3.11  Analytical Techniques 
 

All spectroscopic analysis was performed using an Edinburgh Instruments 

FLS920P Spectrometer, powder samples being analysed using the flat quartz cell 

mount and a Perkin Elmer LS50B Luminescence Spectrometer for analysis of 

doped bulk glass samples.   Scanning Electron Microscopy imagery was carried 

out using a Leo S430 SEM with samples prepared using a Polaron CC7650 

Carbon Coating Unit.     
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3.11.1 Fluorescence 

3.11.1.1 Perkin Elmer Lambda LS50B 

 
All 3 dimensional spectroscopic analysis was performed using the Perkin Elmer 

LS50B with the FLWinlab software.   The LS50B has a wavelength accuracy of 

+/- 1.0 nm and wavelength reproducibility is +/- 0.5 nm.  The instrument 

settings can be seen in Table 15 and these settings were used to perform all 3D 

scan analysis of the 50 glass samples.   This was done to allow direct comparison 

of all spectral emissions recorded from each sample, which would not be possible 

if the instrument settings were altered.   Due to maintaining instrument settings 

there were some slight saturation for some of the Glass 2 samples.    A standard 

3 mol % europium sample was used as a standard to ensure the spectrometer 

was performing consistently through the analyses.    

 

 

Perkin Elmer LS50B - FLWinlab Settings 

Excitation Setting 300 nm Scan Speed 
1500 
nm/min 

Wavelength Start 320 nm Wavelength End 800 nm 

Excitation Slit 
Width 7.5 nm Emission Slit Width 9 nm 

Number of Scans 400 Excitation Increment 1 nm 

 
Table 15 Instrument Settings for Perkin Elmer LS50B 

 
 
 
Using the 3D function of the spectrometer it is possible to produce a surface 

projection of fluorescence, which is an XYZ plot of intensity, emission and 

excitation.  There is a large amount of information contained within this surface 

projection and the most accurate method of interrogation is to examine the 

contour plot.    
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(i) 

 

    
 

        (ii)                                           (iii) 
 

Figure 19 (i) Contour plot (ii) Excitation (vertical red line) and (iii) 
Emission (horizontal green line) spectra for Glass 1 sample 7 

 
 
Figure 19 (i) is an example of a typical contour plot of a doped glass sample, in 

this case Glass 1 sample 7.  The red vertical and green horizontal lines represent 

the excitation and emission, the information from which can be seen in Figure 19 
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(ii) and (iii) respectively.   Using this method of analysis allows a highly detailed 

investigation of all the absorption and fluorescence peaks which occur in a 

lanthanide ion.    

 
The data table produced from the spectroscopic characterisation can be seen in 

Figure 28 - Figure 86. 

 

3.11.1.2 Edinburgh Instruments FLS920P Spectrometer 

 

For the spectroscopic analysis of glass, organic and inorganic polymers, an 

Edinburgh Instruments FLS920P Spectrometer was used.    Initial analysis using 

the Perkin Elmer LS50B Spectrometer proved futile as the powder samples could 

only be analysed in a quartz 1 cm path cell.    This cell requires a suspension of 

particles, and due to the scattering nature of particles and the low level of 

fluorescence from the glass, this proved impossible. 

 

The Edinburgh Instruments FLS920P has 2 main sample cell fittings, one for a 1 

cm path standard quartz cell or one for a powder cell, Figure 20.    This allows 

for solid bulk glass sample analysis and powder analysis to be reproducibly 

undertaken. 

 

 

 

 

Figure 20 (a) powder sample cell in holder on mount, (b) glass sample in 
holder on mount 
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Using the F900 software the configuration window, Figure 21, allows for the 

selection of detector and excitation source (Xenon flash lamp or micro second 

flash lamp) as well as the sitting of excitation wavelength, emission wavelength 

and slit widths for both.     

 

 

 

 

Figure 21 Edinburgh Instruments FLS920P configuration interface 
 

 

The “Ref” counts bar visually displays the intensity of excitation light and the 

“Em1” counts bar displays the emission fluorescence intensity.    After 

configuration of the Edinburgh Instruments FLS920P a fluorescence emission 

scan can be obtained, and example of which is shown in Figure 22 which shows 

the emission spectra for Europium doped glass from an excitation of 393 nm. 
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Figure 22 Example of Europium emission spectra from an excitation of 

393 nm 
 
 
 
3.12  Fluorescent Lifetime Study 

3.12.1 Laser Induced Fluorescence Microscope 

 
In order to obtain the fluorescent lifetimes, time resolved fluorescence studies of 

the lanthanide ions in the borosilicate glass were carried out. A Laser Induced 

Scanning Fluorescence Microscope (LISFM) was used and the experimental set-

up is show in Figure 23.  The lanthanide doped glass samples were placed below 

a microscope objective.    

 

 

               
 

Figure 23 Laser induced scanning fluorescence microscope setup for 
fluorescence lifetime study 
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Short laser pulses (~ 5 nsec with better than 1 nm wavelength resolution) at the 

optimum excitation wavelength, generated from an Continuum Nd:YAG OPO 

(Optical Parametric Oscillator)  laser were used to excite the fluorescence from 

the rare-earth ion doped glass samples.  The output wavelength of the laser was 

tuneable and was selected with the help of a Stellarnet EPP2000 Portable 

Spectrometer, 3.14.2.1.  The temporal fluorescence intensity variations were 

detected using a high sensitivity photomultiplier tube. The fluorescence 

wavelength was selected by a set of filters placed in front of the detector.  A 

photodiode in combination with a partially reflecting microscopic glass slide (10% 

reflectance typically) was used to monitor the laser pulses.  A Tektronix TDS 380 

400 MHz digital real-time oscilloscope which can sample at 2 gigasamples/s and 

has a resolution of 1 ns/div was used to view and record the signals from the 

photomultiplier tube. 

 

 

3.13  Scanning Electron Microscopy 

 

Scanning electron microscopy was done using a Leo S430 instrument.    Samples 

of powder were prepared by placing a small quantity on a carbon tab on an 

aluminium stub.   The stub was then placed in a Polaron CC7650 carbon coating 

unit, which by coating the samples in fine graphite make them conductive for 

SEM analysis. 

 

 

3.14  Detection System Development 

 

A prototype detection system to test the novel tracers for environmental tracing 

applications was constructed to be as simple as possible, comprising an 

excitation source, a delivery system and a detection method.  The excitation 

source for the borosilicate glass tracer was a laser and the excitation source for 

the polymers was a UV lamp.  The delivery system utilised optical fibre heads 

from a previous project which used the heads to monitor fluorescent dyes such 

as Rhodamine 6G and Fluorescein as well as particle tracers.   The detection 

method used avalanche photodiode technology which allows greater sensitivity 
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than traditional photodiodes but without the cost, delicate nature and power 

limitations of photomultiplier tubes.   

 

3.14.1 Optical Fibre Heads 

 

The delivery system optical fibre heads are constructed from high impact plastic. 

They consist of a two piece body and tail, the body containing two holes drilled at 

a 20o angle.  The tail of the delivery head provides extra protection to the fibres 

to help prevent them snapping under applied force.   Figure 24 shows the set up 

of the delivery head along with the orientation of the fibres (RS Components 

Twin Core polymer, 413-374). 

 

 

 

 

Figure 24 Optical fibre head design, (i) showing a cut through example 
of layout, (ii) the position of the optical fibres and (iii) the complete 
head with an example of light path. 
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Fibre material PMMA (polymethylmethacrylate) 

Cladding material Fluorinated polymer  

Sheath Black PE 

Attenuation @ 660nm  200dB/km  

Attenuation @ 820nm 1500 dB/km  

Numerical aperture (NA) 0.47 

Number of fibres 1 or 2 

Fibre diameter  1mm 

Tensile Strength 5kg 

Temperature Range -30 to +85°C 

 

Table 16 Technical specification of twin core polymer fibres 
 

 
The use of twin core polymer fibre is suited to fluorescence detection work 

because of its larger diameter, 1mm, compared to more traditional glass optical 

fibres which generally have µm range diameters.    Table 16 shows the 

specifications for the fibres used for this work. 

 

3.14.2 Excitation Sources 

 
The possibility of using three different lanthanide ion hosts; borosilicate glass, 

organic and inorganic polymers, presents the need for two different excitation 

sources.    The borosilicate glass based tracer utilises the lanthanide ion discrete 

narrow band absorption lines, which requires sources such as laser or filtered 

white light.    The organic and inorganic polymers conversely, use the broadband 

UV absorption of the chelate molecule.   This energy is then transferred to the 

lanthanide ion, which then exhibits stronger fluorescence than the uncomplexed 

ion. 
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3.14.2.1 Stellarnet Spectrometer  

 

To determine the spectral emission from the Harma 500 W UV light source a 

Stellarnet Spectrometer was used, Figure 25 shows the spectral characteristics 

for this excitation source.    

 

 

 

Figure 25 Spectral output from Harma 500W UV lamp 

 
The Stellarnet spectrometer has an optical fibre connection which allows the unit 

to be used as an independent detection source.     
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4    RESULTS AND DISCUSSION 

4.1  Concentration Studies with Spectral Characterisation 

 

Initially 3 Dimensional spectra of the excitation and emission peaks of a range of 

single and multiple lanthanide doped glass tracers were recorded to indicate 

possible useful tracer peaks.   Figure 26 shows the fluorescence spectrum of a 

blank, undoped sample of borosilicate glass which displays no emission or 

excitation peaks in the visible region, Figure 27.   

 

 

 

 

Figure 26 Three Dimensional Fluorescence spectrum of a blank sample of 

glass 1 

 

 

 

Figure 27 Emission and Excitation spectra of a blank sample of glass 1 
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The blank glass was then doped with a single lanthanide, either Europium, 

Dysprosium or Terbium ion over a range of concentrations.  Tracer dopant 

studies were then carried out to investigate potential interactions between 

different concentrations of different dopants affecting the emission characteristics 

of the tracer and to investigate any quenching effects. 

 

4.1.1 Europium Spectral Characterisation and Single Doped Concentration Study 

 

Spectral characterisation of a europium doped glass sample can be achieved by 

detailed examination of the 3D spectra, Figure 28 and Figure 29, which shows all 

possible excitation (absorbance) and emission (fluorescence) wavelengths from a 

0.8 mol% europium glass sample. 

 

 

 

Figure 28  3 Dimensional Fluorescence Spectrum of a 0.8 mol % 

europium sample 
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Figure 29  Emission and Excitation Spectra of a 0.8 mol % europium 

sample 

 

From Figure 29 it is possible to determine the precise excitation and emission 

wavelengths. Table 17 displays the full spectroscopic characterisation for the 0.8 

mol % europium doped glass sample, the most intense emission peak being 612 

nm.  The 7 excitation wavelengths selected for the concentration study are 

indicated by a (*).     
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Excitation Wavelength / 
nm 

Emission Wavelength / 
nm 

362 591 

362 * 612 

362 654 

381 592 

381 * 612 

381 653 

382 702 

387 535 

393 591 

393 * 612 

393 702 

395 635 

412 591 

412 * 612 

412 635 

412 702 

444 535 

463 592 

463 652 

463 702 

465 535 

465 * 612 

526 652 

531 590 

531 * 612 

531 702 

579 * 616 

579 704 

580 651 

 

 

Table 17 Excitation and Emission wavelengths found in europium doped 

glass 

 

 

During more detailed analysis it was found that higher emission readings were 

obtained for a 612 nm emission, this was located when a more sensitive 

fluorescent spectrometer instrument with a high wavelength resolution was 

purchased. 
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Figure 30 shows the effect of altering the excitation wavelength on the 612 nm 

emission line intensity as the europium ion concentration is increased from a 

dopant level of 0.2 mol % to 2.0 mol %.    

 

The two strongest excitation wavelengths producing a 612 nm emission are 393 

nm and 465 nm. In the 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 mol % samples they all 

show a higher intensity from the 393 nm excitation compared to 465 nm.   This 

trend changes for 1.4, 1.6, 1.8 and 2.0 mol % with the 465 nm excitation 

producing a stronger emission.  The emission from the 2.0 mol% is 23 % higher 

with 465 nm than that of 393 nm.    
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Figure 30 Europium Emission Intensity at 612 nm from excitation at 362, 

381, 393, 412, 465, 531 and 579 nm 

 

 

This study to compare one emission wavelength across a range of excitation 

wavelengths, at each concentration step of doping, found that the resulting 

emission intensities did not follow the expected trend of a concentration curve.   

This is possibly due to the density arrangement of the dopant ions within the 
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glass matrix.   As the number of europium ions increase they displace network 

modifier sodium ions and their increased proximity allows for intra network 

discrete energy transfer to occur.    It could also be due to concentration 

quenching or more unlikely in-homogeneity of the ions within the glass matrix.   

Concentration quenching would be unlikely as typically a concentration quench 

produces a negative effect on the observed fluorescence.    An inhomogeneous 

mixture of the ions within the glass matrix is also unlikely as a separate set of 

experiments were carried out to determine the reproducibility of glass fabrication 

methods, taking into account human error and mistakes.   These results can be 

seen in Section 4.2 which clearly shows that there is very little variation over a 

range of 5 samples producing an experimental error of 6 %.  
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Figure 31 Thickness variation of Europium glass samples across the 

concentration range. 

 

 

Another possible cause of the concentration trend observed could be due to 

sample thickness variation during fabrication.    As the time between the crucible 

leaving the furnace, the glass pour and the quench can vary from sample to 

sample it means the temperature of the glass when it is quenched can also vary.    
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This variation effects viscosity dramatically with a temperature drop of 200-300 

oC, which in turn will influence how easy it is to form each glass sample.   To 

determine the effect of thickness variation on the concentration range, the 

thickness of each sample was measured in 6 places, Figure 32.      The average 

of this is shown in Figure 31, the trend observed confirms that the variation of 

thickness has no effect on the fluorescent emission wavelength observed, with a 

standard deviation of 0.13 mm.     

 

 

Figure 32 Glass sample thickness variation measurement placement 
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4.1.2 Dysprosium Spectral Characterisation and Single Doped  Concentration 

Study 

 

The same investigation has been repeated for dysprosium doped glass samples 

as shown in Figure 33 and Figure 34.  

 

 

 

Figure 33  Three Dimensional Fluorescence Spectrum of a 0.6 mol % 

dysprosium sample 

 

 

 

 

Figure 34  Emission and Excitation Spectra of a 0.6 mol % dysprosium 

sample 
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As previously discussed it is possible to determine the precise excitation and 

emission wavelengths from 3D characterisation, Table 18 displays the full 

spectroscopic characterisation for the 0.6 mol % dysprosium doped glass sample.  

The excitation wavelengths selected for the concentration study are indicated by 

a (* leading to emission at 481 nm) and (** leading to emission at 575 nm).    

 

 

Excitation Wavelength / 
nm 

Emission Wavelength / 
nm 

324 ** 575 

325 * 481 

352 * 481 

352 ** 575 

352 662 

364 * 481 

364 ** 575 

365 665 

391 * 481 

391 ** 575 

391 665 

391 752 

425 758 

426 * 481 

426 ** 575 

426 664 

451 758 

452 * 481 

452 ** 575 

452 669 

470 ** 575 

471 * 481 

471 756 

 

 

Table 18 Excitation and Emission wavelengths of dysprosium doped 

glass 

 

The spectral excitation and emission detail observed for the lines in dysprosium 

doped borosilicate glass has shown that the 481 nm and 575 nm emission peaks 

have the most potential for use as a tracer because of their intensity and 

separation from the emission lines of europium.    The combination of these two 

factors, allow greater sensitivity and selectivity for potential tracers. 
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From the spectroscopic analysis of the 0.2 – 2.0 mol% dysprosium doped 

borosilicate glass Figure 35 displays the emission intensity at 481 nm from each 

of the following excitation wavelengths 324, 352, 364, 391, 426, 452 and 471 

nm.  It can be seen that the most intense spectral output was obtained from the 

391 nm excitation wavelength with a dysprosium concentration 0.8 mol %. 

Further analysis of the 0.2 – 2.0 mol% dysprosium doped borosilicate glass was 

carried out with the other suitable emission peaks at 575 nm. 
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Figure 35 Dysprosium Emission Intensity at 481 nm from excitation at 

324, 352, 354, 391, 426, 452 and 471 nm 

 

 

 

 It can be seen in Figure 36 that the most intense spectral emission output was 

obtained from the 0.8 mol % sample with the 391 nm excitation wavelength.  

However, comparing Figure 35 and Figure 36 overall the intensity (706,500) of 

the 575 nm emission peak excited at 391 nm exceeded the best intensity 

(330,000) of the 481 nm emission peak excited at 391 nm.   These experiments 

have shown that the optimum sensitivity is achieved with an emission of 575 nm 
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from an excitation of 391 nm.  It also shows that the dopant concentration 

versus emission intensity is different for different excitation wavelengths.  Both 

the 481 nm and 575 nm excitation wavelengths produced a similar trend of 

fluorescent emission, peaking at 0.8 mol %.     
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Figure 36  Dysprosium Emission Intensity at 575 nm from excitation at 

324, 352, 354, 391, 426, 452 and 471 nm 

 

 

Again from this study the comparison of emission wavelengths across a range of 

excitation wavelengths shows that the resulting emission intensities did not 

follow the expected trend of a concentration curve.    This is possibly due to the 

density of the dopant ions within the glass matrix, where as the number of 

dysprosium ions increase they displace network modifier Sodium ions and their 

increased proximity allows for intra network discrete energy transfer to occur.    

As previously shown it is unlikely that the observed variation comes from in-

homogeneity in the fabrication process, the reproducibility study shows 
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conclusively the minimal error, and therefore signal variation, incurred during 

fabrication.  

  

As with the europium samples another possible cause of the concentration trend 

observed could be due to sample thickness variation during fabrication.   This 

could have been the case with the 0.8 mol % sample, where the dominant 391 

nm excitation creates over twice the intensity of the corresponding wavelength 

from the 0.6 mol % sample and over 4 times the intensity of the 1.0 mol % 

sample.   To determine the effect of thickness variation on the concentration 

range, the thickness of each sample was measured 6 times with a standard 

deviation of 0.13 mm.     
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Figure 37 Thickness variation of dysprosium glass samples across the 

concentration range. 

 

 

  The averages of these measurements are shown in Figure 37, the trend 

observed confirms that the variation of thickness has no effect on the fluorescent 

emission observed.      If it had been, it would be expected that the 0.8 mol % 

sample was the thickest, this was not the case.  
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4.1.3 Terbium Spectral Characterisation and Single Doped Concentration Study 

 

The same experiment has been repeated for terbium doped glass samples. 

 

 

 

Figure 38  Three Dimensional Fluorescence Spectrum of a 1.0 mol % 

terbium sample 

 

 

Figure 39  Emission and Excitation Spectra of a 1.0 mol % terbium 

sample 

 

As previously reported the precise excitation and emission wavelengths can be 

obtained from 3D characterisation, Table 19 displays the full spectroscopic 

characterisation for the 1.0 mol % terbium doped glass sample which was found 

from Figure 38 and Figure 39. The excitation wavelengths selected for the 
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concentration study are indicated by a (*). 

 

 

 

Excitation Wavelength / 
nm 

Emission Wavelength 
/nm 

352 588 

352 488 

352 * 542 

354 622 

359 385 

375 * 542 

375 588 

376 415 

376 438 

376 488 

377 622 

379 458 

483 * 542 

483 588 

483 622 

 

 

Table 19 Excitation and Emission wavelengths of terbium doped glass 

 

The spectral excitation and emission detail for the most intense excitation and 

emission lines in terbium doped borosilicate glass have shown that the 542 nm 

emission line has the most potential for use as a tracer.    This is because the 

542 nm emission peak is easily resolved in combination with dysprosium and 

europium in a multi ion tracer.   This allows greater sensitivity and selectivity. 

 

From spectroscopic analysis of the 0.2 – 2.0 mol % terbium doped borosilicate 

glass Figure 40 displays the emission intensities at 542 nm from 352, 375 and 

483 nm excitations.  It can be seen that the most intense spectral output was 

obtained from the 1.8 mol % sample with a 375 nm excitation. 
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Figure 40  Terbium Emission Intensity at 542 nm from excitation at 352, 

375 and 483 nm 

 

Again in this study the comparison of emission wavelengths across a range of 

excitation wavelengths found that the resulting emission intensities did not follow 

the expected trend of a concentration curve.    This is possibly due to the density 

of the dopant ions within the glass matrix, where as the number of terbium ions 

increase they displace network modifier sodium ions and their increased 

proximity allows for intra network discrete energy transfer to occur.    As 

previously shown it is unlikely that the observed variation comes from in-

homogeneity in the fabrication process, the reproducibility study shows 

conclusively the minimal error, and therefore signal variation, incurred during 

fabrication.  

  

As with the europium and dysprosium samples another possible cause of the 

concentration trend observed could be due to sample thickness variation during 

fabrication.   This could have been the case with the 1.8 mol % sample, where 

the dominant 375 nm excitation creates over twice the intensity of the 

corresponding wavelength from the 1.6 mol % and 2.0 mol % sample.   To 
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determine the effect of thickness variation on the concentration range, the 

thickness of each sample was measured 6 times with a standard deviation of 

0.15 mm.     
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Figure 41 Thickness variation of terbium glass samples across the 

concentration range. 

 

The averages of these measurements are shown in Figure 41, the trend observed 

confirms that the variation of thickness has no effect on the fluorescent emission 

observed.     If it had been, it would be expected that the 1.8 mol % sample was 

the thickest, this was not the case. 
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4.2 Investigation of the Fabrication Process 

 

The glass fabrication process is an area where many errors can be introduced 

which could strongly influence the spectral characteristics of the doped glasses.    

It was determined that the most robust way to assess the influence of all the 

“human error” factors concerning glass fabrication was to undertake a 

reproducibility study.      During this assessment it was proposed to examine the 

influence of furnace pouring temperature, time held at this temperature, 

annealing temperature and the annealing time. 

 

4.2.1 Reproducibility Study 

To determine the reproducibility of the doped glasses, a study of the fabrication 

process was undertaken.    For this, five Glass 1 samples doped with 3 mol % 

europium were manufactured using the cast and quench method, then analysed 

using fluorescence spectroscopy and lifetime analysis.   

 

3D fluorescence analysis was carried out using the same experimental 

parameters as for the single and multiple doped samples.  From the resultant 

spectral characterisation analysis of the europium doped samples, a strong 

absorption peak at 465nm with an emission peak at 615nm was observed.   Each 

sample was then analysed with those parameters to produce single line spectra, 

Figure 42, which illustrates the reproducibility of the spectral fluorescence for the 

3 mol % europium doped glass. 
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Figure 42 Single line europium emission spectra from 3 mol % doped 

samples (Ex 465 nm, Em 615 nm) 

 

 

With potential errors coming from the human factor during the weighing, ball 

milling and dry component powder transfer to the crucible, plus the potential 

variables from the glass pour with cast and quench, it can be seen that the 5 

batches produced exhibited very similar emission spectra.  The standard 

deviation of the intensity of the 615 nm emission wavelength was 6 %, with the 

peak wavelength position variation of ± 1 nm. 

 

The fluorescent lifetimes of the 3 mol % europium doped glasses were analysed 

using a modified LISFM system.   Figure 43 shows that for the first three 

batches, the lifetime reproducibility was 2.15 ms and for batches 4 and 5 the 

lifetime was 2.2 ms. The average for the five batches was 2.17 ms.   The 

maximum variation from the average was ± 1.3 %. 
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Figure 43 Fluorescence lifetime profiles of 3 mol % europium glasses 

 

 

4.2.2 Investigation of Varying Fabrication Parameters 

 

Leading on from determining the reproducibility of the fabrication process, it was 

proposed to investigate the effects of altering the fabrication parameters on the 

fluorescence emission characteristics and fluorescence lifetime of the glass 1 

matrix.   Using experimental design a series of experiments were planned with 4 

factors (parameters), Table 20 shows the experimental parameters with the 

variables A – furnace temperature, B –furnace time, C – annealing temperature 

and D – annealing time.  For each of the Experiments 1-8 the excitation 

wavelength, the emission wavelength, the emission peak intensity and the 

fluorescent lifetime were measured to allow full characterisation of the effect of 

the fabrication parameters.  For this set of experiments single doped 1 mol % 

dysprosium samples were prepared, this was purely down to economics as 

europium is the most expensive of the lanthanide salts. 
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Experiment A / oC B / min C / oC D / min 

1 1300 15 450 30 

2 1300 60 450 60 

3 1200 60 350 60 

4 1200 15 450 60 

5 1200 60 450 30 

6 1300 15 350 30 

7 1300 60 350 30 

8 1200 15 350 30 

 

 

Table 20 Experimental parameter changes in furnace temperature and 

time, and annealing temperature and time 

 

 

The plot of 577 nm emission intensity from each dysprosium sample is shown in 

Figure 44, which clearly indicates that there is no significant change in emission 

intensity with the alteration of fabrication parameters.  
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Figure 44 Variation of peak emission intensity at 577 nm for 1 mol % 
dysprosium as the fabrication processes are changed 
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Figure 45 Variation of the 577 nm emission peak wavelength from 1 mol 
% dysprosium as the fabrication processes are changed 
 

 

A similar plot for the 452 nm excitation wavelength of dysprosium was found, 

Figure 47, which again shows there is no significant difference caused by varying 

temperatures and times.   The 577 nm emission wavelength and the fluorescent 

lifetime are shown in Figure 45 and Figure 46 respectively, which further 

confirms no significant effect from the fabrication parameter variations.    
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Figure 46 Lifetime Variation with Experiment of the 577 nm dysprosium 

emission peak as the fabrication processes are changed 
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Figure 47 Variation of the 452 nm excitation wavelength from 1 mol % 

dysprosium as the fabrication processes are changed 
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For all figures, any variation in the values is within the expected experimental 

error.   The results are summarised in Table 21.  

 

Experiment 

Excitation 

/nm 

Emission / 

nm 

Normalised Peak 

Intensity 

Lifetime 

/ms 

1 452 576 602 0.8933 

2 452 577 582 0.88 

3 451 576 611. 0.84 

4 451 577 608 0.88 

5 451 575 575 0.8733 

6 452 574 604 0.9 

7 452 576 576 0.88 

8 452 577 597 0.86 

 

Table 21 Spectral Characteristics for Experiments 1-8 

 

4.2.3  Fabrication Process Conclusion  

4.2.3.1 Reproducibility 

 

The results obtained for the reproducibility study confirmed the incredibly low 

“human error” losses incurred during the physical preparation of the samples.   

Given the weighing, balling milling, sample powder transferred to crucible, 

pouring and quenching all possible points at which to introduce great variation 

and error, to achieve a sample error of 6 % is very good.    This gives great 

confidence in the results obtained from the glass samples, as the variations in 

signal observed can be judged as genuine spectral characteristics of the 

lanthanide ions within the glass.      

 

4.2.3.2 Parameter Variation 

 

The values for furnace and annealing temperature and also the furnace and 

annealing time were chosen using phase diagrams, Chapter 2 Section 2.4.  The 

high and low levels were chosen with the expectation that successful glass 
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samples could still be produced.  An entirely different result might have been 

observed if for example an annealing temperature had been chosen which was 

greater than the glass transition temperature of borosilicate, 650 oC.  The wrong 

choice of fabrication parameters would probably have resulted in the production 

of a partially crystalline sample and an entirely different spectral response would 

have occurred. 

 

The results obtained confirm that within the range of parameters selected, in this 

work, they can be used as the guide for the manufacturing limits.  Within these 

limits the spectral responses of the glasses are controlled by the concentration of 

the lanthanide ion and the composition of the host glass matrix and not by 

changes in the fabrication parameters.  It means that variations in manufacture 

will not influence the monitored fluorescent emissions and lifetimes.  This is vital 

information, however, for the large scale production of glass as an environmental 

tracer it will probably be necessary to take samples to check the responses to 

ensure homogeneous results are obtained for the scaled up batches.     
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4.3 Multiple Ion Doped Glass Characterisation and Concentration Study 

in Borosilicate Glass 1 

 

To investigate the potential effects of multi-ion doping, a range of 25 samples 

were prepared.  The main advantage of using multi-ion doping is the added 

benefit of an increased number of “coded” tracers, which for example could be 

“coded” for a specific discharge sources or effluent streams.  Figure 48 shows a 

europium, terbium and dysprosium triple doped tracer with dopant 

concentrations of 1 mol % europium, 1 mol % terbium and 1.5 mol % 

dysprosium (sample no.7 from  

Table 10).   

 

 

 

Figure 48  Europium, terbium and dysprosium Triple doped tracer  

 

 

 

Figure 49  Emission and excitation spectra of a europium, terbium and 

dysprosium triple doped tracer 
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Tracer dopant concentration studies were carried out to investigate potential 

interactions between different dopant ions, which may affect the emission 

characteristics of the tracer through energy transfer.  

   

Peak width  

Ex Wavelength Em Wavelength 

Excitation Wavelength 
/ nm 

Emission 
Wavelength / nm 

Intensity From To PW From To PW 

324 482 102.65 313.0 329.0 16.0 461.0 505.0 44.0 

348 481.5 559.35 335.0 357.0 22.0 457.5 505.0 47.5 

363 483 414.65 357.0 371.0 14.0 459.0 501.0 42.0 

387 483 525.60 371.0 409.0 38.0 459.0 505.0 46.0 

424 481.5 104.01 416.0 430.0 14.0 461.0 499.0 38.0 

452 483.5 239.50 438.0 458.0 20.0 472.5 507.0 34.5 

322 545.5 46.83 310.0 330.0 20.0 545.5 554.5 9.0 

348 545.5 241.58 332.0 357.0 25.0 531.5 556.5 25.0 

365 545 219.26 359.0 370.0 11.0 528.0 558.5 30.5 

377 545 268.63 373.0 381.0 8.0 528.0 558.5 30.5 

384 545.5 204.00 382.0 390.0 8.0 531.5 554.5 23.0 

391 546 166.07 390.0 404.0 14.0 531.5 554.5 23.0 

424 548 41.83 417.0 430.0 13.0 531.5 554.5 23.0 

452 544.5 76.58 438.0 460.0 22.0 533.5 556.5 23.0 

463 544 33.62 461.0 467.0 6.0 528.0 549.0 21.0 

472 544 37.17 468.0 475.0 7.0 529.5 554.5 25.0 

482 545 90.66 475.0 494.0 19.0 529.5 562.0 32.5 

322 576 128.39 313.0 330.0 17.0 558.5 598.5 40.0 

348 574.5 937.70 338.0 357.0 19.0 556.5 604.0 47.5 

363 576 582.79 357.0 371.0 14.0 558.5 602.0 43.5 

386 576 907.61 371.0 408.0 37.0 554.5 602.0 47.5 

424 575 178.37 414.0 435.0 21.0 556.5 602.0 45.5 

452 575.5 380.59 436.0 460.0 24.0 556.5 602.0 45.5 

471 575 119.16 462.0 485.0 23.0 556.5 598.5 42.0 

319 617 47.38 311.0 330.0 19.0 602.0 619.0 17.0 

349 616 90.01 340.0 355.0 15.0 604.0 638.5 34.5 

362 615.5 171.66 355.0 368.0 13.0 602.0 638.5 36.5 

379 615.5 323.62 368.0 387.0 19.0 602.0 638.5 36.5 

393 614.5 845.71 387.0 406.0 19.0 600.5 640.5 40.0 

412 614 82.77 408.0 420.0 12.0 602.0 636.5 34.5 

451 614.5 47.17 449.0 455.0 6.0 606.0 632.5 26.5 

463 615.5 387.79 455.0 468.0 13.0 600.5 640.5 40.0 

482 616 32.08 479.0 496.0 17.0 604.0 631.0 27.0 

531 616 76.13 520.0 544.0 24.0 600.5 636.5 36.0 

579 615.5 21.02 569.0 582.0 13.0 608.0 634.5 26.5 

349 662.5 42.02 340.0 359.0 19.0 638.5 680.5 42.0 

362 663 29.97 359.0 370.0 11.0 644.0 680.5 36.5 

386 663.5 49.11 371.0 389.0 18.0 644.0 680.5 36.5 

392 662 53.32 390.0 402.0 12.0 640.5 671.0 30.5 

427 661.5 13.01 416.0 433.0 17.0 657.5 672.5 15.0 

452 654 25.17 447.0 455.0 8.0 650.0 682.5 32.5 

465 653.5 30.27 458.0 468.0 10.0 644.0 663.0 19.0 

362 696 22.14 357.0 368.0 11.0 688.0 707.0 19.0 

381 696 36.83 370.0 387.0 17.0 682.5 714.5 32.0 

393 698.5 105.98 387.0 405.0 18.0 680.5 718.5 38.0 

463 699.5 34.88 457.0 469.0 12.0 682.5 716.5 34.0 

533 699.5 13.52 520.0 544.0 24.0 648.0 724.0 76.0 

 

Table 22 Fluorescence peaks from a triple doped samples shown in 

Figure 48.  Yellow dysprosium, Orange terbium and Red europium 
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Unlike the single ion doped glass samples, where a limited number of emission 

peaks would be expected, a multiple ion doped sample exhibits many more.  

Table 22 shows a full interrogation of all the peaks present from a europium, 

dysprosium and terbium ion doped glass sample. 

 

4.3.1 Statistical Analysis of Multi-Ion Doping in Glass 1 

 

Due to the high number of possible combinations of dopant and dopant 

concentrations it was necessary to use Chemometrics to optimise the number of 

experiments to observe the dependence of the response parameters.  A 

fractional experimental design was used to obtain meaningful results with a 

manageable and cost effective number of experiments.  Statistical analysis was 

carried out on the data to determine the trends and how the concentration of 

each dopant affected the fluorescence intensity and peak wavelength of the three 

chosen peak wavelengths, Table 23.   

 

The wavelength selection was made from the single ion doped concentration 

analysis, the 3D spectral characterisation (Section 4.1), and the observed 

interactions between the dopants causing energy transfer signals thus enhancing 

certain emission peaks.    It should be noted that the discrepancy between the 

optimum excitation wavelengths found and the selected excitation wavelength 

for some of the experiments was due to the limitation presented by the 

availability of laser excitation sources with a limited budget.     

 

 

Lanthanide 
Ion 

Optimum 
Excitation 

Wavelength / 
nm 

Selected 
Excitation 

Wavelength / 
nm 

Emission 
Wavelength / 

nm 

Europium 393 465 615 

Terbium 375 485 545 

Dysprosium 453 453 577 

 

Table 23 Wavelengths selected for trend analysis 
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Minitab 14 was used to analyse either the peak wavelengths or the peak intensity 

against the Taguchi Orthogonal Array table, Table 10 and Table 12.   

This produced charts showing the interaction of each dopant concentration 

against the mean intensity values, with each statistical plot representing data 

from 25 samples. 

 

4.3.2 Trend Analysis of europium, terbium and dysprosium ion interactions in a 

multi-ion Glass 1 

 

The first trend analysis examined the europium intensity as the concentrations of 

europium, terbium and dysprosium increased.  Figure 50 (a) shows as the 

concentration of europium increased, the europium 615 nm emission intensity 

increased.  Figure 50 (b) shows that increasing the terbium concentration had no 

significant effect on the europium 615 nm peak intensity but Figure 50 (c) shows 

that increasing dysprosium concentration did cause a small decrease in 615 nm 

peak intensity.  
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Figure 50 Europium mean intensity trends with variations in dopant 

concentrations for Glass 1 samples   
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Figure 51 Terbium mean intensity trends with variations in dopant 

concentrations for Glass 1 samples  

 

 

The next trend analysis examined the terbium fluorescence peak intensity.   

Figure 51 (a) and (c) show that with increasing europium or dysprosium 

concentration the 545 nm peak intensity of terbium stayed fairly stable up to 1.5 

mol % but at 2.0 mol % the terbium intensity decreased.   Increasing the 

terbium concentration increased the terbium peak intensity linearly up to 2.0 mol 

%, above this did not appear to effect intensity, Figure 51 (b).    This suggests 

the maximum doping concentrations should be 2.0 mol % of terbium, with no 

more than 1.5 mol % of europium or dysprosium.  
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Figure 52 Dysprosium mean intensity trends with variations in dopant 

concentrations for glass 1 samples 

 

 

The final trend analysis of glass 1 was for dysprosium, the results for which are 

shown in Figure 52.   The dysprosium 577 nm peak intensity decreased with an 

increase in europium concentration, Figure 52 (a), while increasing terbium 

concentration peaked at 1.0 mol% before decreasing with higher concentrations, 

Figure 52 (b).   The 577 nm peak intensity of dysprosium increased linearly up to 

a concentration level of 1.5 mol%, Figure 52 (c) before energy transfer, or 

possible fluorescence quenching, occurred. 

 

These results indicate that there are interactions between the dopants resulting 

in the fluorescence signal changing with varying dopant concentrations.  From 

the literature [57], energy transfer peaks were found from a terbium 485 nm 

excitation wavelength producing a europium 615 nm emission wavelength.  Also, 

a dysprosium 450 nm excitation wavelength was found to induce a terbium 545 

nm emission wavelength.   These peak enhancements were caused by energy 

transferring between the lanthanide ions which produce a new unique response 
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signal for this particular glass and therefore would provide added feature for a 

tracer.  To further investigate this, the intensity of the terbium 485nm enhancing 

the intensity of the europium 615nm peak was statistically analysed as each 

dopant concentration was increased as shown in Figure 53. 
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Figure 53 Energy transfer from terbium 485 nm excitation to europium 

615 nm emission, mean intensity as dopant concentrations increased 

 

 

These plots show that as the europium or terbium concentration increases, the 

615 nm emission peak intensity increases.  Whereas increasing the dysprosium 

concentration caused the 615 nm emission peak intensity to decrease as had 

been seen in previous studies [43].  The probability of terbium and europium 

ions coming into close enough proximity within the glass network to undergo 

energy transfer increases as their concentration increases.   This occurs by the 

dopant ions substituting sodium network modifier ions with the glass network.  

However, as dysprosium concentrations increase the 615 nm peak intensity 

decreased, which indicates a further interaction between all three dopants.   It is 

possible that dysprosium ions are entering between terbium and europium ions 
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reducing the possibility of the energy transfer occurring between terbium and 

europium.                                                                                        
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Figure 54 Energy transfer from dysprosium 452 nm excitation to terbium 

545 nm emission, mean intensity as dopant concentrations increased  

 

The second energy transfer analysed was the emission caused by dysprosium 

(452 nm excitation) enhancing terbium (545 nm emission) and the results are 

shown in Figure 54.   As the europium concentration was increased the trend 

appeared to go down, reducing the intensity except at 2 mol %.  This point was 

odd and could be an outlier result.   Increasing terbium concentration produced a 

slightly decreasing trend whilst increasing dysprosium concentration increased 

the intensity peaking at 2 mol % before decreasing again.   

 

Literature shows the energy transfer from dysprosium to terbium had been 

reported in phosphate glasses [55] and in boroaluminosilicate glasses [56] with 

dysprosium reportedly undergoing concentration quenching.    
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4.3.3 Fluorescent Lifetime Study of Multi-Ion Doped Glass 1 

 

An additional feature of using lanthanides as tracers is their unique fluorescent 

lifetime (long, millisecond range) compared to traditional tracers (short, 

nanosecond range) and possible pollutants or background molecular flourescence 

(short, nanosecond range).  A list of selected excitation and fluorescence 

wavelengths corresponding to each of the doped lanthanides ions, identified from 

fluorescence spectra, along with the transmission peak of interference filter (10 

nm bandwidth), is given in the table below, Table 24. 

 

 

 

Lanthanide  
ions 

Excitation laser 
wavelength/nm 

Fluorescence 
emission peak/nm 

Interference 
filter peak/nm 

Europium 464 615 620 

Terbium 483 546 546 

Dysprosium 451 577 578 

   

Table 24 Table of peak wavelengths for fluorescence excitation, 

emission and filter 

 

 

A typical normalised fluorescence pulse from europium in the Glass 1 sample 1, 

for 464 nm laser excitation and fluorescence emission at 615 nm (filtered 

through an interference filter with transmission peak at 620 nm and bandwidth of 

10 nm) is shown in the Figure 55.  It shows a fast rising pulse with a long 

exponentially decaying tail corresponding to the long fluorescence lifetime of the 

europium.  The lifetime was calculated based on single exponential fluorescence 

decay and the characteristic lifetime constant of the exponential curve as the 

fluorescent lifetime of the particular lanthanide ions.   From each sample, three 

data sets were used to calculate an average fluorescent lifetime of europium and 

this sample shows an average lifetime of 1.95 ms ± 0.11 ms. 

 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 4 – Results and Discussion 

Commercial in Confidence 108 

 

 

Figure 55 Fluorescent lifetime profile of europium ions doped in Glass 1 

sample 1 

 

A similar approach was followed on all the glass samples to calculate the lifetime 

corresponding to terbium and dysprosium. A decay profile of terbium in Glass 1 

sample 1 at 546 nm for the 483 nm excitation is shown in Figure 56 and it 

indicates an average lifetime of 2.27 ms ± 0.13 ms.   
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Figure 56 Fluorescent lifetime profile of terbium ions in Glass 1 sample 1 

 

 

The fluorescent decay profile from dysprosium ions in Glass 1 sample 1 is shown 

in Figure 57.  In this case, laser pulses at 451 nm were used to excite the 

fluorescence and fluorescence emission at 577 nm was filtered through an 

interference filter with transmission peak at 578 nm to record the decaying pulse 

using a photomultiplier tube.  It shows an average lifetime of 0.95 ms ± 0.05 

ms.  Following a similar procedure all 25 samples of the Glass 1 matrix were 

characterised for the fluorescent lifetime of europium, terbium and dysprosium 

ions.  
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Figure 57 Fluorescent lifetime profile of dysprosium ions in Glass 1 

sample 1 

 

 

Minitab14, as explained previously in the spectral trend analysis, was used to 

analyse the tabulated lifetime (in milliseconds) data of europium, terbium and 

dysprosium the 25 glass 1 glass samples, to study the concentration dependent 

lifetime variations.    
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Figure 58 shows the trends for mean lifetimes of the europium in Glass 1 glass 

for different concentrations of europium, terbium and dysprosium (for excitation 

at 464 nm and emission at 615 nm).  It shows a linearly decreasing trend for 

fluorescent lifetime of europium with the europium concentration and this may 

be due to the concentration dependant self quenching of the fluorescence.   In 

addition to this, the effect of terbium and dysprosium, on europium lifetime is 

also plotted in the figure.  The terbium provides a small increase in europium 

lifetime up to 1 mol % of terbium but as the dysprosium concentration increases 

indicating a much faster reduction in europium lifetime, over the same range of 

concentrations. 
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Figure 58 Fluorescent lifetime trends of europium in glass 1 glass 

samples with varying europium, terbium and dysprosium concentrations 

for excitation at 464 nm and emission at 615 nm. 
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Figure 59 shows the effect of europium, terbium and dysprosium concentration 

on terbium lifetime plotted for the excitation at 483 nm and fluorescence 

emission at 545 nm.   It indicates a gradual reduction in terbium lifetime with the 

increase of all the three lanthanide ion concentrations.  A similar trend is also 

observed in the dysprosium lifetime (for 451 nm excitation and 577 nm 

emission) and is shown in Figure 60.  
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Figure 59 Fluorescent lifetime trends in Terbium in glass 1 glass samples 

with varying europium, terbium and dysprosium concentrations for 

excitation at 483 nm and emission at 546 nm. 
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Figure 60 Fluorescent lifetime trends of dysprosium in glass 1 glass 

samples with varying europium, terbium and dysprosium concentrations 

for excitation at 451 nm and emission at 577 nm. 

 

 

A general conclusion on the individual ion interactions is that all three lanthanide 

ions have shown a negative trend with the increase in their own ion 

concentration and this can be attributed to the concentration quenching effect.  

Regarding the lanthanide interactions, a similar trend is observed from all the 

three lanthanide ions due to the increase in the other two lanthanide ion 

concentrations. Comparing the three lanthanide ions in glass 1 borosilicate glass, 

terbium has shown the longest fluorescent lifetime (nearly 2.0 ms) with 

dysprosium the least (nearly 0.8 ms). Based on these observations, these long 

lifetime characteristics can be used as an additional differentiating feature for the 

environmental tracer application in the glass 1 matrix. 
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4.3.4 Glass 1 Characterisation Summary 

 

A large number of narrow excitation and emission peak wavelengths are 

available to choose from. 

 

There is a very strong relationship between lanthanide concentrations and 

emission peak intensities.  This means that different environmental tracer 

combinations can be achieved by altering the concentrations of the lanthanide 

dopants in the glass matrix.  The data indicates the possibility that 0.1 mol% 

concentration differences could be utilised to produce different emission 

combinations. 

 

Further unique codes should be achievable as additional excitation/emission peak 

wavelengths previously forbidden are observed due to energy transfer 

(sensitisation) of certain combinations of lanthanides. 

 

Long lifetime characteristics can be used as one of the discrimination features for 

the environmental tracer in the glass matrix.  With lanthanides exhibiting 

lifetimes in the millisecond region compared to that of conventional molecular 

tracers typically in the nanosecond region.  
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4.4 Multiple Ion Doped Glass Characterisation and Concentration 

Study in Borosilicate Glass 2. 

 

To investigate the effect of altering the glass matrix, a range of 25 samples were 

prepared with the addition of NaF.  The addition of NaF is an attempt to alter the 

position, ratio and fluorescence intensity of emission wavelengths produced.  To 

investigate this effect, 3D spectra of the excitation and emission peaks of a 

range of multiple lanthanide doped glass tracers were recorded to indicate 

possible changes in useful tracer peaks.   Figure 61 shows the fluorescence 

spectrum of a blank, undoped sample of borosilicate glass which displays no 

emission or excitation peaks in the visible region.   

 

 

 

Figure 61 Fluorescence spectrum of a blank sample of glass 2 

 

  

 

Figure 62 Emission and Excitation spectra of a blank sample of glass 2 
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As discussed previously the added advantage of using multi-ion doping is the 

added benefit of an increased number of “coded” tracers, which for example 

could be “coded” for a specific discharge sources or effluent streams.   Figure 63 

and Figure 64 show the 3D fluorescence spectra from europium, terbium and 

dysprosium multi-ion doped tracer with dopant concentrations of 1 mol % 

europium, 1 mol % terbium and 2 mol % dysprosium.  

 

 

 

Figure 63 Fluorescence Spectrum of Glass 2 sample 13 (1 mol % 

europium, 1 mol % terbium, 2 mol % dysprosium) 

 

   

 

Figure 64 Excitation and Emission Spectrum of Glass 2 sample 13 (1 mol 

% europium, 1 mol % terbium, 2 mol % dysprosium) 
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Peak width   
  Ex Wavelength Em Wavelength 

Excitation 
Wavelength / nm 

Emission 
Wavelength / nm 

Intensity From To PW From To PW 

323 481 116.44 312.0 331.0 19.0 466.5 506.5 40.0 

349 481 677.09 331.0 357.0 26.0 459.5 506.5 47.0 

363 481 473.49 357.0 371.0 14.0 465.5 506.5 41.0 

386 481 581.58 371.0 411.0 40.0 457.5 506.5 49.0 

423 481 100.80 416.0 431.0 15.0 459.5 501.5 42.0 

452 481 242.19 436.0 460.0 24.0 468.5 501.5 33.0 

324 546 43.06 312.0 329.0 17.0 529.0 554.5 25.5 

349 546 288.18 332.0 356.0 24.0 527.0 555.5 28.5 

364 546 241.89 358.0 370.0 12.0 531.0 555.5 24.5 

378 546 257.01 373.0 382.0 9.0 529.0 557.5 28.5 

385 546 206.25 382.0 409.0 27.0 529.0 552.5 23.5 

424 546 37.81 417.0 434.0 17.0 531.0 554.5 23.5 

445 546 51.32 437.0 448.0 11.0 531.0 553.5 22.5 

452 546 74.35 448.0 459.0 11.0 530.0 553.5 23.5 

485 546 71.52 475.0 495.0 20.0 531.0 558.5 27.5 

323 577.5 161.20 311.0 331.0 20.0 559.5 600.5 41.0 

349 577.5 999.99 331.0 357.0 26.0 555.5 603.0 47.5 

363 577.5 753.64 357.0 371.0 14.0 556.5 603.0 46.5 

385 577.5 1002.58 371.0 412.0 41.0 555.5 602.0 46.5 

423 577.5 182.23 412.0 436.0 24.0 556.5 603.0 46.5 

452 577.5 435.82 436.0 460.0 24.0 555.5 601.5 46.0 

471 577.5 127.47 461.0 491.0 30.0 555.5 595.5 40.0 

318 615 41.26 312.0 328.0 16.0 603.0 631.5 28.5 

351 615 89.54 341.0 355.0 14.0 606.0 635.5 29.5 

361 615 186.19 355.0 368.0 13.0 602.0 636.5 34.5 

380 615 314.30 368.0 387.0 19.0 602.0 636.5 34.5 

393 615 844.77 387.0 406.0 19.0 600.5 640.5 40.0 

412 615 65.72 407.0 419.0 12.0 603.0 634.5 31.5 

464 615 356.67 457.0 471.0 14.0 600.5 636.5 36.0 

532 615 65.51 520.0 545.0 25.0 600.5 635.5 35.0 

322 658 5.76 317.0 326.0 9.0 654.0 664.5 10.5 

347 658 44.04 332.0 357.0 25.0 637.5 691.0 53.5 

362 658 29.61 357.0 369.0 12.0 643.5 683.5 40.0 

384 658 51.24 371.0 386.0 15.0 642.5 682.5 40.0 

392 658 51.69 389.0 407.0 18.0 638.5 674.0 35.5 

425 658 10.13 418.0 429.0 11.0 652.0 687.0 35.0 

451 658 21.39 439.0 457.0 18.0 644.0 688.0 44.0 

464 658 20.28 460.0 468.0 8.0 646.0 676.5 30.5 

485 658 9.65 482.0 487.0 5.0 665.5 682.5 17.0 

320 700.5 3.73 311.0 328.0 17.0 685.5 710.5 25.0 

352 700.5 9.31 336.0 356.0 20.0 693.0 711.5 18.5 

361 700.5 19.40 356.0 368.0 12.0 688.0 712.5 24.5 

380 700.5 36.30 368.0 387.0 19.0 683.5 716.5 33.0 

392 700.5 100.73 387.0 406.0 19.0 678.5 723.5 45.0 

414 700.5 10.38 406.0 420.0 14.0 685.5 714.5 29.0 

464 700.5 30.19 458.0 469.0 11.0 677.5 716.5 39.0 

530 700.5 8.40 521.0 540.0 19.0 676.5 716.5 40.0 

349 754 24.80 338.0 357.0 19.0 731.0 786.0 55.0 

363 754 14.26 357.0 367.0 10.0 744.0 781.0 37.0 

422 754 8.27 412.0 435.0 23.0 739.0 773.0 34.0 

448 754 10.07 440.0 462.0 22.0 728.0 781.0 53.0 

 

Table 25 Table of fluorescence peaks, their intensity and peak width for 

Glass 2 sample 13 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 4 – Results and Discussion 

Commercial in Confidence 118 

Unlike the single ion doped glass samples, where a limited number of emission 

peaks would be expected, a multiple ion doped sample exhibits many more.  

Table 25 shows a full interrogation of all the peaks present from a europium, 

dysprosium and terbium ion doped glass 2 sample 13. 

 

4.4.1 Statistical Analysis of Multi-Ion Doping in Glass 2 

 

Statistical analysis of the response trends for the triple doped glass 2 was 

achieved using Minitab14 as was carried out for the glass 1 samples.  The 

europium intensity trends of glass 2 based glasses with dopant concentrations 

are shown in Figure 65.  For the triple doped glass increasing the europium 

concentration, Figure 65(a), showing a clear concentration dependence of the 

peak intensity.  This showed a linearly increasing trend with increasing europium 

concentration.  No significant interaction effect was observed with increasing 

terbium concentration Figure 65(b) however, increasing the dysprosium 

decreased the europium intensity Figure 65(c). 
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Figure 65 Europium mean intensity trends with variations in dopant 

concentrations for glass 2 samples  
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The terbium intensity trends are shown in Figure 66 where an increase in 

europium concentration caused a slight decrease in terbium peak height.  The 

terbium peak intensity increased with concentration, showing a clear 

concentration dependence of the terbium peak intensity.  Increasing dysprosium 

concentration showed no effect on the terbium intensity. 
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Figure 66 Terbium mean intensity trends with variations in dopant 

concentrations for glass 2 samples  
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Figure 67(a) and (b) shows the dysprosium trends which indicated a decrease 

with increasing either europium or terbium concentration.  However, an increase 

was found with increasing dysprosium concentration up to 1 mol % with a 

plateau from 1 – 2 mol %, Figure 67(c). 
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Figure 67 Dysprosium mean intensity trends with variations in dopant 

concentrations for glass 2 samples  

 

 

As with the analysis of glass 1 significant, energy transfer peaks were observed 

in the glass 2 samples.  Therefore the same analysis was carried out to look at 

the trends for the terbium energy transfer to europium and dysprosium energy 

transfer to terbium.   
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The first analysis shows that as either the europium or dysprosium concentration 

was increased, the peak intensity increased Figure 68 (a) and (c).  However, no 

peak was found when the terbium concentration was 0 or 0.5 mol % therefore 

there is insufficient data to obtain the terbium trend, Figure 68 (b).  These 

results did however show a large interaction between the europium and 

dysprosium concentrations influencing the terbium to europium energy transfer. 
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Figure 68 Energy transfer from terbium 485 nm excitation to europium 

615 nm emission, mean intensity as dopant concentrations increased  
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The energy transfer results from dysprosium to terbium are shown in Figure 69.  

With increasing europium concentration a decrease in peak emission intensity 

(545 nm) was found up until 1 mol %, Figure 69 (a).  However, with an increase 

in either the terbium or dysprosium concentration there was a large increase in 

545 nm europium peak intensity, Figure 69 (b) and (c).  Therefore the europium 

has a significant negative effect on the peak intensity as it may enhance the 

probability of the energy transfer from terbium to europium instead of enhancing 

terbium due to the three way interaction between dopants. 
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Figure 69 Energy transfer from dysprosium 450 nm excitation to terbium 

545 nm emission, mean intensity as dopant concentrations increased 

 

Overall the glass 2 data showed that generally the peak intensity was 

proportional to the concentration of the lanthanide dopant with differences of 0.1 

mol % concentration changes generating measurable changes in peak intensity.  

The data also showed that some significant interactions between the lanthanide 

dopants occurred with some of the glass samples generating more potential 

tracer combinations. 
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4.4.2  Fluorescent Lifetime Study of Multi-Ion Doped Glass 2 

 

As explained in the case of glass 1 lifetime analysis, a similar set of fluorescent 

lifetime trend analyses was carried out with the glass 2 triple doped glass 

samples. All the 25 glass 2 triple doped glass samples were tested at the specific 

wavelengths and tabulated in Table 25 selected using the Minitab14 Taguchi 

Chemometric statistical model. Since no significant spectral peak shift was 

observed by changing the host glass matrix, the same excitation and emission 

wavelengths, as in glass 1, were utilised. The resulting trend plots are presented 

and discussed in this subsection. 

 

A range of lanthanide concentrations were examined for the lifetime trend 

analysis in the glass 2 matrix at 0, 0.5, 1.0, 1.5, 2.0 mol %.  The lifetime trend 

for europium ions in the glass 2 composition, for varying concentrations of 

europium, terbium and dysprosium is shown in Figure 70.   
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Figure 70 Fluorescent lifetime trends of europium in Glass 2 with varying 

concentrations of europium, terbium & dysprosium for excitation at 464 

nm and emission at 615 nm. 
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During the lifetime study experiments, short laser pulses at 464 nm were used 

for fluorescence excitation and emission at 615 nm was detected using a PMT.  

The optimum excitation wavelengths for europium, terbium and dysprosium and 

the “best fit” excitation sources available are shown in Table 23 on p101.   As 

there is no 395 nm laser available for use as an excitation source the second 

strongest excitation wavelength for Europium is 465 nm.   As can be observed 

from the trend plot the europium lifetime decreases as the dysprosium 

concentration increases.  As the terbium and europium concentration increases, 

the europium lifetime has shown a slight increase followed by saturation, 

although this is not statistically significant as the error bars show.   

 

Figure 71 shows the lifetime trends for the terbium ions in glass 2 triple doped 

samples and indicates a gradual reduction in terbium lifetime with any increase 

in the europium and dysprosium concentration. With terbium itself the trend is 

very gradual decrease but statistically flat.    
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Figure 71 Fluorescent lifetime trends of Terbium in Glass 2 with varying 

concentrations of europium, terbium and dysprosium for excitation at 

483 nm and emission at 546 nm. 
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A similar plot for dysprosium is shown in Figure 72.  It shows a strong negative 

dependency of dysprosium lifetime as the dysprosium concentration increases 

and a level trend as the europium concentration increases. The terbium 

concentration has shown no significant effect on dysprosium lifetime within the 

selected concentration limit. 
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Figure 72 Fluorescent lifetime trends of dysprosium in glass 2 for 

varying concentrations of europium, terbium & dysprosium for excitation 

at 451 nm and emission at 577nm. 

 

From this analysis, it can be concluded that the lanthanide ion lifetime in glass 2 

multi doped glass depends on the lanthanide concentration.  All three ions exhibit 

self quenching to varying degrees, with dysprosium showing a strong negative 

trend and very little with europium and terbium which statistically level.  

Generally a negative lifetime trend was observed for the interactions between 

the lanthanides with the exception of europium lifetime due to terbium 

concentration.  In this case, a very small increase in europium lifetime due to 

terbium ions was observed.  The same trend had been observed in glass 1 

glasses.  The results demonstrate the long and stable nature of the lifetimes, for 

this range of lanthanide concentrations, it can be concluded that the fluorescent 
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lifetime of lanthanide ions could be used as one of the background discrimination 

features for the lanthanide ion based environmental tracer.  The potential to use 

this lifetime variation as a determination between lanthanide doped glass tracers 

in a real world application would only be possible if a large variation in lifetime 

were possible.    As the results show here, it would be almost impossible to 

attempt to differentiate between a 0.5 mol % and 1 mol % europium if using 

more than one tracer dopant combination.    This would suggest that using 

fluorescent emission and dopant lifetime of the glass tracer could be used as the 

method of identification in a single tracer study.    If more than one tracer 

combination were to be used then only fluorescent emission could be exploited 

as a monitoring method, using lifetime as a pure background discriminatory 

feature.  
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4.4.3 Investigation into peak wavelength variations with dopant concentrations 

and glass matrix 

 

To determine whether the peak wavelength changed with changes in dopant 

concentrations, the mean and standard deviations were calculated for each of the 

peaks of interest.  The influence of the glass matrix is observed by comparison of 

glass 1 and glass 2 data. 

 

4.4.3.1 Borosilicate glass 1 peak wavelength variations 

 

Using the spectroscopy data from the 25 glass 1 samples, europium had a mean 

peak excitation at 463.68 nm with a standard deviation of 0.56 nm and mean 

peak emission at 615.24 nm with a standard deviation of 1.37 nm, Figure 73. 
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Figure 73 Investigation into changes in the peak excitation and emission 

wavelengths for europium in glass 1 samples 

 

 

Terbium had a mean peak excitation at 483.32 nm with a standard deviation of 

0.75 nm and a mean peak emission at 545.32 nm with a standard deviation of 

1.06 nm, Figure 74. 
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Figure 74 Investigation into changes in the peak excitation and emission 

wavelengths for terbium in glass 1 samples 

 

Dysprosium had a mean peak excitation at 451.96 nm with a standard deviation 

of 0.20 nm and a mean peak emission at 576.29 nm with a standard deviation of 

1.17 nm Figure 75. 
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Figure 75 Investigation into changes in the peak excitation and emission 

wavelengths for dysprosium in glass 1 samples 
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4.4.3.2 Borosilicate glass 2 peak wavelength variations 

 

For the glass 2 samples, europium had a mean peak excitation at 464.05 nm 

with a standard deviation of 0.39 nm and mean peak emission at 614.70 nm with 

a standard deviation of 0.73 nm, Figure 76. 
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Figure 76 Investigation into changes in the peak excitation and emission 

wavelengths for europium in glass 2 samples 

 

 

Terbium had a mean peak excitation at 483.30 nm with a standard deviation of 

0.73nm and a mean peak emission at 545.08 nm with a standard deviation of 

0.85nm, Figure 77. 
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Figure 77 Investigation into changes in the peak excitation and emission 

wavelengths for terbium in glass 2 samples 

 

 

Dysprosium had a mean peak excitation at 451.95 nm with a standard deviation 

of 0.39nm and a mean peak emission at 575.83 nm with a standard deviation of 

1.23nm, Figure 78. 
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Figure 78 Investigation into changes in the peak excitation and emission 

wavelengths for dysprosium in glass 2 samples 
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4.4.4  Conclusions of borosilicate glass 1 and glass 2 

4.4.4.1 Peak wavelength variations 

 

For all of these results in the 25 glass 1 and 25 glass 2 multi doped samples, the 

peak emission and excitation wavelengths were very consistent with small 

standard deviations of between 0.2 to 0.75 nm for glass 1 excitation and 0.39 to 

0.73 nm for glass 2 excitation; and 1.06 to 1.37 nm for glass 1 emission and 

0.73 to 1.23 nm for glass 2 emission.  This means that a confident measurement 

of concentration of the dopants based on their emission peak wavelength should 

be readily achieved with a suitable detector system.   However the addition of 

NaF to the matrix has not significantly changed the peak wavelengths to 

distinguish between the two glass matrices by wavelength although NaF should 

allow higher concentrations of dopants to be added.  This means that addition of 

the small amount of NaF is an insufficient change to create a whole new set of 

tracers.   However the addition of NaF had the effect of reducing the glass melt 

temperature which resulted in the glass being less viscous and so easier to work 

with when poured at 1250oC. 

 

4.4.4.2 Spectral Characterisation  

 

Overall the glass 2 data showed that generally the peak intensity was 

proportional to the concentration of the lanthanide dopant with differences of 0.1 

mol% concentration changes generating measurable changes in peak intensity.  

The data also showed that some significant interactions between the lanthanide 

dopants occurred just as with the glass 1 samples leading to an even wider range 

of useful tracer fluorescent peaks.  They also showed useful long lifetime 

characteristics as with the glass 1 samples which can allow discrimination of the 

glass peaks of interest from background molecular fluorescence interference.  

 

It can be seen that by altering the chosen lanthanide dopant, number of dopants, 

dopant concentration and using selective excitation and emission wavelengths 

there are a huge number of possible unique tracer combinations. 
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4.5 Lanthanide Glass Tracer Comparison with Existing Molecular Dye 

Tracers: 

 

A single line scan of the discrete fluorescent emission from a Europium glass 1 

tracer is shown in Figure 79, and shows a FWHM spectral bandwidth of 12 nm.  

By comparison, Figure 80 and Figure 81, show the commonly used molecular 

dyes Fluorescein and Rhodamine displaying broader FWHM spectral bandwidths 

of approximately 50 nm and 60 nm. 
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Figure 79 Fluorescent emission from europium doped bulk glass from a 

465 nm excitation 
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Figure 80 Fluorescent emission from a Fluorescein dye tracer from a 475 

nm excitation 

 

 

The significantly narrower bandwidth emission peaks of the lanthanides achieve a 

more selective detection of multiple tracers without interference from 

overlapping emissions.  Thus giving the potential to selectively simultaneously 

monitor many different tracer combinations in the same location, this would not 

be possible using broad bandwidth molecular dye tracers. 
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Figure 81 Fluorescent emission from Rhodamine dye tracer from a 475 

nm excitation 

 

4.5.1 Glass Tracer Particles 

 

To produce tracer particles from bulk glass, the glass samples were broken into 

3-5 mm pieces and repeatedly ball milled and sieved down to <5 µm.   The size 

ranges of <5 µm, 5-10 µm, 10-20 µm, 45-75 µm and a bulk sample were 

analysed to determine the effect of particle size on the fluorescent emission, 

shown in Figure 82.   The bulk sample (dark blue plot) shows a peak emission of 

612 nm, as does the 45-75 µm (pink plot).   This peak emission appears to shift 

toward a maximum of 609 nm and there is also an increasing emission peak of 

600 nm.    This is most likely due to scattering effects of the glass particles, with 

the decreasing glass particle size, which also causes an increased background 

signal.   As the glass particles reduce in size the random nature of their shape 

and surface quality directly effects a reduction in excitation signal and the 

reduction observed in emission signal. 
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Figure 82 Comparison of emissions from 3 mol % europium doped glass 

1 matrix, bulk sample, <5 µm, 5-10 µm, 10-20 µm and 45-75 µm powder 

from a 393 nm excitation. 

 

 

4.6 Inorganic Polymers - Sol Gel Spheres 

 

To overcome the deterioration in fluorescent emission from the glass tracer 

particles, and to provide a wider range of environmental tracers, it was proposed 

to make another range of tracers.  The proposal is to use silica sol gel spheres to 

replace the borosilicate glass as the host matrix of the lanthanide fluorescent 

species.   The use of a methodology which would not only produce <5µm 

particles easily, but could be doped with an organic lanthanide species, could 

produce highly fluorescent particles. 

 

4.6.1 Undoped Inorganic Polymer Silica Sol Gel Spheres 

 

Following the Stöber method for silica sol gel spheres preparation, outlined in 

Chapter 3, samples of highly spherical particles were produced. Figure 83 shows 

an SEM image of the spheres produced, where the uniformity of the silica 

spheres can be seen, with a particle size of 500 nm.   By altering the ratio of 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 4 – Results and Discussion 

Commercial in Confidence 136 

base catalyst (ammonium hydroxide), to the organosilicate precursor (TEOS), 

will vary the size of sphere produced.   

 

 

 

 

Figure 83 Undoped silica sol gel spheres 

 

 

 

4.6.2  Doped Inorganic Polymer Silica Sol Gel Spheres 

4.6.2.1 Spectroscopy Analysis of Eu[ttfa][phen] Beads 

 

The initial investigation of all the Europium chelate doped sol gel spheres was a 

visual assessment under UV light.   If the sample emitted a bright red/pink glow 

it was a strong indication the combination of sol gel process and chelate had 

been successful.     The particles produced can be seen in Figure 84 which shows 

spherical particles and also more amorphous particles. 
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Figure 84: Doped silica sol gel spheres 

 

 

Figure 85 is an example of an emission spectrum obtained from an 

Eu[ttfa][phen] sol gel sphere sample.   The high definition of emission lines at 

612 nm, 617 nm and 626 nm is due to the more crystal structure of the 

lanthanide ion within the chelate/silica matrix.    
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Figure 85 Emission Spectra from Eu[ttfa][phen] doped Silica Sol Gel 200 

nm sphere from 355 nm excitation. 
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A study of a range of excitation wavelengths in the UV region, across the chelate 

absorption band, was undertaken to establish which gave the most intense 

emission for the 612 nm line.   Figure 86 shows the multiple emission spectra 

from a range of excitation wavelengths from 345 nm, 350 nm, 355 nm, 360 nm, 

365 nm and 370 nm.    
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Figure 86 Emission Spectra from Eu[ttfa][phen] doped Silica Sol Gel 200 

nm Spheres from 345, 350, 355, 360, 365 and 370 nm excitations. 

 

 

Figure 87 shows the 612 nm emission intensity increasing through this range; 

345 nm to 370 nm. The most intense emission was obtained from a 370 nm 

excitation, but this may not be a concern if a broader band UV excitation source 

is utilised. 
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Figure 87 Peak Intensity variations at 612 nm emission from 345, 350, 

355, 365 and 370 excitations from Eu[ttfa][phen] Silica Sol Gel Spheres. 
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4.6.3 Fluorescent lifetime study of europium chelate in inorganic polymer sol gel 

 

A typical normalised fluorescence pulse from Eu[ttfa][phen] doped in an 

inorganic polymer sphere, for 355 nm laser excitation and fluorescence emission 

at 615 nm (filtered through an interference filter with transmission peak at 620 

nm and bandwidth of 10 nm) is shown in the Figure 88.  It shows a fast rising 

pulse with a long exponentially decaying tail corresponding to the long 

fluorescence lifetime of the europium.   

 

 

 

Figure 88 Fluorescence lifetime profiles of 1 wt % Eu[ttfa][phen] in 

inorganic polymer 

 

The lifetime was calculated based on single exponential fluorescence decay and 

the characteristic lifetime constant of the exponential curve as the fluorescent 

lifetime of the particular lanthanide ions.   From each sample, three data sets 

were used to calculate an average fluorescent lifetime of Europium and this 

sample shows an average lifetime of 1.14 ms ± 0.11 ms.   When this is 

compared to the 1.95 ms obtained from a europium doped borosilicate glass 
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sample, the Eu[ttfa][phen] doped inorganic polymer exhibits a lifetime 

measurably quicker.    This lifetime difference could be utilised as a 

distinguishing feature for tracer applications. 

 

4.7  Blank Organic Polymer Spheres 
 

To investigate the formation of polymer spheres a series of experiments was 

carried out to determine the control parameters for the production of 50 – 500 

nm diameter spheres.   The morphological effect which doping these spheres was 

unknown, so several different formulations were examined using the following 

monomers; ethyleneglycol dimethacrylate, methacrylic acid and divinyl benzene.     

 

4.7.1  Organic Polymer Poly-EGDMA-co-MAA Spheres 

 

Undoped poly-EGDMA-co-MAA spheres were analysed under the SEM and Figure 

89 shows an example of the spherical particles produced.    The particles are 

seen to be around 100 nm in diameter which is significantly smaller than the sol 

gel particles.   The particles are also “agglomerated” together which could 

potentially cause problems when trying to accurately produce a range of tracers 

with controlled size. 

 

 

 

 

Figure 89 Blank poly-EGDMA-co-MAA 
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4.7.2  Organic Polymer Poly-EGDMA-co-HEMA 

 

Undoped poly-EGDMA-co-HEMA spheres were analysed under the SEM and 

Figure 90 shows an example of the agglomerated particles produced.   These did 

not produce particles as easy to define as the poly-EGDMA-co-MAA and also 

appears to contain a higher portion of excess polymer which is undesirable. 

 

 

 

 

Figure 90 Blank Poly-EGDMA-co-HEMA spheres 

 

 

4.7.3 Organic Polymer Poly-MMA 

 

The Undoped poly-MMA particles seen in Figure 91 show a far better morphology 

than previous polymer samples.    There is no agglomeration visible and there 

are clearly defined single particles of polymer.    The particles are 400 nm in 

diameter and there appears to be very little variation of size. 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 4 – Results and Discussion 

Commercial in Confidence 143 

 

 

Figure 91 Blank poly-methacrylic acid spheres 

 

 

4.7.4  Doped Polymer Spheres 

 

After several attempts to produce doped polymers of varying composition it was 

decided to focus on one formulation.   Although poly-MMA has a more 

reproducible morphology when undoped, the yield is poor compared to that of 

poly-EGDMA-co-MAA and Poly-EGDMA-co-HEMA.   Based on morphology when 

doped, poly-EGDMA-co-MAA, when compared to other formulations was more 

productive with good sphere formation.  The change in morphology may relate to 

the manner in which the lanthanide chelate interacts with the polymerisation 

reaction and influence the spherical formation. 

 

4.7.4.1  Organic Polymer Poly-EGDMA-co-MAA doped with Eu[ttfa][phen] 

 

The production of doped poly-EGDMA-co-MAA particles with Eu[ttfa][phen] was 

expected to generate an amorphous mass of spherical particles similar to that 

seen in the Undoped SEM image.    Figure 92 shows the SEM image obtained and 

the particles found were 200 nm in size and far more individual.    The spheres 

produced are far more regular in appearance than even the undoped spheres. 

Spectroscopy analysis and characterisation was undertaken to determine 
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whether the doping process with the incorporation of chelated lanthanide 

molecules within the polymer matrix had been successful.     

 

 

 

Figure 92 SEM image of Eu[ttfa][phen] poly-EGDMA-co-MAA spheres 

 

 

A fluorescence emission plot from a sample of Eu[ttfa][phen] is shown in Figure 

93, obtained with an excitation of 355 nm.     
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Figure 93 Emission Spectra of Eu[ttfa][phen] doped EGDMA-co-MAA 

polymer spheres from a 355 nm excitation. 
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A study of a range of excitation wavelengths across the chelate absorption band 

was undertaken to establish the most intense emission for the 611 nm line, the 

same parameters and settings as for the silica sol gel spheres.   Figure 94 shows 

the multiple emission spectra from 345 nm, 350 nm, 355 nm, 360 nm, 365 nm 

and 370 nm.   The most intense emission was obtained from a 355 nm 

excitation, which is the UV laser line from the Continuum Nd:YAG OPO Laser.   

This laser system could potentially be used as an excitation source for the 

samples as the pulsed laser will allow for low detection limits compared to a 

steady state UV source such as a Xenon lamp.  
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Figure 94 Emission Spectra of Eu[ttfa][phen] doped EGDMA-co-MAA 

polymer spheres from 345, 350, 355, 360, 365 and 370 nm excitations. 
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Figure 95 Peak Intensity variations at 611 nm emission from 345, 350, 

355, 365 and 370 excitations from Eu[ttfa][phen] Polymer Spheres. 

 

 

The peak emissions from the aforementioned excitation wavelengths can be seen 

in Figure 95.   When compared with the peak intensity graph for the sol gel 

spheres, Figure 87 it can be seen that the emission across the range of 345 nm – 

370 nm is extremely stable.   This stability could provide extra excitation energy 

for heightened sensitivity at lower detection levels.   

 

4.7.5 Fluorescent Lifetime Study of Europium Chelate in Polymer 

 

A typical normalised fluorescence pulse from Eu[ttfa][phen] doped in an organic 

polymer sphere, for 355 nm laser excitation and fluorescence emission at 615 

nm (filtered through an interference filter with transmission peak at 620 nm and 

bandwidth of 10 nm) is shown in Figure 96.  It shows a fast rising pulse with a 

long exponentially decaying tail corresponding to the long fluorescence lifetime of 

the Europium ion.   
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Figure 96 Fluorescent lifetime profile of europium chelated ions in poly-
EGDMA-co-MAA 
 

 

The lifetime was calculated based on single exponential fluorescence decay and 

the characteristic lifetime constant of the exponential curve as the fluorescent 

lifetime of the particular lanthanide ions.   From each sample, three data sets 

were used to calculate an average fluorescent lifetime of europium and this 

sample shows an average lifetime of 0.85 ms ± 0.11 ms.    When this is 

compared to the 1.95 ms obtained from a europium doped borosilicate glass 

sample, the Eu[ttfa][phen] doped organic polymer exhibits a lifetime twice as 

fast. 
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4.8 Comparison Study 

 

A comparison study was undertaken to examine the fluorescent emission of the 

europium doped bulk glass, europium doped glass powder, europium chelate 

doped silica sol gel spheres and europium chelate doped polymer spheres.    

Figure 97 shows the emission spectra from a 355 nm excitation for the sol gel 

and polymer and a 393 nm excitation for the glass with the same spectrometer 

settings.   393 nm was used as europium does not absorb 355 nm and would 

therefore produce no fluorescent emission at 612 nm. 
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Figure 97 Comparison of Eu[ttfa][phen] doped silica sol gel and poly-

EGDMA-co-MAA at 355 nm excitation with bulk 3 mol % europium doped 

borosilicate glass at 393 nm excitation 

 

 

It can be seen that the sol gel and polymer emissions are narrower and more 

discrete than that of the doped glass emission spectra.   Traditionally lanthanides 

are known for their discrete fluorescent emissions, and previous experience of 

lanthanide doped glasses has shown this to be the case.   The resolution of 3 
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distinct emission peaks at 616 nm 619 nm and 626 nm with are normally 

indefinable in a doped glass emission can be clearly seen.    This degree of peak 

resolution is normally found in crystalline structures containing lanthanide ions 

[135, 136].    However, the comparison of europium doped bulk glass with the 

chelate doped sol gel and polymer spheres can’t be used for a direct comparison 

as one sample is solid glass and the others are 500 nanometer sized particles.    
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Figure 98 Comparison of 612 nm fluorescence emission from europium 

doped bulk glass, glass powder, doped chelate, doped polymer and 

doped sol gel. 

 

For a valid comparison it is necessary to examine the smallest fraction of ball 

milled glass powder, the 5 µm, with the sol gel and polymer powder.   Using the 

same instrument settings samples of pure europium doped chelate, doped sol gel 

sphere, doped polymer spheres, doped bulk glass and doped ball milled glass are 

plotted together, Figure 98.  From this figure it can be seen that the fluorescent 

emission from europium doped glass powder is much smaller than that of the 

parent bulk glass sample.    
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It can be seen from Table 26 that the 5 µm europium sample has a 98.5 % 

weaker fluorescent emission than the bulk glass sample. 

 

 

Europium Sample 

Fluorescence 

Intensity / 

counts 

Percentage 

Difference to 

Bulk Glass 

Emission / % 

Bulk Glass 518200 0 

5 µm Glass Powder 7618 98.5 

Pure Europium Chelate 381900 26.3 

Europium Chelate Doped Sol Gel 379500 38.4 

Europium Chelate Doped Polymer 318700 26.7 

 

Table 26 Fluorescence emission intensities for 612 nm 

 

 

For use as an environmental tracer, the intensity of the fluorescent signal which 

was found from the glass powder, would limit its application compared to the 

doped sol gel and doped polymer spheres.     
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4.9  Tracer Detection 

4.9.1 Bench Top Detection System – Glass Tracer 

 

The tracer detection system developed for the trial investigation utilised a pulsed 

532 nm laser as the excitation source with an optical fibre collector coupled to an 

avalanche photodiode, fitted with a 10nm band pass filter at 610nm for europium 

fluorescence as shown in Figure 99. To replicate the process of scanning the sea 

bed from a moving vessel or a towed sledge, the small tank was placed on an X-

Y moving stage the coarse sediment was scanned past the fixed excitation and 

detection system.   

 

 

 

 

Figure 99 Schematic of Tracer Detection System Trial 

 

 

To demonstrate the potential for using lanthanide doped glass as an 

environmental tracer a real time detection study was undertaken.    The tank 

contained a North Sea sediment “sea bed” where a europium glass tracer was 

used.   Figure 100 shows a 3D fluorescence map observed for one deployment of 

tracer, clearly observed in 3 locations in the tank. 
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Figure 100 Surface projection fluorescence map of europium glass tracer 

on a coarse sediment bed 

 

 

Table 17 showed the optimum excitation wavelengths for europium, the 

excitation used for this experiment was 532 nm which has low quantum 

efficiency for the europium ion.    Even with the lower excitation energy, the 

detection system shows a slight saturation from one of the doped patches.  This 

preliminary investigation suggests that it should be possible to attain even lower 

detection limits because there will be an increased quantum efficiency gain when 

the optimum 465 nm source is used, as opposed to the source that was available 

for this laboratory trial. 

 

 

4.10 Background Discrimination 

4.10.1 Fluorescence Lifetime for Background Discrimination 

 

A typical normalised fluorescence pulse from europium in the tracer sample, for 

465 nm laser excitation and fluorescence emission at 615 nm (filtered through 

an interference filter with transmission peak at 620 and bandwidth of 10 nm) is 

shown in Figure 101. It shows a fast rising pulse with a long exponentially 

decaying tail corresponding to the long fluorescence lifetime of the europium.  
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Figure 101 Fluorescent lifetime profile of europium ions in borosilicate 

glass 

 

 

The lifetime is calculated based on single exponential fluorescence decay and the 

characteristic lifetime constant of the exponential curve as the fluorescent 

lifetime of the particular lanthanide ions.  Three data sets were used to calculate 

an average fluorescent lifetime of europium and this sample had an average 

lifetime of 1.95 ms.  The fluorescent lifetime of fluorescein is typically in the 

region of 4 ns.   This is very important because it clearly demonstrates the huge 

difference in lifetime between an atomic fluorescence peak i.e. Europium and 

molecular fluorescent lifetimes.   Using time gated detection the presence of 

naturally occurring background fluorescence signals and signals from previously 

deployed molecular dye tracers can be discriminated against.  For example an 

efficient discrimination against these unwanted signals could be achieved by only 

measuring the fluorescent signal emitted 1 µs after the excitation pulse up to 1 

ms.   This gives a significant advantage to the use of the lanthanide elements 

atomic fluorescent tracers in environmental monitoring. 
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4.10.2 Background discrimination of the presence of contaminants 

 

A great advantage derived from using lanthanide ions for environmental tracing 

applications (or any tracing application) is the ability to easily discriminate 

between background signals and tracer signals.    

In marine or even river environments it is common to find traces of hydrocarbon 

contamination from industrial sources.   Figure 102 shows the fluorescent 

emission peak for a sample of Gullfaks crude oil with Figure 103 showing the 

emission peak for a sample of Brent crude oil. 
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Figure 102 Fluorescence emission from Gullfaks crude oil from a 490 nm 

excitation 

 

Although from off-shore production oil fields; Gullfaks Location: block 34/10 

northern North Sea off Norway, Brent Location:  block 211/29 between Shetland 

and Norway, both provide a classic hydrocarbon fluorescence profile.    
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Figure 103 Fluorescence emission from Brent crude oil from a 470 nm 

excitation 

 

 

4.10.3 Background Discrimination Conclusion 

 

The use of lanthanide doped tracers for environmental applications provides a 

method for performing tracing studies in areas which contain multiple 

background fluorescent contaminants.   The unique discrete fluorescent signals 

produced by the lanthanide dopants allow for discrimination between various 

background sources exhibiting broadband fluorescence, e.g. hydrocarbons.    The 

presence of compounds which may fluoresce are highly likely in waste water 

streams or marine environments. 

 

An additional feature to using lanthanides in tracing studies is the possibility of 

using fluorescence lifetime as a discrimination method.   The atomic fluorescence 

lifetimes of lanthanide ions are in the millisecond range, compared to that of 

molecular fluorescence which is in the range of nanoseconds.     Using time gated 

detection the presence of naturally occurring background fluorescence signals 

and signals from previously deployed molecular dye tracers can be discriminated 

against.   
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4.11  Overall Results and Discussion Summary 

 

25 samples containing different concentrations of the lanthanides europium, 

dysprosium and terbium in the glass host matrix glass 1 were successfully made.  

25 samples containing different concentrations of the lanthanides europium, 

dysprosium and terbium in the glass host matrix glass 2 were successfully made.  

 

A large number of narrow lanthanide excitation and emission peak wavelengths 

are available to choose from as environmental tracer response peaks. 

 

There is a very strong relationship between lanthanide concentrations and 

emission peak intensities.  This means that different environmental tracer 

combinations can be achieved by altering the concentrations of the lanthanide 

dopants in the glass matrix.   The data indicates the possibility that 0.1 mol % 

concentration differences could be utilised to produce multiple different tracer 

combinations. 

 

The addition of NaF to the matrix has not significantly changed the peak 

wavelengths to distinguish between the two glass matrices by wavelength. This 

means that addition of the small amount of NaF is an insufficient change to 

create a whole new set of environmental tracers.   

 

Further unique tracers should be achievable as additional excitation/emission 

peak wavelengths previously forbidden are observed due to energy transfer 

(sensitisation) of certain combinations of lanthanides.  

 

Long lifetime characteristics can be used as one of the background discrimination 

features for the environmental tracer in the glass matrix. 

 

For all of these results in the 25 glass 1 and 25 glass 2 samples, the peak 

emission and excitation wavelengths were very consistent with small standard 

deviations of between 0.2 to 0.75 nm for glass 1 excitation and 0.39 to 0.73 nm 

for glass 2 excitation; and 1.06 to 1.37 nm for glass 1 emission and 0.73 to 1.23 

nm for glass 2 emission.  This means that a confident measurement of 
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concentration of the dopants based on their emission peak wavelength should be 

readily achieved with a suitable detector system.  

 

Overall this work shows that a very large number of unique environmental 

tracers can be obtained by varying the concentration and number of lanthanide 

dopants in a glass host.     

 

The production of tracer sized glass particles however from the doped glass 

showed a decreased in the intensity of the fluorescent signal, 98.5% from a bulk 

sample to <5 µm particles.   The process of producing glass particles and the 

randomization of the surfaces created greatly diminished excitation and emission 

efficiency.  This would greatly limit its application as an environmental tracer as 

the huge reduction in fluorescent emission makes it extremely hard to detect in 

the field.     

 

The investigation of organic and inorganic polymer lanthanide doped spheres to 

overcome the fluorescence decrease observed in the production of glass particles 

produced reproducible particles of a <800 nm size. 

 

The combination of organic chelates with the lanthanide ions created highly 

fluorescent species, which when doped in to the organic and inorganic spheres, 

produced particles an order of magnitude more fluorescent. 

 

 The use of lanthanide doped tracers for environmental applications provides a 

method for performing tracing studies in areas which contain multiple 

background fluorescent contaminants.   The unique discrete fluorescent signals 

produced by the lanthanide dopants allow for discrimination between various 

background sources exhibiting broadband fluorescence, e.g. hydrocarbons.   The 

atomic fluorescence lifetimes of lanthanide ions which are in the millisecond 

range, compared to that of molecular fluorescence which is in the range on 

nanoseconds, further allows discrimination.     Using time gated detection the 

presence of naturally occurring background fluorescence signals and signals from 

previously deployed molecular dye tracers can be discriminated against.   
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5 CASE STUDY – BOWMORE HARBOUR FEASIBILITY STUDY 

 
5.1 Introduction: The Proposed Scheme of Work 

 

The Bowmore Harbour Improvement Association (BHIA) wanted to understand 

the mechanisms which contributed to the sedimentation, Figure 104, of the 

harbour.   The opportunity to undertake a sediment particle study was important 

for the development of novel tracers as the work provided real world particle size 

data, as well as providing an area for future detection system deployment.    

It was suggested that the sedimentation problem was largely driven by the 

strong west-going tides that flow past Lochindaal’s entrance to the Irish Sea, 

colliding with the submerged rocks that make up a continuation of the Rhinns of 

Islay, and that these flows will induce a clockwise circulation at the head of the 

loch.   This combined with wave and wind action may contribute significantly to 

the sedimentation process. 

 

 

 

Figure 104 Bowmore Harbour showing silting 

 
 
The original harbour was itself modified for military use during the Second World 

War.   The harbour wall was extended to its current stature and the breakwater 

was added.    Early photographs (late 1800’s early 1900’s) of the harbour show 

large ships docked which suggests the depth of water to be good.    
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It has been noted that the head of Lochindaal has indeed been becoming 

shallower over the years.    A depth chart dating from the early 1900’s of the 

area indicates the degree to which sedimentation has occurred, with some points 

having a 6-8 foot difference.   This shows that there has been a natural 

sedimentation process occurring over the past 100 years, so the sedimentation 

problems are not limited to just the harbour. 

 

The degree to which the harbour had become silted can be seen in the 

photographs taken prior to the 2000 clearing, Figure 105, where at low water the 

entire harbour area is above sea level. 

 

 

 

Figure 105 Images of Bowmore Harbour at low tide, prior to the 2000 
clearing 

 
 
 
The proposed study was to sample water and sediment around Lochindaal and 

Bowmore Harbour.   The sediment samples would give an indication of the 

average particle size in each location with the water samples giving an indication 

of the suspended material particle size.   Although suspended materials can be 

flocculation particles which would give a larger particle size than the particles 

which are part of the floc.   The particle size distribution data gathered could 

then be utilised by producing a tailor made glass, sol gel of polymer particle 

which could be fabricated to accurately mimic the naturally occurring sediments. 
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The commonly used definitions and sizes of particles found are: 

 

1. Very coarse sand: 2.0 – 1.0 mm (2000 – 1000 µm) 

2. Coarse sand: 0.5 – 1.0 mm (500 – 1000 µm) 

3. Medium sand: 0.25 – 0.5 mm (250 - 500 µm) 

4. Fine sand: 0.1 – 0.25 mm (100 - 250 µm) 

5. Very fine sand: 0.05 – 0.1 mm (50 -100 µm) 

6. Silt: 0.002 – 0.05 mm (2- 50 µm) 

7. Clay: <0.002 mm (< 2 µm) 

 

 

Typically sedimentation (silting) occurs with particles in the 0.05 – 0.002 mm 

size range.   The glass particles can be manufactured to have a particle size 

range from 2000 µm - 20 µm (very fine sand) and the sol gel and polymer to 

have 20 µm – 100 nm. 

 

5.2 Objectives of the Study 
 

 

1. To determine the tidal patterns in Loch Indaal and around the Bowmore 

harbour area which affect the movement of silt and sediment. 

 

2. Investigate the practical steps which the Bowmore Harbour Improvement 

Association (BHIA) can take to keep the harbour as a valuable community 

asset by preventing silting which will lead to the harbour becoming 

unusable. 

 

3. Investigate what effect the existing breakwater, and its outer section, has 

on the silting of the Harbour. 

 

4. Recommend the most cost effective method of removing the existing sand 

and silt from the Harbour basin and disposing of it. 

 

5. Investigate the most economical method of replacing the existing 

pontoons and mooring trots which are nearing the end of their useful life.    
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5.3 Materials and Methods 
 
The planned practical work to study the sedimentation processes going on 

around Bowmore Harbour and Lochindaal was to sample both sediment and 

water from around the Loch.  Michael MacNaughton kindly volunteered not only 

his time to assist, but also his boat “Jeanie Anne” as the research vessel for this 

study, Figure 106. 

 

 

 
 
 

Figure 106 Research Vessel Jeanie Anne 

 
 
The weather conditions on the day were to dictate strongly the distance travelled 

in the boat and also the amount of sampling done.   Fortunately the weather was 

excellent the conditions were settled.  

 

Plan of work: 

 

• Sample around the circuit of Lochindaal, gathering both water and 

sediment at each sample site. 

• Deploy tracer at points around the harbour entrance on an in coming tide 

• Deploy tracer at points around the harbour entrance on an out going tide 

• Gather sediment samples after tracer deployment 
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Figure 107 shows the route navigated during the sediment and water sampling 

run, the red dots indicate each point where a sample was taken and the smaller 

black dots indicate where a GPS data point was stored. 

Table 27 details the GPS points where each sample was taken during the circuit 

of Lochindaal.    

 

 

 

Figure 107 GPS track plot of Lochindaal cruise from MapSource Version 

6.11.6 Garmin Ltd.   
 

 

Unfortunately the Van Veen sampler was lost while gathering samples across the 

centre of Lochindaal at the end of the first circuit.   This meant no further 

sediment samples could be collected and no sediment samples could be gathered 

after tracer deployment.   Initially this was a cause for concern as the entire 

tracer deployment study may have had to be called off completely, but 

fortunately the calm conditions and the highly visible tracer proved useful 

without the need to sample sediment. 

 
A full track detail of the course travelled during the sampling run can be found on 

CD Appendix IV.    
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Sample  Date GPS Position 

1 30/10/2008 09:13 N55 45.686 W6 17.489 

2 30/10/2008 09:42 N55 44.420 W6 22.273 

3 30/10/2008 09:49 N55 45.337 W6 21.802 

4 30/10/2008 09:59 N55 45.822 W6 21.353 

5 30/10/2008 10:09 N55 46.528 W6 20.797 

6 30/10/2008 10:22 N55 46.564 W6 20.400 

7 30/10/2008 10:32 N55 46.819 W6 19.092 

8 30/10/2008 10:41 N55 46.769 W6 17.994 

9 30/10/2008 10:48 N55 46.695 W6 17.182 

10 30/10/2008 11:02 N55 46.104 W6 16.647 

11 30/10/2008 11:10 N55 45.812 W6 16.742 

12 30/10/2008 11:17 N55 45.573 W6 17.261 

13 30/10/2008 11:24 N55 45.537 W6 17.389 

14 30/10/2008 11:25 N55 45.534 W6 17.376 

15 30/10/2008 11:32 N55 45.504 W6 17.521 

16 30/10/2008 11:38 N55 45.399 W6 17.968 

17 30/10/2008 11:50 N55 45.743 W6 18.487 

18 30/10/2008 11:54 N55 45.946 W6 17.639 

19 30/10/2008 12:04 N55 45.167 W6 19.099 

20 30/10/2008 12:10 N55 44.925 W6 19.887 

21 30/10/2008 12:16 N55 44.689 W6 20.317 

22 30/10/2008 12:24 N55 44.631 W6 21.098 

23 30/10/2008 12:31 N55 44.646 W6 21.098 

24 30/10/2008 13:54 N55 46.797 W6 20.108 

25 30/10/2008 14:02 N55 46.792 W6 17.980 

 
Table 27 Sediment and water sample GPS positions. 

 
 

5.3.1 Sediment Sampling 

 
The sediment sampling was undertaken using a Van Veen grab sampler which 

was on loan from SAMS Aberdeen Marine Laboratory.   Figure 108 shows the Van 

Veen grab being deployed from the side of the boat.   The sampler uses a simple 

bucket scoop mechanism which stays open under the weight of the sampler, but 

closes when it hits the sea floor and closes upon lifting.    The Van Veen grab is a 

simple and effective device for gathering sediment.   During the cruise a few 

sampling points yielded no sediment as the floor of the Loch was quite stony.    
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Figure 108 Deployment of the Van Veen grab sampler 

 

5.3.2 Water Sampling 

 

The water sampling was undertaken using an Aquatic Research water sampler.    

The sampler is primed much like a mouse trap, with the two end caps held in an 

open position on a trigger.    This device was attached to a line with a “sender 

weight” which tripped the closing mechanism trigger when the sampler reached 

the desired depth of water.   Figure 109 shows an example of the sampler used 

for this study.    Each fill of water is 2.2 L, but only 100 ml of water will be 

required for this study to give an indication of suspended material within the 

water column. 

 

 

 
 

Figure 109 Aquatic Research water sampler 
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5.3.3 Tracer Deployment 

 

The tracer which was chosen for this study is a PED (polymer encapsulated dye) 

particle tracer, which is a polymer encapsulated dye.    It is typically used as a 

pigment colour in paint manufacture.    The tracer was prepared ahead of time in 

500 ml volumes which contained 100 g of tracer in a 1:1 mix with a surfactant 

(washing up liquid).   This made handling easier as the tracer powder is 

extremely difficult to handle in breezy conditions.   

 

The tracer bottles were mixed with 5L of sea water in a bucket to give a suitable 

quantity of tracer to give a visible contrast in the Loch.   Figure 110 shows the 

deployment of the orange tracer off the side of the Jeannie Anne, it can be seen 

how bright the tracer is in the water and how easy it is to track visually through 

the sequence of photographs. 
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Figure 110 Deployment of tracer off pier point, tracer movement in 
westerly direction away from harbour. 
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5.4 Case Study Results and Discussion 

5.4.1 Tracer Deployment 

 
Figure 111 shows the positions of tracer deployments around Bowmore Harbour, 

the orange circles representing the point of deployment and the orange arrow 

indicting the direction in which the tracer travelled.    The wind direction and tide 

directions are also indicated.     

 

 
 
Figure 111 Diagram of Bowmore Harbour with the 4 tracer deployment 

sites and the noted direction of tracer movement in relation to tide and 
wind direction.  Thursday 30-10-08. 
 

 

It was expected that with an incoming tide the tracer would be carried with the 

tidal flow and be carried in to the harbour.   This was not the case.    Each of the 

3 deployments outside the harbour entrance moved easterly, against the 

direction of tidal flow and also perpendicular to the wind (which was blowing in a 

strong northerly direction).   Dismissing the possibility that a surface effect of 

wind driven movement had caused the direction of the tracer movement 

observed in Figure 111. 
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Figure 112 Deployment of tracer from pier steps, 4 m inside the harbour 
mouth.   Tracer moved out of harbour and around the pier end towards 

the West. 
 
 
A second day of tracer deployment was proposed depending on weather 

conditions.   It was planned to coincide with an outgoing tide to provide 
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comparative data to the in coming tide, Figure 113.  As with the previous 

deployment, each of the 5 deployments outside the harbour entrance moved 

easterly, going with the direction of tidal flow and also perpendicular to the wind 

(which was again blowing in a strong northerly direction).   This confirmed what 

was seen the previous day, that any potential surface effect of wind driven 

movement was not a concern. 

 
 

 
 

Figure 113 Diagram of Bowmore Harbour, second day of tracer 
deployment, with the 5 tracer deployment sites and the noted direction 
of tracer movement in relation to tide and wind direction.  Friday 31-10-

08. 
 
 
It can be seen in Figure 114 with the orange tracer was unaffected by the 

prevailing wind and was indeed carried across the mouth of the harbour, going 

with the currents. 
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Figure 114 Deployment of tracer off dog leg of break water, tracer 

movement across harbour mouth in westerly direction 
 

 

5.4.2 Particle Size 

 

Particle sizing experiments were carried out using a Malvern Particle Size 

Analyzer.   For the sediment samples a small amount was taken and placed in 

distilled water.   This was then added drop wise to the particle size cell until a 

suitable concentration of particles were detected.    The particle size data from 

the sediment samples collected can be seen in Table 28.   Sample 5 and 17 did 

not yield a sediment sample as the loch floor was stony.   Samples 19-25 could 

not be gathered as this was after the grab sampler was lost.   Samples 26 and 

27 were gathered on foot at low tide from inside the harbour and outside the 

breakwater.   Sample 27 is possibly a sample of the material which was dredged 

from the harbour in 2000, but is of a much finer particle distribution compared to 

the current harbour sediment.   Table 29 shows the particle size data for the 

collected water samples, samples 1 and 20 were extremely clean and did not 

register particles on the instrument.    
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Figure 115 Particle size distribution plot for water sample number 6 
 
 

 
 

 

Figure 116 Particle size data obtained from water sample number 6  
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Sediment Sample D [v,0.5] D [4,3]  D [v,0.1] D [v,0.9] 

1 159.19 175.95 104.25 266.90 

2 138.54 200.48 20.87 499.23 

3 91.91 167.86 15.53 482.26 

4 67.53 198.15 12.20 557.44 

5 stones stones stones stones 

6 55.87 193.40 6.78 537.65 

7 48.04 116.81 9.79 461.64 

8 143.43 155.60 100.32 220.94 

9 150.66 158.49 105.20 217.95 

10 134.84 143.76 94.69 197.00 

11 126.80 233.04 40.95 566.79 

12 140.48 148.90 102.13 203.63 

13 152.88 169.02 107.56 247.86 

14 153.18 181.66 99.15 302.68 

15 204.44 234.13 96.77 430.82 

16 151.58 232.68 75.93 538.36 

17 stones stones stones stones 

18 272.95 328.63 119.88 573.76 

19 n/a n/a n/a n/a 

20 n/a n/a n/a n/a 

21 n/a n/a n/a n/a 

22 n/a n/a n/a n/a 

23 n/a n/a n/a n/a 

24 n/a n/a n/a n/a 

25 n/a n/a n/a n/a 

26 - Breakwater 
Sediment (in 
harbour) 

152.50 167.19 98.92 250.53 

27 - Breakwater 
Dredged Sediment 
(out of harbour) 

14.37 24.22 3.49 54.20 

 
 

Table 28 Sediment sample particle size results 
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Water 

Sample D [v,0.5] D [4,3]  

D 

[v,0.1] 

D 

[v,0.9] 

1 n/a n/a n/a n/a 

2 450.67 324.71 33.03 576.83 

3 491.39 390.63 64.08 579.93 

4 480.06 342.77 30.81 579.34 

5 548.87 526.78 477.15 589.95 

6 74.98 131.58 21.65 392.12 

7 113.30 219.85 27.70 554.68 

8 142.71 261.87 32.17 567.76 

9 500.86 410.45 43.50 581.18 

10 503.20 359.50 38.30 582.09 

11 487.24 403.85 80.77 579.07 

12 384.94 347.71 81.06 566.37 

13 188.32 237.48 45.92 513.31 

14 458.68 408.57 168.77 574.61 

15 486.07 427.49 183.46 578.78 

16 489.51 415.33 112.79 579.52 

17 307.49 296.46 44.75 565.38 

18 486.48 407.80 89.74 579.10 

19 90.35 265.83 25.56 572.76 

20 n/a n/a n/a n/a 

21 84.98 230.31 27.10 566.81 

22 122.03 258.16 27.78 567.28 

23 532.70 469.08 117.31 586.79 

24 212.56 248.59 62.08 502.91 

25 461.68 447.32 325.83 536.13 

 
 

Table 29 Water sample particle size results of suspended solids 
(including flocculated material) 

 
 
 
The terms from Table 28 and Table 29, D [v,0.5], D [4,3], D [v.0.1] and D 

[v,0.9] can be defined as: 

 
• D [v,0.5] – Volume median diameter.  This figure has 50 % of the 

distribution above and 50 % below this value.  It divides the distribution 

exactly in half. 

 

• D [4,3] – Volume mean diameter.  This is the diameter of the sphere that 

has the same volume as an ideal sphere.  
3

4]3,4[
d

dD
∑

∑=  
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• D [v.0.1] and D [v,0.9] – These are 90 % and 10 % cut-offs respectively 

for the distribution.  Where D [v,0.9] has 90 % of the distribution below 

this value and D [v,0.1] has 10 % of the distribution below this value. 

 
The cells in Table 28 and Table 29 which have light grey shading are the particle 

sizes which fall within the fine particle range responsible for silting. 

 

5.4.3 Weather Influence on Current Direction 

 

A potentially strong influence on current direction and intensity can be localised 

weather patterns.   Examining weather data from the Gartbreck landfill site 

showed there was a fairly fast moving low pressure area moving across 

Lochindaal, up to and during the sample period.  It was noted that a southerly 

wind was blowing around noon on the 29th October 2008.   However, there is 

insufficient duration of any one direction to significantly influence the local 

currents. 

 

 

5.5 Conclusions  

 
The water samples analysed for particle size show a higher number of samples 

exhibiting fine “silt” sized particles in the D [v,0.1]; samples 2, 3, 6-10, 13, 17, 

19, 21 and 22 all have a range from 21 – 44 µm.   The D [v,0.9] fell between 

392 – 589 µm with the average particle size ranging from 74 – 548 µm.  These 

large particle sizes may not be due to actual particles, but due to agglomerations 

or flocculation of particles. 

 

This is confirmed by the particle size results, showing that a small portion of the 

sediment samples gathered fall within the river “silt” size range of 2 – 50 µm.    

Only samples 3, 4, 6, 7, 11 and 27 recorded particles within the silt range and 

that is within the D [v,0.1] which is 10 % of the distribution.   The 90 % of the 

distribution, D [v,0.9], fell between 392 – 589 µm which are classed as medium-

coarse sands.   As average particle size ranged from 48 – 204 µm, this confirms 

that the silting problem in the harbour is not due to the river.   This investigation 

shows that it is coarser sand causing the silting problem in the harbour, which 
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you would only get with high velocity currents, keeping the heavier particles 

suspended.  The high velocity currents within Lochindaal would keep medium 

coarse sands (particulates) suspended.   As there was a relatively low volume 

(percentage in the samples analysed) of sedimentary particles so, the 

accumulation of particles in the harbour would be slow. 

 

The tracer deployments on the incoming tide (Figure 111) went directly against 

the tide and was unaffected by wind direction, this ruled out surface influence for 

the particle tracer movement.    Tracer deployment on an outgoing tide (Figure 

112) showed exactly the same behaviour as that of the incoming, with zero wind 

affect.   The tracer study has confirmed the cyclical current pattern within 

Lochindaal, but only from the point of the area assessed.   Further examination 

of the waters to the South West of Bowmore would pin point the interface 

between the cyclical currents and the tidal driven currents. 

 

What these results also show is that there is not a high percentage of fine “silt” 

particles in suspension around Lochindaal.    Although this is low, there is still 

enough suspended material, which with time, will add to silting problem 

observed in the harbour. 

 

In conclusion it can be said that the circular motion of the currents within 

Lochindaal overwhelm any effect an incoming or outgoing tide would have upon 

sediment movement.    

 

 

Figure 117 Bowmore Harbour Sand bar 
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The current sand bar looks similar to Figure 117, showing that the sand bar is 

again starting to build up, along with deposits within the harbour boundary from 

the break water side.   There are two major problems with the current break 

water, firstly there are the two holes which can be seen in Figure 118 indicated 

by a * and **, and also in Figure 119.     These two holes were created for 

machinery to access the outer harbour area during the last sediment clearing.    

 

 

 
 
 
Figure 118 Shows the holes in the break water towards the North East 
corner (indicated by * and **).   The hole at the corner being down to 
the beach level and the second being slightly shallower.  

 
 
There is significant build up of sediment/sand in that corner of the harbour 

purely because of those two holes, as the tide comes in it is possible to see 

material in the water being carried in to the harbour.   Secondly, the height of 

the break water is far too low to be an effective method of keeping the harbour 

clear of sedimentary material.  Figure 120 shows a view of the break water at 

almost high tide and the dog leg is barely visible above the surface of the water.    

This lack of height can be even more of a problem during stormy weather when 

there is naturally more material carried in the water column from the bottom of 

the Loch.   Therefore the break water would be completely swamped during the 

season high tides and stormy weather. 

 

 

* ** 
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Figure 119 View in line with break water dog leg 

 
 

 
 
 

Figure 120 View of break water at high tide. 
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6 CONCLUSIONS 

 

The work presented here was achieved by completing the milestones originally 

defined in the project plan.   The development of lanthanide doped borosilicate 

glass, silica sol gel glass and polymers have all been investigated for their 

potential application as environmental tracer.    

 

Milestone 1: Literature review of current environmental tracing techniques and 

tracers, glass and polymer fabrication and their potential for application in 

environmental tracing. 

 

This milestone has been achieved by an extensive search of literature sources to 

examine historic and current documents.   This has provided useful information 

regarding existing tracers, potential glass matrices for use as environmental 

tracers which could provide increased fluorescent output and also details on  

potential polymerisation experiments which can be used as starting points for 

modification to produce ‘fine sediment’ mimicking tracers.  

 

Milestone 2: Development of current security glass matrix for use as an 

environmental tracer. 

 

This milestone was achieved by producing 45µm sized particles of doped 

borosilicate glass and developing a basic laser based detection system.  The 

design of which can be seen in Section 3.3. The initial results have shown that it 

is possible to use a laser as an excitation source coupled to an optical fiber 

detection device.   The laser used had an output wavelength of 532 nm, which, 

in terms of Europium absorbance is only the 5th strongest wavelength, compared 

to 393 nm or 465 nm which are far higher.    The detection limit possible using 

these alternative excitation wavelengths is greatly improved. 
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Milestone 3: Concentration study of lanthanide doping in to current borosilicate 

glass matrix Glass 1. 

 

This milestone was achieved by producing a range of borosilicate glass samples 

doped from 0.2 mol% - 2.0 mol% with europium, dysprosium and terbium in 0.2 

mol% increments.   One sample from each dopant was then analysed by 3D 

spectral characterisation to find the optimum excitation and emission 

wavelengths for each lanthanide.    This information was used to produce 

concentration graphs which detail the strongest emission wavelengths for 

europium, dysprosium and terbium.  These were then probed with a range of 

excitation wavelengths to produce the concentration graphs reported.   

 

Further investigation in to the current glass matrix (Glass 1) was undertaken by 

carrying out a series of 25 multiple ion doped experiments to investigate the 

effect of ion sensitisation.   This was achieved by preparing multi ion doped 

samples containing europium, dysprosium and terbium with concentrations of 

0.5, 1.0, 1.5, 2.0 and 2.5 mol % in varying combinations thereof.   Fractional 

factorial experimental design was used to select the concentration combinations 

used. 

 

The results showed that a large number of narrow excitation and emission peak 

wavelengths are available to choose from, with a very strong relationship 

between lanthanide concentrations and emission peak intensities.  This means 

that different environmental tracer combinations can be achieved by altering the 

concentrations of the lanthanide dopants in the glass matrix.  The data indicates 

the possibility that 0.1 mol% concentration differences could be utilised to 

produce different emission combinations. 

 

Milestone 4: Investigation of new glass matrix Glass 2. 

 

This milestone was achieved by examining the influence of adding sodium 

fluoride (NaF) to the standard borosilicate glass matrix.   It was proposed that 

the addition of NaF would have the effect of allowing a higher level of rare earth 

ion doping.   This was investigated by producing a range of doped samples using 

the modified Glass 1 matrix with the addition of 5 mol% NaF.     The preparation 
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of multi ion doped samples (double and triple) containing europium, dysprosium 

and terbium with concentrations of 0.5, 1.0, 1.5 and 2.0 mol % in varying 

combinations thereof.   Fractional factorial experimental design was again used 

to select the concentration combinations used.     

 

The results showed that the edition of NaF to the glass matrix did not 

significantly alter the large number of narrow excitation and emission peak 

wavelengths which were observed in glass 1.   It did however effect the glass 

melt producing a less viscous sample, this could potentially save time and energy 

in the production of the tracer by lowering the maximum melt temperature. 

 

Milestone 5: Investigation of chelates for the formation of organic lanthanide 

complexes for use with polymer and silica sol gel spheres. 

 

This milestone was achieved by reviewing existing literature for chelate 

compounds which were known to work in combination with sol gel or polymer 

formulations.    As the varying stability of chelate compounds can be difficult to 

utilise if the complex formed dissolves in aqueous solutions or is destroyed in the 

presence of ammonia.    The chelates chosen to investigate produced robust 

lanthanide complexes which formed sol gel and polymer particles easily.  A 

characteristic of a chelating molecule is that it allows a broad absorption of 

ultraviolet light.    This energy is then transferred to the rare earth and produces 

a stronger fluorescence.   This fluorescence is orders of magnitude greater than 

the emission seen from a discrete excitation of the ion itself.   The most 

promising chelates were found to be TTFA and PHEN, which in combination with 

europium produced a highly fluorescent lanthanide complex. 

 

Milestone 6: Investigation of polymer sphere formation. 

 

This milestone was achieved by reviewing literature for methods of producing 

monodisperse polymer particles.     SEM analysis showed the spherical formation 

and uniformity of polymer particles of differing composition, made from the final 

modified polymers of this research.    
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Milestone 7: Investigation of silica sol gel sphere formation. 

 

This milestone was achieved by reviewing current literature, where it was found 

that the most referenced method of silica sol gel sphere formation was the 

Stöber method or modified Stöber method.    This method was found to be 

extremely reproducible and allowed reasonable yield of beads from each 

experiment.   SEM analysis showed the spherical formation and uniformity of 

silica particles produced in this research. 

 

Milestone 8: Investigation of polymer spheres doped with organic lanthanide 

complexes. 

 

This milestone was achieved by incorporating the chelate materials investigated 

in Milestone 5 in to the polymerisation formulations investigated in Milestone 6.   

This combination of lanthanide complex and polymer allowed the production of 

<800 nm sized highly fluorescent particles.   SEM analysis showed the 

amorphous formation and variety of polymer particles produced.    Spectroscopic 

interrogation of the particles found a high fluorescent emission of the lanthanide 

ion, in the case of this study Europium, due to the energy transfer between the 

chelate molecule and the rare earth ions within the complex in the polymer 

matrix the observed fluorescence is much greater than that observed from the 

glass. 

 

Milestone 9: Investigation of silica sol gel spheres doped with organic lanthanide 

complexes. 

 

This milestone was achieved by incorporating the chelate materials investigated 

in Milestone 5 in to the silica sol gel sphere method investigated in Milestone 7.   

This combination of lanthanide complex and sol gel allowed the production of 

<400 nm sized highly fluorescent particles.   SEM analysis showed the 

amorphous formation of silica particles produced.    Spectroscopic interrogation 

of the particles found a high fluorescent emission of the lanthanide ion, in the 

case of this study Europium.    Due to the energy transfer between the chelate 

molecule and the rare earth ions within the complex in the silica sol gel matrix 
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the observed fluorescence is much greater than that observed from the first 

glass. 

 

Milestone 10: Measurement of novel tracers using a proposed trial detection 

system. 

 

This milestone was achieved by performing laboratory based tests to simulate 

tracer deployment in an aqueous environment.   The trial detection system used 

optical fibre delivery for both the laser excitation and fluorescence emission 

detection.   The use of optical fibres would allow for a real time detection system 

to be developed for deployment in any aqueous environment.   Single point and 

multiple point detection would be possible using the tracers developed in this 

work. 

 

Milestone 11: Determination of sediment particle size from a potential field site. 

 

This milestone was achieved by undertaking a field study of Loch Indaal on the 

isle of Islay, which formed part of a feasibility study to determine why the 

Bowmore Harbour continually silted.     Water and sediment sampling was taken 

from around Loch Indaal and from within the confines of the harbour itself.    

This allowed detailed information to be gathered regarding the particle size 

distribution within the aquatic system and also what may have been responsible 

for the silting of the harbour.   Also it provided valuable particle size information 

for future tracer development work, allowing a tracer with specific characteristics 

to be designed. 

 

6.1 Overall Conclusion   
 

 

The development of lanthanide doped borosilicate glass, silica sol gel glass and 

polymers have all been investigated for their potential application as 

environmental tracers by examining their spectroscopic and lifetime properties.    

 

Naturally occurring and artificially introduced materials within aqueous, 

geological and industrial environments have been used for many years in the 
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monitoring of currents, sediments, waste effluent streams, soils and pollutants.  

The range of existing tracing methods includes fluorescent dyes, fluorescent 

particles, isotopes, naturally occurring compounds and rare earth tracers.   These 

tracing techniques have their advantages and disadvantages within their specific 

application range.    

 

The work reported here provides a new tracer for use in environments which 

would normally be problematic for real time online monitoring.   Increased 

background signal and overlapping broadband fluorescent signals make 

monitoring a complex, unreliable and expensive process.  The development of a 

new tracer, using borosilicate glass, organic polymer and inorganic polymer 

methods has been examined.   The incorporation of lanthanide ions to a glass 

host matrix produces an environmentally stable and inert tracer.   This allows a 

tracer which will exhibit highly discrete narrow band atomic fluorescence, which 

is the key feature of using a lanthanide ion. 

 

Further investigation of the limitations of lanthanide doped glass particles as an 

environmental tracer showed that with decreasing particle size, the greater the 

reduction in the effective fluorescent signal became.   This is due not to the 

particle itself but to the scattering of excitation light and emitted fluorescence 

with the increased surface area.  A further limiting issue with lanthanide ions in a 

crushed glass particle is quenching with water.   If the dopant ion is near the 

surface of the particle and in an aqueous solution the fluorescence will be 

quenched. 

 

Also the process of producing sub 5 µm particles was time consuming and too 

labour intensive, producing incredibly small quantity (20 mg) from many hours of 

grinding and sieving.  The loss of fluorescence and loss of resolution of the 

discrete atomic emission from the rare earth ion showed that glass was not going 

to be an ideal tracer unless it was possible to increase the signal.   The 

production of tracer sized glass particles of <5µm from the doped glass showed a 

decrease in the intensity of the fluorescent signal, 98.5% less intense compared 

to a bulk sample.   This is not an ideal situation for a tracer where distinct 

fluorescent intensity is vital.   This would greatly limit its application as a real 
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time monitoring environmental tracer as the huge reduction in fluorescent 

emission would make it extremely hard to detect in the field.     

 

This led to the investigation in to ways in which it would be possible to increase 

the observed fluorescence from the lanthanide ions.   Increasing concentration 

did not itself yield a large enough variation in bulk glass signal to warrant further 

experimentation.   Multiple ion doping was examined in an attempt to produce 

“sensitised”, ion enhanced fluorescence.   This again did not produce orders of 

magnitude higher fluorescence.  Reviewing literature it was noted that producing 

a complex molecule of a rare earth produced a significant increase in emitted 

fluorescence from the rare earth ion.   This is achieved by the chelating molecule 

acting as an “antenna” which directly channels the energy it absorbs in to the 

rare earth energy level.   This allows a greatly increased range of energy to be 

absorbed by an ion which would normally have only a narrow band excitation.   

 

This increase of fluorescence although great, presented a new problem, as an 

organic complex such as Eu[ttfa][phen] would not be capable of being 

incorporated to a standard type inorganic glass matrix.  The 1250oC upper limit 

pouring temperature far outstrips the maximum tolerance level for an organic 

molecule.   This major limitation of inorganic glass initiated the need for an 

organic host matrix, or an inorganic host with low working temperatures.   

Reviewing literature produced two extremely promising possibilities for an 

alternative to a glass host.   Two different forms of polymerisation, organic and 

inorganic were investigated.   Both forms were low temperature methods, room 

temperature and 80 oC.   The investigation of these particles found it was far 

simpler to produce sub 5 µm particles, in a one step process.  The ability to 

produce particles in the 250-500 nm range was highly desirable and impossible 

with the borosilicate glass.   

 

The concept of using lanthanide doped glasses as environmental tracers has 

been demonstrated.  The spectral characterisation and concentration studies of 

the lanthanide doped tracer allow the selection of parameters to produce future 

tracers and detection systems for particular applications.   By altering the chosen 

lanthanide dopant, number of dopants, dopant concentration and using selective 

excitation and emission wavelengths there are a huge number of possible unique 



Development and Application of Novel Tracers for Environmental Applications 
Chapter 6 - Conclusions 

 

Commercial in Confidence 185 

tracer combinations.   The significantly narrower bandwidth emission peaks of 

the lanthanide based tracers achieve more selective detection of multiple tracers 

without overlap interfere and gives the potential to selectively simultaneously 

monitor many different tracers in the same location.   The spectral lifetime 

characteristics of the lanthanide tracers are very different from the lifetime of 

background fluorescence which is typically molecular in origin.   This is an extra 

discrimination against background interference and is an additional advantage of 

using lanthanide based tracers.  

 

Through the analysis of 50 triple lanthanide ion doped tracers a large number of 

narrow lanthanide excitation and emission peak wavelengths are available to 

choose from as environmental tracer response peaks.   This research clearly 

demonstrated a linear relationship between lanthanide concentrations and 

emission peak intensities for a variety of peak emission wavelengths.   The 

addition of NaF to the glass matrix did not significantly change the peak 

wavelengths to distinguish between the two glass matrices by wavelength.  

Further unique tracers should be achievable as additional excitation/emission 

peak wavelengths previously forbidden are observed due to energy transfer 

(sensitisation) of certain combinations of lanthanides.  

 

Overall this work shows that a very large number of unique environmental 

tracers can be obtained by varying the concentration, the number of lanthanide 

ions in a glass and also the possibility of using organic and inorganic lanthanide 

chelate doped tracers.     
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7 FUTURE WORK 

 

The work presented here clearly demonstrated the immense potential for 

lanthanide doped materials to be used as environmental tracers.   The work 

though, has reached the stage where the following developments could take it to 

the next stage. 

 

• Investigation of glass matrices which would allow an increase in signal 

from the lanthanide ions doped into it 

 

• Development of new chelate molecules to provide more energy efficient 

transfers to the lanthanide ions, therefore lowering doping levels of ions 

but increasing signal 

 

• Fabrication of sufficient quantities of tracer to allow field trials 

 

• Further development of specific tracer particle size to match that of 

sedimentary silts 

 

• Development of a field trial detection system which can incorporate atomic 

spectral and lifetime differentiation so that a study such as that in Chapter 

5 can be carried out using the novel lanthanide chelate silica sol gel 

tracers developed in this work 

 

7.1 Future Applications 

 

The development of these tracers has focused mainly on environmental 

applications, such as marine, river, sediments, pollution etc.   The nature of glass 

/silica sol gel and polymer as tracer hosts has wider applications.   

 

Offshore applications could be an area for the use of these tracers to replace 

radioactive and molecular dye tracers currently applied for downhole testing.   

Existing flow-through fluorometers are already in use in many places and could 

be adapted (see above) to monitor the lanthanide doped glasses.   Currently 
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these fluorescent nano-sized particles are being used in the development of bio-

assay technology. 

 The detection system being developed for that application could be adapted for 

environmental applications. 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 478.5 167.95 318.0 327.0 9.0 467.0 497.5 30.5 

452 480.5 228.03 440.0 456.0 16.0 476.5 505.0 28.5 

363 482 458.38 357.0 370.0 13.0 461.0 503.0 42.0 

423 482 105.68 419.0 433.0 14.0 467.0 499.0 32.0 

385 482.5 509.32 373.0 409.0 36.0 461.0 505.0 44.0 

347 483 37.71 339.0 357.0 18.0 459.0 507.0 48.0 

377 545 208.14 369.0 382.0 13.0 528.0 558.5 30.5 

350 545.5 191.16 331.0 357.0 26.0 529.5 556.5 27.0 

453 545.5 48.03 440.0 459.0 19.0 535.5 554.5 19.0 

484 545.5 70.55 475.0 495.0 20.0 529.5 560.5 31.0 

364 546 172.45 360.0 371.0 11.0 531.5 556.5 25.0 

348 575.5 950.02 338.0 357.0 19.0 556.5 602.0 45.5 

471 576 97.71 466.0 477.0 11.0 554.5 596.5 42.0 

452 576.5 286.35 436.0 460.0 24.0 556.5 600.5 44.0 

465 576.5 89.12 460.0 466.0 6.0 562.0 598.5 36.5 

363 577 552.25 358.0 370.0 12.0 558.5 602.0 43.5 

385 577 777.75 371.0 407.0 36.0 554.5 602.0 47.5 

323 577.5 136.54 312.0 330.0 18.0 558.5 600.5 42.0 

424 578.5 154.98 418.0 430.0 12.0 556.5 596.5 40.0 

362 613 136.42 355.0 368.0 13.0 604.0 640.5 36.5 

379 614 275.45 367.0 387.0 20.0 602.0 638.5 36.5 

395 614 401.50 387.0 406.0 19.0 602.0 636.5 34.5 

412 614.5 76.46 406.0 419.0 13.0 604.0 636.5 32.5 

463 614.5 287.35 455.0 471.0 16.0 600.5 640.5 40.0 

530 615 56.43 520.0 542.0 22.0 600.5 636.5 36.0 

308 618.5 25.93 305.0 313.0 8.0 608.0 632.5 24.5 

348 618.5 55.47 341.0 354.0 13.0 608.0 636.5 28.5 

319 619 39.36 313.0 324.0 11.0 602.0 627.0 25.0 

349 655 35.08 341.0 355.0 14.0 646.0 680.5 34.5 

465 656 35.21 460.0 468.0 8.0 642.0 663.0 21.0 

386 656.5 50.31 371.0 389.0 18.0 644.0 684.0 40.0 

392 657 60.78 389.0 409.0 20.0 644.0 676.5 32.5 

362 658 33.57 359.0 368.0 9.0 640.5 682.5 42.0 

392 700.5 97.69 387.0 403.0 16.0 678.5 724.0 45.5 

381 701 38.03 368.0 387.0 19.0 690.0 714.5 24.5 

465 701 27.15 457.0 469.0 12.0 688.0 716.5 28.5 

533 701 15.49 520.0 538.0 18.0 678.5 716.5 38.0 

 

 

 
Table 1 Multiple ion doped sample Glass1-1 – 0.5 mol % Eu, 0.5 mol % Tb and 

0.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 483 189.00 308.0 330.0 22.0 467.0 503.0 36.0 

348 483 998.92 339.0 357.0 18.0 459.0 509.0 50.0 

363 484 684.78 357.0 370.0 13.0 461.0 509.0 48.0 

387 484 791.92 371.0 410.0 39.0 457.5 509.0 51.5 

424 483 133.65 415.0 435.0 20.0 463.0 507.0 44.0 

452 483.5 313.74 438.0 460.0 22.0 470.5 505.0 34.5 

323 545.5 74.21 311.0 329.0 18.0 533.5 554.5 21.0 

351 545.5 462.93 330.0 357.0 27.0 529.5 558.5 29.0 

364 545 411.01 358.0 371.0 13.0 528.0 558.5 30.5 

377 545 442.56 371.0 381.0 10.0 531.5 560.5 29.0 

384 545.5 319.24 382.0 405.0 23.0 529.5 556.5 27.0 

414 545.5 34.70 412.0 417.0 5.0 541.0 554.5 13.5 

423 544.5 50.82 417.0 433.0 16.0 529.5 554.5 25.0 

452 544.5 102.21 438.0 460.0 22.0 528.0 554.5 26.5 

484 545.5 137.14 474.0 494.0 20.0 528.0 564.0 36.0 

323 577 204.40 316.0 330.0 14.0 560.5 600.5 40.0 

350** 576.5 1000.00 339.0 358.0 19.0 558.5 604.0 45.5 

363 576.5 920.48 358.0 371.0 13.0 558.5 602.0 43.5 

386** 576.5 1000.00 371.0 409.0 38.0 556.5 604.0 47.5 

423 576 232.29 416.0 432.0 16.0 554.5 606.0 51.5 

452 576 506.93 437.0 460.0 23.0 556.5 606.0 49.5 

470 576.5 153.37 461.0 490.0 29.0 556.5 602.0 45.5 

349 616 104.20 339.0 356.0 17.0 606.0 636.5 30.5 

361 616 183.48 357.0 368.0 11.0 604.0 634.5 30.5 

379 616 297.10 368.0 387.0 19.0 604.0 638.5 34.5 

393 616 837.21 387.0 407.0 20.0 602.0 638.5 36.5 

413 615 68.59 407.0 420.0 13.0 602.0 638.5 36.5 

464 616.5 338.07 458.0 470.0 12.0 600.5 638.5 38.0 

451 616.5 44.04 442.0 456.0 14.0 610.0 642.0 32.0 

484 616.5 29.35 479.0 497.0 18.0 606.0 638.5 32.5 

532 615.5 62.10 519.0 545.0 26.0 600.5 640.5 40.0 

579 618 15.10 571.0 582.0 11.0 611.5 627.0 15.5 

348 664 70.69 340.0 355.0 15.0 648.0 680.5 32.5 

363 663.5 47.56 358.0 367.0 9.0 642.0 686.0 44.0 

388 663 65.55 371.0 405.0 34.0 642.0 690.0 48.0 

424 662.5 15.03 417.0 430.0 13.0 648.0 686.0 38.0 

450 663 25.07 439.0 457.0 18.0 646.0 692.0 46.0 

464 661.5 21.06 460.0 469.0 9.0 648.0 674.5 26.5 

361 702.5 26.56 360.0 367.0 7.0 690.0 705.0 15.0 

381 701.5 39.49 369.0 386.0 17.0 693.5 718.5 25.0 

393 701.5 105.28 388.0 405.0 17.0 680.5 720.5 40.0 

464 699 28.40 457.0 469.0 12.0 686.0 716.5 30.5 

530 700 11.39 523.0 539.0 16.0 674.5 724.0 49.5 

 
Table 2 Multiple ion doped sample Glass1-2 – 0.5 mol % Eu, 1.0 mol % Tb and 

1.0 mol % Dy 
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Peak width   

   Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

342 483 114.78 313.0 330.0 17.0 467.0 510.5 43.5 

349 484.5 823.07 336.0 357.0 21.0 453.5 510.5 57.0 

363 483 628.61 357.0 371.0 14.0 461.0 507.0 46.0 

385 483 779.23 371.0 406.0 35.0 461.0 507.0 46.0 

423 484.5 135.45 418.0 435.0 17.0 461.0 505.0 44.0 

452 484 312.68 438.0 460.0 22.0 470.5 503.0 32.5 

325 545.5 62.99 311.0 327.0 16.0 431.5 558.5 127.0 

349 546.5 597.01 330.0 357.0 27.0 429.5 558.5 129.0 

365 545 526.60 358.0 369.0 11.0 531.5 560.5 29.0 

377 546.5 609.21 371.0 381.0 10.0 529.5 560.5 31.0 

384 546 435.51 382.0 405.0 23.0 529.5 556.5 27.0 

424 545 76.78 418.0 432.0 14.0 529.5 556.5 27.0 

452 544.5 161.14 437.0 461.0 24.0 531.5 556.5 25.0 

470 545.5 66.13 466.0 475.0 9.0 531.5 558.5 27.0 

485 545.5 166.82 475.0 496.0 21.0 529.5 564.0 34.5 

322 575 127.47 313.0 330.0 17.0 558.5 604.0 45.5 

349** 578 1000.00 338.0 358.0 20.0 558.5 604.0 45.5 

363 578 850.96 358.0 370.0 12.0 558.5 602.0 43.5 

387** 578 1000.00 371.0 407.0 36.0 556.5 602.0 45.5 

424 577 233.94 415.0 431.0 16.0 556.5 604.0 47.5 

452 576 536.76 437.0 460.0 23.0 556.5 602.0 45.5 

471 575 156.27 462.0 491.0 29.0 556.5 602.0 45.5 

320 615 30.00 313.0 331.0 18.0 604.0 632.5 28.5 

350 617 113.62 341.0 356.0 15.0 606.0 640.5 34.5 

361 615 169.68 357.0 367.0 10.0 606.0 638.5 32.5 

380 615 276.25 369.0 387.0 18.0 602.0 640.5 38.5 

393 615 679.96 387.0 406.0 19.0 602.0 638.5 36.5 

414 615 66.55 407.0 419.0 12.0 602.0 638.5 36.5 

424 615 32.93 421.0 430.0 9.0 606.0 632.5 26.5 

446 614.5 43.60 442.0 448.0 6.0 608.0 634.5 26.5 

452 615 49.34 448.0 456.0 8.0 606.0 631.0 25.0 

464 615.5 298.29 457.0 469.0 12.0 600.5 636.5 36.0 

484 616 40.00 477.0 496.0 19.0 608.0 634.5 26.5 

531 617.5 55.75 520.0 544.0 24.0 598.5 636.5 38.0 

348 663.5 59.65 339.0 357.0 18.0 642.0 682.5 40.5 

362 664.5 42.56 358.0 370.0 12.0 642.0 682.5 40.5 

386 664 63.68 371.0 403.0 32.0 640.5 686.0 45.5 

423 664.5 14.98 415.0 433.0 18.0 650.0 684.0 34.0 

451 665.5 29.91 440.0 457.0 17.0 644.0 686.0 42.0 

362 699 20.36 359.0 364.0 5.0 692.0 709.0 17.0 

380 699 32.25 369.0 386.0 17.0 692.0 718.5 26.5 

393 701 81.25 387.0 405.0 18.0 680.5 722.5 42.0 

464 701 25.59 456.0 470.0 14.0 690.0 718.5 28.5 

533 700.5 11.88 522.0 543.0 21.0 688.0 711.0 23.0 

 

 

Table 3 Multiple ion doped sample Glass1-3 – 0.5 mol % Eu, 1.5 mol % Tb and 

1.5 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 5 

Peak width 

  Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 483 85.56 313.0 330.0 17.0 463.0 505.0 42.0 

349 483.5 425.82 338.0 357.0 19.0 459.0 507.0 48.0 

363 483 333.80 357.0 371.0 14.0 459.0 507.0 48.0 

387 482 416.91 371.0 409.0 38.0 457.5 505.0 47.5 

424 480.5 81.56 414.0 433.0 19.0 463.0 505.0 42.0 

452 483.5 189.96 436.0 458.0 22.0 472.5 503.0 30.5 

324 543.5 64.24 310.0 329.0 19.0 529.5 556.5 27.0 

349 543 392.09 332.0 357.0 25.0 528.0 558.5 30.5 

365 545.5 350.46 357.0 370.0 13.0 529.5 558.5 29.0 

377 545 388.32 371.0 381.0 10.0 529.5 560.5 31.0 

385 545.5 310.11 382.0 387.0 5.0 528.0 556.5 28.5 

389 545.5 286.51 387.0 406.0 19.0 529.5 556.5 27.0 

424 543 55.45 417.0 433.0 16.0 531.5 554.5 23.0 

452 543 118.28 438.0 460.0 22.0 529.5 556.5 27.0 

471 543 52.30 463.0 474.0 11.0 529.5 558.5 29.0 

484 544.5 126.10 474.0 496.0 22.0 526.0 562.0 36.0 

322 573.5 97.52 316.0 330.0 14.0 558.5 602.0 43.5 

348 574 673.92 336.0 357.0 21.0 558.5 602.0 43.5 

363 575 421.76 357.0 371.0 14.0 558.5 600.5 42.0 

387 575.5 655.40 371.0 409.0 38.0 556.5 602.0 45.5 

424 576.5 129.83 416.0 431.0 15.0 554.5 602.0 47.5 

452 574 274.46 438.0 460.0 22.0 556.5 604.0 47.5 

471 574 88.78 462.0 493.0 31.0 558.5 596.5 38.0 

319 615.5 24.85 313.0 331.0 18.0 604.0 629.0 25.0 

350 615 72.93 338.0 356.0 18.0 604.0 638.5 34.5 

361 614.5 94.88 357.0 368.0 11.0 604.0 638.5 34.5 

379 614.5 146.83 369.0 387.0 18.0 602.0 634.5 32.5 

393 614.5 359.73 387.0 405.0 18.0 600.5 636.5 36.0 

412 614 40.36 408.0 417.0 9.0 602.0 634.5 32.5 

452 613.5 39.68 438.0 455.0 17.0 604.0 636.5 32.5 

463 614 147.10 458.0 471.0 13.0 598.5 640.5 42.0 

482 615.5 32.58 477.0 496.0 19.0 602.0 636.5 34.5 

571 615.5 29.15 520.0 542.0 22.0 598.5 632.5 34.0 

348 660 31.16 339.0 357.0 18.0 640.5 680.5 40.0 

363 659 21.97 357.0 358.0 1.0 642.0 678.5 36.5 

389 659 33.56 373.0 405.0 32.0 642.0 680.5 38.5 

408 659.5 13.30 405.0 411.0 6.0 655.5 665.0 9.5 

424 658 13.73 419.0 427.0 8.0 653.5 665.0 11.5 

451 657 18.58 443.0 455.0 12.0 648.0 674.5 26.5 

372 700.5 15.47 369.0 374.0 5.0 688.0 711.0 23.0 

381 700.5 20.74 374.0 384.0 10.0 692.0 716.5 24.5 

393 701.5 45.34 388.0 407.0 19.0 680.5 718.5 38.0 

464 702 18.13 455.0 470.0 15.0 688.0 713.0 25.0 
 

 

Table 4 Multiple ion doped sample Glass1-4 – 0.5 mol % Eu, 2.0 mol % Tb and 

2.0 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 6 

Peak width  

  Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 482   313.0 330.0 17.0 465.5 509.5 44.0 

349 482   333.0 357.0 24.0 463.5 503.5 40.0 

364 483   357.0 371.0 14.0 462.0 507.0 45.0 

387 481   374.0 408.0 34.0 462.0 510.0 48.0 

425 483   416.0 433.0 17.0 460.0 505.0 45.0 

452 483   436.0 456.0 20.0 470.5 509.0 38.5 

322 545   310.0 330.0 20.0 531.0 556.5 25.5 

350 544   340.0 358.0 18.0 529.0 538.5 9.5 

365 544   358.0 369.0 11.0 531.0 559.5 28.5 

377 544   372.0 382.0 10.0 532.0 559.5 27.5 

387 544   382.0 415.0 33.0 532.0 557.5 25.5 

423 544   418.0 436.0 18.0 530.0 557.5 27.5 

452 544   439.0 460.0 21.0 529.0 588.5 59.5 

483 544   477.0 497.0 20.0 530.0 561.0 31.0 

323 573.5   315.0 330.0 15.0 557.5 598.5 41.0 

348 576   338.0 357.0 19.0 557.5 602.0 44.5 

362 576   357.0 570.0 213.0 559.5 602.0 42.5 

386 576   371.0 414.0 43.0 557.5 602.0 44.5 

424 576   415.0 437.0 22.0 557.5 635.5 78.0 

452 579   439.0 461.0 22.0 557.5 604.0 46.5 

469 579   461.0 492.0 31.0 557.5 596.5 39.0 

362 618   359.0 365.0 6.0 604.0 635.0 31.0 

351 618   332.0 354.0 22.0 608.0 635.0 27.0 

380 618   370.0 386.0 16.0 600.0 631.0 31.0 

393 618   389.0 405.0 16.0 600.5 635.0 34.5 

464 618   459.0 469.0 10.0 599.0 662.0 63.0 

531 618   517.0 541.0 24.0 602.0 635.0 33.0 

349 664   341.0 354.0 13.0 645.0 676.5 31.5 

363 661.5   358.0 371.0 13.0 640.5 677.5 37.0 

384 662.5  378.0 414.0 36.0 650.0 664.0 14.0 

424 662.5   420.0 427.0 7.0 659.0 666.5 7.5 

451 662.5   442.0 457.0 15.0 658.0 684.5 26.5 

380 693   369.0 386.0 17.0 687.0 697.0 10.0 

393 696.5   389.0 397.0 8.0 682.0 715.0 33.0 

463 695.5   458.0 468.0 10.0 679.5 715.5 36.0 

533 697.5   530.0 538.0 8.0 678.0 715.0 37.0 

 
 

Table 5 Multiple ion doped sample Glass1-5 – 0.5 mol % Eu, 2.5 mol % Tb and 

2.5 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 7 

 

Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 482 79.89 313.0 328.0 15.0 460.0 496.0 36.0 

348 482 426.12 334.0 357.0 23.0 456.0 503.5 47.5 

363 482 286.38 357.0 371.0 14.0 456.0 506.5 50.5 

386 482 353.52 371.0 415.0 44.0 456.0 510.5 54.5 

424 481.5 71.83 415.0 435.0 20.0 464.0 498.5 34.5 

452 481.5 150.03 439.0 461.0 22.0 471.5 506.5 35.0 

350 544.5 99.44 338.0 358.0 20.0 532.0 554.5 22.5 

364 544.5 89.47 359.0 368.0 9.0 533.0 554.5 21.5 

377 544.5 105.50 370.0 382.0 12.0 531.0 557.5 26.5 

452 544.5 25.88 441.0 460.0 19.0 530.0 553.0 23.0 

484 544.5 33.06 475.0 494.0 19.0 533.0 557.0 24.0 

323 574 85.13 316.0 330.0 14.0 557.0 599.0 42.0 

349 574 699.03 335.0 357.0 22.0 553.0 603.0 50.0 

362 574 399.38 357.0 371.0 14.0 554.0 601.5 47.5 

386 574 607.94 371.0 412.0 41.0 553.0 601.0 48.0 

424 574 110.82 413.0 436.0 23.0 554.0 606.0 52.0 

452 574 233.45 436.0 460.0 24.0 548.0 601.0 53.0 

471 574 72.74 463.0 489.0 26.0 553.0 597.0 44.0 

318 613 34.22 311.0 323.0 12.0 603.0 626.0 23.0 

349 613 44.21 341.0 356.0 15.0 604.0 637.0 33.0 

361 613 134.27 356.0 368.0 12.0 601.0 634.0 33.0 

379 613 243.17 368.0 387.0 19.0 601.5 638.0 36.5 

393 613 662.69 387.0 408.0 21.0 600.0 641.0 41.0 

413 613 58.62 408.0 422.0 14.0 600.0 630.0 30.0 

464 613 283.67 455.0 470.0 15.0 600.0 638.0 38.0 

533 613 55.23 519.0 549.0 30.0 601.0 635.0 34.0 

348 662 30.06 340.0 356.0 16.0 640.0 678.0 38.0 

362 662 21.58 356.0 370.0 14.0 644.0 678.0 34.0 

385 662.5 32.73 370.0 408.0 38.0 640.0 681.0 41.0 

824 665 8.03 418.0 427.0 9.0 660.0 671.0 11.0 

450 668 12.94 441.0 459.0 18.0 664.0 671.0 7.0 

381 701 33.53 366.0 386.0 20.0 682.0 723.0 41.0 

393 701 81.50 388.0 404.0 16.0 674.0 721.0 47.0 

415 701 9.71 409.0 420.0 11.0 684.0 714.0 30.0 

464 701 25.21 456.0 469.0 13.0 676.0 721.0 45.0 

535 701 7.36 522.0 542.0 20.0 678.0 716.0 38.0 

 

 

Table 6 Multiple ion doped sample Glass1-6 – 1.0 mol % Eu, 0.5 mol % Tb and 

1.0 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 8 

Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 482 102.65 313.0 329.0 16.0 461.0 505.0 44.0 

348 481.5 559.35 335.0 357.0 22.0 457.5 505.0 47.5 

363 483 414.65 357.0 371.0 14.0 459.0 501.0 42.0 

387 483 525.60 371.0 409.0 38.0 459.0 505.0 46.0 

424 481.5 104.01 416.0 430.0 14.0 461.0 499.0 38.0 

452 483.5 239.50 438.0 458.0 20.0 472.5 507.0 34.5 

322 545.5 46.83 310.0 330.0 20.0 545.5 554.5 9.0 

348 545.5 241.58 332.0 357.0 25.0 531.5 556.5 25.0 

365 545 219.26 359.0 370.0 11.0 528.0 558.5 30.5 

377 545 268.63 373.0 381.0 8.0 528.0 558.5 30.5 

384 545.5 204.00 382.0 390.0 8.0 531.5 554.5 23.0 

391 546 166.07 390.0 404.0 14.0 531.5 554.5 23.0 

424 548 41.83 417.0 430.0 13.0 531.5 554.5 23.0 

452 544.5 76.58 438.0 460.0 22.0 533.5 556.5 23.0 

463 544 33.62 461.0 467.0 6.0 528.0 549.0 21.0 

472 544 37.17 468.0 475.0 7.0 529.5 554.5 25.0 

482 545 90.66 475.0 494.0 19.0 529.5 562.0 32.5 

322 576 128.39 313.0 330.0 17.0 558.5 598.5 40.0 

348 574.5 937.70 338.0 357.0 19.0 556.5 604.0 47.5 

363 576 582.79 357.0 371.0 14.0 558.5 602.0 43.5 

386 576 907.61 371.0 408.0 37.0 554.5 602.0 47.5 

424 575 178.37 414.0 435.0 21.0 556.5 602.0 45.5 

452 575.5 380.59 436.0 460.0 24.0 556.5 602.0 45.5 

471 575 119.16 462.0 485.0 23.0 556.5 598.5 42.0 

319 617 47.38 311.0 330.0 19.0 602.0 619.0 17.0 

349 616 90.01 340.0 355.0 15.0 604.0 638.5 34.5 

362 615.5 171.66 355.0 368.0 13.0 602.0 638.5 36.5 

379 615.5 323.62 368.0 387.0 19.0 602.0 638.5 36.5 

393 614.5 845.71 387.0 406.0 19.0 600.5 640.5 40.0 

412 614 82.77 408.0 420.0 12.0 602.0 636.5 34.5 

451 614.5 47.17 449.0 455.0 6.0 606.0 632.5 26.5 

463 615.5 387.79 455.0 468.0 13.0 600.5 640.5 40.0 

482 616 32.08 479.0 496.0 17.0 604.0 631.0 27.0 

531 616 76.13 520.0 544.0 24.0 600.5 636.5 36.0 

579 615.5 21.02 569.0 582.0 13.0 608.0 634.5 26.5 

349 662.5 42.02 340.0 359.0 19.0 638.5 680.5 42.0 

362 663 29.97 359.0 370.0 11.0 644.0 680.5 36.5 

386 663.5 49.11 371.0 389.0 18.0 644.0 680.5 36.5 

392 662 53.32 390.0 402.0 12.0 640.5 671.0 30.5 

427 661.5 13.01 416.0 433.0 17.0 657.5 672.5 15.0 

452 654 25.17 447.0 455.0 8.0 650.0 682.5 32.5 

465 653.5 30.27 458.0 468.0 10.0 644.0 663.0 19.0 

362 696 22.14 357.0 368.0 11.0 688.0 707.0 19.0 

381 696 36.83 370.0 387.0 17.0 682.5 714.5 32.0 

393 698.5 105.98 387.0 405.0 18.0 680.5 718.5 38.0 

463 699.5 34.88 457.0 469.0 12.0 682.5 716.5 34.0 

533 699.5 13.52 520.0 544.0 24.0 648.0 724.0 76.0 

 

 

Table 7 Multiple ion doped sample Glass1-7 – 1.0 mol % Eu, 1.0 mol % Tb and 

1.5 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 9 

Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 482 88.04 314.0 328.0 14.0 465.5 499.5 34.0 

348 482 530.25 329.0 357.0 28.0 457.0 518.0 61.0 

363 482 416.87 357.0 371.0 14.0 454.0 514.0 60.0 

387 482 54.08 371.0 414.0 43.0 450.0 514.0 64.0 

424 482 112.75 414.0 433.0 19.0 462.0 503.0 41.0 

452 482 260.22 438.0 460.0 22.0 472.0 505.0 33.0 

324 546 50.32 311.0 331.0 20.0 530.0 557.0 27.0 

349 546 353.61 332.0 358.0 26.0 528.0 557.5 29.5 

365 546 332.76 358.0 371.0 13.0 529.0 558.0 29.0 

377 546 395.00 373.0 382.0 9.0 529.0 560.5 31.5 

386 546 303.44 382.0 417.0 35.0 527.0 556.5 29.5 

424 546 59.54 417.0 432.0 15.0 530.0 555.5 25.5 

452 546 120.92 438.0 460.0 22.0 530.0 556.5 26.5 

484 546 130.20 476.0 492.0 16.0 531.0 563.0 32.0 

323 576.5 114.21 308.0 331.0 23.0 563.0 603.0 40.0 

349 576.5 883.20 332.0 358.0 26.0 557.5 603.0 45.5 

363 576.5 600.67 358.0 371.0 13.0 558.5 602.0 43.5 

386 576.5 971.84 371.0 412.0 41.0 556.5 602.0 45.5 

424 576.5 202.43 412.0 436.0 24.0 556.5 601.5 45.0 

452 576.5 416.12 436.0 460.0 24.0 556.5 604.0 47.5 

471 576.5 121.85 465.0 494.0 29.0 556.5 596.5 40.0 

319 615 34.49 313.0 330.0 17.0 602.0 626.5 24.5 

350 615 112.66 339.0 357.0 18.0 604.0 635.5 31.5 

62 615 196.60 357.0 368.0 11.0 601.5 635.5 34.0 

380 615 342.66 368.0 388.0 20.0 601.5 635.5 34.0 

393 615 890.82 388.0 407.0 19.0 600.5 640.5 40.0 

412 615 86.14 407.0 421.0 14.0 601.5 632.5 31.0 

464 615 392.93 456.0 476.0 20.0 600.5 640.5 40.0 

484 615 42.61 478.0 496.0 18.0 602.0 637.5 35.5 

531 615 71.83 519.0 546.0 27.0 600.5 635.5 35.0 

348 664.5 45.08 340.0 357.0 17.0 640.5 680.5 40.0 

363 664.5 32.07 357.0 371.0 14.0 638.5 676.5 38.0 

387 664.5 49.07 371.0 415.0 44.0 643.5 679.5 36.0 

423 664.5 13.72 416.0 435.0 19.0 639.5 679.5 40.0 

451 664.5 23.29 436.0 459.0 23.0 643.5 687.0 43.5 

380 700 38.20 370.0 387.0 17.0 683.5 728.0 44.5 

393 700 110.14 387.0 407.0 20.0 677.5 719.5 42.0 

413 700 14.70 409.0 417.0 8.0 676.5 718.5 42.0 

464 700 38.20 458.0 469.0 11.0 674.5 715.5 41.0 

532 700 13.27 521.0 540.0 19.0 681.5 717.5 36.0 

 

 

Table 8 Multiple ion doped sample Glass1-8 – 1.0 mol % Eu, 1.5 mol % Tb and 

2.0 mol % Dy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 10 

 

Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 482.5 53.30 311.0 327.0 16.0 458.0 506.5 48.5 

348 482.5 377.92 332.0 357.0 25.0 457.0 515.5 58.5 

363 482.5 327.02 357.0 371.0 14.0 459.0 510.5 51.5 

387 482.5 455.70 371.0 412.0 41.0 458.0 511.0 53.0 

423 482.5 88.60 413.0 434.0 21.0 459.5 502.5 43.0 

452 482.5 201.55 438.0 461.0 23.0 471.0 507.5 36.5 

323 545 34.75 311.0 330.0 19.0 533.0 561.0 28.0 

350 545 340.48 331.0 357.0 26.0 527.0 559.5 32.5 

364 545 360.77 357.0 371.0 14.0 530.0 559.5 29.5 

377 545 420.43 371.0 381.0 10.0 529.0 560.5 31.5 

386 545 333.06 381.0 413.0 32.0 529.0 556.5 27.5 

424 545 56.38 417.0 433.0 16.0 534.0 556.5 22.5 

452 545 131.71 438.0 460.0 22.0 531.0 557.5 26.5 

483 545 134.97 476.0 496.0 20.0 532.0 561.0 29.0 

323 575.5 57.92 311.0 330.0 19.0 562.0 598.5 36.5 

348 575.5 605.66 337.0 357.0 20.0 557.0 602.0 45.0 

363 575.5 451.86 357.0 371.0 14.0 558.5 602.0 43.5 

387 575.5 777.71 371.0 413.0 42.0 557.5 602.0 44.5 

423 575.5 148.26 414.0 436.0 22.0 557.5 605.0 47.5 

452 575.5 338.15 436.0 460.0 24.0 558.5 603.0 44.5 

471 575.5 100.31 460.0 493.0 33.0 558.5 602.0 43.5 

319 618.5 22.99 312.0 328.0 16.0 603.0 630.5 27.5 

352 618.5 100.92 340.0 355.0 15.0 603.0 643.5 40.5 

362 618.5 163.69 355.0 369.0 14.0 602.0 642.5 40.5 

380 618.5 279.64 369.0 387.0 18.0 601.5 640.5 39.0 

393 618.5 699.58 387.0 408.0 21.0 601.5 640.5 39.0 

413 618.5 53.18 408.0 419.0 11.0 602.0 637.5 35.5 

452 618.5 47.55 440.0 457.0 17.0 604.0 639.5 35.5 

464 618.5 285.60 457.0 472.0 15.0 598.5 641.5 43.0 

483 618.5 39.17 478.0 498.0 20.0 602.0 633.5 31.5 

532 618.5 51.97 518.0 545.0 27.0 645.0 678.5 33.5 

350 663 29.67 339.0 357.0 18.0 643.5 680.5 37.0 

362 663 23.81 358.0 371.0 13.0 641.5 680.5 39.0 

387 663 41.23 371.0 414.0 43.0 648.0 686.0 38.0 

423 663 9.23 417.0 431.0 14.0 640.5 694.0 53.5 

452 663 17.65 437.0 459.0 22.0 643.5 688.0 44.5 

381 700.5 38.17 368.0 388.0 20.0 684.5 719.5 35.0 

393 700.5 91.10 388.0 406.0 18.0 679.5 719.5 40.0 

413 700.5 10.27 407.0 422.0 15.0 674.0 717.5 43.5 

464 700.5 25.46 459.0 471.0 12.0 681.5 718.5 37.0 

531 700.5 9.26 515.0 547.0 32.0 674.0 731.0 57.0 

 

 

Table 9 Multiple ion doped sample Glass1-9 – 1.0 mol % Eu, 2.0 mol % Tb and 

2.5 mol % Dy 
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Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 11 

 

 

 

Table 10 Multiple ion doped sample Glass1-10 – 1.0 mol % Eu, 2.5 mol % Tb 

and 0.5 mol % Dy 
 

 

 

 

 

 

 

 

Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 483 54.71 311.0 328.0 17.0 472.5 509.0 36.5 

349 483.5 302.79 337.0 357.0 20.0 461.0 509.0 48.0 

363 485 252.96 357.0 369.0 12.0 463.0 509.0 46.0 

378 487 236.11 372.0 380.0 8.0 463.0 512.5 49.5 

358 487 195.78 356.0 359.0 3.0 463.0 512.5 49.5 

385 484 249.13 381.0 412.0 31.0 459.0 507.0 48.0 

423 482.5 53.20 417.0 432.0 15.0 468.5 499.0 30.5 

452 482.5 111.27 438.0 456.0 18.0 476.5 507.0 30.5 

317 544 45.86 309.0 328.0 19.0 528.0 562.0 34.0 

350 545 360.31 330.0 357.0 27.0 528.0 560.5 32.5 

365 544.5 374.61 360.0 369.0 9.0 529.5 562.0 32.5 

358 544 271.33 357.0 359.0 2.0 528.0 560.5 32.5 

376 543.5 479.43 371.0 404.0 33.0 529.5 562.0 32.5 

424 543.5 36.00 417.0 430.0 13.0 531.5 556.5 25.0 

452 545 65.23 438.0 459.0 21.0 528.0 556.5 28.5 

465 544.5 30.93 460.0 468.0 8.0 526.0 549.0 23.0 

483 545 180.32 474.0 496.0 22.0 528.0 564.0 36.0 

322 578 42.91 311.0 329.0 18.0 560.5 598.5 38.0 

348 574 372.42 340.0 357.0 17.0 560.5 604.0 43.5 

363 577.5 242.37 358.0 370.0 12.0 560.5 602.0 41.5 

385 577 374.41 370.0 405.0 35.0 558.5 602.0 43.5 

423 574 81.08 416.0 435.0 19.0 556.5 598.5 42.0 

452 575.5 141.03 437.0 459.0 22.0 556.5 600.5 44.0 

464 591.5 113.53 458.0 469.0 11.0 564.0 600.5 36.5 

470 576.5 47.57 467.0 479.0 12.0 556.5 594.5 38.0 

319 615.5 49.32 321.0 328.0 7.0 602.0 627.0 25.0 

351 617.5 130.04 341.0 356.0 15.0 602.0 634.5 32.5 

361 616 254.92 357.0 365.0 8.0 602.0 640.5 38.5 

379 615 423.42 368.0 386.0 18.0 600.5 638.5 38.0 

397 616 1002.06 387.0 404.0 17.0 602.0 638.5 36.5 

413 613 91.45 407.0 421.0 14.0 602.0 634.5 32.5 

453 614 40.82 440.0 454.0 14.0 602.0 636.5 34.5 

464 614 438.43 458.0 470.0 12.0 600.5 640.5 40.0 

483 615.5 61.06 475.0 500.0 25.0 604.0 638.5 34.5 

530 613.5 77.76 516.0 544.0 28.0 600.5 634.5 34.0 

576 614 20.65 568.0 579.0 11.0 608.0 631.0 23.0 

350 653.5 19.50 338.0 355.0 17.0 642.0 674.5 32.5 

363 653 21.89 357.0 386.0 29.0 642.0 674.5 32.5 

379 651 36.00 369.0 387.0 18.0 644.0 671.0 27.0 

391 649 50.09 387.0 404.0 17.0 642.0 669.0 27.0 

464 649 33.40 456.0 469.0 13.0 642.0 661.5 19.5 

361 700 34.98 358.0 366.0 8.0 686.0 705.0 19.0 

379 701 52.95 369.0 387.0 18.0 676.5 718.5 42.0 

393 701.5 140.43 387.0 404.0 17.0 674.5 724.0 49.5 

413 701 15.20 407.0 420.0 13.0 688.0 713.0 25.0 

464 702 39.75 456.0 470.0 14.0 678.5 718.5 40.0 

484 701.5 10.10 476.0 492.0 16.0 693.5 714.5 21.0 

532 702 12.71 519.0 536.0 17.0 682.5 716.5 34.0 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

322 485 94.01 316.0 328.0 12.0 463.0 505.0 42.0 

349 484.5 552.96 336.0 357.0 21.0 457.5 518.5 61.0 

363 482.5 411.66 357.0 471.0 114.0 459.0 516.5 57.5 

387 483 543.00 371.0 410.0 39.0 455.5 509.0 53.5 

423 484 101.63 415.0 434.0 19.0 461.0 503.0 42.0 

451 482.5 227.87 437.0 459.0 22.0 470.5 501.0 30.5 

325 547.5 22.29 309.0 327.0 18.0 535.5 552.5 17.0 

350 547.5 123.59 332.0 357.0 25.0 529.5 556.5 27.0 

364 546.5 117.54 358.0 368.0 10.0 528.0 554.5 26.5 

370 546.5 106.23 369.0 372.0 3.0 528.0 556.5 28.5 

377 547 142.94 372.0 405.0 33.0 529.5 556.5 27.0 

423 547 28.95 420.0 427.0 7.0 533.5 554.5 21.0 

452 545.5 47.07 440.0 459.0 19.0 533.5 554.5 21.0 

464 544 34.29 460.0 470.0 10.0 524.0 550.5 26.5 

483 544 50.95 476.0 494.0 18.0 529.5 560.5 31.0 

322 576.5 113.94 315.0 330.0 15.0 558.5 600.5 42.0 

349 576 995.58 338.0 358.0 20.0 554.5 606.0 51.5 

363 577 623.55 358.0 370.0 12.0 556.5 602.0 45.5 

385 576.5 999.72 371.0 407.0 36.0 554.5 602.0 47.5 

423 576.5 184.84 415.0 434.0 19.0 554.5 600.5 46.0 

452 577.5 414.79 437.0 460.0 23.0 554.5 604.0 49.5 

471 573.5 120.39 461.0 491.0 30.0 556.5 598.5 42.0 

463 597.5 137.26 458.0 470.0 12.0 564.0 598.5 34.5 

530 590.5 33.56 520.0 541.0 21.0 573.5 598.5 25.0 

318 615 57.69 312.0 331.0 19.0 602.0 631.0 29.0 

349 615.5 91.71 336.0 355.0 19.0 606.0 640.5 34.5 

361 615 265.93 356.0 366.0 10.0 602.0 640.5 38.5 

380 615.5 485.01 368.0 387.0 19.0 602.0 640.5 38.5 

392 615.5 1000.00 387.0 405.0 18.0 600.5 640.5 40.0 

414 615.5 112.97 408.0 421.0 13.0 600.5 640.5 40.0 

452 615.5 45.58 449.0 455.0 6.0 608.0 638.5 30.5 

464 615.5 581.83 457.0 470.0 13.0 600.5 640.5 40.0 

483 615.5 31.50 479.0 495.0 16.0 604.0 634.5 30.5 

532 615 117.84 518.0 546.0 28.0 600.5 638.5 38.0 

577 616 25.62 568.0 583.0 15.0 604.0 632.5 28.5 

349 662.5 43.77 340.0 356.0 16.0 642.0 682.5 40.5 

363 664.5 31.06 357.0 368.0 11.0 644.0 684.0 40.0 

385 661 54.49 371.0 388.0 17.0 642.0 680.5 38.5 

393 656.5 75.52 388.0 407.0 19.0 644.0 674.5 30.5 

424 656.5 13.33 417.0 429.0 12.0 644.0 674.5 30.5 

449 657 20.60 439.0 457.0 18.0 644.0 682.5 38.5 

463 654.5 44.12 457.0 471.0 14.0 646.0 671.0 25.0 

528 655.5 11.71 524.0 539.0 15.0 642.0 667.0 25.0 

361 700.5 30.89 358.0 367.0 9.0 684.0 707.0 23.0 

381 700.5 56.91 368.0 388.0 20.0 684.0 720.5 36.5 

393 700 156.53 387.0 405.0 18.0 676.5 722.5 46.0 

414 700 19.99 408.0 420.0 12.0 690.0 714.5 24.5 

463 701.5 47.44 457.0 471.0 14.0 678.5 718.5 40.0 

533 701.5 15.56 517.0 547.0 30.0 678.5 716.5 38.0 

 

 

Table 11 Multiple ion doped sample Glass1-11 – 1.5 mol % Eu, 0.5 mol % Tb 

and1.5 mol % Dy 
 

 

 

 

 

 



Development and Application of Novel Tracers for Environmental Applications 

Appendix II: Spectroscopic Characterisation Data 

Commercial in Confidence 13 

Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 480.5 81.36 311.0 329.0 18.0 463.0 507.0 44.0 

348 481 530.10 337.0 356.0 19.0 457.5 512.5 55.0 

363 483 408.14 358.0 371.0 13.0 459.0 510.5 51.5 

387 483.5 559.37 372.0 407.0 35.0 455.5 510.5 55.0 

423 483.5 115.13 416.0 432.0 16.0 463.0 503.0 40.0 

452 482.5 268.76 436.0 458.0 22.0 472.5 503.0 30.5 

322 545.5 31.26 311.0 329.0 18.0 529.5 556.5 27.0 

349 546 228.26 332.0 357.0 25.0 529.5 556.5 27.0 

366 546 212.29 359.0 370.0 11.0 529.5 558.5 29.0 

377 546.5 257.20 371.0 381.0 10.0 529.5 558.5 29.0 

384 545.5 215.05 383.0 413.0 30.0 529.5 554.5 25.0 

424 547 46.35 419.0 431.0 12.0 529.5 554.5 25.0 

452 546.5 86.41 437.0 459.0 22.0 533.5 554.5 21.0 

463 546 38.16 460.0 464.0 4.0 522.0 550.5 28.5 

483 546.5 91.03 476.0 497.0 21.0 529.5 562.0 32.5 

323 576.5 110.45 313.0 328.0 15.0 558.5 600.5 42.0 

348 575.5 916.13 336.0 357.0 21.0 556.5 602.0 45.5 

362 576 603.88 358.0 370.0 12.0 558.5 600.5 42.0 

387 577.5 989.42 371.0 408.0 37.0 556.5 602.0 45.5 

423 576 210.27 415.0 435.0 20.0 554.5 600.5 46.0 

452 577 433.37 436.0 460.0 24.0 556.5 602.0 45.5 

464 583 157.23 460.0 468.0 8.0 560.5 600.5 40.0 

470 575.5 129.93 466.0 488.0 22.0 558.5 594.5 36.0 

530 576.5 24.23 519.0 539.0 20.0 570.0 589.0 19.0 

531 596 35.15 520.0 542.0 22.0 591.0 600.5 9.5 

317 616 41.26 313.0 330.0 17.0 602.0 625.0 23.0 

351 616 116.46 336.0 354.0 18.0 604.0 636.5 32.5 

361 616.5 270.74 356.0 367.0 11.0 602.0 640.5 38.5 

380 616 475.23 368.0 387.0 19.0 602.0 638.5 36.5 

394 616 1000.28 387.0 405.0 18.0 600.5 640.5 40.0 

413 616.5 119.27 408.0 420.0 12.0 600.5 638.5 38.0 

423 615.5 38.79 421.0 429.0 8.0 606.0 640.5 34.5 

452 617 59.52 447.0 455.0 8.0 608.0 634.5 26.5 

464 617 594.24 458.0 470.0 12.0 600.5 640.5 40.0 

483 618 47.65 479.0 493.0 14.0 602.0 634.5 32.5 

531 616 111.92 518.0 546.0 28.0 600.5 636.5 36.0 

552 615.5 10.43 549.0 558.0 9.0 602.0 632.5 30.5 

577 613 31.62 569.0 582.0 13.0 608.0 632.5 24.5 

350 665.5 42.70 341.0 355.0 14.0 642.0 682.5 40.5 

362 666 34.31 358.0 369.0 11.0 644.0 676.5 32.5 

387 664.5 51.47 371.0 409.0 38.0 644.0 680.5 36.5 

422 663.5 14.76 416.0 430.0 14.0 646.0 674.5 28.5 

453 663 25.22 441.0 457.0 16.0 646.0 690.0 44.0 

463 660.5 28.35 459.0 469.0 10.0 642.0 669.0 27.0 

521 661 15.38 517.0 540.0 23.0 640.5 671.0 30.5 

361 697.5 30.17 358.0 366.0 8.0 690.0 705.0 15.0 

387 699 55.27 369.0 386.0 17.0 680.5 720.5 40.0 

393 700.5 154.94 386.0 405.0 19.0 678.5 720.5 42.0 

410 699.5 20.12 407.0 418.0 11.0 690.0 716.5 26.5 

426 700 12.28 423.0 430.0 7.0 692.0 711.0 19.0 

463 701.5 49.42 456.0 470.0 14.0 678.5 722.5 44.0 

532 700.5 17.84 520.0 541.0 21.0 684.5 718.5 34.0 

 

 

Table 12 Multiple ion doped sample Glass1-12 – 1.5 mol % Eu, 1.0 mol % Tb 

and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 482.5 58.14 310.0 330.0 20.0 461.0 510.5 49.5 

350 482.5 365.17 339.0 357.0 18.0 455.5 512.5 57.0 

364 482.5 293.98 357.0 370.0 13.0 459.0 514.5 55.5 

386 483.5 441.09 370.0 411.0 41.0 453.5 512.5 59.0 

424 483 90.04 416.0 432.0 16.0 463.0 510.5 47.5 

452 483 211.74 437.0 460.0 23.0 470.5 507.0 36.5 

322 547 29.58 311.0 330.0 19.0 529.5 556.5 27.0 

349 546 226.46 332.0 357.0 25.0 529.5 558.5 29.0 

364 546 234.98 359.0 370.0 11.0 528.0 558.5 30.5 

376 546 264.32 372.0 381.0 9.0 528.0 558.5 30.5 

385 545.5 231.02 382.0 408.0 26.0 529.5 556.5 27.0 

412 546 32.06 410.0 415.0 5.0 541.0 556.5 15.5 

424 545 47.31 417.0 432.0 15.0 529.5 556.5 27.0 

452 544.5 103.22 437.0 460.0 23.0 531.5 556.5 25.0 

464 544.5 39.81 461.0 467.0 6.0 522.0 554.5 32.5 

471 546.5 41.30 468.0 474.0 6.0 529.5 554.5 25.0 

483 546.5 98.36 475.0 495.0 20.0 529.5 564.0 34.5 

323 576.5 68.49 312.0 329.0 17.0 560.5 600.5 40.0 

349 576.5 622.13 338.0 357.0 19.0 558.5 602.0 43.5 

363 576 449.64 358.0 370.0 12.0 560.5 600.5 40.0 

386 576.5 743.46 371.0 408.0 37.0 556.5 602.0 45.5 

424 577 157.31 415.0 433.0 18.0 556.5 604.0 47.5 

452 575 349.21 437.0 460.0 23.0 558.5 602.0 43.5 

471 575 107.12 461.0 492.0 31.0 560.5 600.5 40.0 

529 580 22.88 518.0 538.0 20.0 570.0 591.0 21.0 

464 591.5 135.64 459.0 469.0 10.0 562.0 600.5 38.5 

532 591.5 27.08 521.0 541.0 20.0 573.5 598.5 25.0 

319 616 35.53 312.0 329.0 17.0 602.0 634.5 32.5 

351 616.5 101.44 340.0 355.0 15.0 604.0 636.5 32.5 

362 616 214.62 357.0 367.0 10.0 602.0 640.5 38.5 

381 615 383.47 358.0 386.0 28.0 602.0 640.5 38.5 

393 615 942.70 387.0 405.0 18.0 602.0 640.5 38.5 

414 614 87.18 407.0 420.0 13.0 602.0 640.5 38.5 

425 615 33.93 421.0 430.0 9.0 604.0 636.5 32.5 

450 614.5 49.41 440.0 456.0 16.0 606.0 638.5 32.5 

464 615 452.09 457.0 471.0 14.0 600.5 640.5 40.0 

482 618 41.25 477.0 497.0 20.0 604.0 638.5 34.5 

532 614.5 88.88 519.0 544.0 25.0 602.0 636.5 34.5 

577 613 23.60 569.0 582.0 13.0 604.0 634.5 30.5 

348 655 25.56 338.0 355.0 17.0 648.0 680.5 32.5 

363 655 24.79 357.0 370.0 13.0 644.0 680.5 36.5 

384 655.5 37.10 370.0 387.0 17.0 644.0 682.5 38.5 

392 654 64.07 387.0 405.0 18.0 642.0 674.5 32.5 

450 654.5 17.35 438.0 457.0 19.0 648.0 674.5 26.5 

463 651 30.69 457.0 469.0 12.0 642.0 671.0 29.0 

412 651 12.79 409.0 416.0 7.0 644.0 665.0 21.0 

424 650.5 12.01 420.0 427.0 7.0 646.0 657.5 11.5 

449 650 14.41 438.0 457.0 19.0 640.5 686.0 45.5 

362 703.5 24.46 359.0 362.0 3.0 686.0 709.0 23.0 

381 702 45.70 370.0 387.0 17.0 684.0 720.5 36.5 

393 700.5 123.96 389.0 406.0 17.0 680.5 718.5 38.0 

414 700.5 13.62 408.0 420.0 12.0 682.5 716.5 34.0 

425 700.5 7.52 420.0 428.0 8.0 692.0 716.5 24.5 

452 701 8.21 447.0 454.0 7.0 692.0 713.0 21.0 

463 700 39.09 457.0 469.0 12.0 678.5 722.5 44.0 

481 700 7.63 477.0 490.0 13.0 693.5 713.0 19.5 

533 700 12.75 519.0 544.0 25.0 680.5 714.5 34.0 

 

Table 13 Multiple ion doped sample Glass1-13 – 1.5 mol % Eu, 1.5 mol % Tb 

and 2.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 484 82.32 310.0 328.0 18.0 467.0 507.0 40.0 

348 485 472.50 338.0 357.0 19.0 459.0 510.5 51.5 

363 485.5 346.23 358.0 370.0 12.0 461.0 510.5 49.5 

378 486 315.09 372.0 380.0 8.0 463.0 512.5 49.5 

385 484 375.80 380.0 408.0 28.0 457.5 512.5 55.0 

423 482.5 72.05 416.0 432.0 16.0 463.0 503.0 40.0 

452 481.5 164.58 438.0 459.0 21.0 472.5 55.0 417.5 

317 545.5 58.29 311.0 328.0 17.0 528.0 562.0 34.0 

351 546 455.50 332.0 357.0 25.0 529.5 560.5 31.0 

367 546.5 454.21 360.0 370.0 10.0 529.5 562.0 32.5 

377 545 591.00 371.0 385.0 14.0 528.0 564.0 36.0 

386 546 235.87 385.0 406.0 21.0 529.5 558.5 29.0 

424 547 43.92 419.0 429.0 10.0 533.5 556.5 23.0 

452 545 80.56 440.0 458.0 18.0 531.5 558.5 27.0 

464 545.5 45.55 460.0 468.0 8.0 522.0 558.5 36.5 

433 544 22.02 431.0 435.0 4.0 535.5 554.5 19.0 

483 546 222.16 475.0 493.0 18.0 528.0 566.0 38.0 

323 576 85.46 314.0 329.0 15.0 562.0 602.0 40.0 

349 576.5 674.45 338.0 357.0 19.0 560.5 602.0 41.5 

362 578.5 403.95 358.0 369.0 11.0 562.0 602.0 40.0 

386 577.5 634.78 370.0 368.0 -2.0 558.5 602.0 43.5 

393 591.5 868.95 387.0 406.0 19.0 56.5 600.5 544.0 

424 577 121.51 417.0 434.0 17.0 558.5 602.0 43.5 

452 577 234.78 438.0 459.0 21.0 556.5 604.0 47.5 

463 588 250.35 459.0 470.0 11.0 568.0 600.5 32.5 

474 579 77.37 470.0 479.0 9.0 562.0 600.5 38.5 

483 585.5 62.33 478.0 496.0 18.0 568.0 604.0 36.0 

531 594.5 53.80 518.0 544.0 26.0 568.0 600.5 32.5 

319 614 124.38 314.0 332.0 18.0 600.5 627.0 26.5 

349 617 237.31 341.0 355.0 14.0 604.0 640.5 36.5 

362 617 565.65 355.0 367.0 12.0 602.0 638.5 36.5 

379 616 1000.45 368.0 387.0 19.0 602.0 640.5 38.5 

395 616 1000.00 387.0 406.0 19.0 602.0 640.5 38.5 

414 616.5 199.77 408.0 420.0 12.0 602.0 634.5 32.5 

424 616 39.49 422.0 429.0 7.0 604.0 634.5 30.5 

446 615 51.87 439.0 448.0 9.0 606.0 636.5 30.5 

454 615.5 57.87 449.0 456.0 7.0 606.0 642.0 36.0 

463 616.5 996.29 455.0 471.0 16.0 600.5 638.5 38.0 

484 615 102.26 476.0 498.0 22.0 604.0 636.5 32.5 

533 615 202.44 519.0 545.0 26.0 602.0 640.5 38.5 

579 613 40.10 571.0 587.0 16.0 606.0 634.5 28.5 

346 654.5 29.28 338.0 355.0 17.0 644.0 674.5 30.5 

362 656 43.47 357.0 358.0 1.0 642.0 672.5 30.5 

379 656.5 63.78 370.0 385.0 15.0 644.0 671.0 27.0 

393 655.5 134.69 387.0 406.0 19.0 642.0 669.0 27.0 

414 656 17.00 406.0 419.0 13.0 642.0 665.0 23.0 

452 654.5 17.92 441.0 455.0 14.0 652.0 674.5 22.5 

463 654.5 60.03 457.0 469.0 12.0 642.0 671.0 29.0 

485 655 19.13 477.0 493.0 16.0 644.0 667.0 23.0 

530 656 15.55 520.0 544.0 24.0 644.0 671.0 27.0 

362 701.5 71.77 359.0 365.0 6.0 684.0 709.0 25.0 

381 701 125.74 368.0 387.0 19.0 678.5 720.5 42.0 

392 702 334.49 387.0 406.0 19.0 674.5 724.0 49.5 

412 701.5 27.47 408.0 420.0 12.0 682.5 716.5 34.0 

463 701.5 90.77 455.0 471.0 16.0 678.5 720.5 42.0 

484 703.5 16.10 477.0 495.0 18.0 682.5 718.5 36.0 

531 703 25.79 519.0 547.0 28.0 686.0 722.5 36.5 

576 702 7.35 569.0 595.0 26.0 682.5 724.0 41.5 

 

Table 14 Multiple ion doped sample Glass1-14 – 1.5 mol % Eu, 2.0 mol % Tb 

and 0.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

322 483.5 64.34 313.0 329.0 16.0 470.5 501.0 30.5 

349 484.5 398.53 338.0 357.0 19.0 459.0 512.5 53.5 

363 484.5 296.67 357.0 370.0 13.0 461.0 512.5 51.5 

377 486 252.91 372.0 379.0 7.0 465.0 512.5 47.5 

385 483 350.14 379.0 410.0 31.0 455.5 510.5 55.0 

424 482.5 75.35 417.0 433.0 16.0 470.5 503.0 32.5 

452 482.5 181.95 437.0 457.0 20.0 472.5 509.0 36.5 

323 543.5 45.82 311.0 329.0 18.0 529.5 556.5 27.0 

349 544.5 401.08 339.0 356.0 17.0 529.5 560.5 31.0 

367 546 390.86 358.0 369.0 11.0 529.5 560.5 31.0 

377 545.5 480.95 372.0 382.0 10.0 529.5 562.0 32.5 

384 545.5 276.99 382.0 401.0 19.0 531.5 558.5 27.0 

423 546 51.88 417.0 432.0 15.0 531.5 556.5 25.0 

452 545 105.29 438.0 459.0 21.0 529.5 556.5 27.0 

464 544 45.12 461.0 466.0 5.0 520.0 560.5 40.5 

484 544.5 172.53 474.0 498.0 24.0 529.5 564.0 34.5 

322 581.5 68.90 311.0 330.0 19.0 560.5 598.5 38.0 

347 576.5 559.90 338.0 356.0 18.0 558.5 600.5 42.0 

363 579.5 376.52 357.0 370.0 13.0 560.5 602.0 41.5 

386 576.5 590.68 371.0 408.0 37.0 558.5 602.0 43.5 

423 576.5 117.52 417.0 432.0 15.0 558.5 598.5 40.0 

452 577 245.56 438.0 459.0 21.0 556.5 602.0 45.5 

464 589 175.39 458.0 470.0 12.0 566.0 600.5 34.5 

484 588.5 53.32 477.0 494.0 17.0 571.5 600.5 29.0 

572 588.5 39.32 521.0 540.0 19.0 573.5 598.5 25.0 

319 615.5 75.35 311.0 330.0 19.0 600.5 632.5 32.0 

350 616.5 208.42 340.0 356.0 16.0 606.0 632.5 26.5 

362 616 379.08 356.0 366.0 10.0 602.0 636.5 34.5 

378 616 638.48 369.0 387.0 18.0 602.0 638.5 36.5 

391 616 1000.46 387.0 406.0 19.0 600.5 638.5 38.0 

413 614.5 132.39 408.0 420.0 12.0 602.0 638.5 36.5 

425 615.5 92.29 422.0 431.0 9.0 604.0 634.5 30.5 

451 615 64.37 438.0 456.0 18.0 604.0 638.5 34.5 

464 615.5 662.05 458.0 470.0 12.0 600.5 638.5 38.0 

483 616 85.02 476.0 492.0 16.0 604.0 634.5 30.5 

531 615.5 132.40 518.0 545.0 27.0 600.5 636.5 36.0 

577 615 33.49 566.0 582.0 16.0 604.0 634.5 30.5 

350 655 27.97 337.0 356.0 19.0 642.0 680.5 38.5 

362 655.5 33.72 357.0 369.0 12.0 642.0 672.5 30.5 

382 657 51.28 370.0 387.0 17.0 644.0 671.0 27.0 

393 654 95.70 388.0 405.0 17.0 644.0 671.0 27.0 

413 654 17.04 408.0 417.0 9.0 648.0 667.0 19.0 

452 654.5 20.95 444.0 455.0 11.0 652.0 671.0 19.0 

464 655.5 43.99 458.0 469.0 11.0 644.0 672.5 28.5 

485 656 22.49 480.0 490.0 10.0 640.5 671.0 30.5 

524 656.5 15.10 521.0 537.0 16.0 642.0 667.0 25.0 

362 701.5 52.02 360.0 365.0 5.0 678.5 707.0 28.5 

380 700.5 84.91 369.0 387.0 18.0 680.5 718.5 38.0 

393 701.5 207.57 387.0 405.0 18.0 676.5 722.5 46.0 

414 701 20.21 409.0 420.0 11.0 672.5 720.5 48.0 

435 701 10.21 431.0 438.0 7.0 686.0 707.0 21.0 

452 701.5 10.55 446.0 455.0 9.0 692.0 718.5 26.5 

484 701 12.72 476.0 496.0 20.0 680.5 718.5 38.0 

530 701 18.97 517.0 547.0 30.0 682.5 726.0 43.5 

 

 

Table 15 Multiple ion doped sample Glass1-15 – 1.5 mol % Eu, 2.5 mol % Tb 

and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 482.5 82.12 311.0 330.0 19.0 463.0 507.0 44.0 

348 483.5 505.30 339.0 356.0 17.0 459.0 505.0 46.0 

363 482.5 376.69 357.0 371.0 14.0 461.0 505.0 44.0 

385 481.5 504.37 372.0 409.0 37.0 463.0 505.0 42.0 

424 482.5 114.12 417.0 430.0 13.0 452.0 501.0 49.0 

452 482.5 261.90 438.0 457.0 19.0 535.5 507.0 -28.5 

323 545.5 23.66 311.0 326.0 15.0 529.5 550.5 21.0 

350 545.5 118.19 341.0 356.0 15.0 529.5 554.5 25.0 

365 545.5 106.54 359.0 370.0 11.0 529.5 556.5 27.0 

377 545 129.85 371.0 380.0 9.0 528.0 556.5 28.5 

385 545.5 115.45 381.0 386.0 5.0 524.0 550.5 26.5 

387 545.5 111.05 386.0 390.0 4.0 518.5 550.5 32.0 

393 543 101.23 390.0 398.0 8.0 531.5 550.5 19.0 

452 543 470.07 440.0 458.0 18.0 522.0 549.0 27.0 

464 542 43.83 459.0 469.0 10.0 531.5 549.0 17.5 

427 542 28.38 419.0 433.0 14.0 531.5 547.0 15.5 

472 542.5 31.82 469.0 474.0 5.0 531.5 556.5 25.0 

482 545 51.36 477.0 493.0 16.0 556.5 560.5 4.0 

323 576 107.97 315.0 331.0 16.0 554.5 600.5 46.0 

348 577 957.47 338.0 357.0 19.0 556.5 604.0 47.5 

362 577.5 610.95 357.0 370.0 13.0 554.5 602.0 47.5 

386 577.5 968.90 371.0 408.0 37.0 554.5 602.0 47.5 

424 576.5 196.17 416.0 433.0 17.0 554.5 600.5 46.0 

452 577 412.84 436.0 460.0 24.0 554.5 602.0 47.5 

463 585 196.93 458.0 469.0 11.0 564.0 598.5 34.5 

471 576.5 133.37 466.0 490.0 24.0 558.5 596.5 38.0 

533 592 44.87 519.0 544.0 25.0 577.5 600.5 23.0 

319 615.5 63.41 313.0 330.0 17.0 602.0 629.0 27.0 

349 615.5 107.53 340.0 354.0 14.0 606.0 638.5 32.5 

362 615 294.04 355.0 368.0 13.0 604.0 640.5 36.5 

379 615 559.74 368.0 387.0 19.0 602.0 640.5 38.5 

393 615 1000.00 387.0 406.0 19.0 602.0 640.5 38.5 

412 616 148.15 408.0 420.0 12.0 600.5 640.5 40.0 

454 616 59.94 438.0 455.0 17.0 606.0 638.5 32.5 

484 616.5 38.30 479.0 496.0 17.0 602.0 640.5 38.5 

577 614.5 38.03 569.0 582.0 13.0 608.0 636.5 28.5 

463 614 684.75 457.0 471.0 14.0 600.5 638.5 38.0 

530 615 144.06 519.0 544.0 25.0 600.5 640.5 40.0 

348 660 40.88 341.0 357.0 16.0 640.5 680.5 40.0 

362 661 34.04 357.0 368.0 11.0 642.0 682.5 40.5 

382 660 53.45 370.0 387.0 17.0 642.0 672.5 30.5 

392 657 86.49 387.0 406.0 19.0 644.0 674.5 30.5 

411 656.5 20.11 406.0 416.0 10.0 650.0 663.0 13.0 

424 656.5 14.88 419.0 430.0 11.0 657.5 674.5 17.0 

452 665 26.65 439.0 457.0 18.0 642.0 684.0 42.0 

463 653.5 44.38 457.0 469.0 12.0 642.0 672.5 30.5 

362 702.5 35.08 359.0 367.0 8.0 682.5 707.0 24.5 

381 702.5 66.46 368.0 387.0 19.0 682.5 722.5 40.0 

393 702 180.51 387.0 406.0 19.0 678.5 722.5 44.0 

414 702 20.58 408.0 422.0 14.0 684.0 714.5 30.5 

463 701.5 58.03 457.0 471.0 14.0 678.5 720.5 42.0 

530 701.5 22.41 520.0 539.0 19.0 686.0 716.5 30.5 

 

 

Table 16 Multiple ion doped sample Glass1-16 – 2.0 mol % Eu, 0.5 mol % Tb 

and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 484 70.47 313.0 330.0 17.0 465.0 501.0 36.0 

349 482.5 398.57 338.0 357.0 19.0 461.0 503.0 42.0 

363 482.5 302.00 357.0 371.0 14.0 461.0 501.0 40.0 

387 482 410.86 371.0 409.0 38.0 459.0 505.0 46.0 

424 482 103.85 417.0 431.0 14.0 467.0 503.0 36.0 

452 481.5 229.02 439.0 458.0 19.0 474.5 499.0 24.5 

321 543 27.42 311.0 329.0 18.0 531.5 556.5 25.0 

425 542 40.01 419.0 431.0 12.0 533.5 549.0 15.5 

465 540.5 46.48 458.0 471.0 13.0 529.5 552.5 23.0 

452 544.5 69.45 439.0 458.0 19.0 529.5 556.5 27.0 

484 544 72.42 476.0 493.0 17.0 531.5 560.5 29.0 

351 546 160.60 340.0 357.0 17.0 528.0 556.5 28.5 

367 545.5 151.43 357.0 370.0 13.0 529.5 558.5 29.0 

378 544.5 187.73 371.0 382.0 11.0 529.5 558.5 29.0 

390 544 158.89 384.0 416.0 32.0 518.5 556.5 38.0 

324 579 83.40 313.0 330.0 17.0 558.5 600.5 42.0 

349 577.5 653.47 336.0 357.0 21.0 556.5 602.0 45.5 

363 577 450.21 357.0 371.0 14.0 556.5 600.5 44.0 

386 576.5 726.83 373.0 408.0 35.0 556.5 602.0 45.5 

424 574.5 174.66 416.0 435.0 19.0 554.5 604.0 49.5 

452 577 342.77 438.0 460.0 22.0 556.5 604.0 47.5 

463 577 106.71 461.0 467.0 6.0 562.0 600.5 38.5 

471 576 108.04 466.0 489.0 23.0 556.5 598.5 42.0 

530 576 29.35 520.0 534.0 14.0 570.0 598.5 28.5 

463 587 157.07 458.0 468.0 10.0 562.0 600.5 38.5 

531 591 39.82 520.0 539.0 19.0 575.5 598.5 23.0 

319 614 54.05 311.0 329.0 18.0 604.0 631.0 27.0 

349 615.5 109.47 338.0 354.0 16.0 602.0 636.5 34.5 

362 615 244.28 355.0 767.0 412.0 602.0 640.5 38.5 

381 615.5 435.15 368.0 387.0 19.0 602.0 638.5 36.5 

392 615 1002.82 387.0 406.0 19.0 600.5 640.5 40.0 

412 615 113.58 408.0 420.0 12.0 600.5 634.5 34.0 

424 614 44.64 420.0 431.0 11.0 606.0 638.5 32.5 

452 614.5 70.28 438.0 455.0 17.0 604.0 638.5 34.5 

463 614 516.29 457.0 471.0 14.0 600.5 642.0 41.5 

484 614 42.56 481.0 495.0 14.0 604.0 632.5 28.5 

576 615 30.33 569.0 582.0 13.0 608.0 631.0 23.0 

531 614.5 111.19 520.0 545.0 25.0 600.5 636.5 36.0 

348 659 30.19 340.0 355.0 15.0 644.0 678.5 34.5 

360 658.5 29.25 355.0 368.0 13.0 646.0 672.5 26.5 

384 658 48.49 368.0 389.0 21.0 642.0 684.0 42.0 

392 657 64.25 389.0 406.0 17.0 642.0 672.5 30.5 

423 657 16.25 418.0 427.0 9.0 650.0 671.0 21.0 

452 656.5 20.74 446.0 456.0 10.0 644.0 686.0 42.0 

465 656.5 35.29 458.0 469.0 11.0 644.0 672.5 28.5 

360 701.5 33.83 359.0 366.0 7.0 684.0 705.0 21.0 

381 702 55.62 370.0 387.0 17.0 682.5 720.5 38.0 

393 701.5 140.24 387.0 405.0 18.0 676.5 724.0 47.5 

412 703 24.01 409.0 417.0 8.0 686.0 714.5 28.5 

462 704.5 34.95 455.0 471.0 16.0 680.5 720.5 40.0 

533 702.5 19.17 520.0 544.0 24.0 695.5 718.5 23.0 

 

 

Table 17 Multiple ion doped sample Glass1-17 – 2.0 mol % Eu, 1.0 mol % Tb 

and 2.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 483.5 45.57 310.0 330.0 20.0 465.0 503.0 38.0 

335 483.5 56.52 332.0 337.0 5.0 476.5 503.0 26.5 

349 484 254.86 339.0 356.0 17.0 459.0 514.5 55.5 

363 484 191.31 357.0 371.0 14.0 461.0 512.5 51.5 

378 484.5 164.68 372.0 380.0 8.0 463.0 512.5 49.5 

386 484.5 213.48 380.0 395.0 15.0 455.5 509.0 53.5 

423 482 56.32 417.0 430.0 13.0 465.0 499.0 34.0 

451 481.5 115.84 442.0 457.0 15.0 476.5 507.0 30.5 

317 545.5 24.20 311.0 321.0 10.0 529.5 558.5 29.0 

323 545.5 24.76 321.0 327.0 6.0 529.5 556.5 27.0 

350 545.5 177.96 343.0 355.0 12.0 529.5 558.5 29.0 

358 545 134.73 357.0 360.0 3.0 529.5 558.5 29.0 

368 545.5 186.06 360.0 370.0 10.0 528.0 562.0 34.0 

376 545.5 236.10 372.0 384.0 12.0 528.0 560.5 32.5 

387 545.5 106.37 385.0 397.0 12.0 529.5 556.5 27.0 

423 546.5 25.62 418.0 430.0 12.0 535.5 554.5 19.0 

452 546.5 39.58 439.0 460.0 21.0 529.5 554.5 25.0 

464 546.5 27.89 460.0 470.0 10.0 524.0 547.0 23.0 

483 545 102.85 474.0 494.0 20.0 528.0 566.0 38.0 

323 579 41.62 313.0 330.0 17.0 560.5 598.5 38.0 

349 576.5 374.38 339.0 357.0 18.0 558.5 602.0 43.5 

362 576 243.77 357.0 370.0 13.0 558.5 600.5 42.0 

387 576 383.36 370.0 406.0 36.0 556.5 600.5 44.0 

423 575 83.43 415.0 432.0 17.0 556.5 596.5 40.0 

452 574.5 149.86 439.0 458.0 19.0 556.5 602.0 45.5 

462 589.5 155.12 458.0 470.0 12.0 564.0 600.5 36.5 

500 575.5 12.04 495.0 502.0 7.0 571.5 583.0 11.5 

533 591.5 49.53 519.0 544.0 25.0 573.5 598.5 25.0 

319 615.5 75.87 312.0 330.0 18.0 600.5 632.5 32.0 

351 616 126.61 333.0 355.0 22.0 602.0 638.5 36.5 

361 615.5 431.71 357.0 367.0 10.0 602.0 640.5 38.5 

380 616 755.17 369.0 387.0 18.0 602.0 640.5 38.5 

393** 616 1000.00 387.0 405.0 18.0 600.5 640.5 40.0 

413 615.5 179.68 408.0 420.0 12.0 602.0 638.5 36.5 

426 615 34.55 424.0 430.0 6.0 604.0 636.5 32.5 

444 615.5 42.92 437.0 446.0 9.0 606.0 634.5 28.5 

452 615.5 48.48 448.0 455.0 7.0 602.0 642.0 40.0 

464 613.5 870.03 458.0 469.0 11.0 600.5 638.5 38.0 

483 618.5 61.06 477.0 494.0 17.0 602.0 636.5 34.5 

533 618.5 148.80 519.0 545.0 26.0 600.5 638.5 38.0 

577 617.5 31.38 570.0 582.0 12.0 604.0 636.5 32.5 

348 656.5 23.23 339.0 357.0 18.0 646.0 678.5 32.5 

362 656.5 26.37 357.0 368.0 11.0 646.0 665.0 19.0 

380 656.5 45.24 368.0 386.0 18.0 640.5 669.0 28.5 

392 653 106.46 388.0 406.0 18.0 642.0 671.0 29.0 

412 652.5 15.83 408.0 417.0 9.0 644.0 663.0 19.0 

464 652.5 47.75 457.0 469.0 12.0 642.0 672.5 30.5 

451 653.5 17.17 445.0 455.0 10.0 648.0 671.0 23.0 

482 653 21.16 481.0 485.0 4.0 642.0 663.0 21.0 

532 652.5 12.48 521.0 540.0 19.0 646.0 667.0 21.0 

361 701 54.55 360.0 367.0 7.0 680.5 709.0 28.5 

379 702.5 92.83 370.0 387.0 17.0 676.5 718.5 42.0 

392 702 242.31 387.0 405.0 18.0 674.5 722.5 48.0 

413 702 23.31 407.0 419.0 12.0 674.5 720.5 46.0 

485 702.5 10.00 477.0 492.0 15.0 692.0 714.5 22.5 

463 701 78.21 457.0 470.0 13.0 676.5 720.5 44.0 

531 701 22.59 520.0 549.0 29.0 676.5 718.5 42.0 

 

Table 18 Multiple ion doped sample Glass1-18 – 2.0 mol % Eu, 1.5 mol % Tb 

and 0.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

325 482 33.41 316.0 329.0 13.0 467.0 497.5 30.5 

348 482 275.53 338.0 357.0 19.0 459.0 512.5 53.5 

364 482.5 217.55 357.0 371.0 14.0 459.0 512.5 53.5 

386 482 283.69 371.0 404.0 33.0 455.5 509.0 53.5 

423 479.5 60.30 416.0 430.0 14.0 465.0 501.0 36.0 

452 480 142.97 438.0 457.0 19.0 472.5 503.0 30.5 

325 546 24.86 311.0 328.0 17.0 533.5 556.5 23.0 

349 545.5 224.08 338.0 356.0 18.0 529.5 558.5 29.0 

358 545.5 165.05 357.0 359.0 2.0 529.5 558.5 29.0 

366 545.5 231.09 359.0 370.0 11.0 529.5 560.5 31.0 

377 546.5 288.46 373.0 382.0 9.0 529.5 560.5 31.0 

385 546 178.30 382.0 412.0 30.0 531.5 558.5 27.0 

422 546.5 34.34 417.0 430.0 13.0 533.5 554.5 21.0 

452 545.5 66.37 439.0 459.0 20.0 529.5 556.5 27.0 

464 545 30.83 461.0 467.0 6.0 522.0 556.5 34.5 

483 543.5 114.14 474.0 497.0 23.0 529.5 564.0 34.5 

323 580 36.18 313.0 330.0 17.0 558.5 592.5 34.0 

349 579.5 415.50 338.0 357.0 19.0 560.5 62.0 -498.5 

363 577.5 299.90 357.0 370.0 13.0 560.5 600.5 40.0 

386 576.5 489.85 372.0 407.0 35.0 558.5 600.5 42.0 

412 576.5 43.56 410.0 414.0 4.0 570.0 581.0 11.0 

423 578 96.34 416.0 431.0 15.0 554.5 602.0 47.5 

452 576 190.74 439.0 458.0 19.0 558.5 602.0 43.5 

463 579.5 114.17 459.0 469.0 10.0 572.5 581.0 8.5 

482 582.5 36.49 480.0 495.0 15.0 565.5 599.0 33.5 

531 582.5 33.77 519.0 539.0 20.0 578.5 589.5 11.0 

464 593.5 188.14 458.0 470.0 12.0 572.5 599.0 26.5 

531 593 39.18 520.0 540.0 20.0 589.5 598.0 8.5 

318 615.5 54.71 312.0 330.0 18.0 602.5 629.0 26.5 

350 615.5 161.25 342.0 356.0 14.0 602.5 637.0 34.5 

362 616 364.97 356.0 367.0 11.0 601.5 633.5 32.0 

380 615.5 665.31 369.0 387.0 18.0 601.5 637.0 35.5 

393 615.5 1000.00 388.0 405.0 17.0 600.0 637.0 37.0 

412 613.5 140.17 408.0 421.0 13.0 600.0 637.0 37.0 

424 614.5 39.89 422.0 428.0 6.0 609.5 620.5 11.0 

453 614 57.86 447.0 455.0 8.0 601.5 629.0 27.5 

463 614.5 688.57 457.0 471.0 14.0 600.0 638.5 38.5 

484 616 67.99 477.0 498.0 21.0 602.5 631.0 28.5 

531 615.5 138.73 519.0 547.0 28.0 601.5 636.0 34.5 

579 616 32.13 569.0 583.0 14.0 612.0 621.5 9.5 

348 656.5 24.16 342.0 354.0 12.0 640.5 675.5 35.0 

363 656 24.78 358.0 368.0 10.0 640.5 671.5 31.0 

379 654.5 45.14 369.0 387.0 18.0 640.5 671.5 31.0 

393 655 86.87 387.0 405.0 18.0 642.0 663.5 21.5 

415 655 12.79 409.0 418.0 9.0 646.5 662.0 15.5 

447 655.5 16.60 439.0 455.0 16.0 650.5 671.5 21.0 

464 654 41.61 457.0 469.0 12.0 642.0 662.0 20.0 

484 655 18.44 476.0 487.0 11.0 646.5 658.5 12.0 

525 653.5 13.30 523.0 537.0 14.0 643.0 658.5 15.5 

362 699.5 42.71 358.0 365.0 7.0 688.5 708.5 20.0 

381 700 84.68 370.0 387.0 17.0 679.0 718.0 39.0 

393 699.5 212.74 387.0 405.0 18.0 676.5 718.0 41.5 

413 700.5 23.65 411.0 420.0 9.0 687.0 711.0 24.0 

464 701.5 68.46 457.0 471.0 14.0 676.5 717.0 40.5 

451 700 9.87 449.0 456.0 7.0 688.5 707.5 19.0 

484 699 12.22 476.0 490.0 14.0 691.0 717.0 26.0 

531 700 19.62 521.0 543.0 22.0 676.5 719.5 43.0 

 

Table 19 Multiple ion doped sample Glass1-19 – 2.0 mol % Eu, 2.0 mol % Tb 

and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 484.5 72.60 316.0 327.0 11.0 482.0 501.0 19.0 

348 482.5 399.85 341.0 357.0 16.0 461.0 505.0 44.0 

363 484 304.24 359.0 370.0 11.0 461.0 509.0 48.0 

378 485 249.15 373.0 380.0 7.0 465.0 507.0 42.0 

386 484.5 368.79 380.0 397.0 17.0 459.0 507.0 48.0 

424 482.5 83.09 419.0 431.0 12.0 470.5 503.0 32.5 

452 484 191.74 443.0 458.0 15.0 474.5 501.0 26.5 

323 545 47.39 321.0 324.0 3.0 531.5 558.5 27.0 

326 543 41.97 325.0 327.0 2.0 533.5 557.5 24.0 

350 546.5 376.47 339.0 356.0 17.0 529.5 558.5 29.0 

364 545 354.50 362.0 366.0 4.0 531.5 560.5 29.0 

361 545.5 92.13 359.0 362.0 3.0 528.0 558.5 30.5 

367 545.5 335.77 366.0 369.0 3.0 531.0 560.0 29.0 

377 546 432.97 373.0 380.0 7.0 531.0 560.0 29.0 

385 545.5 279.50 383.0 386.0 3.0 531.0 556.0 25.0 

424 544.5 51.04 420.0 425.0 5.0 538.0 550.0 12.0 

448 544.5 82.10 446.0 449.0 3.0 533.0 556.0 23.0 

451 545 100.73 449.0 457.0 8.0 533.0 554.0 21.0 

465 544 44.83 463.0 467.0 4.0 543.0 546.0 3.0 

472 545.5 50.17 470.0 473.0 3.0 540.0 550.0 10.0 

483 546.5 160.92 476.0 492.0 16.0 532.0 561.0 29.0 

507 546 24.15 503.0 509.0 6.0 543.0 548.0 5.0 

323 579 76.34 316.0 330.0 14.0 572.0 582.0 10.0 

349 577.5 624.35 338.0 358.0 20.0 562.0 602.0 40.0 

362 578.5 394.31 359.0 369.0 10.0 560.0 600.0 40.0 

386 577 662.71 370.0 407.0 37.0 558.0 600.0 42.0 

424 576.5 135.60 417.0 432.0 15.0 564.0 598.0 34.0 

447 577 188.04 440.0 448.0 8.0 560.0 598.0 38.0 

452 576.5 272.58 449.0 457.0 8.0 560.0 598.0 38.0 

463 585 179.27 459.0 468.0 9.0 583.0 586.0 3.0 

470 585.5 69.99 469.0 472.0 3.0 581.0 592.0 11.0 

478 575.5 58.59 476.0 479.0 3.0 568.0 583.0 15.0 

319 614 84.30 315.0 322.0 7.0 608.0 627.0 19.0 

350 616 242.76 343.0 353.0 10.0 604.0 636.0 32.0 

361 615 435.67 358.0 367.0 9.0 602.0 634.0 32.0 

380 616 760.89 371.0 387.0 16.0 602.0 636.0 34.0 

392 616 999.00 388.0 401.0 13.0 602.0 638.0 36.0 

413 615.5 160.44 408.0 419.0 11.0 604.0 631.0 27.0 

450 614 74.85 448.0 455.0 7.0 608.0 627.0 19.0 

463 613.5 730.25 457.0 470.0 13.0 600.0 634.0 34.0 

485 614 81.36 480.0 490.0 10.0 606.0 631.0 25.0 

532 616 152.36 527.0 538.0 11.0 606.0 632.0 26.0 

527 617 108.85 523.0 528.0 5.0 606.0 629.0 23.0 

326 656.5 134.88 321.0 335.0 14.0 646.0 671.0 25.0 

350 658.5 34.16 344.0 355.0 11.0 652.0 661.5 9.5 

361 657.5 32.53 358.0 365.0 7.0 648.0 667.0 19.0 

379 656 53.45 374.0 382.0 8.0 642.0 669.0 27.0 

392 654 94.01 387.0 404.0 17.0 642.0 665.0 23.0 

464 656 41.16 458.0 468.0 10.0 642.0 665.0 23.0 

379 701 86.08 373.0 386.0 13.0 686.0 716.5 30.5 

392 701.5 227.75 387.0 400.0 13.0 684.0 716.5 32.5 

465 701 62.00 460.0 469.0 9.0 692.0 713.0 21.0 

362 701.5 53.23 359.0 365.0 6.0 695.0 709.0 14.0 

530 700.5 20.18 523.0 539.0 16.0 693.0 713.0 20.0 

 

Table 20 Multiple ion doped sample Glass1-20 – 2.0 mol % Eu, 2.5 mol % Tb 

and 1.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

348 482.5 334.15 338.0 357.0 19.0 461.0 499.0 38.0 

322 482.5 51.15 313.0 330.0 17.0 467.0 505.0 38.0 

363 481 266.59 357.0 371.0 14.0 463.0 505.0 42.0 

387 480.5 376.14 371.0 409.0 38.0 455.0 507.0 52.0 

424 481.5 78.61 416.0 431.0 15.0 467.0 501.0 34.0 

450 481 165.37 438.0 460.0 22.0 467.0 503.0 36.0 

324 546.5 14.84 311.0 332.0 21.0 533.0 556.0 23.0 

349 545 75.24 332.0 355.0 23.0 533.0 556.0 23.0 

363 545 70.58 357.0 370.0 13.0 531.0 556.0 25.0 

378 545 85.11 371.0 382.0 11.0 529.0 558.0 29.0 

387 545 73.83 384.0 390.0 6.0 533.0 554.0 21.0 

425 544 21.03 419.0 430.0 11.0 543.0 550.0 7.0 

450 544 31.80 438.0 458.0 20.0 533.0 552.0 19.0 

465 544.5 30.89 458.0 471.0 13.0 520.0 550.0 30.0 

482 547 34.18 476.0 496.0 20.0 535.0 562.0 27.0 

322 575.5 67.88 316.0 332.0 16.0 558.0 604.0 46.0 

349 575 631.35 335.0 359.0 24.0 556.0 604.0 48.0 

363 576.5 458.02 359.0 370.0 11.0 556.0 602.0 46.0 

387 576 755.33 371.0 409.0 38.0 556.0 602.0 46.0 

424 575.5 158.18 416.0 433.0 17.0 554.5 602.0 47.5 

452 577 356.86 436.0 460.0 24.0 556.0 602.0 46.0 

463 587.5 181.72 460.0 473.0 13.0 568.0 602.0 34.0 

471 577.5 105.50 468.0 499.0 31.0 562.0 600.0 38.0 

530 581.5 29.14 522.0 539.0 17.0 570.0 600.0 30.0 

321 615 41.03 313.0 327.0 14.0 600.0 636.0 36.0 

349 615.5 85.43 341.0 355.0 14.0 606.0 634.0 28.0 

363 617 198.02 355.0 370.0 15.0 602.0 640.0 38.0 

381 616 525.21 368.0 387.0 19.0 602.0 640.0 38.0 

392 615 999.00 387.0 406.0 19.0 602.0 642.0 40.0 

412 614 134.26 408.0 420.0 12.0 602.0 636.0 34.0 

450 614 48.14 446.0 455.0 9.0 608.0 634.0 26.0 

463 615.5 657.01 457.0 476.0 19.0 600.0 642.0 42.0 

531 615 150.16 520.0 544.0 24.0 600.0 632.0 32.0 

577 615 28.55 572.0 580.0 8.0 602.0 638.5 36.5 

348 663.5 29.52 338.0 357.0 19.0 646.0 686.0 40.0 

363 662 21.85 355.0 370.0 15.0 644.0 684.0 40.0 

382 651 37.30 370.0 387.0 17.0 644.0 678.0 34.0 

392 655 76.42 387.0 405.0 18.0 642.0 676.0 34.0 

452 656.5 19.51 444.0 458.0 14.0 646.0 684.0 38.0 

463 653 41.04 457.0 469.0 12.0 642.0 672.0 30.0 

362 700.5 32.08 357.0 365.0 8.0 684.0 716.0 32.0 

379 701 61.47 370.0 389.0 19.0 682.0 722.0 40.0 

393 699.5 166.42 387.0 405.0 18.0 680.0 720.0 40.0 

463 700.5 65.94 457.0 469.0 12.0 676.0 714.0 38.0 

531 700.5 17.44 522.0 542.0 20.0 680.0 724.0 44.0 

 

Table 21 Multiple ion doped sample Glass1-21 – 2.5 mol % Eu, 0.5 mol % Tb 

and 2.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 481.5 42.98 315.0 330.0 15.0 467.5 500.5 33.0 

349 481.5 250.67 335.0 357.0 22.0 459.5 506.5 47.0 

363 481.5 174.86 357.0 372.0 15.0 460.5 505.0 44.5 

387 481.5 206.24 372.0 407.0 35.0 460.5 505.0 44.5 

423 481.5 48.68 418.0 435.0 17.0 466.5 498.5 32.0 

452 481.5 108.53 439.0 458.0 19.0 474.5 503.5 29.0 

317 548 16.34 311.0 323.0 12.0 536.0 558.0 22.0 

349 548 117.50 332.0 356.0 24.0 533.0 556.5 23.5 

365 548 111.77 356.0 369.0 13.0 556.5 557.5 1.0 

377 548 112.38 371.0 384.0 13.0 530.0 559.5 29.5 

392 548 69.41 388.0 399.0 11.0 523.0 544.5 21.5 

453 548 28.72 444.0 457.0 13.0 536.0 552.5 16.5 

464 548 27.83 460.0 469.0 9.0 545.5 555.5 10.0 

483 548 63.90 477.0 495.0 18.0 531.0 563.0 32.0 

323 574.5 56.25 312.0 329.0 17.0 562.0 599.5 37.5 

348 575 434.79 337.0 357.0 20.0 557.5 601.5 44.0 

363 576.5 266.56 357.0 371.0 14.0 559.5 601.5 42.0 

385 579.5 42.90 370.0 388.0 18.0 529.0 556.5 27.5 

393 588.5 758.64 388.0 407.0 19.0 519.0 549.5 30.5 

414 588.5 69.36 408.0 418.0 10.0 572.0 600.5 28.5 

452 588.5 78.53 438.0 457.0 19.0 555.5 599.5 44.0 

464 591 275.56 457.0 475.0 18.0 566.0 600.5 34.5 

485 591 25.96 475.0 495.0 20.0 575.0 600.5 25.5 

532 591 56.78 520.0 543.0 23.0 572.0 601.5 29.5 

319 614 132.14 312.0 332.0 20.0 603.0 635.5 32.5 

350 614 127.75 341.0 355.0 14.0 602.0 635.5 33.5 

361 614 533.64 355.0 368.0 13.0 600.5 640.5 40.0 

380 614 969.94 368.0 388.0 20.0 600.5 640.5 40.0 

393 614 999.99 388.0 407.0 19.0 600.5 641.5 41.0 

413 614 218.45 407.0 423.0 16.0 600.5 635.5 35.0 

464 614 1004.39 455.0 476.0 21.0 600.5 640.5 40.0 

484 614 50.69 480.0 494.0 14.0 603.0 634.5 31.5 

531 614 221.31 519.0 545.0 26.0 600.5 637.5 37.0 

577 614 43.90 572.0 581.0 9.0 604.0 632.5 28.5 

350 653 15.45 336.0 356.0 20.0 649.0 656.0 7.0 

362 653 34.04 356.0 368.0 12.0 640.5 664.0 23.5 

381 653 56.84 369.0 387.0 18.0 641.5 665.5 24.0 

393 653 136.93 388.0 404.0 16.0 642.5 672.5 30.0 

464 653 59.58 458.0 468.0 10.0 643.5 668.5 25.0 

319 700 15.13 313.0 331.0 18.0 679.5 711.5 32.0 

349 700 15.58 340.0 357.0 17.0 685.5 714.5 29.0 

361 700 63.10 357.0 368.0 11.0 685.5 715.5 30.0 

382 700 121.17 368.0 387.0 19.0 679.5 717.5 38.0 

393 700 334.54 387.0 407.0 20.0 675.5 719.5 44.0 

413 700 29.17 408.0 418.0 10.0 681.5 715.5 34.0 

464 700 107.53 457.0 474.0 17.0 674.5 719.5 45.0 

531 700 25.50 521.0 546.0 25.0 678.5 716.5 38.0 

 

 

 

Table 22 Multiple ion doped sample Glass1-22 – 2.5 mol % Eu, 1.0 mol % Tb 

and 0.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 482 41.63 314.0 328.0 14.0 463.5 504.5 41.0 

349 482 295.16 336.0 357.0 21.0 459.5 511.5 52.0 

363 482 221.10 357.0 371.0 14.0 460.5 502.5 42.0 

386 482 269.64 371.0 410.0 39.0 458.5 505.5 47.0 

424 482 68.35 414.0 430.0 16.0 463.5 499.5 36.0 

452 482 157.65 439.0 457.0 18.0 475.5 508.5 33.0 

350 545 177.83 335.0 357.0 22.0 529.0 556.5 27.5 

365 545 173.37 358.0 371.0 13.0 527.0 558.5 31.5 

377 545 211.61 371.0 377.0 6.0 529.0 559.5 30.5 

453 545 54.78 440.0 457.0 17.0 534.0 559.5 25.5 

484 545 97.65 457.0 496.0 39.0 534.0 560.5 26.5 

323 575 45.57 315.0 328.0 13.0 557.5 600.5 43.0 

349 575 485.88 338.0 357.0 19.0 559.5 600.5 41.0 

363 575 321.85 357.0 371.0 14.0 559.5 600.5 41.0 

386 575 538.68 371.0 410.0 39.0 556.5 601.5 45.0 

392 589.5 673.70 388.0 407.0 19.0 559.5 599.5 40.0 

413 593 66.41 409.0 418.0 9.0 568.0 595.5 27.5 

423 577.5 111.36 417.0 434.0 17.0 558.5 601.5 43.0 

452 577 221.04 437.0 458.0 21.0 555.5 601.5 46.0 

464 590.5 266.98 458.0 470.0 12.0 563.0 600.5 37.5 

319 616.5 67.23 311.0 323.0 12.0 601.5 638.5 37.0 

349 615.5 162.71 341.0 355.0 14.0 600.5 638.5 38.0 

361 615.5 470.68 355.0 367.0 12.0 600.5 639.5 39.0 

380 615.5 571.14 367.0 387.0 20.0 601.5 641.5 40.0 

393 615.5 999.99 387.0 407.0 20.0 601.5 641.5 40.0 

413 615.5 206.82 407.0 422.0 15.0 602.0 636.5 34.5 

452 615.5 66.29 440.0 455.0 15.0 603.0 633.5 30.5 

464 616 985.65 455.0 477.0 22.0 600.5 639.5 39.0 

483 616 72.98 477.0 495.0 18.0 603.0 639.5 36.5 

532 616 199.15 520.0 545.0 25.0 601.5 639.5 38.0 

578 616 46.22 572.0 582.0 10.0 600.5 639.5 39.0 

318 652.5 5.72 313.0 327.0 14.0 644.0 659.0 15.0 

350 652.5 20.98 338.0 356.0 18.0 640.5 682.5 42.0 

361 652.5 29.98 356.0 370.0 14.0 640.5 675.0 34.5 

381 652.5 53.87 370.0 375.0 5.0 641.5 670.5 29.0 

393 652.5 108.69 387.0 409.0 22.0 693.5 670.5 -23.0 

464 652.5 56.69 457.0 470.0 13.0 641.5 668.5 27.0 

530 652.5 14.89 521.0 541.0 20.0 645.0 664.0 19.0 

320 700.5 7.60 313.0 332.0 19.0 686.0 709.5 23.5 

352 700.5 19.25 340.0 355.0 15.0 682.5 712.5 30.0 

362 700.5 50.58 357.0 366.0 9.0 681.5 714.5 33.0 

381 700.5 107.46 370.0 387.0 17.0 679.5 717.5 38.0 

393 700.5 276.51 387.0 407.0 20.0 675.5 719.5 44.0 

412 700.5 22.80 409.0 422.0 13.0 675.5 717.5 42.0 

463 700.5 95.59 456.0 470.0 14.0 672.5 725.5 53.0 

484 700.5 11.27 478.0 491.0 13.0 687.0 711.5 24.5 

532 700.5 24.08 521.0 548.0 27.0 675.5 729.0 53.5 

 

 

Table 23 Multiple ion doped sample Glass1-23 – 2.5 mol % Eu, 1.5 mol % Tb 

and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 480.5 50.74 311.0 329.0 18.0 478.0 501.0 23.0 

349 482.5 351.18 332.0 357.0 25.0 459.0 510.0 51.0 

363 482.5 262.00 359.0 371.0 12.0 461.0 506.0 45.0 

386 484.5 344.41 371.0 412.0 41.0 463.0 506.0 43.0 

424 486.5 78.90 414.0 435.0 21.0 466.0 506.0 40.0 

452 485.5 180.31 436.0 460.0 24.0 472.0 505.0 33.0 

322 546 32.65 311.0 330.0 19.0 535.0 560.0 25.0 

350 545 258.40 330.0 359.0 29.0 535.0 558.0 23.0 

364 545 258.26 359.0 372.0 13.0 535.0 560.0 25.0 

376 545.5 302.04 370.0 382.0 12.0 531.0 560.0 29.0 

386 545.5 200.24 383.0 390.0 7.0 531.0 558.0 27.0 

424 545.5 44.01 418.0 436.0 18.0 535.5 554.5 19.0 

452 546 92.34 439.0 460.0 21.0 531.5 556.5 25.0 

463 546 43.08 461.0 467.0 6.0 541.0 550.5 9.5 

484 545 122.47 473.0 496.0 23.0 531.5 562.0 30.5 

323 579 63.49 316.0 329.0 13.0 562.0 600.5 38.5 

349 576 591.85 336.0 358.0 22.0 560.0 600.0 40.0 

363 578 385.63 358.0 370.0 12.0 562.0 600.0 38.0 

385 578.5 653.52 371.0 387.0 16.0 560.0 598.0 38.0 

389 579 638.88 387.0 406.0 19.0 560.0 600.0 40.0 

424 576.5 138.30 415.0 435.0 20.0 562.0 594.5 32.5 

451 576.5 280.48 448.0 459.0 11.0 560.0 600.0 40.0 

463 591.5 250.36 458.0 475.0 17.0 571.0 600.0 29.0 

484 587.5 51.56 479.0 492.0 13.0 573.0 602.0 29.0 

531 588.5 56.88 528.0 539.0 11.0 577.0 598.0 21.0 

464 392.5 165.34 458.0 471.0 13.0 575.0 600.0 25.0 

319 616.5 91.29 312.0 323.0 11.0 608.0 632.0 24.0 

349 617 227.41 339.0 355.0 16.0 606.0 636.0 30.0 

362 617 482.64 357.0 368.0 11.0 604.0 634.0 30.0 

379 616 397.74 369.0 387.0 18.0 602.0 636.0 34.0 

393 615 1000.00 387.0 407.0 20.0 602.0 640.5 38.5 

413 615 208.19 408.0 421.0 13.0 606.0 631.0 25.0 

452 616 90.97 450.0 455.0 5.0 610.0 625.0 15.0 

464 615.5 993.34 457.0 472.0 15.0 602.0 636.0 34.0 

484 615.5 92.12 478.0 492.0 14.0 606.0 629.0 23.0 

532 614.5 209.62 528.0 546.0 18.0 606.0 629.0 23.0 

527 616 160.62 521.0 528.0 7.0 604.0 632.0 28.0 

577 613.5 47.08 571.0 582.0 11.0 610.0 621.0 11.0 

348 655.5 27.89 343.0 354.0 11.0 646.0 663.0 17.0 

362 656.5 32.34 357.0 368.0 11.0 642.0 669.0 27.0 

382 656.5 57.66 373.0 387.0 14.0 646.0 669.0 23.0 

392 653 119.93 387.0 406.0 19.0 644.0 667.0 23.0 

464 652.5 58.81 459.0 468.0 9.0 646.0 657.0 11.0 

350 700 25.05 340.0 355.0 15.0 693.0 713.0 20.0 

362 700 57.78 357.0 367.0 10.0 686.0 713.0 27.0 

379 700 112.42 370.0 387.0 17.0 684.0 716.0 32.0 

393 701 277.56 387.0 406.0 19.0 680.0 718.0 38.0 

413 699.5 27.09 408.0 420.0 12.0 688.0 713.0 25.0 

464 702.5 100.13 458.0 468.0 10.0 684.0 716.5 32.5 

531 703.5 24.75 523.0 543.0 20.0 690.0 714.0 24.0 

 

 

Table 24 Multiple ion doped sample Glass1-24 – 2.5 mol % Eu, 2.0 mol % Tb 

and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

322 484 43.33 318.0 327.0 9.0 468.0 497.5 29.5 

348 484.5 316.86 334.0 358.0 24.0 461.0 509.0 48.0 

363 484 249.26 356.0 371.0 15.0 467.0 505.0 38.0 

379 485 212.58 371.0 380.0 9.0 468.5 505.0 36.5 

386 486 312.73 381.0 394.0 13.0 463.0 505.0 42.0 

423 484.5 69.20 415.0 435.0 20.0 474.5 495.5 21.0 

448 484.5 115.57 441.0 449.0 8.0 472.5 501.0 28.5 

452 484 170.88 449.0 460.0 11.0 472.5 501.0 28.5 

322 548 28.75 312.0 330.0 18.0 539.0 552.0 13.0 

350 546 288.67 338.0 358.0 20.0 531.0 560.0 29.0 

365 545 287.09 360.0 369.0 9.0 531.0 560.0 29.0 

377 546 339.61 371.0 381.0 10.0 531.0 562.0 31.0 

385 546 251.81 382.0 405.0 23.0 531.0 558.0 27.0 

423 545.5 47.28 417.0 435.0 18.0 539.0 552.0 13.0 

451 545 95.65 439.0 461.0 22.0 533.0 556.0 23.0 

464 547 41.16 463.0 465.0 2.0 541.0 549.0 8.0 

483 546 131.27 475.0 494.0 19.0 535.0 560.0 25.0 

324 575.5 51.91 318.0 328.0 10.0 568.0 589.0 21.0 

348 576.5 522.45 338.0 357.0 19.0 560.5 598.5 38.0 

362 578 365.72 358.0 369.0 11.0 562.0 600.0 38.0 

386 577.5 640.96 370.0 408.0 38.0 558.0 602.0 44.0 

424 579 123.04 418.0 433.0 15.0 562.0 600.0 38.0 

448 579 181.60 439.0 448.0 9.0 560.0 600.0 40.0 

452 577.5 273.60 449.0 458.0 9.0 562.0 598.5 36.5 

464 593.5 226.30 459.0 469.0 10.0 573.0 600.0 27.0 

484 593 43.72 478.0 492.0 14.0 489.0 596.0 107.0 

530 593 46.64 527.0 532.0 5.0 591.0 596.0 5.0 

320 613 60.83 312.0 320.0 8.0 606.0 627.0 21.0 

350 616.5 240.47 342.0 354.0 12.0 606.0 632.0 26.0 

362 616.5 439.43 356.0 367.0 11.0 602.0 638.0 36.0 

379 616 805.50 367.0 387.0 20.0 602.0 638.0 36.0 

391 616 1000.00 387.0 405.0 18.0 602.0 638.0 36.0 

413 617 174.19 407.0 417.0 10.0 602.0 634.0 32.0 

425 617.5 48.96 419.0 425.0 6.0 608.0 631.0 23.0 

451 617 88.26 449.0 457.0 8.0 604.0 634.0 30.0 

465 615.5 714.95 457.0 473.0 16.0 600.0 638.0 38.0 

485 617 83.94 481.0 490.0 9.0 606.0 634.0 28.0 

530 616.5 162.78 522.0 542.0 20.0 602.0 634.0 32.0 

578 618.5 33.77 574.0 582.0 8.0 606.0 624.0 18.0 

350 658 26.19 342.0 356.0 14.0 646.0 676.0 30.0 

363 658.5 27.59 358.0 367.0 9.0 644.0 674.0 30.0 

381 657 47.29 375.0 385.0 10.0 644.0 669.0 25.0 

393 651.5 97.25 387.0 403.0 16.0 648.0 668.0 20.0 

463 653 51.92 459.0 469.0 10.0 644.0 667.0 23.0 

526 655 13.76 522.0 532.0 10.0 648.0 665.0 17.0 

350 689 12.47 342.0 352.0 10.0 687.0 690.0 3.0 

362 700 52.14 356.0 367.0 11.0 695.0 702.0 7.0 

379 700 93.95 371.0 387.0 16.0 696.0 701.0 5.0 

393 702.5 236.36 387.0 405.0 18.0 682.5 716.5 34.0 

413 704 21.30 409.0 411.0 2.0 696.0 702.0 6.0 

465 704 68.34 459.0 471.0 12.0 702.0 715.0 13.0 

485 702.5 12.42 479.0 487.0 8.0 699.0 704.0 5.0 

530 702.5 21.98 524.0 538.0 14.0 695.0 705.0 10.0 

 

 

Table 25 Multiple ion doped sample Glass1-25 – 2.5 mol % Eu, 2.5 mol % Tb 

and 1.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 483.5 126.61 309.0 331.0 22.0 466.5 504.5 38.0 

348 483.5 710.90 334.0 357.0 23.0 455.0 509.5 54.5 

363 483.5 393.47 357.0 371.0 14.0 458.5 505.5 47.0 

385 483.5 479.30 371.0 411.0 40.0 457.5 505.5 48.0 

424 483.5 78.01 417.0 431.0 14.0 457.5 500.5 43.0 

452 483.5 181.90 437.0 459.0 22.0 470.5 504.5 34.0 

327 546.5 29.79 312.0 328.0 16.0 538.0 557.5 19.5 

349 546.5 175.60 338.0 357.0 19.0 530.0 553.5 23.5 

364 546.5 130.35 359.0 371.0 12.0 529.0 556.5 27.5 

385 546.5 160.87 371.0 382.0 11.0 531.0 558.5 27.5 

452 546.5 32.11 440.0 457.0 17.0 533.0 555.5 22.5 

484 546.5 64.02 476.0 495.0 19.0 533.0 561.0 28.0 

323 576.5 168.98 313.0 329.0 16.0 557.5 601.5 44.0 

348 576.5 999.99 339.0 357.0 18.0 553.5 607.0 53.5 

363 576.5 642.78 357.0 371.0 14.0 555.5 604.0 48.5 

385 576.5 882.41 371.0 411.0 40.0 555.5 604.0 48.5 

424 576.5 137.59 414.0 436.0 22.0 545.5 605.0 59.5 

452 576.5 323.64 436.0 461.0 25.0 556.5 605.0 48.5 

471 576.5 95.65 461.0 490.0 29.0 556.5 597.5 41.0 

322 664.5 7.73 318.0 334.0 16.0 641.5 681.5 40.0 

348 664.5 52.37 335.0 358.0 23.0 639.5 704.0 64.5 

363 664.5 27.58 358.0 370.0 12.0 637.5 696.0 58.5 

388 664.5 38.47 370.0 410.0 40.0 637.5 689.0 51.5 

423 664.5 9.61 415.0 431.0 16.0 643.5 685.5 42.0 

450 664.5 17.05 440.0 458.0 18.0 640.5 691.0 50.5 

 

 

Table 26 Multiple ion doped sample Glass 2-2 – 0.0 mol % Eu, 0.5 mol % 

Tb and 0.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 482 145.81 313.0 330.0 17.0 457.5 509.5 52.0 

347 482 950.52 339.0 357.0 18.0 457.5 547.0 89.5 

363 482 635.76 357.0 371.0 14.0 457.5 512.5 55.0 

386 482 738.95 371.0 411.0 40.0 455.0 506.5 51.5 

423 482 115.10 417.0 466.0 49.0 459.5 502.5 43.0 

452 482 296.33 439.0 460.0 21.0 468.5 506.5 38.0 

323 545 53.87 312.0 328.0 16.0 530.0 558.5 28.5 

349 545 437.35 332.0 358.0 26.0 530.0 556.5 26.5 

364 545 345.90 358.0 370.0 12.0 528.0 558.5 30.5 

377 545 402.92 373.0 382.0 9.0 528.0 555.5 27.5 

425 545 35.94 416.0 435.0 19.0 527.0 553.5 26.5 

452 545 89.59 439.0 461.0 22.0 531.0 559.5 28.5 

483 545 134.25 476.0 496.0 20.0 530.0 599.5 69.5 

324 575.5 211.02 310.0 330.0 20.0 555.5 606.0 50.5 

347 575.5 999.99 337.0 357.0 20.0 556.5 604.0 47.5 

363 575.5 936.56 357.0 371.0 14.0 556.5 605.0 48.5 

387 575.5 999.99 371.0 412.0 41.0 554.5 600.5 46.0 

423 575.5 212.64 414.0 435.0 21.0 555.5 601.5 46.0 

452 575.5 545.95 435.0 461.0 26.0 555.5 599.5 44.0 

471 575.5 152.92 461.0 491.0 30.0 557.5 628.5 71.0 

323 621.5 6.10 315.0 325.0 10.0 611.0 634.5 23.5 

349 621.5 44.87 332.0 357.0 25.0 609.0 641.5 32.5 

363 621.5 31.20 357.0 371.0 14.0 608.0 641.5 33.5 

377 621.5 32.68 371.0 381.0 10.0 611.0 637.5 26.5 

384 621.5 26.18 381.0 407.0 26.0 612.0 629.5 17.5 

423 621.5 9.24 417.0 435.0 18.0 614.0 629.5 15.5 

452 621.5 17.12 439.0 461.0 22.0 611.0 629.5 18.5 

481 621.5 15.36 476.0 498.0 22.0 608.0 634.5 26.5 

322 665.5 9.11 317.0 328.0 11.0 648.0 681.5 33.5 

349 665.5 71.69 335.0 357.0 22.0 640.5 695.0 54.5 

363 665.5 40.13 358.0 371.0 13.0 641.5 692.0 50.5 

386 665.5 58.53 371.0 414.0 43.0 640.5 698.0 57.5 

423 665.5 10.10 417.0 436.0 19.0 642.5 695.0 52.5 

452 665.5 23.73 436.0 458.0 22.0 641.5 691.0 49.5 

 

 

Table 27 Multiple ion doped sample Glass 2-3 – 0.0 mol % Eu, 1.0 mol % 

Tb and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 484.5 133..92 311.0 330.0 19.0 463.5 503.5 40.0 

349 484.5 790.79 330.0 357.0 27.0 456.5 509.5 53.0 

362 484.5 539.15 357.0 371.0 14.0 457.5 506.5 49.0 

385 484.5 632.05 371.0 411.0 40.0 435.0 506.5 71.5 

424 484.5 107.98 416.0 435.0 19.0 458.5 499.5 41.0 

452 484.5 235.38 438.0 458.0 20.0 470.5 505.5 35.0 

323 545 82.28 312.0 329.0 17.0 530.0 557.5 27.5 

349 545 551.08 331.0 358.0 27.0 529.0 557.5 28.5 

364 545 439.11 358.0 371.0 13.0 529.0 558.5 29.5 

377 545 504.66 371.0 382.0 11.0 529.0 560.5 31.5 

385 545 348.76 382.0 409.0 27.0 529.0 556.5 27.5 

424 545 61.60 417.0 431.0 14.0 527.0 554.5 25.5 

452 545 129.73 439.0 459.0 20.0 532.0 556.5 29.5 

471 545 53.54 463.0 476.0 13.0 528.0 554.5 22.5 

483 545 144.67 476.0 495.0 19.0 530.0 560.5 32.5 

323 576.5 199.76 313.0 328.0 15.0 558.5 602.0 72.0 

349 576.5 999.99 329.0 357.0 28.0 557.5 607.0 48.5 

363 576.5 765.60 357.0 371.0 14.0 558.5 604.0 46.5 

387 576.5 999.99 371.0 411.0 40.0 556.5 606.0 47.5 

423 576.5 186.23 414.0 434.0 20.0 557.5 601.5 45.0 

452 576.5 434.47 434.0 461.0 27.0 556.5 601.5 44.0 

472 576.5 124.04 461.0 492.0 31.0 557.5 596.5 40.0 

323 620.5 7.80 311.0 330.0 19.0 608.0 642.5 85.0 

349 620.5 49.10 330.0 355.0 25.0 610.0 642.5 34.5 

363 620.5 37.72 357.0 371.0 14.0 607.0 642.5 32.5 

377 620.5 45.45 371.0 381.0 10.0 608.0 639.5 32.5 

386 620.5 36.04 381.0 405.0 24.0 610.0 636.5 28.5 

423 620.5 19.93 414.0 429.0 15.0 610.0 637.5 27.5 

451 620.5 26.70 435.0 455.0 20.0 609.0 636.5 26.5 

482 620.5 19.84 478.0 500.0 22.0 604.0 635.5 26.5 

322 664 7.05 315.0 328.0 13.0 641.5 685.5 81.5 

348 664 57.94 338.0 357.0 19.0 639.5 696.0 54.5 

362 664 33.91 357.0 370.0 13.0 637.5 694.0 54.5 

386 664 52.07 370.0 406.0 36.0 637.5 694.0 56.5 

424 664 11.42 417.0 433.0 16.0 653.0 684.5 47.0 

451 664 20.08 439.0 459.0 20.0 645.0 690.0 37.0 

 

 

Table 28 Multiple ion doped sample Glass 2-4 – 0.0 mol % Eu, 1.5 mol % 

Tb and 1.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 482 128.24 313.0 330.0 17.0 459.4 504.5 45.2 

349 482 771.99 330.0 357.0 27.0 453.0 513.5 60.5 

363 482 573.65 357.0 371.0 14.0 455.0 510.5 55.5 

386 482 718.36 371.0 412.0 41.0 455.0 508.5 53.5 

424 482 118.23 412.0 435.0 23.0 459.5 503.5 44.0 

452 482 287.60 435.0 460.0 25.0 471.5 507.5 36.0 

323 545.5 42.93 310.0 329.0 19.0 530.0 558.5 28.5 

349 545.5 730.85 330.0 357.0 27.0 528.0 558.5 30.5 

364 545.5 626.11 357.0 370.0 13.0 528.0 559.5 31.5 

377 545.5 714.57 371.0 382.0 11.0 526.0 561.0 35.0 

384 545.5 545.37 382.0 411.0 29.0 529.0 557.5 28.5 

423 545.5 85.65 416.0 433.0 17.0 529.0 555.5 26.5 

452 545.5 203.56 438.0 461.0 23.0 528.0 557.5 29.5 

472 545.5 78.22 461.0 475.0 14.0 530.0 557.5 27.5 

483 545.5 208.09 475.0 499.0 24.0 529.0 562.0 33.0 

323 576.5 176.96 312.0 331.0 19.0 558.5 603.0 44.5 

349 576.5 999.99 331.0 357.0 26.0 558.5 604.0 45.5 

363 576.5 819.65 357.0 371.0 14.0 559.5 606.0 46.5 

387 576.5 999.99 371.0 411.0 40.0 557.5 605.0 47.5 

424 576.5 210.56 414.0 437.0 23.0 558.5 598.5 40.0 

452 576.5 493.91 437.0 462.0 25.0 558.5 607.0 48.5 

470 576.5 140.88 462.0 492.0 30.0 559.5 594.5 35.0 

323 622.5 7.22 312.0 329.0 45.0 605.0 632.0 27.0 

349 622.5 66.45 331.0 357.0 60.0 609.0 639.5 30.5 

364 622.5 54.94 357.0 391.0 24.0 607.0 636.5 29.5 

377 622.5 59.97 371.0 381.0 42.0 609.0 637.5 28.5 

386 622.5 47.93 381.0 413.0 53.0 609.0 637.5 28.5 

424 622.5 15.38 413.0 434.0 46.0 609.0 637.5 28.5 

452 622.5 29.77 439.0 459.0 32.0 608.0 636.5 28.5 

469 622.5 21.39 466.0 471.0 37.0 60.0 648.0 43.0 

484 622.5 27.55 475.0 503.0 28.0 605.0 644.0 39.0 

324 662 6.47 317.0 330.0 40.0 646.0 676.5 34.0 

348 662 58.95 337.0 357.0 34.0 642.5 697.0 54.5 

363 662 37.60 357.0 371.0 55.0 642.5 696.0 53.5 

387 662 52.38 371.0 412.0 66.0 642.5 687.0 43.5 

423 662 11.19 415.0 437.0 44.0 643.5 693.0 50.5 

452 662 23.80 438.0 459.0 37.0 642.5 687.0 41.0 

470 662 12.56 462.0 475.0 13.0 646.0 691.0 45.0 

 

 

Table 29 Multiple ion doped sample Glass 2-5 – 0.0 mol % Eu, 2.0 mol % 

Tb and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 480.5 203.52 310.0 329.0 19.0 463.5 508.5 45.0 

348 480.5 834.22 329.0 357.0 28.0 457.5 507.5 50.0 

363 480.5 501.67 357.0 371.0 14.0 461.5 504.5 43.0 

386 480.5 551.86 371.0 413.0 42.0 458.5 505.5 47.0 

423 480.5 81.36 416.0 435.0 19.0 463.5 499.5 36.0 

452 480.5 200.31 437.0 460.0 23.0 470.5 500.5 30.0 

393 535.5 72.39   405.0 405.0 532.5 537.5 5.0 

464 535.5 21.83 460.0 468.0 8.0 528.0 539.5 11.5 

323 573 201.02 311.0 330.0 19.0 554.5 600.5 46.0 

348 573 999.99 330.0 357.0 27.0 549.5 606.0 56.5 

363 573 672.44 357.0 371.0 14.0 552.5 601.5 49.0 

386 573 907.96 371.0 413.0 42.0 551.5 602.0 50.5 

423 573 142.44 413.0 435.0 22.0 555.5 601.5 46.0 

452 573 340.68 437.0 460.0 23.0 552.5 601.5 49.0 

470 573 92.38 463.0 491.0 28.0 557.5 595.5 38.0 

318 614.5 47.30 312.0 331.0 19.0 603.0 634.5 31.5 

348 614.5 34.29 339.0 354.0 15.0 607.0 632.5 25.5 

361 614.5 130.03 354.0 368.0 14.0 602.0 635.5 33.5 

380 614.5 250.34 368.0 387.0 19.0 601.5 638.5 37.0 

393 614.5 711.72 387.0 406.0 19.0 601.5 639.5 38.0 

412 614.5 56.35 406.0 419.0 13.0 601.5 639.5 38.0 

464 614.5 295.48 457.0 470.0 13.0 599.5 639.5 40.0 

532 614.5 51.80 521.0 544.0 23.0 599.5 635.5 36.0 

322 658 10.18 313.0 332.0 19.0 647.0 675.5 28.5 

348 658 46.17 332.0 355.0 23.0 642.5 694.0 51.5 

362 658 28.71 358.0 370.0 12.0 644.0 682.5 38.5 

384 658 38.89 370.0 387.0 17.0 641.5 682.5 41.0 

393 658 49.98 387.0 406.0 19.0 643.5 676.5 33.0 

424 658 8.31 419.0 433.0 14.0 647.0 685.5 38.5 

452 658 14.87 437.0 457.0 20.0 640.5 689.0 48.5 

464 658 16.06 457.0 474.0 17.0 641.5 677.5 36.0 

319 699.5 6.67 315.0 323.0 8.0 695.0 711.5 16.5 

349 699.5 4.73 347.0 353.0 6.0 693.0 711.5 18.5 

362 699.5 12.91 354.0 367.0 13.0 686.0 712.5 26.5 

381 699.5 30.47 367.0 387.0 20.0 683.5 716.5 33.0 

393 699.5 86.64 387.0 406.0 19.0 676.5 719.5 43.0 

464 699.5 72.96 455.0 471.0 16.0 677.5 719.5 42.0 

530 699.5 6.40 521.0 542.0 21.0 681.5 711.5 30.0 

 

 

 

Table 30 Multiple ion doped sample Glass 2-6 – 0.5 mol % Eu, 0.0 mol % 

Tb and 0.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 482.5 149.67 316.0 328.0 12.0 465.0 501.0 36.0 

348 482 823.72 338.0 356.0 18.0 455.5 507.0 51.5 

362 481 542.77 358.0 370.0 12.0 459.0 507.0 48.0 

386 481 637.22 372.0 409.0 37.0 457.5 507.0 49.5 

423 481 105.77 417.0 433.0 16.0 461.0 503.0 42.0 

452 480 238.30 440.0 457.0 17.0 470.5 507.0 36.5 

321 548 30.53 312.0 329.0 17.0 541.0 554.5 13.5 

350 545.5 186.12 331.0 357.0 26.0 528.0 554.5 26.5 

364 545.5 155.20 358.0 370.0 12.0 531.5 554.5 23.0 

377 544.5 167.73 372.0 382.0 10.0 531.5 556.5 25.0 

385 545 123.94 383.0 387.0 4.0 529.5 552.5 23.0 

358 544.5 120.82 357.0 360.0 3.0 529.5 554.5 25.0 

371 545 130.77 370.0 372.0 2.0 531.5 558.5 27.0 

388 545 116.19 387.0 390.0 3.0 531.5 552.5 21.0 

393 545 98.84 391.0 397.0 6.0 526.0 554.5 28.5 

422 546 22.61 418.0 434.0 16.0 531.5 552.5 21.0 

446 545.5 31.25 437.0 448.0 11.0 531.5 552.5 21.0 

452 545 38.85 448.0 458.0 10.0 531.5 552.5 21.0 

464 545.5 21.10 461.0 469.0 8.0 522.0 549.0 27.0 

482 546 50.77 474.0 493.0 19.0 529.5 560.5 31.0 

470 546.5 20.91 469.0 472.0 3.0 531.5 552.5 21.0 

323 576 182.48 314.0 330.0 16.0 556.5 602.0 45.5 

349** 576 1000.00 338.0 357.0 19.0 554.5 604.0 49.5 

363 576.5 811.91 357.0 371.0 14.0 556.5 602.0 45.5 

387** 576 1000.00 371.0 407.0 36.0 552.5 602.0 49.5 

424 577 188.39 417.0 432.0 15.0 556.5 602.0 45.5 

452 578.5 425.21 437.0 459.0 22.0 554.5 604.0 49.5 

471 576.5 123.15 461.0 489.0 28.0 556.5 596.5 40.0 

464 587.5 93.27 460.0 468.0 8.0 558.5 598.5 40.0 

532 589.5 15.11 519.0 539.0 20.0 570.0 598.5 28.5 

318 613.5 28.55 313.0 330.0 17.0 604.0 627.0 23.0 

349 613 51.50 339.0 355.0 16.0 608.0 636.5 28.5 

361 615.5 121.21 356.0 367.0 11.0 604.0 636.5 32.5 

381 614 200.65 368.0 387.0 19.0 604.0 638.5 34.5 

393 614 557.11 387.0 405.0 18.0 602.0 638.5 36.5 

413 614.5 48.71 407.0 418.0 11.0 602.0 636.5 34.5 

444 613.5 21.97 439.0 448.0 9.0 608.0 634.5 26.5 

452 614 22.70 448.0 455.0 7.0 606.0 636.5 30.5 

464 615 222.99 457.0 470.0 13.0 600.5 640.5 40.0 

531 613.5 42.02 517.0 544.0 27.0 600.5 634.5 34.0 

577 614 11.42 570.0 581.0 11.0 604.0 634.5 30.5 

348 664.5 61.43 339.0 357.0 18.0 644.0 682.5 38.5 

362 664 39.63 357.0 370.0 13.0 642.0 684.0 42.0 

387 662 53.56 373.0 405.0 32.0 644.0 684.0 40.0 

424 660.5 11.06 417.0 430.0 13.0 650.0 686.0 36.0 

451 660.5 19.66 437.0 458.0 21.0 646.0 692.0 46.0 

462 660.5 12.99 458.0 468.0 10.0 650.0 665.0 15.0 

470 659.5 13.06 468.0 477.0 9.0 653.5 672.5 19.0 

361 696.5 13.92 357.0 367.0 10.0 690.0 703.5 13.5 

377 696.5 21.56 368.0 386.0 18.0 688.0 716.5 28.5 

393 698 66.81 388.0 405.0 17.0 682.5 716.5 34.0 

414 697 8.66 411.0 417.0 6.0 690.0 711.0 21.0 

464 699 18.30 456.0 470.0 14.0 678.5 716.5 38.0 

526 699 7.06 519.0 537.0 18.0 688.0 713.0 25.0 

 

 

Table 31 Multiple ion doped sample Glass 2-7 – 0.5 mol % Eu, 0.5 mol % 

Tb and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 482 104.08 312.0 329.0 17.0 461.5 503.5 42.0 

348 482 678.92 332.0 357.0 25.0 456.0 506.5 50.5 

363 482 474.89 357.0 371.0 14.0 456.0 505.5 49.5 

386 482 583.50 371.0 412.0 41.0 454.0 505.5 51.5 

423 482 105.02 417.0 431.0 14.0 461.5 502.5 41.0 

452 482 261.75 436.0 459.0 23.0 470.5 505.5 35.0 

323 545.5 36.98 312.0 329.0 17.0 531.0 556.5 25.5 

349 545.5 286.01 331.0 358.0 27.0 529.0 556.5 27.5 

364 545.5 244.32 358.0 371.0 13.0 529.0 557.5 28.5 

377 545.5 285.08 371.0 382.0 11.0 530.0 558.5 28.5 

385 545.5 212.03 382.0 407.0 25.0 530.0 554.5 24.5 

424 545.5 38.76 418.0 431.0 13.0 532.0 554.5 22.5 

452 545.5 82.10 438.0 459.0 21.0 532.0 554.5 22.5 

465 545.5 32.60 462.0 467.0 5.0 539.5 549.5 10.0 

483 545.5 95.17 476.0 496.0 20.0 530.0 562.0 32.0 

323 576.5 132.11 311.0 330.0 19.0 557.5 598.5 41.0 

348 576.5 999.99 332.0 357.0 25.0 556.5 602.0 45.5 

363 576.5 716.86 357.0 371.0 14.0 556.5 603.0 46.5 

386 576.5 1000.50 371.0 410.0 39.0 554.5 603.0 48.5 

423 576.5 198.02 414.0 436.0 22.0 556.5 601.5 45.0 

452 576.5 431.96 436.0 460.0 24.0 555.5 605.0 49.5 

472 576.5 126.10 462.0 490.0 28.0 557.5 597.5 40.0 

323 614.5 18.26 314.0 328.0 14.0 601.5 635.5 34.0 

350 614.5 56.39 338.0 355.0 17.0 605.0 638.5 33.5 

362 614.5 98.69 355.0 367.0 12.0 602.0 639.5 37.5 

380 614.5 184.71 367.0 387.0 20.0 601.5 637.5 36.0 

393 614.5 487.20 387.0 406.0 19.0 601.5 637.5 36.0 

413 614.5 45.79 408.0 421.0 13.0 601.5 632.5 31.0 

464 614.5 207.23 456.0 473.0 17.0 601.5 636.5 35.0 

533 614.5 37.15 521.0 544.0 23.0 602.0 630.5 28.5 

322 662 5.80 321.0 328.0 7.0 653.0 676.5 23.5 

347 662 50.93 332.0 357.0 25.0 642.5 688.0 45.5 

364 662 30.65 357.0 371.0 14.0 643.5 679.5 36.0 

385 662 50.50 371.0 411.0 40.0 643.5 686.0 42.5 

424 662 13.43 416.0 430.0 14.0 647.0 659.0 12.0 

452 662 22.82 438.0 457.0 19.0 640.5 684.5 44.0 

351 700 5.69 342.0 355.0 13.0 697.0 710.5 13.5 

362 700 11.24 355.0 367.0 12.0 692.0 710.5 18.5 

380 700 21.08 367.0 386.0 19.0 691.0 714.5 23.5 

393 700 62.49 388.0 406.0 18.0 682.5 716.5 34.0 

464 700 19.82 459.0 472.0 13.0 684.5 713.5 29.0 

531 700 10.61 522.0 540.0 18.0 685.5 714.5 29.0 

349 753.5 23.32 338.0 357.0 19.0 734.0 779.0 45.0 

363 753.5 15.51 357.0 367.0 10.0 745.0 783.0 38.0 

422 753.5 7.61 414.0 431.0 17.0 742.0 771.0 29.0 

451 753.5 12.74 448.0 458.0 10.0 734.0 772.0 38.0 

 

 

Table 32 Multiple ion doped sample Glass 2-8 – 0.5 mol % Eu, 1.0 mol % 

Tb and 1.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 483 134.35 312.0 329.0 17.0 462.5 499.5 37.0 

348 483 621.36 330.0 358.0 28.0 456.0 508.5 52.5 

363 483 439.09 358.0 371.0 13.0 460.5 508.5 48.0 

385 483 537.78 371.0 412.0 41.0 454.0 507.5 53.5 

423 483 94.41 415.0 434.0 19.0 463.5 502.5 39.0 

452 483 225.20 437.0 459.0 22.0 470.5 503.5 33.0 

322 544 72.65 310.0 328.0 18.0 529.0 557.5 28.5 

350 544 412.91 340.0 358.0 18.0 526.0 556.5 30.5 

364 544 329.73 358.0 371.0 13.0 529.0 558.5 29.5 

377 544 353.32 371.0 383.0 12.0 527.0 559.5 32.5 

385 544 275.81 383.0 405.0 22.0 529.0 555.5 26.5 

423 544 49.81 418.0 433.0 15.0 531.0 555.5 24.5 

452 544 109.58 438.0 460.0 22.0 531.0 555.5 24.5 

485 544 102.74 474.0 491.0 17.0 530.0 562.0 32.0 

322 575 180.81 311.0 330.0 19.0 558.5 600.5 42.0 

348 575 1000.97 330.0 357.0 27.0 557.5 605.0 47.5 

363 575 612.09 357.0 371.0 14.0 558.5 603.0 44.5 

386 575 918.53 371.0 412.0 41.0 557.5 603.0 45.5 

423 575 163.85 412.0 434.0 22.0 558.5 603.0 44.5 

452 575 362.09 436.0 461.0 25.0 555.5 602.0 46.5 

471 575 106.30 461.0 492.0 31.0 560.5 600.5 40.0 

317 615 33.33 313.0 330.0 17.0 602.0 634.5 32.5 

348 615 70.20 337.0 357.0 20.0 606.0 638.5 32.5 

361 615 100.85 357.0 366.0 9.0 604.0 639.5 35.5 

381 615 167.40 369.0 387.0 18.0 604.0 639.5 35.5 

393 615 380.95 387.0 407.0 20.0 601.5 638.5 37.0 

413 615 45.53 409.0 418.0 9.0 601.5 626.5 25.0 

464 615 171.12 458.0 469.0 11.0 599.5 639.5 40.0 

530 615 28.32 521.0 544.0 23.0 602.0 628.5 26.5 

322 663 9.41 316.0 330.0 14.0 652.0 676.5 24.5 

348 663 47.82 337.0 357.0 20.0 638.5 687.0 48.5 

362 663 28.86 357.0 370.0 13.0 642.5 687.0 44.5 

386 663 51.38 372.0 411.0 39.0 639.5 681.5 42.0 

423 663 12.44 417.0 431.0 14.0 652.0 670.5 18.5 

452 663 22.83 436.0 457.0 21.0 640.5 691.0 50.5 

349 700.5 6.36 339.0 356.0 17.0 690.0 710.5 20.5 

362 700.5 11.23 356.0 366.0 10.0 687.0 710.5 23.5 

381 700.5 19.60 369.0 387.0 18.0 684.5 716.5 32.0 

393 700.5 50.96 387.0 405.0 18.0 680.5 717.5 37.0 

464 700.5 16.34 457.0 468.0 11.0 680.5 717.5 37.0 

529 700.5 9.69 512.0 556.0 44.0 685.5 714.5 29.0 

325 753 5.21 315.0 328.0 13.0 748.5 760.5 12.0 

347 753 24.63 336.0 357.0 21.0 733.0 777.0 44.0 

363 753 13.58 358.0 366.0 8.0 745.0 767.5 22.5 

452 753 9.36 437.0 459.0 22.0 735.0 769.0 34.0 

 

 

Table 33 Multiple ion doped sample Glass 2-9 – 0.5 mol % Eu, 1.5 mol % 

Tb and 2. mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

318 489.5 38.13 312.0 320.0 8.0 478.0 503.5 25.5 

351 489.5 145.80 342.0 362.0 20.0 472.5 507.5 35.0 

369 489.5 152.14 362.0 371.0 9.0 470.5 506.5 36.0 

377 489.5 186.50 371.0 390.0 19.0 472.5 510.5 38.0 

318 546 44.28 312.0 323.0 11.0 534.0 567.0 33.0 

341 546 132.47 331.0 343.0 12.0 531.0 561.0 30.0 

351 546 309.04 343.0 360.0 17.0 525.0 564.0 39.0 

376 546 476.94 360.0 388.0 28.0 519.0 561.0 42.0 

393 546 34.40 388.0 400.0 12.0 521.0 563.0 42.0 

483 546 177.50 471.0 497.0 26.0 530.0 561.0 31.0 

319 589 18.11 313.0 322.0 9.0 568.0 597.5 29.5 

351 589 54.17 343.0 356.0 13.0 570.0 602.0 32.0 

362 589 77.64 356.0 364.0 8.0 570.0 601.5 31.5 

377 589 133.10 369.0 387.0 18.0 569.0 601.5 32.5 

393 589 212.63 387.0 407.0 20.0 569.0 639.5 70.5 

413 589 24.64 407.0 419.0 12.0 578.0 597.0 19.0 

464 589 63.75 457.0 470.0 13.0 572.0 597.5 25.5 

483 589 29.63 474.0 497.0 23.0 572.0 601.5 29.5 

530 589 12.64 518.0 545.0 27.0 580.0 598.5 18.5 

318 615 35.65 311.0 341.0 30.0 601.5 632.5 31.0 

338 615 30.25 335.0 341.0 6.0 600.5 633.5 33.0 

350 615 58.66 342.0 356.0 14.0 602.0 636.5 34.5 

362 615 148.68 356.0 365.0 9.0 602.0 640.5 38.5 

378 615 268.20 368.0 388.0 20.0 601.5 640.5 39.0 

393 615 738.13 388.0 407.0 19.0 599.5 639.5 40.0 

413 615 55.71 407.0 422.0 15.0 603.0 634.5 31.5 

464 615 273.06 454.0 472.0 18.0 600.5 639.5 39.0 

483 615 33.26 478.0 495.0 17.0 602.0 641.5 39.5 

532 615 51.06 518.0 544.0 26.0 601.5 630.5 29.0 

318 653.5 2.06 311.0 322.0 11.0     0.0 

351 653.5 7.07 346.0 355.0 9.0 649.0 657.0 8.0 

362 653.5 9.93 355.0 366.0 11.0 642.5 672.5 30.0 

377 653.5 20.83 370.0 384.0 14.0 644.0 664.5 20.5 

393 653.5 39.22 388.0 405.0 17.0 639.5 673.5 34.0 

413 653.5 5.76 409.0 421.0 12.0 645.0 664.0 19.0 

463 653.5 16.39 458.0 469.0 11.0 641.5 664.0 22.5 

472 653.5 8.78 469.0 476.0 7.0 645.0 666.5 21.5 

483 653.5 9.71 476.0 487.0 11.0 646.0 659.0 13.0 

501 653.5 7.48 497.0 506.0 9.0 647.0 664.5 17.5 

510 653.5 6.12 506.0 514.0 8.0 643.5 660.0 16.5 

527 653.5 4.71 522.0 538.0 16.0 643.5 669.0 25.5 

318 698.5 3.78 314.0 321.0 7.0 690.0 712.5 22.5 

351 698.5 6.01 349.0 355.0 6.0 688.0 709.5 21.5 

362 698.5 18.81 356.0 366.0 10.0 679.5 712.5 33.0 

379 698.5 33.89 370.0 386.0 16.0 675.5 716.5 41.0 

393 698.5 89.12 388.0 409.0 21.0 673.5 718.5 45.0 

411 698.5 7.45 408.0 414.0 6.0 680.5 710.5 30.0 

464 698.5 23.52 455.0 471.0 16.0 674.5 716.5 42.0 

484 698.5 5.42 479.0 490.0 11.0 686.0 711.5 25.5 

532 698.5 7.33 521.0 539.0 18.0 679.5 717.5 38.0 

 

 

Table 34 Multiple ion doped sample Glass 2-10 – 2.0 mol % Eu, 0.0 mol 

% Tb and 2.0 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 484 226.53 310.0 330.0 20.0 463.5 506.5 43.0 

348 484 961.72 330.0 357.0 27.0 455.0 507.5 52.5 

363 484 576.31 357.0 371.0 14.0 459.5 506.5 47.0 

386 484 690.97 371.0 413.0 42.0 454.0 506.5 52.5 

423 484 110.90 413.0 434.0 21.0 462.5 502.5 40.0 

452 484 275.56 438.0 461.0 23.0 467.5 503.5 36.0 

361 536 41.05 356.0 367.0 11.0 527.0 537.0 10.0 

380 536 51.57 368.0 388.0 20.0 524.0 539.5 15.5 

393 536 93.13 388.0 407.0 19.0 514.5 547.5 33.0 

463 536 38.04 459.0 473.0 14.0 518.5 550.5 32.0 

322 576.5 292.98 330.0 357.0 27.0 554.5 598.5 44.0 

349 576.5 999.99 357.0 371.0 14.0 549.5 602.0 52.5 

363 576.5 925.69 371.0 413.0 42.0 550.5 602.0 51.5 

386 576.5 999.99 413.0 436.0 23.0 548.5 602.0 53.5 

423 576.5 207.27 436.0 459.0 23.0 551.5 602.0 50.5 

452 576.5 478.37 459.0 492.0 33.0 550.5 602.0 51.5 

471 576.5 138.79 311.0 331.0 20.0 554.5 597.5 43.0 

319 616 89.85 340.0 354.0 14.0 601.5 633.5 32.0 

346 616 54.41 354.0 368.0 14.0 604.0 634.5 30.5 

362 616 210.94 368.0 387.0 19.0 601.5 638.5 37.0 

381 616 416.08 387.0 407.0 20.0 602.0 637.5 35.5 

393 616 999.99 407.0 422.0 15.0 601.5 641.5 40.0 

413 616 97.85 456.0 474.0 18.0 600.5 639.5 39.0 

464 616 473.54 456.0 474.0 18.0 600.5 640.5 40.0 

533 616 88.11 520.0 546.0 26.0 601.5 640.5 39.0 

322 658 13.56 314.0 330.0 16.0 655.0 661.0 6.0 

347 658 58.03 337.0 357.0 20.0 638.0 690.0 52.0 

362 658 36.58 357.0 369.0 12.0 638.5 688.0 49.5 

385 658 54.53 369.0 387.0 18.0 641.5 686.0 44.5 

392 658 75.39 387.0 409.0 22.0 643.5 676.5 33.0 

411 658 11.55 409.0 416.0 7.0 646.0 664.5 18.5 

423 658 12.64 419.0 429.0 10.0 653.0 683.5 30.5 

452 658 22.82 438.0 458.0 20.0 645.0 690.0 45.0 

464 658 28.98 458.0 470.0 12.0 642.5 671.5 29.0 

320 702 9.98 315.0 325.0 10.0 686.0 711.5 25.5 

347 702 7.11 341.0 354.0 13.0 691.0 709.5 18.5 

362 702 24.61 354.0 367.0 13.0 688.0 712.5 24.5 

381 702 47.74 367.0 387.0 20.0 682.5 717.5 35.0 

393 702 139.93 387.0 406.0 19.0 679.5 719.5 40.0 

412 702 11.89 409.0 422.0 13.0 694.0 717.5 23.5 

464 702 39.25 455.0 473.0 18.0 680.5 719.5 39.0 

533 702 13.70 520.0 546.0 26.0 692.0 713.5 21.5 

323 754.5 10.22 315.0 330.0 15.0 741.0 771.0 30.0 

349 754.5 38.99 338.0 358.0 20.0 728.0 788.0 60.0 

362 754.5 18.87 358.0 367.0 9.0 742.0 774.0 32.0 

424 754.5 8.79 415.0 433.0 18.0 746.0 774.0 28.0 

451 754.5 14.40 434.0 458.0 24.0 727.5 782.0 54.5 

 

 

Table 35 Multiple ion doped sample Glass 2-11 – 1.0 mol % Eu, 0.0 mol 

% Tb and 1.0 mol % Dy 
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   Peak width 

   Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 481.5 82.95 311.0 331.0 20.0 458.5 510.5 52.0 

349 481.5 439.21 332.0 358.0 26.0 451.0 510.5 59.5 

363 481.5 282.92 358.0 371.0 13.0 458.5 507.5 49.0 

386 481.5 385.34 371.0 412.0 41.0 456.0 512.5 56.5 

424 481.5 67.62 417.0 432.0 15.0 458.5 503.5 45.0 

452 481.5 148.18 439.0 458.0 19.0 471.5 507.5 36.0 

323 544 20.59 311.0 329.0 18.0 534.0 550.5 16.5 

350 544 85.50 333.0 358.0 25.0 528.0 554.5 26.5 

363 544 78.37 358.0 370.0 12.0 532.0 555.5 23.5 

377 544 89.30 371.0 381.0 10.0 529.0 556.5 27.5 

385 544 69.65 384.0 388.0 4.0 531.0 557.5 26.5 

390 544 67.32 388.0 417.0 29.0 535.0 553.5 18.5 

423 544 15.22 420.0 432.0 12.0 533.0 550.5 17.5 

452 544 28.01 440.0 458.0 18.0 530.0 549.5 19.5 

465 544 17.66 462.0 467.0 5.0 524.0 549.5 25.5 

483 544 29.96 475.0 491.0 16.0 531.0 561.0 30.0 

323 575 115.73 312.0 330.0 18.0 557.5 600.5 43.0 

349 575 792.55 330.0 358.0 28.0 552.5 601.5 49.0 

363 575 459.93 358.0 371.0 13.0 555.5 601.5 46.0 

385 575 686.55 371.0 412.0 41.0 553.5 601.5 48.0 

424 575 124.26 414.0 435.0 21.0 554.5 596.5 42.0 

452 575 261.98 437.0 461.0 24.0 554.5 601.5 47.0 

471 575 79.19 461.0 489.0 28.0 555.5 597.5 42.0 

319 614.5 33.87 311.0 330.0 19.0 599.5 631.5 32.0 

350 614.5 40.29 339.0 354.0 15.0 605.0 632.5 27.5 

362 614.5 105.18 354.0 369.0 15.0 599.5 636.5 37.0 

381 614.5 201.61 369.0 388.0 19.0 600.5 638.5 38.0 

393 614.5 535.35 388.0 407.0 19.0 601.5 639.5 38.0 

414 614.5 47.63 407.0 420.0 13.0 600.5 639.5 39.0 

464 614.5 232.68 456.0 471.0 15.0 598.5 636.5 38.0 

532 614.5 41.31 521.0 544.0 23.0 601.5 633.5 32.0 

323 661 4.27 318.0 328.0 10.0 647.0 669.5 22.5 

349 661 33.95 331.0 371.0 40.0 636.5 689.0 52.5 

363 663.5 19.31 357.0 371.0 14.0 641.5 682.5 41.0 

393 653.5 38.84 387.0 395.0 8.0 642.5 678.5 36.0 

423 664 7.96 417.0 431.0 14.0 662.0 681.5 19.5 

452 664 15.03 437.0 458.0 21.0 637.5 690.0 52.5 

317 700 2.83 314.0 322.0 8.0 697.0 706.0 9.0 

347 700 3.93 341.0 353.0 12.0 698.0 706.5 8.5 

360 700 9.47 357.0 366.0 9.0 686.0 709.5 23.5 

376 700 20.04 369.0 378.0 9.0 687.0 716.5 29.5 

381 700 22.39 378.0 386.0 8.0 685.5 716.5 31.0 

393 700 65.10 388.0 407.0 19.0 679.5 718.5 39.0 

412 700 7.36 407.0 420.0 13.0 680.5 714.5 34.0 

463 700 20.38 456.0 471.0 15.0 680.5 716.5 36.0 

531 700 7.47 521.0 547.0 26.0 691.0 715.5 24.5 

323 755 2.13 318.0 326.0 8.0 753.5 758.5 5.0 

345 755 14.46 339.0 356.0 17.0 739.0 779.0 40.0 

362 755 10.40 359.0 368.0 9.0 740.0 770.0 30.0 

422 755 5.53 416.0 429.0 13.0 743.0 779.0 36.0 

452 755 8.01 438.0 458.0 20.0 734.0 781.0 47.0 

 

 

Table 36 Multiple ion doped sample Glass 2-12 – 1.0 mol % Eu, 0.5 mol 

% Tb and 1.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 481 116.44 312.0 331.0 19.0 466.5 506.5 40.0 

349 481 677.09 331.0 357.0 26.0 459.5 506.5 47.0 

363 481 473.49 357.0 371.0 14.0 465.5 506.5 41.0 

386 481 581.58 371.0 411.0 40.0 457.5 506.5 49.0 

423 481 100.80 416.0 431.0 15.0 459.5 501.5 42.0 

452 481 242.19 436.0 460.0 24.0 468.5 501.5 33.0 

324 546 43.06 312.0 329.0 17.0 529.0 554.5 25.5 

349 546 288.18 332.0 356.0 24.0 527.0 555.5 28.5 

364 546 241.89 358.0 370.0 12.0 531.0 555.5 24.5 

378 546 257.01 373.0 382.0 9.0 529.0 557.5 28.5 

385 546 206.25 382.0 409.0 27.0 529.0 552.5 23.5 

424 546 37.81 417.0 434.0 17.0 531.0 554.5 23.5 

445 546 51.32 437.0 448.0 11.0 531.0 553.5 22.5 

452 546 74.35 448.0 459.0 11.0 530.0 553.5 23.5 

485 546 71.52 475.0 495.0 20.0 531.0 558.5 27.5 

323 577.5 161.20 311.0 331.0 20.0 559.5 600.5 41.0 

349 577.5 999.99 331.0 357.0 26.0 555.5 603.0 47.5 

363 577.5 753.64 357.0 371.0 14.0 556.5 603.0 46.5 

385 577.5 1002.58 371.0 412.0 41.0 555.5 602.0 46.5 

423 577.5 182.23 412.0 436.0 24.0 556.5 603.0 46.5 

452 577.5 435.82 436.0 460.0 24.0 555.5 601.5 46.0 

471 577.5 127.47 461.0 491.0 30.0 555.5 595.5 40.0 

318 615 41.26 312.0 328.0 16.0 603.0 631.5 28.5 

351 615 89.54 341.0 355.0 14.0 606.0 635.5 29.5 

361 615 186.19 355.0 368.0 13.0 602.0 636.5 34.5 

380 615 314.30 368.0 387.0 19.0 602.0 636.5 34.5 

393 615 844.77 387.0 406.0 19.0 600.5 640.5 40.0 

412 615 65.72 407.0 419.0 12.0 603.0 634.5 31.5 

464 615 356.67 457.0 471.0 14.0 600.5 636.5 36.0 

532 615 65.51 520.0 545.0 25.0 600.5 635.5 35.0 

322 658 5.76 317.0 326.0 9.0 654.0 664.5 10.5 

347 658 44.04 332.0 357.0 25.0 637.5 691.0 53.5 

362 658 29.61 357.0 369.0 12.0 643.5 683.5 40.0 

384 658 51.24 371.0 386.0 15.0 642.5 682.5 40.0 

392 658 51.69 389.0 407.0 18.0 638.5 674.0 35.5 

425 658 10.13 418.0 429.0 11.0 652.0 687.0 35.0 

451 658 21.39 439.0 457.0 18.0 644.0 688.0 44.0 

464 658 20.28 460.0 468.0 8.0 646.0 676.5 30.5 

485 658 9.65 482.0 487.0 5.0 665.5 682.5 17.0 

320 700.5 3.73 311.0 328.0 17.0 685.5 710.5 25.0 

352 700.5 9.31 336.0 356.0 20.0 693.0 711.5 18.5 

361 700.5 19.40 356.0 368.0 12.0 688.0 712.5 24.5 

380 700.5 36.30 368.0 387.0 19.0 683.5 716.5 33.0 

392 700.5 100.73 387.0 406.0 19.0 678.5 723.5 45.0 

414 700.5 10.38 406.0 420.0 14.0 685.5 714.5 29.0 

464 700.5 30.19 458.0 469.0 11.0 677.5 716.5 39.0 

530 700.5 8.40 521.0 540.0 19.0 676.5 716.5 40.0 

349 754 24.80 338.0 357.0 19.0 731.0 786.0 55.0 

363 754 14.26 357.0 367.0 10.0 744.0 781.0 37.0 

422 754 8.27 412.0 435.0 23.0 739.0 773.0 34.0 

448 754 10.07 440.0 462.0 22.0 728.0 781.0 53.0 

 

 

Table 37 Multiple ion doped sample Glass 2-13 – 1.0 mol % Eu, 1.0 mol 

% Tb and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

351 489.5 80.56 345.0 359.0 14.0 477.0 505.5 28.5 

377 489.5 110.99 373.0 387.0 14.0 466.5 508.5 42.0 

317 545.5 28.05 311.0 322.0 11.0 526.0 560.5 34.5 

351 545.5 159.12 341.0 356.0 15.0 529.0 562.0 33.0 

376 545.5 249.68 362.0 386.0 24.0 526.0 566.0 40.0 

393 545.5 43.13 389.0 397.0 8.0 516.5 564.0 47.5 

462 545.5 18.82 458.0 468.0 10.0 541.5 549.5 8.0 

483 545.5 103.36 470.0 497.0 27.0 528.0 566.0 38.0 

318 590.5 17.86 311.0 324.0 13.0 579.0 597.5 18.5 

351 590.5 36.57 344.0 356.0 12.0 569.0 603.0 34.0 

362 590.5 79.97 356.0 364.0 8.0 568.0 599.5 31.5 

378 590.5 141.45 367.0 388.0 21.0 568.0 600.5 32.5 

393 590.5 350.41 388.0 407.0 19.0 568.0 600.5 32.5 

414 590.5 37.95 409.0 420.0 11.0 569.0 599.5 30.5 

464 590.5 114.13 456.0 470.0 14.0 568.0 599.5 31.5 

483 590.5 25.80 474.0 495.0 21.0 571.0 601.5 30.5 

532 590.5 25.65 521.0 542.0 21.0 579.0 598.5 19.5 

319 613 51.89 311.0 323.0 12.0 601.5 633.5 32.0 

351 613 59.06 345.0 354.0 9.0 605.0 636.5 31.5 

361 613 214.29 356.0 366.0 10.0 600.5 637.5 37.0 

380 613 411.63 367.0 387.0 20.0 600.5 641.5 41.0 

393 613 1001.55 387.0 407.0 20.0 601.5 640.5 39.0 

413 613 94.41 407.0 422.0 15.0 599.5 638.5 39.0 

464 613 450.63 455.0 470.0 15.0 600.5 641.5 41.0 

484 613 34.00 478.0 491.0 13.0 604.0 632.5 28.5 

531 613 84.46 519.0 544.0 25.0 600.5 635.5 35.0 

318 654 3.50 313.0 321.0 8.0 650.0 658.0 8.0 

352 654 6.85 345.0 354.0 9.0 652.0 661.0 9.0 

361 654 12.23 354.0 366.0 12.0 646.0 667.5 21.5 

380 654 27.56 368.0 387.0 19.0 640.5 673.5 33.0 

392 654 59.03 387.0 408.0 21.0 640.5 669.5 29.0 

414 654 11.07 411.0 417.0 6.0 647.0 666.5 19.5 

464 654 30.35 457.0 469.0 12.0 643.5 674.5 31.0 

319 700 5.73 314.0 323.0 9.0 688.0 713.5 25.5 

352 700 6.64 349.0 355.0 6.0 688.0 712.5 24.5 

361 700 28.86 355.0 368.0 13.0 675.5 712.5 37.0 

380 700 51.22 368.0 388.0 20.0 671.5 719.5 48.0 

393 700 152.97 388.0 405.0 17.0 672.5 721.5 49.0 

464 700 44.94 453.0 469.0 16.0 674.5 725.5 51.0 

484 700 6.80 478.0 489.0 11.0 693.0 714.5 21.5 

532 700 12.31 521.0 545.0 24.0 676.5 716.5 40.0 

378 700 5.44 575.0 581.0 6.0 687.0 706.5 19.5 

 

 

Table 38 Multiple ion doped sample Glass 2-14 – 1.0 mol % Eu, 1.5 mol 

% Tb and 0.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 481.5 60.21 312.0 328.0 16.0 465.5 571.5 106.0 

348 481.5 390.39 328.0 357.0 29.0 456.5 509.5 53.0 

363 481.5 274.36 357.0 371.0 14.0 460.5 509.5 49.0 

377 481.5 214.29 371.0 380.0 9.0 464.5 510.5 46.0 

385 481.5 294.71 380.0 411.0 31.0 460.5 506.5 46.0 

423 481.5 46.49 415.0 433.0 18.0 464.5 504.5 40.0 

452 481.5 120.33 438.0 457.0 19.0 472.5 504.5 32.0 

318 545 39.78 310.0 321.0 11.0 528.0 562.0 34.0 

323 545 36.17 321.0 328.0 7.0 532.0 559.5 27.5 

350 545 389.28 329.0 356.0 27.0 528.0 559.5 31.5 

364 545 354.05 359.0 369.0 10.0 529.0 560.5 31.5 

376 545 467.82 371.0 384.0 13.0 529.0 562.0 33.0 

423 545 27.09 416.0 431.0 15.0 533.0 556.5 23.5 

452 545 59.67 439.0 458.0 19.0 533.0 557.5 24.5 

483 545 162.68 473.0 497.0 24.0 530.0 562.0 32.0 

323 575.5 61.39 313.0 330.0 17.0 559.5 599.5 40.0 

348 575.5 623.28 330.0 358.0 28.0 558.5 603.0 44.5 

363 575.5 350.23 358.0 371.0 13.0 559.5 602.0 42.5 

386 575.5 500.74 371.0 409.0 38.0 556.5 602.0 45.5 

423 575.5 86.57 416.0 433.0 17.0 556.5 601.5 45.0 

452 575.5 189.12 438.0 460.0 22.0 557.5 601.5 44.0 

393 585.5 485.52 387.0 406.0 19.0 559.5 599.5 40.0 

464 585.5 122.55 458.0 469.0 11.0 565.0 598.5 33.5 

533 585.5 22.25 521.0 544.0 23.0 571.0 600.5 29.5 

319 615.5 49.58 312.0 330.0 18.0 604.0 633.5 29.5 

351 615.5 132.84 341.0 356.0 15.0 603.0 638.5 35.5 

362 615.5 273.19 356.0 368.0 12.0 601.5 636.5 35.0 

379 615.5 487.37 368.0 387.0 19.0 601.5 639.5 38.0 

393 615.5 999.99 387.0 407.0 20.0 600.5 642.5 42.0 

413 615.5 92.87 407.0 420.0 13.0 602.0 633.5 31.5 

464 615.5 493.75 457.0 469.0 12.0 600.5 639.5 39.0 

483 615.5 48.37 477.0 493.0 16.0 602.0 635.5 33.5 

532 615.5 92.40 520.0 546.0 26.0 601.5 630.5 29.0 

319 653.5 2.89 315.0 326.0 11.0 649.0 662.0 13.0 

349 653.5 20.48 332.0 357.0 25.0 640.5 683.5 43.0 

361 653.5 21.96 357.0 368.0 11.0 642.5 672.5 30.0 

381 653.5 32.34 368.0 387.0 19.0 642.5 673.5 31.0 

392 653.5 67.74 387.0 407.0 20.0 640.5 675.5 35.0 

413 653.5 8.22 410.0 415.0 5.0 644.0 658.0 14.0 

425 653.5 5.80 422.0 429.0 7.0 647.0 656.0 9.0 

453 653.5 9.63 443.0 454.0 11.0 639.5 685.5 46.0 

464 653.5 26.51 457.0 469.0 12.0 641.5 667.5 26.0 

485 653.5 10.47 478.0 488.0 10.0 647.0 664.5 17.5 

530 653.5 7.23 521.0 538.0 17.0 648.0 665.5 17.5 

318 700.5 5.37 315.0 322.0 7.0 693.0 707.5 14.5 

351 700.5 11.04 346.0 356.0 10.0 689.0 706.5 17.5 

362 700.5 30.56 357.0 365.0 8.0 682.5 714.5 32.0 

381 700.5 59.36 368.0 387.0 19.0 679.5 718.5 39.0 

393 700.5 155.72 387.0 407.0 20.0 675.5 720.5 45.0 

413 700.5 11.46 409.0 420.0 11.0 679.5 718.5 39.0 

464 700.5 46.27 456.0 471.0 15.0 675.5 718.5 43.0 

483 700.5 6.84 477.0 493.0 16.0 689.0 710.5 21.5 

530 700.5 11.18 521.0 537.0 16.0 678.5 714.5 36.0 

349 753 14.83 338.0 357.0 19.0 740.0 773.0 33.0 

362 753 9.23 357.0 366.0 9.0 741.0 767.5 26.5 

425 753 4.05 417.0 428.0 11.0 746.0 764.5 18.5 

452 753 6.21 427.0 457.0 30.0 744.0 768.5 24.5 

 

Table 39 Multiple ion doped sample Glass 2-15 – 1.0 mol % Eu, 2.0 mol 

% Tb and 0.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 481.5 92.26 315.0 330.0 15.0 466.5 499.5 33.0 

349 481.5 588.19 334.0 357.0 23.0 458.5 506.5 48.0 

363 481.5 372.23 357.0 371.0 14.0 456.0 503.5 47.5 

385 481.5 464.16 371.0 411.0 40.0 456.5 504.5 48.0 

423 481.5 76.56 417.0 434.0 17.0 461.5 498.5 37.0 

452 481.5 203.87 437.0 458.0 21.0 468.5 502.5 34.0 

350 535.5 15.51 346.0 354.0 8.0 524.0 545.5 21.5 

361 535.5 20.23 356.0 368.0 12.0 524.0 545.5 21.5 

383 535.5 30.80 370.0 385.0 15.0 525.0 546.5 21.5 

393 535.5 59.89 388.0 407.0 19.0 515.5 546.5 31.0 

409 535.5 18.51 407.0 413.0 6.0 532.0 540.5 8.5 

464 535.5 32.57 459.0 469.0 10.0 520.0 544.5 24.5 

322 577 137.15 313.0 331.0 18.0 548.5 598.5 50.0 

347 577 1003.67 331.0 357.0 26.0 550.5 605.0 54.5 

363 577 637.23 357.0 371.0 14.0 550.5 600.5 50.0 

386 577 896.54 371.0 413.0 42.0 551.5 602.0 50.5 

424 577 156.62 415.0 434.0 19.0 554.5 597.5 43.0 

452 577 363.00 437.0 460.0 23.0 553.5 602.0 48.5 

319 615 47.18 313.0 330.0 17.0 601.5 631.5 30.0 

349 615 49.85 341.0 355.0 14.0 606.0 634.5 28.5 

361 615 197.66 355.0 368.0 13.0 602.0 636.5 34.5 

380 615 363.86 368.0 387.0 19.0 600.5 637.5 37.0 

392 615 1002.28 387.0 407.0 20.0 599.5 629.5 30.0 

413 615 89.93 407.0 421.0 14.0 600.5 638.5 38.0 

464 615 450.86 456.0 471.0 15.0 599.5 633.5 34.0 

531 615 84.70 520.0 544.0 24.0 601.5 635.5 34.0 

577 615 18.77 569.0 581.0 12.0 603.0 664.0 61.0 

322 660 7.00 319.0 326.0 7.0 658.0 685.5 27.5 

349 660 39.38 337.0 356.0 19.0 634.5 683.5 49.0 

362 660 26.64 356.0 370.0 14.0 640.5 683.5 43.0 

386 660 41.79 370.0 388.0 18.0 640.5 683.5 43.0 

392 660 48.24 388.0 405.0 17.0 640.5 673.5 33.0 

423 660 7.81 417.0 430.0 13.0 645.0 682.5 37.5 

444 660 11.77 437.0 447.0 10.0 644.0 675.5 31.5 

452 660 18.47 447.0 458.0 11.0 644.0 689.0 45.0 

464 660 18.05 458.0 468.0 10.0 642.0 667.5 25.5 

531 660 5.79 521.0 537.0 16.0 647.0 664.0 17.0 

319 698 3.06 316.0 323.0 7.0 685.5 713.0 27.5 

349 698 4.98 342.0 354.0 12.0 689.0 711.5 22.5 

361 698 21.42 356.0 368.0 12.0 680.5 712.5 32.0 

380 698 39.18 368.0 387.0 19.0 682.5 713.5 31.0 

393 698 121.13 387.0 406.0 19.0 677.5 723.5 46.0 

412 698 10.20 409.0 420.0 11.0 676.5 711.5 35.0 

464 698 32.46 455.0 470.0 15.0 676.5 716.5 40.0 

530 698 9.72 520.0 548.0 28.0 685.5 714.5 29.0 

348 753.5 25.00 339.0 355.0 16.0 737.0 777.0 40.0 

364 753.5 13.12 361.0 367.0 6.0 747.0 775.0 28.0 

424 753.5 5.44 413.0 433.0 20.0 742.0 761.5 19.5 

452 753.5 5.95 439.0 457.0 18.0 736.0 766.5 30.5 

473 753.5 4.69 467.0 477.0 10.0 748.5 759.5 11.0 

 

 

Table 40 Multiple ion doped sample Glass 2-16 – 1.5 mol % Eu, 0.0 mol 

% Tb and 1.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 480.5 106.00 312.0 328.0 16.0 463.5 499.5 36.0 

348 480.5 597.70 335.0 357.0 22.0 455.0 504.5 49.5 

363 480.5 416.04 357.0 371.0 14.0 457.5 504.5 47.0 

386 480.5 521.66 371.0 411.0 40.0 458.5 505.5 47.0 

423 480.5 102.02 414.0 433.0 19.0 467.5 498.5 31.0 

452 480.5 250.89 439.0 459.0 20.0 471.5 501.5 30.0 

322 546.5 27.00 310.0 329.0 19.0 532.0 555.5 23.5 

249 546.5 122.88 329.0 356.0 27.0 531.0 552.5 21.5 

365 546.5 395.41 356.0 368.0 12.0 527.0 555.5 28.5 

377 546.5 115.61 372.0 380.0 8.0 524.0 555.5 31.5 

386 546.5 106.13 381.0 408.0 27.0 530.0 552.5 22.5 

410 546.5 34.10 408.0 415.0 7.0 542.5 549.5 7.0 

424 546.5 25.04 419.0 428.0 9.0 540.5 549.5 9.0 

451 546.5 42.41 443.0 460.0 17.0 529.0 549.5 20.5 

462 546.5 28.30 460.0 468.0 8.0 541.5 549.5 8.0 

484 546.5 44.07 476.0 482.0 6.0 528.0 560.5 32.5 

323 575.5 172.16 311.0 330.0 19.0 556.5 601.5 45.0 

348 575.5 999.99 332.0 357.0 25.0 552.5 603.0 50.5 

363 575.5 683.55 357.0 371.0 14.0 553.5 602.0 48.5 

385 575.5 998.57 371.0 412.0 41.0 552.5 602.0 49.5 

423 575.5 202.78 414.0 437.0 23.0 552.5 603.0 50.5 

451 575.5 431.15 437.0 460.0 23.0 552.5 603.0 50.5 

470 575.5 130.03 460.0 491.0 31.0 556.5 598.5 42.0 

319 614 96.86 312.0 333.0 21.0 604.0 635.5 31.5 

349 614 79.61 337.0 355.0 18.0 601.5 635.5 34.0 

362 614 207.19 355.0 368.0 13.0 601.5 635.5 34.0 

380 614 407.36 368.0 387.0 19.0 601.5 638.5 37.0 

392 614 1001.35 387.0 407.0 20.0 600.5 640.5 40.0 

412 614 104.25 407.0 420.0 13.0 601.5 633.5 32.0 

463 614 486.27 456.0 474.0 18.0 600.5 639.5 39.0 

531 614 99.13 520.0 543.0 23.0 600.5 636.5 36.0 

324 661.5 7.51 318.0 328.0 10.0 648.0 678.5 30.5 

348 661.5 50.25 338.0 357.0 19.0 641.5 692.0 50.5 

363 661.5 27.68 357.0 370.0 13.0 640.5 681.5 41.0 

384 661.5 44.45 370.0 388.0 18.0 638.5 680.5 42.0 

392 654.5 71.64 387.0 408.0 21.0 641.5 673.5 32.0 

463 654 33.34 459.0 471.0 12.0 642.5 672.5 30.0 

424 665 12.32 419.0 430.0 11.0 649.0 657.0 8.0 

452 665 25.57 436.0 459.0 23.0 654.0 685.5 31.5 

322 702 5.81 316.0 324.0 8.0 696.0 712.5 16.5 

350 702 9.00 340.0 355.0 15.0 690.0 714.5 24.5 

362 702 22.95 355.0 368.0 13.0 686.0 714.5 28.5 

380 702 46.48 368.0 386.0 18.0 681.5 718.5 37.0 

393 702 122.39 388.0 405.0 17.0 676.5 718.5 42.0 

413 702 15.38 409.0 420.0 11.0 681.5 715.5 34.0 

464 702 47.20 454.0 469.0 15.0 678.5 715.5 37.0 

544 702 13.50 519.0 548.0 29.0 677.5 716.5 39.0 

348 702 25.01 336.0 356.0 20.0 729.0 776.0 47.0 

363 755 16.42 356.0 367.0 11.0 746.0 775.0 29.0 

422 755 8.60 414.0 430.0 16.0 732.0 769.0 37.0 

451 755 11.14 425.0 460.0 35.0 739.0 769.0 30.0 

 

 

Table 41 Multiple ion doped sample Glass 2-17 – 1.5 mol % Eu, 0.5 mol 

% Tb and 2.0 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

350 435.5 129.16 344.0 355.0 11.0 431.0 442.0 11.0 

377 435.5 145.69 372.0 383.0 11.0 425.0 449.5 24.5 

377 412.5 156.39 362.0 382.0 20.0 403.0 425.5 22.5 

353 486 92.76 327.0 361.0 34.0 475.5 501.0 25.5 

377 486 94.11 372.0 382.0 10.0 471.5 502.5 31.0 

402 486 53.04 393.0 418.0 25.0 479.0 494.0 15.0 

416 544.5 24.75 310.0 320.0 10.0 532.0 566.0 34.0 

352 544.5 118.90 341.0 357.0 16.0 528.0 563.0 35.0 

377 544.5 194.95 360.0 385.0 25.0 519.5 561.5 42.0 

392 544.5 96.81 389.0 396.0 7.0 542.0 550.0 8.0 

464 544.5 29.80 458.0 468.0 10.0 540.2 552.0 11.8 

483 544.5 81.02 475.0 494.0 19.0 529.5 566.0 36.5 

319 590 33.19 312.0 332.0 20.0 575.5 601.0 25.5 

361 590 112.43 356.0 367.0 11.0 570.0 601.0 31.0 

381 590 205.61 367.0 387.0 20.0 571.0 598.0 27.0 

393 590 536.73 387.0 407.0 20.0 568.5 599.5 31.0 

414 590 71.10 407.0 419.0 12.0 582.0 591.0 9.0 

464 590 168.25 459.0 472.0 13.0 570.0 599.5 29.5 

483 590 26.29 476.0 491.0 15.0 570.0 601.0 31.0 

533 590 43.95 522.0 530.0 8.0 574.5 598.0 23.5 

319 614 99.53 314.0 330.0 16.0 601.0 623.5 22.5 

361 614 348.58 355.0 367.0 12.0 599.5 637.5 38.0 

381 614 629.23 367.0 388.0 21.0 599.5 636.0 36.5 

393 614 999.99 388.0 407.0 19.0 599.5 639.0 39.5 

413 614 144.30 407.0 419.0 12.0 601.0 636.0 35.0 

464 614 695.80 455.0 471.0 16.0 601.0 636.0 35.0 

482 614 43.99 477.0 491.0 14.0 602.5 643.0 40.5 

532 614 126.19 520.0 544.0 24.0 599.5 637.4 37.9 

363 650.5 25.33 356.0 366.0 10.0 644.5 665.5 21.0 

378 650.5 46.56 366.0 387.0 21.0 639.0 668.0 29.0 

392 650.5 91.71 387.0 406.0 19.0 641.5 667.0 25.5 

464 650.5 44.57 455.0 468.0 13.0 643.0 671.0 28.0 

319 697 13.10 314.0 323.0 9.0 695.0 703.5 8.5 

361 697 53.94 358.0 367.0 9.0 685.5 705.0 19.5 

380 697 79.85 367.0 387.0 20.0 675.5 715.0 39.5 

393 697 223.25 387.0 408.0 21.0 674.0 722.0 48.0 

410 697 20.95 408.0 421.0 13.0 688.0 710.5 22.5 

464 697 53.05 458.0 472.0 14.0 679.5 717.5 38.0 

532 697 17.55 520.0 537.0 17.0 685.5 716.0 30.5 

 

 

Table 42 Multiple ion doped sample Glass 2-18 – 1.5 mol % Eu, 1.0 mol 

% Tb and 0.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

324 483 84.66 315.0 330.0 15.0 464.5 504.0 39.5 

348 483 391.12 339.0 356.0 17.0 457.5 507.0 49.5 

363 483 257.02 358.0 368.0 10.0 462.0 507.0 45.0 

386 483 280.93 371.0 407.0 36.0 462.0 505.5 43.5 

424 483 70.60 417.0 434.0 17.0 466.0 497.0 31.0 

452 483 144.59 440.0 458.0 18.0 473.0 501.0 28.0 

320 544.5 44.35 310.0 327.0 17.0 533.5 556.0 22.5 

350 544.5 281.78 332.0 356.0 24.0 530.5 557.5 27.0 

366 544.5 240.82 361.0 371.0 10.0 530.5 557.5 27.0 

377 544.5 314.29 371.0 386.0 15.0 528.0 561.5 33.5 

451 544.5 54.25 442.0 457.0 15.0 535.0 554.5 19.5 

484 544.5 114.09 477.0 493.0 16.0 532.0 560.5 28.5 

323 576.5 95.55 313.0 331.0 18.0 559.0 599.5 40.5 

348 576.5 629.45 339.0 357.0 18.0 557.5 601.0 43.5 

361 576.5 309.32 357.0 371.0 14.0 559.0 601.0 42.0 

387 576.5 474.24 371.0 407.0 36.0 554.5 601.0 46.5 

424 576.5 106.52 418.0 435.0 17.0 557.5 601.0 43.5 

452 576.5 189.03 442.0 460.0 18.0 557.5 604.0 46.5 

393 589 582.68 387.0 407.0 20.0 559.0 599.5 40.5 

464 589 177.08 458.0 469.0 11.0 573.0 597.0 24.0 

319 615 115.70 312.0 329.0 17.0 602.5 626.5 24.0 

350 615 141.01 339.0 356.0 17.0 602.5 633.5 31.0 

361 615 376.98 356.0 367.0 11.0 601.0 634.5 33.5 

379 615 634.80 367.0 387.0 20.0 601.0 637.5 36.5 

393 615 999.99 387.0 406.0 19.0 599.5 641.5 42.0 

413 615 139.23 406.0 422.0 16.0 604.0 633.5 29.5 

464 615 683.17 458.0 471.0 13.0 599.5 639.0 39.5 

484 615 53.07 477.0 494.0 17.0 605.0 639.0 34.0 

532 615 120.47 520.0 545.0 25.0 601.0 634.5 33.5 

349 653.5 30.46 338.0 356.0 18.0 646.0 681.0 35.0 

361 653.5 34.47 356.0 366.0 10.0 643.0 671.0 28.0 

382 653.5 48.20 370.0 386.0 16.0 643.0 672.5 29.5 

393 653.5 96.21 386.0 409.0 23.0 640.5 672.5 32.0 

465 653.5 41.66 458.0 468.0 10.0 640.5 672.5 32.0 

319 698 16.56 312.0 326.0 14.0 686.5 713.5 27.0 

361 698 52.52 358.0 368.0 10.0 679.5 705.0 25.5 

382 698 78.19 368.0 388.0 20.0 675.5 715.0 39.5 

393 698 217.02 388.0 406.0 18.0 674.0 720.5 46.5 

414 698 18.88 409.0 418.0 9.0 681.0 715.0 34.0 

464 698 64.47 455.0 471.0 16.0 677.0 719.0 42.0 

622 698 19.57 519.0 544.0 25.0 692.5 716.0 23.5 

348 756.5 21.45 338.0 358.0 20.0 744.5 775.0 30.5 

 

 

Table 43 Multiple ion doped sample Glass 2-19 – 1.5 mol % Eu, 1.5 mol 

% Tb and 0.5 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 482 122.34 312.0 330.0 18.0 462.0 507.0 45.0 

349 482 562.34 337.0 357.0 20.0 457.5 508.5 51.0 

363 482 359.37 357.0 371.0 14.0 460.5 511.0 50.5 

387 482 403.55 371.0 410.0 39.0 460.5 507.0 46.5 

423 482 75.94 419.0 431.0 12.0 463.5 501.0 37.5 

452 482 173.10 440.0 458.0 18.0 471.5 508.5 37.0 

321 544 65.52 312.0 328.0 16.0 530.5 557.5 27.0 

349 544 414.46 332.0 357.0 25.0 530.5 557.5 27.0 

365 544 353.85 359.0 370.0 11.0 528.0 559.0 31.0 

373 544 438.64 371.0 384.0 13.0 528.0 560.5 32.5 

424 544 56.63 418.0 430.0 12.0 533.5 557.5 24.0 

452 544 76.83 442.0 458.0 16.0 532.0 556.0 24.0 

483 544 143.43 436.0 493.0 57.0 530.5 563.0 32.5 

322 575 162.11 314.0 330.0 16.0 559.0 599.5 40.5 

348 575 930.46 338.0 358.0 20.0 557.5 604.0 46.5 

363 575 491.62 358.0 370.0 12.0 559.0 602.5 43.5 

386 575 723.23 372.0 410.0 38.0 557.5 601.0 43.5 

423 575 117.85 417.0 433.0 16.0 554.5 602.5 48.0 

452 575 280.70 439.0 459.0 20.0 556.0 604.0 48.0 

472 575 73.43 467.0 493.0 26.0 560.5 594.0 33.5 

464 586.5 164.57 459.0 473.0 14.0 566.0 598.0 32.0 

319 614.5 149.90 312.0 329.0 17.0 602.5 633.5 31.0 

350 614.5 182.98 335.0 355.0 20.0 604.0 636.0 32.0 

361 614.5 387.10 357.0 368.0 11.0 602.5 640.5 38.0 

380 614.5 620.74 368.0 388.0 20.0 601.0 639.0 38.0 

393 614.5 999.99 388.0 406.0 18.0 601.0 640.5 39.5 

413 614.5 125.08 410.0 421.0 11.0 601.0 634.5 33.5 

464 614.5 634.47 458.0 474.0 16.0 599.5 640.5 41.0 

483 614.5 57.22 477.0 493.0 16.0 605.0 637.5 32.5 

531 654 111.97 520.0 545.0 25.0 602.5 636.0 33.5 

350 654 32.38 339.0 356.0 17.0 641.5 681.0 39.5 

361 654 30.62 356.0 370.0 14.0 640.5 678.5 38.0 

381 654 43.99 370.0 388.0 18.0 640.5 674.0 33.5 

392 654 94.99 388.0 404.0 16.0 640.5 677.0 36.5 

453 654 17.06 444.0 457.0 13.0 639.0 679.5 40.5 

464 654 37.22 457.0 469.0 12.0 641.5 670.0 28.5 

319 699.5 16.81 312.0 330.0 18.0 682.5 713.5 31.0 

361 699.5 44.58 358.0 367.0 9.0 681.0 705.0 24.0 

380 699.5 77.43 367.0 387.0 20.0 678.5 720.5 42.0 

393 699.5 216.14 387.0 407.0 20.0 674.0 719.0 45.0 

413 699.5 16.59 407.0 416.0 9.0 684.5 713.5 29.0 

464 699.5 60.20 455.0 469.0 14.0 677.0 717.5 40.5 

483 699.5 9.90 481.0 491.0 10.0 689.5 710.5 21.0 

532 699.5 14.33 522.0 538.0 16.0 677.0 716.0 39.0 

323 753.5 6.73 316.0 327.0 11.0 750.0 762.5 12.5 

348 753.5 22.54 341.0 355.0 14.0 740.0 776.5 36.5 

424 753.5 6.25 415.0 429.0 14.0 737.5 760.0 22.5 

452 753.5 9.04 439.0 457.0 18.0 738.5 774.0 35.5 

 

 

Table 44 Multiple ion doped sample Glass 2-20 – 1.5 mol % Eu, 2.0 mol 

% Tb and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 481.5 69.91 314.0 329.0 15.0 460.5 498.5 38.0 

348 481.5 483.38 338.0 357.0 19.0 452.0 507.0 55.0 

363 481.5 344.08 357.0 371.0 14.0 457.5 507.0 49.5 

386 481.5 456.92 372.0 409.0 37.0 455.0 508.5 53.5 

423 481.5 83.08 418.0 431.0 13.0 460.5 502.5 42.0 

452 481.5 199.06 439.0 459.0 20.0 469.0 507.0 38.0 

360 534.5 23.75 357.0 368.0 11.0 528.0 543.5 15.5 

380 534.5 35.33 368.0 386.0 18.0 518.0 545.0 27.0 

393 534.5 65.68 386.0 413.0 27.0 518.0 545.0 27.0 

464 534.5 33.89 459.0 471.0 12.0 522.5 547.5 25.0 

323 575.5 109.78 316.0 329.0 13.0 554.5 599.5 45.0 

349 575.5 934.26 338.0 357.0 19.0 547.5 602.5 55.0 

363 575.5 573.05 357.0 371.0 14.0 553.0 602.5 49.5 

386 575.5 880.30 371.0 411.0 40.0 553.0 601.0 48.0 

424 575.5 160.71 417.0 436.0 19.0 554.5 597.0 42.5 

451 575.5 360.81 438.0 459.0 21.0 554.5 601.0 46.5 

471 575.5 105.65 467.0 491.0 24.0 557.5 598.0 40.5 

320 616 40.53 312.0 331.0 19.0 602.5 629.0 26.5 

348 616 53.73 341.0 355.0 14.0 604.0 633.5 29.5 

361 616 213.65 355.0 367.0 12.0 602.5 634.5 32.0 

380 616 422.58 367.0 388.0 21.0 599.5 637.5 38.0 

392 616 1003.39 388.0 407.0 19.0 599.5 637.5 38.0 

413 616 97.74 407.0 419.0 12.0 604.0 636.0 32.0 

464 616 515.46 455.0 474.0 19.0 599.5 636.0 36.5 

532 616 100.54 520.0 545.0 25.0 601.0 640.5 39.5 

348 657.5 35.05 338.0 356.0 18.0 643.0 677.0 34.0 

361 657.5 26.72 356.0 371.0 15.0 646.0 685.5 39.5 

384 657.5 45.69 371.0 387.0 16.0 641.5 679.5 38.0 

382 657.5 63.07 387.0 408.0 21.0 639.0 678.5 39.5 

452 657.5 19.47 447.0 458.0 11.0 646.0 681.0 35.0 

464 657.5 26.60 458.0 469.0 11.0 643.0 668.5 25.5 

530 657.5 7.40 524.0 533.0 9.0 646.0 665.5 19.5 

319 701 2.90 315.0 326.0 11.0 699.5 712.0 12.5 

380 701 52.68 368.0 388.0 20.0 679.5 717.5 38.0 

392 701 127.02 388.0 408.0 20.0 678.5 719.0 40.5 

413 701 13.56 408.0 422.0 14.0 679.5 723.0 43.5 

464 701 43.94 457.0 473.0 16.0 679.5 719.0 39.5 

530 701 12.31 520.0 545.0 25.0 684.0 713.5 29.5 

348 759 17.52 337.0 355.0 18.0 733.5 776.5 43.0 

422 759 6.81 417.0 428.0 11.0 744.5 772.5 28.0 

452 759 9.29 447.0 457.0 10.0 730.5 778.0 47.5 

 

 

Table 45 Multiple ion doped sample Glass 2-21 – 2.0 mol % Eu, 0.0 mol 

% Tb and 2.0 mol % Dy 
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Peak width 

 Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

393 535 114.83 387.0 413.0 26.0 519.5 549.0 29.5 

464 535 61.63 457.0 469.0 12.0 519.5 549.0 29.5 

319 545 18.76 309.0 324.0 15.0 529.5 563.0 33.5 

351 545 65.07 346.0 357.0 11.0 528.0 564.5 36.5 

378 545 107.79 371.0 385.0 14.0 519.5 564.5 45.0 

483 545 55.48 475.0 493.0 18.0 529.5 567.5 38.0 

320 590.5 38.37 313.0 327.0 14.0 564.5 599.5 35.0 

361 590.5 165.63 356.0 368.0 12.0 567.5 601.0 33.5 

380 590.5 324.27 368.0 387.0 19.0 570.0 601.0 31.0 

393 590.5 877.87 387.0 406.0 19.0 567.5 599.5 32.0 

413 590.5 82.01 410.0 419.0 9.0 574.5 599.5 25.0 

464 590.5 309.04 455.0 471.0 16.0 570.0 601.0 31.0 

532 590.5 65.37 522.0 541.0 19.0 575.5 601.0 25.5 

319 614.5 120.10 312.0 329.0 17.0 602.5 632.0 29.5 

361 614.5 558.20 353.0 367.0 14.0 602.5 639.0 36.5 

380 614.5 1001.84 367.0 388.0 21.0 599.5 639.0 39.5 

393 614.5 999.99 388.0 406.0 18.0 599.5 640.5 41.0 

413 614.5 241.12 406.0 422.0 16.0 599.5 633.5 34.0 

464 614.5 999.99 453.0 474.0 21.0 599.5 640.5 41.0 

532 614.5 248.66 522.0 546.0 24.0 599.5 637.5 38.0 

578 614.5 48.58 573.0 582.0 9.0 602.5 633.5 31.0 

361 652.5 33.29 355.0 366.0 11.0 643.0 668.5 25.5 

381 652.5 57.03 366.0 387.0 21.0 641.5 668.0 26.5 

393 652.5 151.17 387.0 406.0 19.0 641.5 671.0 29.5 

413 652.5 18.31 407.0 419.0 12.0 641.5 672.5 31.0 

464 652.5 66.59 457.0 471.0 14.0 643.0 675.5 32.5 

316 701.5 15.86 314.0 327.0 13.0 686.5 713.5 27.0 

361 701.5 70.04 358.0 368.0 10.0 677.0 709.0 32.0 

381 701.5 128.73 368.0 387.0 19.0 677.0 720.5 43.5 

393 701.5 366.39 387.0 408.0 21.0 677.0 720.5 43.5 

413 701.5 32.75 408.0 421.0 13.0 682.5 719.0 36.5 

464 701.5 115.89 457.0 473.0 16.0 674.0 717.5 43.5 

532 701.5 28.40 523.0 541.0 18.0 671.0 717.5 46.5 

 

 

Table 46 Multiple ion doped sample Glass 2-22 – 0.0 mol % Eu, 0.5 mol 

% Tb and 0.0 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 482.5 57.95 314.0 330.0 16.0 464.5 501.0 36.5 

348 482.5 433.71 330.0 357.0 27.0 460.5 505.5 45.0 

363 482.5 283.45 357.0 371.0 14.0 462.0 505.5 43.5 

385 482.5 334.33 371.0 410.0 39.0 462.0 505.5 43.5 

424 482.5 63.62 416.0 432.0 16.0 463.5 505.5 42.0 

452 482.5 146.70 437.0 458.0 21.0 470.5 501.0 30.5 

321 544 26.57 310.0 330.0 20.0 530.5 554.5 24.0 

349 544 183.33 332.0 357.0 25.0 528.0 554.5 26.5 

367 544 174.11 358.0 372.0 14.0 528.0 559.0 31.0 

377 544 227.37 372.0 387.0 15.0 522.5 560.0 37.5 

453 544 36.44 438.0 455.0 17.0 533.5 553.0 19.5 

454 544 41.72 456.0 469.0 13.0 521.0 546.0 25.0 

483 544 92.20 476.0 495.0 19.0 530.5 561.5 31.0 

324 575.5 79.34 313.0 330.0 17.0 559.0 601.0 42.0 

348 575.5 746.20 337.0 358.0 21.0 557.5 601.0 43.5 

363 575.5 417.24 358.0 370.0 12.0 557.5 601.0 43.5 

385 575.5 631.04 370.0 409.0 39.0 554.5 601.0 46.5 

423 575.5 109.94 418.0 433.0 15.0 554.5 602.5 48.0 

453 575.5 200.10 438.0 458.0 20.0 557.5 599.5 42.0 

464 575.5 99.31 458.0 468.0 10.0 568.5 599.5 31.0 

530 575.5 22.95 520.0 538.0 18.0 568.5 597.0 28.5 

319 613.5 115.57 312.0 332.0 20.0 601.0 632.0 31.0 

350 613.5 141.88 339.0 355.0 16.0 602.5 637.5 35.0 

361 613.5 543.10 355.0 367.0 12.0 601.0 641.5 40.5 

381 613.5 943.02 367.0 387.0 20.0 601.0 639.0 38.0 

394 613.5 999.99 387.0 407.0 20.0 601.0 639.0 38.0 

413 613.5 210.32 407.0 421.0 14.0 602.5 636.0 33.5 

464 613.5 1002.95 455.0 475.0 20.0 599.5 640.5 41.0 

483 613.5 51.49 475.0 494.0 19.0 604.0 636.0 32.0 

532 613.5 192.54 520.0 545.0 25.0 599.5 637.5 38.0 

577 613.5 39.46 570.0 581.0 11.0 604.0 637.5 33.5 

350 654.5 26.39 337.0 355.0 18.0 643.0 682.5 39.5 

361 654.5 34.34 355.0 368.0 13.0 643.0 677.0 34.0 

381 654.5 60.05 368.0 387.0 19.0 643.0 668.5 25.5 

393 654.5 131.69 387.0 407.0 20.0 641.5 668.5 27.0 

452 654.5 16.11 447.0 455.0 8.0 646.0 688.5 42.5 

464 654.5 57.13 455.0 472.0 17.0 641.5 670.0 28.5 

531 654.5 14.64 520.0 540.0 20.0 641.5 671.0 29.5 

317 702 41.48 312.0 329.0 17.0 684.0 713.5 29.5 

361 702 60.62 359.0 367.0 8.0 682.5 706.5 24.0 

380 702 114.28 367.0 388.0 21.0 679.5 720.5 41.0 

393 702 322.29 388.0 407.0 19.0 675.5 720.5 45.0 

413 702 25.28 407.0 422.0 15.0 678.5 717.5 39.0 

464 702 97.25 455.0 471.0 16.0 674.0 720.5 46.5 

532 702 23.91 519.0 540.0 21.0 674.0 720.5 46.5 

348 758 17.55 337.0 356.0 19.0 738.5 772.5 34.0 

453 758 9.11 446.0 457.0 11.0 731.5 767.0 35.5 

 

 

Table 47 Multiple ion doped sample Glass 2-23 – 2.0 mol % Eu, 1.0 mol 

% Tb and 0.5 mol % Dy 
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Peak width  

Ex Wavelength Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm 

Intensity From To PW From To PW 

323 481.5 67.65 313.0 329.0 16.0 461.5 504.5 43.0 

348 481.5 357.31 339.0 356.0 17.0 458.5 504.5 46.0 

363 481.5 250.40 360.0 370.0 10.0 460.5 500.5 40.0 

388 481.5 290.81 372.0 410.0 38.0 458.5 502.5 44.0 

423 481.5 72.44 419.0 432.0 13.0 458.5 499.5 41.0 

452 481.5 158.87 439.0 459.0 20.0 471.5 505.5 34.0 

318 544 31.36 312.0 320.0 8.0 533.0 552.5 19.5 

323 544 34.88 320.0 327.0 7.0 530.0 552.5 22.5 

350 544 206.18 332.0 355.0 23.0 529.0 556.5 27.5 

356 544 188.99 358.0 365.0 7.0 529.0 558.5 29.5 

376 544 229.74 372.0 382.0 10.0 513.5 560.5 47.0 

424 544 29.74 419.0 430.0 11.0 532.0 552.5 20.5 

452 544 58.00 438.0 460.0 22.0 531.0 554.5 23.5 

463 544 33.33 460.0 468.0 8.0 540.5 548.5 8.0 

483 544 89.17 474.0 475.0 1.0 540.5 563.0 22.5 

323 574 78.65 313.0 329.0 16.0 529.0 601.5 72.5 

348 574 542.19 337.0 357.0 20.0 560.5 601.5 41.0 

363 574 328.38 357.0 370.0 13.0 555.5 600.5 45.0 

386 574 515.34 372.0 410.0 38.0 558.5 600.5 42.0 

424 574 125.06 417.0 431.0 14.0 555.5 600.5 45.0 

452 574 202.48 439.0 459.0 20.0 553.5 600.5 47.0 

463 574 73.23 460.0 467.0 7.0 552.5 599.5 47.0 

473 574 65.83 467.0 491.0 24.0 567.0 590.5 23.5 

318 615 88.98 313.0 329.0 16.0 558.5 627.5 69.0 

348 615 128.15 341.0 356.0 15.0 598.5 636.5 38.0 

361 615 317.56 356.0 367.0 11.0 602.0 636.5 34.5 

381 615 545.95 369.0 388.0 19.0 599.5 638.5 39.0 

393 615 999.99 388.0 407.0 19.0 600.5 640.5 40.0 

412 615 126.31 407.0 423.0 16.0 600.5 635.5 35.0 

465 615 506.05 456.0 474.0 18.0 600.5 637.5 37.0 

484 615 56.41 479.0 495.0 16.0 602.0 631.5 29.5 

531 615 25.34 519.0 544.0 25.0 599.5 636.5 37.0 

578 615 31.77 573.0 581.0 8.0 603.0 627.5 24.5 

349 652.5 23.47 341.0 356.0 15.0 643.5 677.5 34.0 

362 652.5 27.43 356.0 369.0 13.0 642.5 673.5 31.0 

381 652.5 43.84 371.0 388.0 17.0 640.5 665.5 25.0 

392 652.5 93.20 388.0 397.0 9.0 640.5 672.5 32.0 

463 652.5 40.13 458.0 468.0 10.0 639.5 672.5 33.0 

319 699.5 17.86 314.0 325.0 11.0 698.0 702.0 4.0 

361 699.5 45.21 358.0 364.0 6.0 691.0 705.0 14.0 

381 699.5 76.07 371.0 388.0 17.0 679.5 715.5 36.0 

393 699.5 180.18 388.0 406.0 18.0 673.5 719.5 46.0 

414 699.5 19.02 410.0 418.0 8.0 688.0 716.5 28.5 

465 699.5 45.27 458.0 469.0 11.0 679.5 712.5 33.0 

483 699.5 10.90 479.0 490.0 11.0 696.0 704.0 8.0 

533 699.5 18.30 522.0 545.0 23.0 694.0 708.5 14.5 

351 750.5 15.10 342.0 355.0 13.0 741.0 761.5 20.5 

443 750.5 9.60 440.0 463.0 23.0 748.5 752.5 4.0 

 

 

Table 48 Multiple ion doped sample Glass 2-24 – 2.0 mol % Eu, 1.5 mol 

% Tb and 1.0 mol % Dy 
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Peak width 

 Ex Wavelength   Em Wavelength 

Excitation 

Wavelength / nm 

Emission 

Wavelength / nm Intensity From To PW From To PW 

323 483.5 63.39 311.0 330.0 19.0 464.5 503.5 39.0 

348 483.5 426.05 330.0 357.0 27.0 457.5 506.5 49.0 

363 483.5 309.81 357.0 371.0 14.0 460.5 508.5 48.0 

386 483.5 384.69 371.0 410.0 39.0 458.5 506.5 48.0 

423 483.5 78.51 414.0 435.0 21.0 465.5 501.5 36.0 

451 483.5 174.54 435.0 459.0 24.0 473.5 503.5 30.0 

322 545 38.80 311.0 329.0 18.0 533.0 557.5 24.5 

350 545 329.94 332.0 355.0 23.0 530.0 557.5 27.5 

365 545 277.04 358.0 371.0 13.0 528.0 560.5 32.5 

377 545 354.87 371.0 381.0 10.0 528.0 560.5 32.5 

385 545 221.90 381.0 412.0 31.0 530.0 555.5 25.5 

424 545 43.96 417.0 431.0 14.0 530.0 555.5 25.5 

452 545 85.54 439.0 459.0 20.0 527.0 555.5 28.5 

483 545 125.02 477.0 496.0 19.0 530.0 562.0 32.0 

323 575 90.69 314.0 329.0 15.0 560.5 596.5 36.0 

349 575 729.89 337.0 357.0 20.0 557.5 601.5 44.0 

363 575 445.15 357.0 371.0 14.0 558.5 601.5 43.0 

385 575 695.69 371.0 411.0 40.0 555.5 600.5 45.0 

423 575 136.11 417.0 434.0 17.0 557.5 600.5 43.0 

452 575 266.09 437.0 460.0 23.0 557.5 600.5 43.0 

463 575 86.34 460.0 467.0 7.0 564.0 600.5 36.5 

470 575 90.29 467.0 481.0 14.0 558.5 599.5 41.0 

531 575 18.74 519.0 538.0 19.0 568.0 629.5 61.5 

319 614.5 83.89 313.0 332.0 19.0 601.5 637.5 36.0 

350 614.5 179.49 337.0 355.0 18.0 601.5 640.5 39.0 

362 614.5 380.13 355.0 369.0 14.0 601.5 637.5 36.0 

381 614.5 646.25 369.0 388.0 19.0 600.5 640.5 40.0 

393 614.5 999.99 388.0 406.0 18.0 600.5 637.5 37.0 

414 614.5 140.29 406.0 420.0 14.0 600.5 641.5 41.0 

465 614.5 580.96 456.0 474.0 18.0 599.5 638.5 39.0 

483 614.5 650.30 474.0 495.0 21.0 601.5 640.5 39.0 

532 614.5 132.35 521.0 544.0 23.0 600.5 674.5 74.0 

348 649 21.27 339.0 357.0 18.0 643.5 672.5 29.0 

361 649 28.71 357.0 369.0 12.0 641.5 672.5 31.0 

382 649 42.05 369.0 388.0 19.0 639.5 672.5 33.0 

392 649 85.60 388.0 405.0 17.0 642.5 673.5 31.0 

463 649 41.37 456.0 470.0 14.0 642.5 707.5 65.0 

319 700.5 9.58 315.0 325.0 10.0 690.0 706.0 16.0 

361 700.5 45.71 358.0 362.0 4.0 682.5 719.5 37.0 

381 700.5 77.88 369.0 388.0 19.0 680.5 723.5 43.0 

393 700.5 206.96 388.0 407.0 19.0 677.5 715.5 38.0 

414 700.5 18.88 410.0 419.0 9.0 677.5 716.5 39.0 

465 700.5 57.42 458.0 470.0 12.0 677.5 767.5 90.0 

484 700.5 9.68 476.0 493.0 17.0 654.0 711.5 57.5 

532 700.5 17.64 522.0 544.0 22.0 690.0 765.5 75.5 

348 754.5 17.16 336.0 355.0 19.0 742.0 765.5 23.5 

451 754.5 9.13 439.0 456.0 17.0 744.0 765.5 21.5 

 

 

Table 49 Multiple ion doped sample Glass 2-25 – 2.0 mol % Eu, 2.0 mol 

% Tb and 1.5 mol % Dy 
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 4 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 4
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 5 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 5
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 6 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 6
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 7 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 7
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 8 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 8
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 9 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 0 9
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 0 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 0
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 1 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 1
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 2 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 2
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 3 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 3
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 4 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 4
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 5 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 5
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 6 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 6
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 7 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 7
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 1 8 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 8
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Dy 

 

Tb 
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F i g u r e 1 9 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 1 9
Eu 

 

Dy 

 

Tb 
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F i g u r e 2 0 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 0
Eu 

 

Dy 

 

Tb 
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F i g u r e 2 1 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 1
Eu 

 

Dy 

 

Tb 

 
 F i g u r e 2 2 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 2
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 2 3 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 3
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 2 4 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 4
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Eu 

 

Dy 

 

Tb 

 
 F i g u r e 2 5 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 1 - 2 5
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Dy  

Tb  

 F i g u r e 2 6 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 1
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Dy 

 

Tb 

 
 F i g u r e 2 7 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 2
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Dy 

 

Tb 

 
 F i g u r e 2 8 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 3
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Tb 

 
 F i g u r e 2 9 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 4
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Eu  

Dy 

 

Tb 

 
 F i g u r e 3 0 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 5
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Dy 

 
Tb  

 F i g u r e 3 1 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 6
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Dy 

 
Tb  

 F i g u r e 3 2 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 7
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Tb  

 F i g u r e 3 3 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 8
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Dy 

 

Tb 

 
 F i g u r e 3 4 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 0 9
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Tb 

 
 F i g u r e 3 5 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 0
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Tb  

 F i g u r e 3 6 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 1
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Tb 

 
 F i g u r e 3 7 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 2
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 F i g u r e 3 8 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 3
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 F i g u r e 3 9 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 4
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 F i g u r e 4 0 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 5
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 F i g u r e 4 1 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 6
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 F i g u r e 4 2 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 7
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 F i g u r e 4 3 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 8
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 F i g u r e 4 4 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 1 9
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 F i g u r e 4 5 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 2 0
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 F i g u r e 4 6 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 2 1
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 F i g u r e 4 7 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 2 2
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 F i g u r e 4 8 E u , D y a n d T b f l u o r e s c e n t l i f e t i m e s i n G 2 - 2 3
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Commercial in Confidence 1 
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Development and Application of Novel Tracers for Environmental Applications 

Appendix IV: Case Study GPS Data 

Commercial in Confidence 2 

Point Date and Time GPS Position 

1 30/10/2008 09:18 N55 45.557 W6 19.398 

2 30/10/2008 09:18 N55 45.546 W6 19.425 

3 30/10/2008 09:19 N55 45.505 W6 19.544 

4 30/10/2008 09:19 N55 45.461 W6 19.663 

5 30/10/2008 09:19 N55 45.411 W6 19.793 

6 30/10/2008 09:20 N55 45.362 W6 19.906 

7 30/10/2008 09:20 N55 45.312 W6 20.016 

8 30/10/2008 09:20 N55 45.263 W6 20.134 

9 30/10/2008 09:21 N55 45.233 W6 20.253 

10 30/10/2008 09:21 N55 45.210 W6 20.343 

11 30/10/2008 09:21 N55 45.171 W6 20.413 

12 30/10/2008 09:21 N55 45.101 W6 20.526 

13 30/10/2008 09:22 N55 45.030 W6 20.625 

14 30/10/2008 09:22 N55 44.973 W6 20.686 

15 30/10/2008 09:22 N55 44.907 W6 20.763 

16 30/10/2008 09:23 N55 44.837 W6 20.855 

17 30/10/2008 09:23 N55 44.780 W6 20.931 

18 30/10/2008 09:23 N55 44.741 W6 20.985 

19 30/10/2008 09:24 N55 44.711 W6 21.050 

20 30/10/2008 09:24 N55 44.683 W6 21.136 

21 30/10/2008 09:24 N55 44.652 W6 21.219 

22 30/10/2008 09:25 N55 44.618 W6 21.309 

23 30/10/2008 09:25 N55 44.599 W6 21.405 

24 30/10/2008 09:25 N55 44.594 W6 21.520 

25 30/10/2008 09:25 N55 44.598 W6 21.660 

26 30/10/2008 09:26 N55 44.607 W6 21.794 

27 30/10/2008 09:26 N55 44.618 W6 21.914 

28 30/10/2008 09:26 N55 44.624 W6 22.002 

29 30/10/2008 09:27 N55 44.629 W6 22.045 

30 30/10/2008 09:27 N55 44.636 W6 22.068 

31 30/10/2008 09:27 N55 44.642 W6 22.080 

32 30/10/2008 09:27 N55 44.641 W6 22.091 

33 30/10/2008 09:28 N55 44.635 W6 22.100 

34 30/10/2008 09:28 N55 44.629 W6 22.106 

35 30/10/2008 09:28 N55 44.624 W6 22.110 

36 30/10/2008 09:29 N55 44.618 W6 22.114 

37 30/10/2008 09:29 N55 44.611 W6 22.119 

38 30/10/2008 09:30 N55 44.603 W6 22.123 

39 30/10/2008 09:30 N55 44.596 W6 22.126 

40 30/10/2008 09:30 N55 44.587 W6 22.130 

41 30/10/2008 09:31 N55 44.582 W6 22.133 

42 30/10/2008 09:31 N55 44.576 W6 22.137 

43 30/10/2008 09:31 N55 44.569 W6 22.140 

44 30/10/2008 09:32 N55 44.562 W6 22.145 

45 30/10/2008 09:32 N55 44.554 W6 22.150 

46 30/10/2008 09:33 N55 44.547 W6 22.155 

47 30/10/2008 09:33 N55 44.539 W6 22.159 

48 30/10/2008 09:33 N55 44.533 W6 22.163 

49 30/10/2008 09:34 N55 44.524 W6 22.168 

50 30/10/2008 09:34 N55 44.517 W6 22.173 

51 30/10/2008 09:34 N55 44.516 W6 22.183 
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Appendix IV: Case Study GPS Data 

Commercial in Confidence 3 

52 30/10/2008 09:35 N55 44.516 W6 22.183 

53 30/10/2008 09:35 N55 44.515 W6 22.178 

54 30/10/2008 09:35 N55 44.510 W6 22.176 

55 30/10/2008 09:35 N55 44.508 W6 22.176 

56 30/10/2008 09:36 N55 44.505 W6 22.168 

57 30/10/2008 09:36 N55 44.506 W6 22.176 

58 30/10/2008 09:36 N55 44.506 W6 22.190 

59 30/10/2008 09:37 N55 44.505 W6 22.201 

60 30/10/2008 09:37 N55 44.500 W6 22.211 

61 30/10/2008 09:38 N55 44.495 W6 22.222 

62 30/10/2008 09:38 N55 44.499 W6 22.227 

63 30/10/2008 09:38 N55 44.497 W6 22.223 

64 30/10/2008 09:39 N55 44.490 W6 22.223 

65 30/10/2008 09:39 N55 44.484 W6 22.225 

66 30/10/2008 09:39 N55 44.477 W6 22.230 

67 30/10/2008 09:40 N55 44.468 W6 22.236 

68 30/10/2008 09:40 N55 44.462 W6 22.242 

69 30/10/2008 09:40 N55 44.454 W6 22.248 

70 30/10/2008 09:41 N55 44.446 W6 22.256 

71 30/10/2008 09:41 N55 44.438 W6 22.263 

72 30/10/2008 09:42 N55 44.431 W6 22.270 

73 30/10/2008 09:42 N55 44.425 W6 22.278 

74 30/10/2008 09:42 N55 44.420 W6 22.275 

75 30/10/2008 09:42 N55 44.420 W6 22.273 

76 30/10/2008 09:42 N55 44.424 W6 22.270 

77 30/10/2008 09:43 N55 44.453 W6 22.255 

78 30/10/2008 09:43 N55 44.507 W6 22.216 

79 30/10/2008 09:44 N55 44.571 W6 22.169 

80 30/10/2008 09:44 N55 44.623 W6 22.128 

81 30/10/2008 09:45 N55 44.696 W6 22.074 

82 30/10/2008 09:45 N55 44.761 W6 22.029 

83 30/10/2008 09:45 N55 44.850 W6 21.974 

84 30/10/2008 09:46 N55 44.917 W6 21.943 

85 30/10/2008 09:46 N55 45.013 W6 21.914 

86 30/10/2008 09:47 N55 45.131 W6 21.868 

87 30/10/2008 09:47 N55 45.222 W6 21.827 

88 30/10/2008 09:47 N55 45.250 W6 21.810 

89 30/10/2008 09:48 N55 45.298 W6 21.816 

90 30/10/2008 09:48 N55 45.322 W6 21.806 

91 30/10/2008 09:48 N55 45.336 W6 21.796 

92 30/10/2008 09:49 N55 45.337 W6 21.802 

93 30/10/2008 09:49 N55 45.334 W6 21.813 

94 30/10/2008 09:49 N55 45.330 W6 21.821 

95 30/10/2008 09:50 N55 45.324 W6 21.829 

96 30/10/2008 09:50 N55 45.317 W6 21.836 

97 30/10/2008 09:51 N55 45.309 W6 21.843 

98 30/10/2008 09:51 N55 45.302 W6 21.848 

99 30/10/2008 09:51 N55 45.295 W6 21.854 

100 30/10/2008 09:52 N55 45.286 W6 21.862 

101 30/10/2008 09:52 N55 45.279 W6 21.868 

102 30/10/2008 09:53 N55 45.272 W6 21.873 

103 30/10/2008 09:53 N55 45.265 W6 21.878 
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Commercial in Confidence 4 

104 30/10/2008 09:54 N55 45.257 W6 21.884 

105 30/10/2008 09:54 N55 45.251 W6 21.889 

106 30/10/2008 09:54 N55 45.247 W6 21.892 

107 30/10/2008 09:54 N55 45.254 W6 21.896 

108 30/10/2008 09:55 N55 45.291 W6 21.848 

109 30/10/2008 09:55 N55 45.337 W6 21.799 

110 30/10/2008 09:56 N55 45.395 W6 21.736 

111 30/10/2008 09:56 N55 45.466 W6 21.665 

112 30/10/2008 09:57 N55 45.550 W6 21.562 

113 30/10/2008 09:57 N55 45.616 W6 21.500 

114 30/10/2008 09:58 N55 45.697 W6 21.441 

115 30/10/2008 09:58 N55 45.770 W6 21.396 

116 30/10/2008 09:58 N55 45.815 W6 21.366 

117 30/10/2008 09:58 N55 45.816 W6 21.364 

118 30/10/2008 09:59 N55 45.822 W6 21.353 

119 30/10/2008 09:59 N55 45.820 W6 21.361 

120 30/10/2008 10:00 N55 45.815 W6 21.371 

121 30/10/2008 10:00 N55 45.810 W6 21.377 

122 30/10/2008 10:01 N55 45.805 W6 21.382 

123 30/10/2008 10:01 N55 45.798 W6 21.388 

124 30/10/2008 10:02 N55 45.792 W6 21.392 

125 30/10/2008 10:02 N55 45.787 W6 21.396 

126 30/10/2008 10:02 N55 45.782 W6 21.400 

127 30/10/2008 10:03 N55 45.774 W6 21.405 

128 30/10/2008 10:03 N55 45.773 W6 21.415 

129 30/10/2008 10:03 N55 45.777 W6 21.420 

130 30/10/2008 10:03 N55 45.780 W6 21.417 

131 30/10/2008 10:04 N55 45.800 W6 21.384 

132 30/10/2008 10:04 N55 45.851 W6 21.313 

133 30/10/2008 10:05 N55 45.901 W6 21.246 

134 30/10/2008 10:05 N55 45.963 W6 21.175 

135 30/10/2008 10:06 N55 46.024 W6 21.108 

136 30/10/2008 10:06 N55 46.115 W6 21.027 

137 30/10/2008 10:07 N55 46.199 W6 20.978 

138 30/10/2008 10:07 N55 46.313 W6 20.925 

139 30/10/2008 10:08 N55 46.392 W6 20.890 

140 30/10/2008 10:08 N55 46.477 W6 20.843 

141 30/10/2008 10:09 N55 46.520 W6 20.810 

142 30/10/2008 10:09 N55 46.528 W6 20.797 

143 30/10/2008 10:09 N55 46.532 W6 20.796 

144 30/10/2008 10:10 N55 46.528 W6 20.808 

145 30/10/2008 10:11 N55 46.523 W6 20.814 

146 30/10/2008 10:11 N55 46.516 W6 20.816 

147 30/10/2008 10:12 N55 46.508 W6 20.817 

148 30/10/2008 10:13 N55 46.500 W6 20.819 

149 30/10/2008 10:14 N55 46.491 W6 20.821 

150 30/10/2008 10:14 N55 46.484 W6 20.825 

151 30/10/2008 10:15 N55 46.477 W6 20.827 

152 30/10/2008 10:15 N55 46.476 W6 20.828 

153 30/10/2008 10:15 N55 46.483 W6 20.845 

154 30/10/2008 10:15 N55 46.489 W6 20.835 

155 30/10/2008 10:16 N55 46.511 W6 20.746 
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Commercial in Confidence 5 

156 30/10/2008 10:16 N55 46.535 W6 20.666 

157 30/10/2008 10:17 N55 46.563 W6 20.579 

158 30/10/2008 10:17 N55 46.569 W6 20.535 

159 30/10/2008 10:17 N55 46.572 W6 20.493 

160 30/10/2008 10:18 N55 46.573 W6 20.466 

161 30/10/2008 10:18 N55 46.567 W6 20.456 

162 30/10/2008 10:19 N55 46.560 W6 20.458 

163 30/10/2008 10:19 N55 46.556 W6 20.450 

164 30/10/2008 10:20 N55 46.560 W6 20.417 

165 30/10/2008 10:20 N55 46.570 W6 20.391 

166 30/10/2008 10:21 N55 46.577 W6 20.381 

167 30/10/2008 10:21 N55 46.575 W6 20.390 

168 30/10/2008 10:22 N55 46.569 W6 20.396 

169 30/10/2008 10:22 N55 46.564 W6 20.400 

170 30/10/2008 10:23 N55 46.559 W6 20.403 

171 30/10/2008 10:23 N55 46.558 W6 20.411 

172 30/10/2008 10:24 N55 46.573 W6 20.418 

173 30/10/2008 10:24 N55 46.575 W6 20.393 

174 30/10/2008 10:24 N55 46.565 W6 20.331 

175 30/10/2008 10:25 N55 46.560 W6 20.282 

176 30/10/2008 10:25 N55 46.564 W6 20.244 

177 30/10/2008 10:26 N55 46.583 W6 20.218 

178 30/10/2008 10:26 N55 46.614 W6 20.197 

179 30/10/2008 10:27 N55 46.637 W6 20.164 

180 30/10/2008 10:27 N55 46.659 W6 20.142 

181 30/10/2008 10:28 N55 46.700 W6 20.118 

182 30/10/2008 10:28 N55 46.724 W6 20.085 

183 30/10/2008 10:29 N55 46.753 W6 20.047 

184 30/10/2008 10:29 N55 46.767 W6 19.986 

185 30/10/2008 10:29 N55 46.772 W6 19.848 

186 30/10/2008 10:30 N55 46.776 W6 19.717 

187 30/10/2008 10:30 N55 46.774 W6 19.581 

188 30/10/2008 10:31 N55 46.778 W6 19.424 

189 30/10/2008 10:31 N55 46.797 W6 19.225 

190 30/10/2008 10:32 N55 46.813 W6 19.127 

191 30/10/2008 10:32 N55 46.819 W6 19.092 

192 30/10/2008 10:32 N55 46.817 W6 19.074 

193 30/10/2008 10:33 N55 46.811 W6 19.066 

194 30/10/2008 10:33 N55 46.806 W6 19.065 

195 30/10/2008 10:34 N55 46.801 W6 19.067 

196 30/10/2008 10:35 N55 46.794 W6 19.073 

197 30/10/2008 10:35 N55 46.789 W6 19.080 

198 30/10/2008 10:35 N55 46.786 W6 19.077 

199 30/10/2008 10:35 N55 46.784 W6 19.070 

200 30/10/2008 10:36 N55 46.780 W6 19.027 

201 30/10/2008 10:36 N55 46.778 W6 18.912 

202 30/10/2008 10:37 N55 46.769 W6 18.767 

203 30/10/2008 10:37 N55 46.766 W6 18.627 

204 30/10/2008 10:38 N55 46.759 W6 18.440 

205 30/10/2008 10:39 N55 46.764 W6 18.279 

206 30/10/2008 10:39 N55 46.775 W6 18.141 

207 30/10/2008 10:39 N55 46.787 W6 18.044 
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208 30/10/2008 10:40 N55 46.787 W6 18.011 

209 30/10/2008 10:40 N55 46.781 W6 17.995 

210 30/10/2008 10:41 N55 46.775 W6 17.992 

211 30/10/2008 10:41 N55 46.769 W6 17.994 

212 30/10/2008 10:42 N55 46.764 W6 17.998 

213 30/10/2008 10:43 N55 46.760 W6 18.004 

214 30/10/2008 10:43 N55 46.754 W6 18.003 

215 30/10/2008 10:43 N55 46.748 W6 17.961 

216 30/10/2008 10:44 N55 46.745 W6 17.867 

217 30/10/2008 10:45 N55 46.753 W6 17.768 

218 30/10/2008 10:45 N55 46.756 W6 17.631 

219 30/10/2008 10:46 N55 46.761 W6 17.500 

220 30/10/2008 10:47 N55 46.752 W6 17.388 

221 30/10/2008 10:47 N55 46.729 W6 17.280 

222 30/10/2008 10:48 N55 46.706 W6 17.210 

223 30/10/2008 10:48 N55 46.695 W6 17.182 

224 30/10/2008 10:49 N55 46.685 W6 17.171 

225 30/10/2008 10:49 N55 46.678 W6 17.171 

226 30/10/2008 10:50 N55 46.670 W6 17.173 

227 30/10/2008 10:51 N55 46.664 W6 17.181 

228 30/10/2008 10:52 N55 46.657 W6 17.189 

229 30/10/2008 10:53 N55 46.652 W6 17.197 

230 30/10/2008 10:54 N55 46.647 W6 17.205 

231 30/10/2008 10:55 N55 46.640 W6 17.212 

232 30/10/2008 10:55 N55 46.634 W6 17.220 

233 30/10/2008 10:56 N55 46.627 W6 17.231 

234 30/10/2008 10:57 N55 46.617 W6 17.229 

235 30/10/2008 10:58 N55 46.589 W6 17.183 

236 30/10/2008 10:58 N55 46.548 W6 17.116 

237 30/10/2008 10:59 N55 46.504 W6 17.035 

238 30/10/2008 10:59 N55 46.428 W6 16.938 

239 30/10/2008 11:00 N55 46.357 W6 16.878 

240 30/10/2008 11:00 N55 46.277 W6 16.810 

241 30/10/2008 11:01 N55 46.200 W6 16.748 

242 30/10/2008 11:01 N55 46.146 W6 16.693 

243 30/10/2008 11:02 N55 46.125 W6 16.662 

244 30/10/2008 11:02 N55 46.114 W6 16.651 

245 30/10/2008 11:02 N55 46.104 W6 16.647 

246 30/10/2008 11:03 N55 46.098 W6 16.650 

247 30/10/2008 11:04 N55 46.092 W6 16.655 

248 30/10/2008 11:05 N55 46.086 W6 16.663 

249 30/10/2008 11:05 N55 46.079 W6 16.670 

250 30/10/2008 11:06 N55 46.053 W6 16.655 

251 30/10/2008 11:06 N55 46.008 W6 16.643 

252 30/10/2008 11:07 N55 45.961 W6 16.636 

253 30/10/2008 11:08 N55 45.923 W6 16.642 

254 30/10/2008 11:08 N55 45.882 W6 16.675 

255 30/10/2008 11:09 N55 45.838 W6 16.708 

256 30/10/2008 11:10 N55 45.812 W6 16.742 

257 30/10/2008 11:10 N55 45.805 W6 16.767 

258 30/10/2008 11:11 N55 45.798 W6 16.779 

259 30/10/2008 11:11 N55 45.789 W6 16.785 
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260 30/10/2008 11:12 N55 45.782 W6 16.791 

261 30/10/2008 11:12 N55 45.775 W6 16.797 

262 30/10/2008 11:13 N55 45.769 W6 16.807 

263 30/10/2008 11:13 N55 45.759 W6 16.843 

264 30/10/2008 11:14 N55 45.734 W6 16.894 

265 30/10/2008 11:14 N55 45.704 W6 16.956 

266 30/10/2008 11:15 N55 45.679 W6 17.011 

267 30/10/2008 11:15 N55 45.656 W6 17.070 

268 30/10/2008 11:16 N55 45.626 W6 17.138 

269 30/10/2008 11:16 N55 45.593 W6 17.202 

270 30/10/2008 11:17 N55 45.572 W6 17.245 

271 30/10/2008 11:17 N55 45.573 W6 17.261 

272 30/10/2008 11:17 N55 45.570 W6 17.264 

273 30/10/2008 11:18 N55 45.570 W6 17.255 

274 30/10/2008 11:18 N55 45.565 W6 17.261 

275 30/10/2008 11:19 N55 45.563 W6 17.267 

276 30/10/2008 11:19 N55 45.569 W6 17.277 

277 30/10/2008 11:20 N55 45.563 W6 17.283 

278 30/10/2008 11:20 N55 45.558 W6 17.290 

279 30/10/2008 11:21 N55 45.560 W6 17.300 

280 30/10/2008 11:21 N55 45.560 W6 17.305 

281 30/10/2008 11:22 N55 45.551 W6 17.329 

282 30/10/2008 11:22 N55 45.551 W6 17.334 

283 30/10/2008 11:22 N55 45.549 W6 17.364 

284 30/10/2008 11:22 N55 45.548 W6 17.372 

285 30/10/2008 11:23 N55 45.550 W6 17.383 

286 30/10/2008 11:23 N55 45.548 W6 17.385 

287 30/10/2008 11:24 N55 45.545 W6 17.382 

288 30/10/2008 11:24 N55 45.541 W6 17.389 

289 30/10/2008 11:24 N55 45.537 W6 17.391 

290 30/10/2008 11:24 N55 45.537 W6 17.389 

291 30/10/2008 11:25 N55 45.541 W6 17.379 

292 30/10/2008 11:25 N55 45.534 W6 17.376 

293 30/10/2008 11:26 N55 45.532 W6 17.368 

294 30/10/2008 11:26 N55 45.530 W6 17.360 

295 30/10/2008 11:26 N55 45.534 W6 17.358 

296 30/10/2008 11:27 N55 45.557 W6 17.357 

297 30/10/2008 11:27 N55 45.584 W6 17.385 

298 30/10/2008 11:28 N55 45.603 W6 17.414 

299 30/10/2008 11:28 N55 45.610 W6 17.426 

300 30/10/2008 11:28 N55 45.613 W6 17.421 

301 30/10/2008 11:29 N55 45.623 W6 17.432 

302 30/10/2008 11:29 N55 45.634 W6 17.439 

303 30/10/2008 11:30 N55 45.655 W6 17.454 

304 30/10/2008 11:30 N55 45.662 W6 17.498 

305 30/10/2008 11:30 N55 45.642 W6 17.546 

306 30/10/2008 11:30 N55 45.612 W6 17.585 

307 30/10/2008 11:31 N55 45.575 W6 17.578 

308 30/10/2008 11:31 N55 45.539 W6 17.548 

309 30/10/2008 11:31 N55 45.513 W6 17.522 

310 30/10/2008 11:32 N55 45.504 W6 17.521 

311 30/10/2008 11:32 N55 45.493 W6 17.524 
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312 30/10/2008 11:33 N55 45.489 W6 17.530 

313 30/10/2008 11:33 N55 45.487 W6 17.521 

314 30/10/2008 11:33 N55 45.490 W6 17.522 

315 30/10/2008 11:34 N55 45.511 W6 17.551 

316 30/10/2008 11:34 N55 45.538 W6 17.603 

317 30/10/2008 11:35 N55 45.566 W6 17.643 

318 30/10/2008 11:35 N55 45.598 W6 17.678 

319 30/10/2008 11:35 N55 45.603 W6 17.716 

320 30/10/2008 11:36 N55 45.589 W6 17.778 

321 30/10/2008 11:36 N55 45.564 W6 17.855 

322 30/10/2008 11:37 N55 45.536 W6 17.934 

323 30/10/2008 11:37 N55 45.503 W6 17.958 

324 30/10/2008 11:37 N55 45.470 W6 17.957 

325 30/10/2008 11:38 N55 45.421 W6 17.959 

326 30/10/2008 11:38 N55 45.399 W6 17.968 

327 30/10/2008 11:38 N55 45.375 W6 18.013 

328 30/10/2008 11:39 N55 45.369 W6 18.033 

329 30/10/2008 11:39 N55 45.367 W6 18.044 

330 30/10/2008 11:40 N55 45.363 W6 18.050 

331 30/10/2008 11:40 N55 45.357 W6 18.056 

332 30/10/2008 11:41 N55 45.353 W6 18.062 

333 30/10/2008 11:41 N55 45.347 W6 18.067 

334 30/10/2008 11:41 N55 45.347 W6 18.070 

335 30/10/2008 11:42 N55 45.352 W6 18.110 

336 30/10/2008 11:42 N55 45.354 W6 18.154 

337 30/10/2008 11:42 N55 45.359 W6 18.181 

338 30/10/2008 11:42 N55 45.375 W6 18.177 

339 30/10/2008 11:43 N55 45.426 W6 18.123 

340 30/10/2008 11:43 N55 45.431 W6 18.120 

341 30/10/2008 11:43 N55 45.449 W6 18.123 

342 30/10/2008 11:43 N55 45.530 W6 18.212 

343 30/10/2008 11:44 N55 45.603 W6 18.280 

344 30/10/2008 11:44 N55 45.699 W6 18.361 

345 30/10/2008 11:45 N55 45.766 W6 18.406 

346 30/10/2008 11:45 N55 45.779 W6 18.408 

347 30/10/2008 11:45 N55 45.784 W6 18.419 

348 30/10/2008 11:46 N55 45.782 W6 18.427 

349 30/10/2008 11:46 N55 45.780 W6 18.432 

350 30/10/2008 11:46 N55 45.776 W6 18.437 

351 30/10/2008 11:47 N55 45.771 W6 18.443 

352 30/10/2008 11:47 N55 45.768 W6 18.447 

353 30/10/2008 11:47 N55 45.764 W6 18.454 

354 30/10/2008 11:48 N55 45.761 W6 18.460 

355 30/10/2008 11:48 N55 45.757 W6 18.465 

356 30/10/2008 11:49 N55 45.752 W6 18.471 

357 30/10/2008 11:49 N55 45.749 W6 18.476 

358 30/10/2008 11:49 N55 45.746 W6 18.482 

359 30/10/2008 11:50 N55 45.743 W6 18.487 

360 30/10/2008 11:50 N55 45.740 W6 18.492 

361 30/10/2008 11:51 N55 45.738 W6 18.497 

362 30/10/2008 11:51 N55 45.751 W6 18.499 

363 30/10/2008 11:51 N55 45.752 W6 18.496 
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364 30/10/2008 11:51 N55 45.777 W6 18.415 

365 30/10/2008 11:52 N55 45.817 W6 18.282 

366 30/10/2008 11:52 N55 45.857 W6 18.104 

367 30/10/2008 11:53 N55 45.893 W6 17.940 

368 30/10/2008 11:53 N55 45.926 W6 17.773 

369 30/10/2008 11:53 N55 45.947 W6 17.683 

370 30/10/2008 11:54 N55 45.952 W6 17.654 

371 30/10/2008 11:54 N55 45.946 W6 17.639 

372 30/10/2008 11:55 N55 45.940 W6 17.638 

373 30/10/2008 11:55 N55 45.935 W6 17.643 

374 30/10/2008 11:56 N55 45.930 W6 17.649 

375 30/10/2008 11:56 N55 45.927 W6 17.654 

376 30/10/2008 11:57 N55 45.923 W6 17.660 

377 30/10/2008 11:57 N55 45.919 W6 17.667 

378 30/10/2008 11:58 N55 45.914 W6 17.675 

379 30/10/2008 11:58 N55 45.910 W6 17.682 

380 30/10/2008 11:59 N55 45.906 W6 17.686 

381 30/10/2008 11:59 N55 45.903 W6 17.684 

382 30/10/2008 11:59 N55 45.879 W6 17.674 

383 30/10/2008 11:59 N55 45.848 W6 17.708 

384 30/10/2008 11:59 N55 45.794 W6 17.822 

385 30/10/2008 12:00 N55 45.719 W6 17.980 

386 30/10/2008 12:00 N55 45.668 W6 18.089 

387 30/10/2008 12:01 N55 45.612 W6 18.179 

388 30/10/2008 12:01 N55 45.537 W6 18.328 

389 30/10/2008 12:02 N55 45.453 W6 18.502 

390 30/10/2008 12:02 N55 45.395 W6 18.627 

391 30/10/2008 12:02 N55 45.327 W6 18.754 

392 30/10/2008 12:03 N55 45.252 W6 18.893 

393 30/10/2008 12:03 N55 45.192 W6 19.030 

394 30/10/2008 12:03 N55 45.176 W6 19.078 

395 30/10/2008 12:04 N55 45.171 W6 19.094 

396 30/10/2008 12:04 N55 45.167 W6 19.099 

397 30/10/2008 12:04 N55 45.164 W6 19.102 

398 30/10/2008 12:05 N55 45.160 W6 19.105 

399 30/10/2008 12:05 N55 45.156 W6 19.110 

400 30/10/2008 12:05 N55 45.153 W6 19.113 

401 30/10/2008 12:06 N55 45.148 W6 19.116 

402 30/10/2008 12:06 N55 45.144 W6 19.119 

403 30/10/2008 12:07 N55 45.141 W6 19.123 

404 30/10/2008 12:07 N55 45.137 W6 19.157 

405 30/10/2008 12:07 N55 45.125 W6 19.216 

406 30/10/2008 12:08 N55 45.105 W6 19.289 

407 30/10/2008 12:08 N55 45.089 W6 19.378 

408 30/10/2008 12:08 N55 45.075 W6 19.470 

409 30/10/2008 12:08 N55 45.051 W6 19.576 

410 30/10/2008 12:09 N55 45.011 W6 19.684 

411 30/10/2008 12:09 N55 44.956 W6 19.810 

412 30/10/2008 12:09 N55 44.936 W6 19.862 

413 30/10/2008 12:10 N55 44.925 W6 19.887 

414 30/10/2008 12:10 N55 44.919 W6 19.909 

415 30/10/2008 12:10 N55 44.918 W6 19.919 
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416 30/10/2008 12:11 N55 44.917 W6 19.923 

417 30/10/2008 12:11 N55 44.914 W6 19.928 

418 30/10/2008 12:12 N55 44.910 W6 19.930 

419 30/10/2008 12:12 N55 44.905 W6 19.933 

420 30/10/2008 12:12 N55 44.901 W6 19.935 

421 30/10/2008 12:13 N55 44.896 W6 19.938 

422 30/10/2008 12:13 N55 44.893 W6 19.940 

423 30/10/2008 12:14 N55 44.888 W6 19.943 

424 30/10/2008 12:14 N55 44.885 W6 19.946 

425 30/10/2008 12:14 N55 44.885 W6 19.947 

426 30/10/2008 12:14 N55 44.879 W6 19.981 

427 30/10/2008 12:15 N55 44.848 W6 20.040 

428 30/10/2008 12:15 N55 44.804 W6 20.107 

429 30/10/2008 12:15 N55 44.755 W6 20.177 

430 30/10/2008 12:15 N55 44.741 W6 20.218 

431 30/10/2008 12:16 N55 44.706 W6 20.279 

432 30/10/2008 12:16 N55 44.692 W6 20.305 

433 30/10/2008 12:16 N55 44.689 W6 20.317 

434 30/10/2008 12:17 N55 44.689 W6 20.324 

435 30/10/2008 12:17 N55 44.687 W6 20.330 

436 30/10/2008 12:17 N55 44.684 W6 20.333 

437 30/10/2008 12:18 N55 44.681 W6 20.336 

438 30/10/2008 12:18 N55 44.678 W6 20.340 

439 30/10/2008 12:19 N55 44.674 W6 20.344 

440 30/10/2008 12:19 N55 44.669 W6 20.350 

441 30/10/2008 12:20 N55 44.666 W6 20.354 

442 30/10/2008 12:20 N55 44.662 W6 20.358 

443 30/10/2008 12:20 N55 44.659 W6 20.362 

444 30/10/2008 12:21 N55 44.655 W6 20.366 

445 30/10/2008 12:21 N55 44.653 W6 20.370 

446 30/10/2008 12:21 N55 44.655 W6 20.415 

447 30/10/2008 12:22 N55 44.647 W6 20.481 

448 30/10/2008 12:22 N55 44.640 W6 20.585 

449 30/10/2008 12:22 N55 44.634 W6 20.659 

450 30/10/2008 12:22 N55 44.635 W6 20.770 

451 30/10/2008 12:23 N55 44.635 W6 20.885 

452 30/10/2008 12:23 N55 44.632 W6 20.994 

453 30/10/2008 12:23 N55 44.631 W6 21.044 

454 30/10/2008 12:23 N55 44.631 W6 21.078 

455 30/10/2008 12:24 N55 44.631 W6 21.098 

456 30/10/2008 12:24 N55 44.631 W6 21.106 

457 30/10/2008 12:24 N55 44.630 W6 21.112 

458 30/10/2008 12:25 N55 44.627 W6 21.118 

459 30/10/2008 12:25 N55 44.624 W6 21.123 

460 30/10/2008 12:25 N55 44.626 W6 21.127 

461 30/10/2008 12:25 N55 44.628 W6 21.129 

462 30/10/2008 12:25 N55 44.631 W6 21.119 

463 30/10/2008 12:26 N55 44.628 W6 21.111 

464 30/10/2008 12:26 N55 44.624 W6 21.110 

465 30/10/2008 12:26 N55 44.624 W6 21.112 

466 30/10/2008 12:27 N55 44.627 W6 21.120 

467 30/10/2008 12:27 N55 44.624 W6 21.120 
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468 30/10/2008 12:27 N55 44.627 W6 21.117 

469 30/10/2008 12:27 N55 44.630 W6 21.127 

470 30/10/2008 12:27 N55 44.636 W6 21.122 

471 30/10/2008 12:28 N55 44.633 W6 21.113 

472 30/10/2008 12:28 N55 44.631 W6 21.110 

473 30/10/2008 12:28 N55 44.629 W6 21.106 

474 30/10/2008 12:28 N55 44.633 W6 21.106 

475 30/10/2008 12:29 N55 44.640 W6 21.118 

476 30/10/2008 12:29 N55 44.646 W6 21.123 

477 30/10/2008 12:29 N55 44.647 W6 21.115 

478 30/10/2008 12:30 N55 44.647 W6 21.106 

479 30/10/2008 12:30 N55 44.646 W6 21.112 

480 30/10/2008 12:30 N55 44.647 W6 21.120 

481 30/10/2008 12:31 N55 44.652 W6 21.115 

482 30/10/2008 12:31 N55 44.646 W6 21.098 

483 30/10/2008 12:31 N55 44.643 W6 21.094 

484 30/10/2008 12:31 N55 44.641 W6 21.087 

485 30/10/2008 12:32 N55 44.640 W6 21.078 

486 30/10/2008 12:32 N55 44.647 W6 21.069 

487 30/10/2008 12:32 N55 44.644 W6 21.068 

488 30/10/2008 12:33 N55 44.642 W6 21.069 

489 30/10/2008 12:33 N55 44.640 W6 21.074 

490 30/10/2008 12:33 N55 44.637 W6 21.068 

491 30/10/2008 12:33 N55 44.639 W6 21.060 

492 30/10/2008 12:34 N55 44.642 W6 21.060 

493 30/10/2008 12:34 N55 44.651 W6 21.058 

494 30/10/2008 12:34 N55 44.661 W6 21.069 

495 30/10/2008 12:34 N55 44.671 W6 21.081 

496 30/10/2008 12:34 N55 44.671 W6 21.087 

497 30/10/2008 12:35 N55 44.666 W6 21.106 

498 30/10/2008 12:35 N55 44.658 W6 21.104 

499 30/10/2008 12:35 N55 44.656 W6 21.093 

500 30/10/2008 12:36 N55 44.661 W6 21.089 

501 30/10/2008 12:36 N55 44.664 W6 21.086 

502 30/10/2008 12:36 N55 44.664 W6 21.084 

503 30/10/2008 12:36 N55 44.662 W6 21.072 

504 30/10/2008 12:37 N55 44.660 W6 21.062 

505 30/10/2008 12:37 N55 44.664 W6 21.059 

506 30/10/2008 12:37 N55 44.672 W6 21.068 

507 30/10/2008 12:38 N55 44.680 W6 21.069 

508 30/10/2008 12:38 N55 44.680 W6 21.058 

509 30/10/2008 12:38 N55 44.682 W6 21.051 

510 30/10/2008 12:38 N55 44.697 W6 21.018 

511 30/10/2008 12:39 N55 44.701 W6 21.010 

512 30/10/2008 12:39 N55 44.703 W6 21.018 

513 30/10/2008 12:39 N55 44.701 W6 21.021 

514 30/10/2008 12:39 N55 44.686 W6 21.039 

515 30/10/2008 12:40 N55 44.669 W6 21.053 

516 30/10/2008 12:40 N55 44.662 W6 21.060 

517 30/10/2008 12:40 N55 44.657 W6 21.086 

518 30/10/2008 12:41 N55 44.652 W6 21.098 

519 30/10/2008 12:41 N55 44.648 W6 21.103 
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520 30/10/2008 12:41 N55 44.644 W6 21.104 

521 30/10/2008 12:41 N55 44.640 W6 21.104 

522 30/10/2008 12:42 N55 44.636 W6 21.099 

523 30/10/2008 12:42 N55 44.633 W6 21.100 

524 30/10/2008 12:42 N55 44.630 W6 21.092 

525 30/10/2008 12:43 N55 44.630 W6 21.083 

526 30/10/2008 12:43 N55 44.629 W6 21.074 

527 30/10/2008 12:43 N55 44.635 W6 21.074 

528 30/10/2008 12:44 N55 44.641 W6 21.080 

529 30/10/2008 12:44 N55 44.645 W6 21.085 

530 30/10/2008 12:44 N55 44.648 W6 21.084 

531 30/10/2008 12:45 N55 44.656 W6 21.084 

532 30/10/2008 12:45 N55 44.658 W6 21.089 

533 30/10/2008 12:45 N55 44.657 W6 21.095 

534 30/10/2008 12:45 N55 44.656 W6 21.100 

535 30/10/2008 12:46 N55 44.654 W6 21.107 

536 30/10/2008 12:46 N55 44.652 W6 21.112 

537 30/10/2008 12:46 N55 44.653 W6 21.120 

538 30/10/2008 12:46 N55 44.653 W6 21.123 

539 30/10/2008 12:47 N55 44.661 W6 21.130 

540 30/10/2008 12:47 N55 44.661 W6 21.125 

541 30/10/2008 12:47 N55 44.658 W6 21.120 

542 30/10/2008 12:48 N55 44.655 W6 21.121 

543 30/10/2008 12:48 N55 44.652 W6 21.123 

544 30/10/2008 12:48 N55 44.651 W6 21.125 

545 30/10/2008 12:49 N55 44.648 W6 21.126 

546 30/10/2008 12:49 N55 44.647 W6 21.120 

547 30/10/2008 12:49 N55 44.653 W6 21.109 

548 30/10/2008 12:49 N55 44.653 W6 21.104 

549 30/10/2008 12:50 N55 44.652 W6 21.092 

550 30/10/2008 12:50 N55 44.654 W6 21.080 

551 30/10/2008 12:50 N55 44.660 W6 21.067 

552 30/10/2008 12:50 N55 44.658 W6 21.060 

553 30/10/2008 12:51 N55 44.655 W6 21.060 

554 30/10/2008 12:51 N55 44.653 W6 21.056 

555 30/10/2008 12:51 N55 44.655 W6 21.053 

556 30/10/2008 12:51 N55 44.659 W6 21.058 

557 30/10/2008 12:52 N55 44.660 W6 21.064 

558 30/10/2008 12:52 N55 44.665 W6 21.072 

559 30/10/2008 12:52 N55 44.669 W6 21.096 

560 30/10/2008 12:52 N55 44.667 W6 21.111 

561 30/10/2008 12:53 N55 44.666 W6 21.115 

562 30/10/2008 12:53 N55 44.658 W6 21.117 

563 30/10/2008 12:53 N55 44.657 W6 21.116 

564 30/10/2008 12:53 N55 44.652 W6 21.110 

565 30/10/2008 12:54 N55 44.649 W6 21.107 

566 30/10/2008 12:54 N55 44.645 W6 21.097 

567 30/10/2008 12:54 N55 44.644 W6 21.085 

568 30/10/2008 12:55 N55 44.641 W6 21.082 

569 30/10/2008 12:55 N55 44.638 W6 21.083 

570 30/10/2008 12:55 N55 44.635 W6 21.086 

571 30/10/2008 12:56 N55 44.632 W6 21.078 
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572 30/10/2008 12:56 N55 44.628 W6 21.072 

573 30/10/2008 12:56 N55 44.627 W6 21.063 

574 30/10/2008 12:57 N55 44.633 W6 21.058 

575 30/10/2008 12:57 N55 44.644 W6 21.059 

576 30/10/2008 12:57 N55 44.645 W6 21.057 

577 30/10/2008 12:57 N55 44.656 W6 21.051 

578 30/10/2008 12:57 N55 44.657 W6 21.052 

579 30/10/2008 12:58 N55 44.660 W6 21.074 

580 30/10/2008 12:58 N55 44.661 W6 21.096 

581 30/10/2008 12:58 N55 44.653 W6 21.108 

582 30/10/2008 12:59 N55 44.644 W6 21.113 

583 30/10/2008 12:59 N55 44.638 W6 21.113 

584 30/10/2008 12:59 N55 44.636 W6 21.114 

585 30/10/2008 13:00 N55 44.634 W6 21.117 

586 30/10/2008 13:00 N55 44.629 W6 21.109 

587 30/10/2008 13:00 N55 44.626 W6 21.103 

588 30/10/2008 13:00 N55 44.622 W6 21.093 

589 30/10/2008 13:01 N55 44.623 W6 21.083 

590 30/10/2008 13:01 N55 44.625 W6 21.072 

591 30/10/2008 13:01 N55 44.624 W6 21.063 

592 30/10/2008 13:02 N55 44.629 W6 21.057 

593 30/10/2008 13:02 N55 44.639 W6 21.054 

594 30/10/2008 13:02 N55 44.644 W6 21.046 

595 30/10/2008 13:02 N55 44.641 W6 21.034 

596 30/10/2008 13:03 N55 44.645 W6 21.024 

597 30/10/2008 13:03 N55 44.646 W6 21.023 

598 30/10/2008 13:03 N55 44.658 W6 21.009 

599 30/10/2008 13:04 N55 44.669 W6 21.015 

600 30/10/2008 13:04 N55 44.684 W6 21.018 

601 30/10/2008 13:04 N55 44.692 W6 21.023 

602 30/10/2008 13:04 N55 44.695 W6 21.015 

603 30/10/2008 13:05 N55 44.688 W6 20.992 

604 30/10/2008 13:05 N55 44.679 W6 20.975 

605 30/10/2008 13:05 N55 44.670 W6 20.964 

606 30/10/2008 13:06 N55 44.658 W6 20.959 

607 30/10/2008 13:06 N55 44.653 W6 20.962 

608 30/10/2008 13:06 N55 44.650 W6 20.970 

609 30/10/2008 13:07 N55 44.649 W6 20.975 

610 30/10/2008 13:07 N55 44.648 W6 20.979 

611 30/10/2008 13:07 N55 44.647 W6 20.982 

612 30/10/2008 13:08 N55 44.645 W6 20.986 

613 30/10/2008 13:08 N55 44.644 W6 20.990 

614 30/10/2008 13:08 N55 44.649 W6 20.996 

615 30/10/2008 13:08 N55 44.653 W6 21.025 

616 30/10/2008 13:08 N55 44.655 W6 21.046 

617 30/10/2008 13:09 N55 44.656 W6 21.060 

618 30/10/2008 13:09 N55 44.656 W6 21.073 

619 30/10/2008 13:09 N55 44.653 W6 21.091 

620 30/10/2008 13:10 N55 44.648 W6 21.103 

621 30/10/2008 13:10 N55 44.647 W6 21.107 

622 30/10/2008 13:10 N55 44.645 W6 21.116 

623 30/10/2008 13:11 N55 44.643 W6 21.121 
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624 30/10/2008 13:11 N55 44.642 W6 21.125 

625 30/10/2008 13:11 N55 44.641 W6 21.128 

626 30/10/2008 13:12 N55 44.639 W6 21.132 

627 30/10/2008 13:12 N55 44.638 W6 21.139 

628 30/10/2008 13:12 N55 44.641 W6 21.149 

629 30/10/2008 13:13 N55 44.641 W6 21.156 

630 30/10/2008 13:13 N55 44.639 W6 21.160 

631 30/10/2008 13:13 N55 44.637 W6 21.163 

632 30/10/2008 13:14 N55 44.636 W6 21.177 

633 30/10/2008 13:14 N55 44.631 W6 21.175 

634 30/10/2008 13:14 N55 44.631 W6 21.173 

635 30/10/2008 13:14 N55 44.626 W6 21.150 

636 30/10/2008 13:15 N55 44.623 W6 21.139 

637 30/10/2008 13:15 N55 44.621 W6 21.129 

638 30/10/2008 13:15 N55 44.615 W6 21.117 

639 30/10/2008 13:16 N55 44.612 W6 21.113 

640 30/10/2008 13:16 N55 44.610 W6 21.115 

641 30/10/2008 13:16 N55 44.608 W6 21.119 

642 30/10/2008 13:16 N55 44.605 W6 21.119 

643 30/10/2008 13:17 N55 44.598 W6 21.108 

644 30/10/2008 13:17 N55 44.596 W6 21.098 

645 30/10/2008 13:17 N55 44.603 W6 21.091 

646 30/10/2008 13:17 N55 44.603 W6 21.090 

647 30/10/2008 13:18 N55 44.612 W6 21.079 

648 30/10/2008 13:18 N55 44.614 W6 21.078 

649 30/10/2008 13:18 N55 44.626 W6 21.085 

650 30/10/2008 13:19 N55 44.634 W6 21.092 

651 30/10/2008 13:19 N55 44.644 W6 21.086 

652 30/10/2008 13:19 N55 44.644 W6 21.084 

653 30/10/2008 13:19 N55 44.648 W6 21.069 

654 30/10/2008 13:19 N55 44.648 W6 21.064 

655 30/10/2008 13:20 N55 44.651 W6 21.052 

656 30/10/2008 13:20 N55 44.654 W6 21.052 

657 30/10/2008 13:20 N55 44.666 W6 21.059 

658 30/10/2008 13:20 N55 44.674 W6 21.066 

659 30/10/2008 13:20 N55 44.679 W6 21.069 

660 30/10/2008 13:21 N55 44.694 W6 21.062 

661 30/10/2008 13:21 N55 44.703 W6 21.067 

662 30/10/2008 13:21 N55 44.706 W6 21.066 

663 30/10/2008 13:21 N55 44.716 W6 21.047 

664 30/10/2008 13:22 N55 44.729 W6 21.035 

665 30/10/2008 13:22 N55 44.747 W6 21.028 

666 30/10/2008 13:22 N55 44.757 W6 21.008 

667 30/10/2008 13:23 N55 44.769 W6 20.986 

668 30/10/2008 13:23 N55 44.777 W6 21.002 

669 30/10/2008 13:23 N55 44.772 W6 21.012 

670 30/10/2008 13:23 N55 44.757 W6 21.007 

671 30/10/2008 13:24 N55 44.750 W6 21.009 

672 30/10/2008 13:24 N55 44.737 W6 21.013 

673 30/10/2008 13:24 N55 44.724 W6 21.015 

674 30/10/2008 13:25 N55 44.719 W6 21.022 

675 30/10/2008 13:25 N55 44.718 W6 21.027 
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676 30/10/2008 13:25 N55 44.710 W6 21.039 

677 30/10/2008 13:25 N55 44.703 W6 21.046 

678 30/10/2008 13:26 N55 44.689 W6 21.058 

679 30/10/2008 13:26 N55 44.677 W6 21.068 

680 30/10/2008 13:26 N55 44.667 W6 21.081 

681 30/10/2008 13:27 N55 44.660 W6 21.094 

682 30/10/2008 13:27 N55 44.654 W6 21.104 

683 30/10/2008 13:27 N55 44.647 W6 21.112 

684 30/10/2008 13:28 N55 44.642 W6 21.118 

685 30/10/2008 13:28 N55 44.638 W6 21.125 

686 30/10/2008 13:28 N55 44.635 W6 21.134 

687 30/10/2008 13:29 N55 44.634 W6 21.139 

688 30/10/2008 13:29 N55 44.632 W6 21.143 

689 30/10/2008 13:29 N55 44.629 W6 21.145 

690 30/10/2008 13:29 N55 44.628 W6 21.147 

691 30/10/2008 13:30 N55 44.639 W6 21.154 

692 30/10/2008 13:30 N55 44.639 W6 21.146 

693 30/10/2008 13:30 N55 44.635 W6 21.129 

694 30/10/2008 13:30 N55 44.632 W6 21.118 

695 30/10/2008 13:31 N55 44.636 W6 21.104 

696 30/10/2008 13:31 N55 44.640 W6 21.094 

697 30/10/2008 13:31 N55 44.640 W6 21.089 

698 30/10/2008 13:32 N55 44.641 W6 21.086 

699 30/10/2008 13:32 N55 44.644 W6 21.100 

700 30/10/2008 13:32 N55 44.645 W6 21.110 

701 30/10/2008 13:33 N55 44.647 W6 21.120 

702 30/10/2008 13:33 N55 44.647 W6 21.126 

703 30/10/2008 13:33 N55 44.646 W6 21.131 

704 30/10/2008 13:34 N55 44.644 W6 21.135 

705 30/10/2008 13:34 N55 44.642 W6 21.139 

706 30/10/2008 13:34 N55 44.641 W6 21.141 

707 30/10/2008 13:34 N55 44.646 W6 21.148 

708 30/10/2008 13:34 N55 44.671 W6 21.152 

709 30/10/2008 13:35 N55 44.688 W6 21.159 

710 30/10/2008 13:35 N55 44.699 W6 21.189 

711 30/10/2008 13:35 N55 44.701 W6 21.247 

712 30/10/2008 13:35 N55 44.690 W6 21.341 

713 30/10/2008 13:35 N55 44.683 W6 21.470 

714 30/10/2008 13:36 N55 44.676 W6 21.593 

715 30/10/2008 13:36 N55 44.674 W6 21.697 

716 30/10/2008 13:36 N55 44.662 W6 21.824 

717 30/10/2008 13:36 N55 44.655 W6 21.941 

718 30/10/2008 13:37 N55 44.652 W6 22.030 

719 30/10/2008 13:37 N55 44.649 W6 22.069 

720 30/10/2008 13:37 N55 44.649 W6 22.086 

721 30/10/2008 13:37 N55 44.648 W6 22.094 

722 30/10/2008 13:38 N55 44.645 W6 22.101 

723 30/10/2008 13:38 N55 44.641 W6 22.107 

724 30/10/2008 13:38 N55 44.638 W6 22.110 

725 30/10/2008 13:39 N55 44.634 W6 22.114 

726 30/10/2008 13:39 N55 44.630 W6 22.119 

727 30/10/2008 13:39 N55 44.625 W6 22.124 
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728 30/10/2008 13:40 N55 44.620 W6 22.129 

729 30/10/2008 13:40 N55 44.615 W6 22.135 

730 30/10/2008 13:40 N55 44.628 W6 22.133 

731 30/10/2008 13:41 N55 44.645 W6 22.105 

732 30/10/2008 13:41 N55 44.697 W6 22.052 

733 30/10/2008 13:41 N55 44.757 W6 21.998 

734 30/10/2008 13:42 N55 44.811 W6 21.942 

735 30/10/2008 13:42 N55 44.864 W6 21.891 

736 30/10/2008 13:42 N55 44.887 W6 21.875 

737 30/10/2008 13:42 N55 44.932 W6 21.844 

738 30/10/2008 13:43 N55 44.985 W6 21.792 

739 30/10/2008 13:43 N55 45.051 W6 21.722 

740 30/10/2008 13:43 N55 45.115 W6 21.655 

741 30/10/2008 13:44 N55 45.189 W6 21.591 

742 30/10/2008 13:44 N55 45.260 W6 21.527 

743 30/10/2008 13:45 N55 45.327 W6 21.471 

744 30/10/2008 13:45 N55 45.404 W6 21.394 

745 30/10/2008 13:46 N55 45.470 W6 21.347 

746 30/10/2008 13:46 N55 45.561 W6 21.289 

747 30/10/2008 13:47 N55 45.649 W6 21.229 

748 30/10/2008 13:47 N55 45.742 W6 21.173 

749 30/10/2008 13:47 N55 45.821 W6 21.103 

750 30/10/2008 13:48 N55 45.904 W6 21.037 

751 30/10/2008 13:48 N55 46.004 W6 20.977 

752 30/10/2008 13:49 N55 46.078 W6 20.927 

753 30/10/2008 13:49 N55 46.147 W6 20.866 

754 30/10/2008 13:49 N55 46.216 W6 20.782 

755 30/10/2008 13:50 N55 46.287 W6 20.672 

756 30/10/2008 13:50 N55 46.343 W6 20.548 

757 30/10/2008 13:50 N55 46.401 W6 20.449 

758 30/10/2008 13:51 N55 46.450 W6 20.358 

759 30/10/2008 13:51 N55 46.496 W6 20.253 

760 30/10/2008 13:51 N55 46.557 W6 20.173 

761 30/10/2008 13:52 N55 46.629 W6 20.114 

762 30/10/2008 13:52 N55 46.715 W6 20.084 

763 30/10/2008 13:53 N55 46.746 W6 20.082 

764 30/10/2008 13:53 N55 46.781 W6 20.090 

765 30/10/2008 13:53 N55 46.796 W6 20.093 

766 30/10/2008 13:54 N55 46.797 W6 20.108 

767 30/10/2008 13:54 N55 46.792 W6 20.120 

768 30/10/2008 13:55 N55 46.788 W6 20.127 

769 30/10/2008 13:55 N55 46.784 W6 20.134 

770 30/10/2008 13:55 N55 46.781 W6 20.141 

771 30/10/2008 13:56 N55 46.781 W6 20.143 

772 30/10/2008 13:56 N55 46.788 W6 20.140 

773 30/10/2008 13:56 N55 46.788 W6 20.076 

774 30/10/2008 13:56 N55 46.783 W6 19.949 

775 30/10/2008 13:57 N55 46.773 W6 19.722 

776 30/10/2008 13:57 N55 46.770 W6 19.533 

777 30/10/2008 13:58 N55 46.771 W6 19.338 

778 30/10/2008 13:58 N55 46.767 W6 19.142 

779 30/10/2008 13:59 N55 46.764 W6 18.922 
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780 30/10/2008 13:59 N55 46.760 W6 18.710 

781 30/10/2008 14:00 N55 46.759 W6 18.505 

782 30/10/2008 14:00 N55 46.765 W6 18.354 

783 30/10/2008 14:00 N55 46.783 W6 18.108 

784 30/10/2008 14:01 N55 46.795 W6 18.030 

785 30/10/2008 14:01 N55 46.797 W6 17.994 

786 30/10/2008 14:02 N55 46.792 W6 17.980 

787 30/10/2008 14:02 N55 46.785 W6 17.977 

788 30/10/2008 14:03 N55 46.778 W6 17.978 

789 30/10/2008 14:03 N55 46.772 W6 17.979 

790 30/10/2008 14:04 N55 46.770 W6 17.980 

791 30/10/2008 14:04 N55 46.767 W6 17.982 

792 30/10/2008 14:04 N55 46.761 W6 17.985 

793 30/10/2008 14:05 N55 46.754 W6 17.990 

794 30/10/2008 14:06 N55 46.750 W6 17.992 

795 30/10/2008 14:06 N55 46.747 W6 17.994 

796 30/10/2008 14:06 N55 46.742 W6 17.996 

797 30/10/2008 14:07 N55 46.738 W6 17.998 

798 30/10/2008 14:07 N55 46.733 W6 17.999 

799 30/10/2008 14:08 N55 46.727 W6 18.000 

800 30/10/2008 14:08 N55 46.720 W6 18.004 

801 30/10/2008 14:09 N55 46.713 W6 18.007 

802 30/10/2008 14:09 N55 46.709 W6 18.008 

803 30/10/2008 14:10 N55 46.703 W6 18.010 

804 30/10/2008 14:11 N55 46.695 W6 18.018 

805 30/10/2008 14:11 N55 46.692 W6 18.023 

806 30/10/2008 14:12 N55 46.685 W6 18.026 

807 30/10/2008 14:12 N55 46.679 W6 18.030 

808 30/10/2008 14:13 N55 46.676 W6 18.033 

809 30/10/2008 14:13 N55 46.671 W6 18.036 

810 30/10/2008 14:14 N55 46.666 W6 18.039 

811 30/10/2008 14:14 N55 46.662 W6 18.043 

812 30/10/2008 14:15 N55 46.656 W6 18.049 

813 30/10/2008 14:15 N55 46.653 W6 18.054 

814 30/10/2008 14:16 N55 46.648 W6 18.057 

815 30/10/2008 14:16 N55 46.641 W6 18.063 

816 30/10/2008 14:17 N55 46.638 W6 18.068 

817 30/10/2008 14:17 N55 46.633 W6 18.072 

818 30/10/2008 14:17 N55 46.630 W6 18.074 

819 30/10/2008 14:18 N55 46.625 W6 18.076 

820 30/10/2008 14:18 N55 46.621 W6 18.078 

821 30/10/2008 14:18 N55 46.618 W6 18.050 

822 30/10/2008 14:19 N55 46.609 W6 18.012 

823 30/10/2008 14:19 N55 46.569 W6 17.951 

824 30/10/2008 14:19 N55 46.501 W6 17.907 

825 30/10/2008 14:19 N55 46.399 W6 17.871 

826 30/10/2008 14:20 N55 46.290 W6 17.829 

827 30/10/2008 14:20 N55 46.193 W6 17.765 

828 30/10/2008 14:21 N55 46.109 W6 17.691 

829 30/10/2008 14:21 N55 46.016 W6 17.610 

830 30/10/2008 14:21 N55 45.909 W6 17.531 

831 30/10/2008 14:22 N55 45.822 W6 17.467 
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832 30/10/2008 14:22 N55 45.743 W6 17.415 

833 30/10/2008 14:22 N55 45.654 W6 17.357 

834 30/10/2008 14:23 N55 45.616 W6 17.314 

835 30/10/2008 14:23 N55 45.591 W6 17.300 

836 30/10/2008 14:23 N55 45.567 W6 17.306 

837 30/10/2008 14:24 N55 45.563 W6 17.311 

838 30/10/2008 14:24 N55 45.560 W6 17.312 

839 30/10/2008 14:24 N55 45.559 W6 17.302 

840 30/10/2008 14:24 N55 45.577 W6 17.275 

841 30/10/2008 14:25 N55 45.581 W6 17.279 

842 30/10/2008 14:25 N55 45.580 W6 17.289 

843 30/10/2008 14:25 N55 45.588 W6 17.297 

844 30/10/2008 14:26 N55 45.593 W6 17.263 

845 30/10/2008 14:26 N55 45.594 W6 17.261 

846 30/10/2008 14:26 N55 45.591 W6 17.249 

847 30/10/2008 14:26 N55 45.586 W6 17.245 

848 30/10/2008 14:27 N55 45.582 W6 17.244 

849 30/10/2008 14:27 N55 45.580 W6 17.239 

850 30/10/2008 14:27 N55 45.586 W6 17.234 

851 30/10/2008 14:27 N55 45.600 W6 17.247 

852 30/10/2008 14:28 N55 45.598 W6 17.258 

853 30/10/2008 14:28 N55 45.594 W6 17.265 

854 30/10/2008 14:29 N55 45.590 W6 17.269 

855 30/10/2008 14:29 N55 45.586 W6 17.272 

856 30/10/2008 14:29 N55 45.582 W6 17.277 

857 30/10/2008 14:30 N55 45.579 W6 17.279 

858 30/10/2008 14:30 N55 45.576 W6 17.283 

859 30/10/2008 14:30 N55 45.573 W6 17.286 

860 30/10/2008 14:31 N55 45.569 W6 17.289 

861 30/10/2008 14:31 N55 45.565 W6 17.294 

862 30/10/2008 14:31 N55 45.565 W6 17.299 

863 30/10/2008 14:31 N55 45.554 W6 17.307 

864 30/10/2008 14:32 N55 45.536 W6 17.310 

865 30/10/2008 14:32 N55 45.534 W6 17.310 

866 30/10/2008 14:32 N55 45.532 W6 17.301 

867 30/10/2008 14:32 N55 45.534 W6 17.295 

868 30/10/2008 14:32 N55 45.535 W6 17.295 

869 30/10/2008 14:33 N55 45.534 W6 17.307 

870 30/10/2008 14:33 N55 45.541 W6 17.307 

871 30/10/2008 14:33 N55 45.541 W6 17.298 

872 30/10/2008 14:34 N55 45.539 W6 17.296 

873 30/10/2008 14:34 N55 45.537 W6 17.290 

874 30/10/2008 14:34 N55 45.538 W6 17.291 

875 30/10/2008 14:35 N55 45.542 W6 17.300 

876 30/10/2008 14:35 N55 45.545 W6 17.306 

877 30/10/2008 14:35 N55 45.546 W6 17.329 

878 30/10/2008 14:35 N55 45.537 W6 17.332 

879 30/10/2008 14:36 N55 45.532 W6 17.339 

880 30/10/2008 14:36 N55 45.529 W6 17.331 

881 30/10/2008 14:36 N55 45.532 W6 17.334 

882 30/10/2008 14:37 N55 45.537 W6 17.344 

883 30/10/2008 14:37 N55 45.540 W6 17.346 
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884 30/10/2008 14:37 N55 45.540 W6 17.332 

885 30/10/2008 14:38 N55 45.545 W6 17.316 

886 30/10/2008 14:38 N55 45.543 W6 17.309 

887 30/10/2008 14:39 N55 45.540 W6 17.305 

888 30/10/2008 14:39 N55 45.544 W6 17.310 

889 30/10/2008 14:39 N55 45.534 W6 17.349 

890 30/10/2008 14:40 N55 45.532 W6 17.369 

891 30/10/2008 14:40 N55 45.537 W6 17.382 

892 30/10/2008 14:40 N55 45.544 W6 17.394 

893 30/10/2008 14:41 N55 45.543 W6 17.384 

894 30/10/2008 14:41 N55 45.540 W6 17.379 

895 30/10/2008 14:41 N55 45.538 W6 17.348 

896 30/10/2008 14:42 N55 45.541 W6 17.318 

897 30/10/2008 14:42 N55 45.539 W6 17.307 

898 30/10/2008 14:42 N55 45.540 W6 17.294 

899 30/10/2008 14:43 N55 45.541 W6 17.283 

900 30/10/2008 14:43 N55 45.540 W6 17.269 

901 30/10/2008 14:43 N55 45.543 W6 17.266 

902 30/10/2008 14:44 N55 45.546 W6 17.276 

903 30/10/2008 14:44 N55 45.551 W6 17.288 

904 30/10/2008 14:44 N55 45.554 W6 17.284 

905 30/10/2008 14:44 N55 45.550 W6 17.277 

906 30/10/2008 14:45 N55 45.543 W6 17.259 

907 30/10/2008 14:45 N55 45.547 W6 17.262 

908 30/10/2008 14:45 N55 45.551 W6 17.263 

909 30/10/2008 14:46 N55 45.551 W6 17.254 

910 30/10/2008 14:46 N55 45.550 W6 17.247 

911 30/10/2008 14:46 N55 45.553 W6 17.249 

912 30/10/2008 14:47 N55 45.555 W6 17.254 

913 30/10/2008 14:47 N55 45.557 W6 17.262 

914 30/10/2008 14:47 N55 45.554 W6 17.268 

915 30/10/2008 14:48 N55 45.543 W6 17.278 

916 30/10/2008 14:48 N55 45.540 W6 17.260 

917 30/10/2008 14:48 N55 45.541 W6 17.251 

918 30/10/2008 14:49 N55 45.547 W6 17.251 

919 30/10/2008 14:49 N55 45.548 W6 17.252 

920 30/10/2008 14:49 N55 45.554 W6 17.258 

921 30/10/2008 14:49 N55 45.554 W6 17.284 

922 30/10/2008 14:50 N55 45.551 W6 17.294 

923 30/10/2008 14:50 N55 45.548 W6 17.297 

924 30/10/2008 14:50 N55 45.544 W6 17.294 

925 30/10/2008 14:51 N55 45.541 W6 17.294 

926 30/10/2008 14:51 N55 45.540 W6 17.300 

927 30/10/2008 14:51 N55 45.540 W6 17.314 

928 30/10/2008 14:51 N55 45.536 W6 17.340 

929 30/10/2008 14:52 N55 45.522 W6 17.368 

930 30/10/2008 14:52 N55 45.517 W6 17.383 

931 30/10/2008 14:52 N55 45.512 W6 17.396 

932 30/10/2008 14:53 N55 45.507 W6 17.404 

933 30/10/2008 14:53 N55 45.508 W6 17.410 

934 30/10/2008 14:53 N55 45.515 W6 17.417 

935 30/10/2008 14:53 N55 45.519 W6 17.411 
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936 30/10/2008 14:54 N55 45.524 W6 17.405 

937 30/10/2008 14:54 N55 45.529 W6 17.425 

938 30/10/2008 14:54 N55 45.549 W6 17.447 

939 30/10/2008 14:54 N55 45.557 W6 17.431 

940 30/10/2008 14:55 N55 45.563 W6 17.390 

941 30/10/2008 14:55 N55 45.560 W6 17.366 

942 30/10/2008 14:55 N55 45.554 W6 17.339 

943 30/10/2008 14:56 N55 45.552 W6 17.322 

944 30/10/2008 14:56 N55 45.549 W6 17.315 

945 30/10/2008 14:56 N55 45.546 W6 17.314 

946 30/10/2008 14:57 N55 45.547 W6 17.307 

947 30/10/2008 14:57 N55 45.550 W6 17.311 

948 30/10/2008 14:57 N55 45.547 W6 17.354 

949 30/10/2008 14:57 N55 45.535 W6 17.375 

950 30/10/2008 14:57 N55 45.531 W6 17.361 

951 30/10/2008 14:58 N55 45.533 W6 17.353 

952 30/10/2008 14:58 N55 45.537 W6 17.346 

953 30/10/2008 14:58 N55 45.534 W6 17.341 

954 30/10/2008 14:59 N55 45.534 W6 17.335 

955 30/10/2008 14:59 N55 45.537 W6 17.334 

956 30/10/2008 14:59 N55 45.542 W6 17.333 

957 30/10/2008 14:59 N55 45.548 W6 17.329 

958 30/10/2008 15:00 N55 45.551 W6 17.333 

959 30/10/2008 15:00 N55 45.549 W6 17.338 

960 30/10/2008 15:00 N55 45.546 W6 17.343 

961 30/10/2008 15:01 N55 45.543 W6 17.339 

962 30/10/2008 15:01 N55 45.542 W6 17.336 

963 30/10/2008 15:01 N55 45.542 W6 17.358 

964 30/10/2008 15:01 N55 45.544 W6 17.402 

965 30/10/2008 15:02 N55 45.535 W6 17.410 

966 30/10/2008 15:02 N55 45.531 W6 17.405 

967 30/10/2008 15:02 N55 45.531 W6 17.394 

968 30/10/2008 15:03 N55 45.529 W6 17.387 

969 30/10/2008 15:03 N55 45.527 W6 17.379 

970 30/10/2008 15:03 N55 45.527 W6 17.368 

971 30/10/2008 15:04 N55 45.528 W6 17.369 

972 30/10/2008 15:04 N55 45.530 W6 17.401 

973 30/10/2008 15:04 N55 45.530 W6 17.424 

974 30/10/2008 15:05 N55 45.525 W6 17.437 

975 30/10/2008 15:05 N55 45.524 W6 17.458 

976 30/10/2008 15:05 N55 45.526 W6 17.476 

977 30/10/2008 15:06 N55 45.526 W6 17.497 

978 30/10/2008 15:06 N55 45.531 W6 17.500 

979 30/10/2008 15:06 N55 45.531 W6 17.485 

980 30/10/2008 15:07 N55 45.533 W6 17.469 

981 30/10/2008 15:07 N55 45.536 W6 17.465 

982 30/10/2008 15:07 N55 45.546 W6 17.451 

983 30/10/2008 15:07 N55 45.559 W6 17.421 

984 30/10/2008 15:08 N55 45.560 W6 17.407 

985 30/10/2008 15:08 N55 45.561 W6 17.384 

986 30/10/2008 15:08 N55 45.566 W6 17.363 

987 30/10/2008 15:08 N55 45.568 W6 17.316 



Development and Application of Novel Tracers for Environmental Applications 

Appendix IV: Case Study GPS Data 

Commercial in Confidence 21 

988 30/10/2008 15:09 N55 45.550 W6 17.302 

989 30/10/2008 15:09 N55 45.524 W6 17.301 

990 30/10/2008 15:09 N55 45.502 W6 17.302 

991 30/10/2008 15:10 N55 45.498 W6 17.310 

992 30/10/2008 15:10 N55 45.499 W6 17.320 

993 30/10/2008 15:10 N55 45.497 W6 17.319 

994 30/10/2008 15:10 N55 45.495 W6 17.318 

995 30/10/2008 15:11 N55 45.495 W6 17.322 

996 30/10/2008 15:11 N55 45.493 W6 17.325 

997 30/10/2008 15:11 N55 45.492 W6 17.314 

998 30/10/2008 15:11 N55 45.495 W6 17.322 

999 30/10/2008 15:12 N55 45.500 W6 17.324 

1000 30/10/2008 15:12 N55 45.499 W6 17.326 

1001 30/10/2008 15:13 N55 45.498 W6 17.325 

1002 30/10/2008 15:13 N55 45.499 W6 17.326 

1003 30/10/2008 15:14 N55 45.497 W6 17.326 

1004 30/10/2008 15:14 N55 45.496 W6 17.325 

1005 30/10/2008 15:14 N55 45.495 W6 17.323 

1006 30/10/2008 15:16 N55 45.496 W6 17.326 

1007 30/10/2008 15:16 N55 45.497 W6 17.329 

1008 30/10/2008 15:17 N55 45.497 W6 17.329 

1009 30/10/2008 15:19 N55 45.498 W6 17.328 
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