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ABSTRACT 
 

Palladium membranes have been identified as the membranes of choice in 

hydrogen separation and purification processes due to their infinite selectivity to 

hydrogen when defect free. Despite their potentials in hydrogen processes, 

palladium membranes pose challenges in terms of cost and embritllement which 

occurs when palladium comes in contact with hydrogen at temperatures below 

573 K. The challenges posed by palladium membranes have encouraged research 

into nonpalladium based membranes such as Silica and Alumina. This thesis 

investigates hydrogen permeation and separation in palladium membranes and 

also the use of nonpalladium membranes, Silica and Alumina membranes in 

hydrogen permeation. 

In this study, hydrogen permeation behavior was investigated for 3 types of 

membranes, Palladium, Silica and Alumina. Thin palladium films were deposited 

onto a 30 nm porous ceramic alumina support using both conventional and 

modified electroless plating methods. The hydrogen separation and purification 

behavior of the membranes were investigated including the effect of annealing at 

higher temperatures. Gas permeation through Silica and Alumina membranes 

was investigated for 5 single gases including hydrogen. The Silica and Alumina 

membranes were fabricated using the dip coating method and their hydrogen 

permeation behavior of investigated at different coatings. 

A thin Palladium (Pd1) membrane with a thickness of 2 µm was prepared over 

porous ceramic alumina support using the electroless plating method and a 

maximum hydrogen flux of 80.4 cm3 cm-2 min-1 was observed at 873 K and 0.4 

bar after annealing the membrane. The hydrogen flux increased to 94.5 cm3 cm-2 

min-1 at same temperature and pressure for the Palladium membrane (Pd2) 

prepared using the modified electroless plating method. The hydrogen flux 

increased to 98.1 cm3 cm2 min-1 for the palladium/silver (Pd/Ag) membrane 

prepared using the codeposition electroless plating method and the PdAg 

membrane avoided the hydrogen embrittlement at low temperature.  

Hydrogen purity for the membrane was also investigated for a reformate gas 

mixture and a maximum hydrogen purity of 99.93% was observed at 873 K and 

0.4 bar. The hydrogen purity was observed to increase as a result of the addition 
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of sulphur which surpresses the inhibition effect of the carbon monoxide in the 

reformate gas mixture. The presence of CO and CO2 was observed to lead to an 

increase of the exponential factor n above 0.5 as a result of the inhibiting effect 

of these compounds on hydrogen permeation.  

The value of the exponential factor n depicting the rate limiting step to hydrogen 

permeation in the palladium and palladium-alloy membranes was also 

investigated. Deviations from Sievert’s law were observed from the Palladium 

membranes inverstigated in this work. In single gas hydrogen permeation 

investigation for the Pd1 membrane prepared using the conventional electroless 

plating method, the value of the exponential factor n = 0.5 in accordance with 

Sievert’s law. However, for the mixed gas hydrogen separation investigation 

n=0.62 at 573 K which decreased to 0.55 when the membrane was annealed at 

873 K. For the Pd2 membrane prepared using the modified elctroless plating 

method, n=1 at 573 K but the value decreased to 0.76 for the mixed gas 

hydrogen separation investigation at same temperature which depicts a deviation 

from Sievert’s law. In all the investigations carried out for the Pd3 palladium 

alloy membrane prepared using the co-deposition Pd/Ag electroless plating 

method at same conditions with the Pd1 and Pd2 membranes, n=0.5 in 

accordance with Sievert’s law. 

For the Nonpalladium based Silica and ceramic Alumina membranes, 

investigations were carried out for hydrogen permeation and 5 other single 

gases; He, CO2, CH4, N2 and Ar. For the Silica membranes, a maximum hydrogen 

permeance of 3.12-7 10  mol m-2 s-1 Pa-1 at 573 K and 0.4 bar was observed  

which increased to 4.05 10 -7 mol m-2 s-1 Pa-1 at 573 K and 0.4 when the 

membrane was modified with Boehmite sol prior to deposition of the Silica layer. 

The permeance for hydrogen and the 5 single gases was investigated for the 

alumina membrane at 5 successive coatings. It was observed that the 

commercial alumina membrane displayed a maximum hydrogen permeance of 

9.72  10 -7 mol m-2 s-1 Pa-1 at 573 K and 0.4 bar which increased to 9.85  10 -7 

mol m-2 s-1 Pa-1 at same temperature and pressure when the membrane was 

modified with Boehmite sol.    
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CHAPTER 1 
 

1.0 Introduction and Motivation 
 

The current high energy demand and challenges caused by rapid depletion of 

fossil fuels have motivated research into alternative and renewable sources of 

energy such as hydrogen. Currently, the major sources of energy are the fossil 

fuels including crude oil, coal and natural gas [1]. However, these fossil fuels are 

environmentally unfriendly because they cause pollution and are also 

exhaustible. The use of fossil fuels as the major source of energy has led to 2 

critical challenges facing the global energy system: environmental pollution and 

energy insecurity [2]. 

 

1.1 Environmental Pollution 

 
Presently, fossil fuels contribute about 86% of the world’s energy supply and 

90% of greenhouse emissions. They have been identified as the major sources of 

environmental pollution through anthropogenic emission of carbon dioxide which 

is the major source of global warming and climate change.  There is now global 

focus on climate change and after several attempts at international climate 

change conferences, nations are yet to agree terms with a commitment on 

emission targets for each country based on their individual contributions to 

carbon emission [3]. There is currently a strict global emission regime aimed at 

cutting down carbon emission based on the Kyoto protocol [3]. 

  

The Kyoto protocol is an international agreement on climate change set by the 

United Nations Organization (UNO) which was adopted in Kyoto, Japan in 

December 1997 and has been referred to as one of the most contentious policy 

issues on environmental protection [3]. The protocol sets target on reducing the 

global greenhouse gas (GHG) emissions [4]. The implementation of the global 

emission targets is now one of the most critical issues in international political 

arena as countries and continents try to cut the best deal. 
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1.2 Energy Insecurity 

  
Oil and gas resources are depleting rapidly and are envisaged to run out in a few 

decades which mean the world is faced with a scary but realistic future without 

oil [5]. A world without oil and gas will create an energy vacuum if other energy 

sources are not economically available before oil runs out.  

 

Already some wells are drying out in Saudi Arabia, the country with the largest 

oil reserves and even where new oil wells are discovered, it is becoming 

increasingly difficult to hit oil because oil production is getting economically 

unviable [6]. Oil companies are finding it increasingly difficult to achieve 

economies of scale thereby leading to downsizing and mergers and in some 

cases, outright closures. Oil is said to deplete finally in 30-40 years from now 

and this calls for renewed commitment to identifying alternative and renewable 

sources of energy including hydrogen [6].  

 

The challenges associated with oil are more compounded with fluctuating oil 

prices which always cast a shadow of uncertainty over the global economy 

thereby limiting free trade amongst nations. Oil is also said to be the major 

cause of the current global armed conflicts, insurgencies and mistrust amongst 

nations [7].  The focus now is on energy sources that are environmentally 

friendly and inexhaustible so as to combat climate change and ensure energy 

security.  

 

1.3 Membrane Technology 

 

Membrane separation is one of the enabling technologies in hydrogen production. 

Among the various membranes, Palladium membranes have received an ever – 

increasing attention in the separation of hydrogen mainly due to their ability to 

exclusively separate hydrogen from other gases and as a result of its high 

mobility in palladium lattice, and application over a wide range of temperatures 

[8].  

Palladium membranes are the preferred choice in hydrogen separation and 

purification due to their infinite selectivity to hydrogen when defect free [9]. 
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Challenges in Palladium membranes for hydrogen processes have encouraged 

research into other alternatives to palladium membranes such as silica and 

alumina for hydrogen separation and purification [10]. The adoption of hydrogen 

as the global energy carrier is faced with challenges including hydrogen storage, 

scaling up to full commercial levels and the need for public awareness and 

sensitization about the hydrogen energy system. 

 

The use of inorganic membranes for hydrogen processes is also facing challenges 

such as cost, how to achieve uniform densification, examination and treatment of 

defects during the deposition of the metallic layer and poisoning by impurities 

such as carbonaceous compounds which impeded hydrogen permeation [11]. 

Electroless plating method for deposition of palladium layer over porous supports 

also has several challenges such as the threat of impurities during surface 

modification for Al2O3 supports, the long duration which makes it prone to errors 

and contamination. The need arises to fabricate thin defect free composite 

palladium membranes with high hydrogen flux and selectivity for hydrogen 

separation and purification especially for use in fuel cell processes and  

petroleum refining applications [12].  All these challenges to the hydrogen 

energy system have made it imperative that sustained research is encouraged in 

palladium and other inorganic membranes for hydrogen production, separation 

and purification.  

    

1.4 Motivation 

 

The demand for ultra-pure hydrogen is rising particularly as a result of recent 

developments in polymer electrolyte membrane fuel cells (PEMFC) [13].  PEMFC’s 

are environmentally and economically viable due to their higher power density, 

low operating temperatures, cleaner exhausts and compactness compared to the 

conventional gas turbines and internal combustion engines. Hydrogen is also an 

important industrial feedstock for the production of fuels and several chemicals. 

The hydrogen energy system therefore holds a lot of potentials in the current 

global efforts to ensure energy security and combat global warming due to the 

use of fossil fuels [5].  

 



   

  5 

  

Thin defect free palladium membranes are required not only to produce high 

purity hydrogen but also to meet the practical requirements of mechanical and 

chemical stability for hydrogen separation and purification at elevated 

temperatures [8]. The challenge arises on how to prepare thin defect free 

palladium membranes with enhanced hydrogen permeance and permselectivity. 

This is because these membranes are often prone to develop pin holes and 

defects which compromise hydrogen purity [9].  

 

Palladium membranes pose several challenges such high cost and susceptibility 

to poisoning in the presence of hydrocarbons and sulfur. Palladium membrane 

also suffer from embrittlement in the presence of hydrogen at temperature below 

573 K which causes cracks and breaks in the active palladium layer thus 

resulting in loss of purity [13]. Further research is pertinent on how hydrogen 

embrittlement can be suppressed and simultaneously enhance hydrogen 

permeance and selectivity.  

 

Hydrogen permeation through palladium membranes is normally governed by 

Sievert’s law where the exponential factor n=0.5 [14]. The rate limiting step in 

this case is diffusion of atomic hydrogen through the bulk metal. If the value of n 

changes from 0.5, then the rate limiting step is no longer bulk diffusion and the 

deviation  from sievert’s law could be due to several factors including 

temperature, pressure, grain size and contaminants such as C, CO, CO2, CH4 

which reduces the surface reaction rate [15] . There is paucity of knowledge on 

these factors and more work is required especially on the effect of contaminants 

and grain size on hydrogen permeation through palladium membranes. 

 

As a result of some of the advantages associated with palladium membranes, 

research into nonpalladium membranes such as silica for hydrogen processes is 

highly desirable. Silica membranes overcome some of the disadvantages of 

palladium membranes as they are more stable at high temperature, robust and 

also less expensive which provides options for commercialization [10]. Silica 

membranes have the advantage of operating at higher temperatures and harsher 

conditions compared to palladium [10]. Also, silica membranes are tolerant of 

sulfur impurities and this is critical because most reactant streams in hydrogen 

processes contain sulfur including natural gas-derived streams [10].  
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The preparation of Silica membranes with good hydrogen permeance and 

selectivity is one of the options being proposed to compliment the use of 

palladium membranes for hydrogen separation and purification. It is pertinent to 

promote research into silica membranes especially in the use of graded 

intermediate layers such as AlOOH to create more stable γ-alumina layers in 

case of alumina supports [10]. It is also imperative that investigations into 

hydrogen permeation and transport properties of silica membranes at elevated 

temperature are encouraged so as to provide a better understanding of the gas 

transport mechanisms involved. Research into alumina membranes is also highly 

encouraged as a result of the need for understanding of hydrogen permeation 

behavior and selectivity through alumina membranes. 

 

1.5 The Hydrogen Energy System 

 

The hydrogen energy system is also known as the hydrogen economy and it 

seeks to promote and sustain the importance of hydrogen as a source of energy 

[16]. The concept of hydrogen economy is often explained in two parts: On one 

hand it covers the production of hydrogen and its use in chemical and 

petrochemical industries, in mineral oil processing and in the upgrading of coal. 

On the other hand, the hydrogen economy envisages the use of hydrogen as the 

main energy carrier in a global energy system (17) Hydrogen fuel has been 

identified as the most ideal energy carrier to replace fossil fuels and avoid an 

impending energy vacuum when oil and gas resources finally deplete [18]. 

 

Hydrogen can form the foundation of a sustainable modern energy system and 

its most significant effect on civilization will be in transportation. It is projected 

that in the next 5-10 years, hydrogen would be the fuel for cars, buses, trains 

and aircrafts. Already there are hydrogen powered cars and buses on the road in 

several countries (17).  

 

Moreover, within the next 5-10 years, there will be a surge of industries for 

hydrogen production, storage, transportation and utilisation. It is also envisaged 

that in the next 10 years, many gasoline stations will be converted to hydrogen 

[18]. High purity hydrogen is relevant as an energy carrier especially with the 
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recent development of hydrogen fuel cell vehicles (HFCV) which are planned for 

full commercialization in 2015. 

 

1.5.1 Hydrogen Fuel 

 

Hydrogen is the most abundant element on the planet. It is a light, odourless, 

colourless and tasteless gas and found in the air at about 100 ppm (0.01%). It is 

also called the ‘clean fuel’ due to the fact that only water is produced during its 

combustion. Hydrogen is an energy carrier mainly due to its reaction with oxygen 

to produce energy and water. 

 

The energy from hydrogen is based on equation 1as follows [2]: 

 

                             H2 + ½ O2 H2O ……………………………………………………………Eq. 1                     

                                                          ΔH = -285 kJ/mol at room temperature 

 

The energy yield of hydrogen is 2.75 times greater than the yield of 

hydrocarbons and when used in fuel cell vehicles, hydrogen emits only water 

vapour while fossil emits the environmental pollutant CO2.  Apart from its use in 

fuel cells, hydrogen is also used in petroleum refining, production of ammonia 

(49%), hydrotreating and hydrocracking during petroleum refining (37%), 

methanol production (8%) and other miscellaneous uses (6%) [2].  

 

Hydrogen is considered as one of the most efficient fuels because the combustion 

of 1kg of hydrogen can lead to the release of up to 120 mJ/kg including about 20 

mJ/kg in the residual water vapour. In contrast, the equivalent of energy from oil 

and gas would require 2.5 – 2.75 kg of fuel [2]. This shows that hydrogen has 

about 150% efficiency factor over oil and natural gas in terms of heat of 

combustion. Despite its high heat of combustion, hydrogen has a very low 

volumetric energy density. For example, methane is 8 times heavier than 

hydrogen gas which puts hydrogen at a disadvantage when in mixture with gases 

[19]. This makes separation and purification of hydrogen from gas mixtures 

more critical to the development of a hydrogen economy. The use of separation 
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membranes will enable the optimum recovery of pure hydrogen from mixed gas 

streams. 

 

1.6 Scope of This Work 

 
The major aspect of this work involves substantial experimental work on the 

preparation of composite inorganic membranes namely, palladium, palladium-

silver, silica and alumina membranes. Electroless plating method was used to 

deposit thin metallic palladium layers over porous alumina supports while the dip 

coating/sol gel method was used to prepare composite silica membranes over 

porous alumina supports and also to deposit γ-alumina layers over porous α-

alumina support.  

 

The aim of the project is to prepare composite membranes with high hydrogen 

flux and selectivity for high purity hydrogen from mixed gas streams. The future 

scaling up of the process is also taking into consideration in selecting the 

appropriate material for membrane fabrication in terms of cost, 

commercialization and stability in harsh operating conditions [10]. 

 

Based on the above aim of the project, its key objectives are as follows:  

1. To prepare thin defect free composite palladium membranes with enhanced 

hydrogen flux and selectivity with a view to achieving high hydrogen purity for 

fuel cells and related applications.  

2. To investigate the method of electroless plating with a view to optimizing the 

method to reduce the processing time involved and also the threat of impurities 

while maintaining membrane quality with high hydrogen flux and selectivity. 

3. To investigate the effect of any possible defects, pinholes, contaminants, grain 

size, temperature or pressure on the rate limiting step and the pressure 

exponential n on hydrogen permeation properties in palladium and palladium-

silver membranes.  

4. To investigate hydrogen permeation through silica and alumina membranes 

with a view to understanding their suitability in hydrogen processes.  
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5. To identify the effect of introducing an intermediate γ-alumina layer on the 

porous α-alumina support prior to deposition of the silica layer for hydrogen 

permeation and selectivity. 

6. To investigate the hydrogen permeation behavior of an unmodified commercial 

alumina membrane and compare same with that of another alumina membrane 

modified with a AlOOH sol. The significance of modifying the membrane is to 

deposit the more stable γ-alumina layer for enhanced hydrogen permeation. 

7. To investigate the gas transport mechanism in both the commercial and 

modified alumina membranes for a better understanding of hydrogen permeation 

behavior through alumina support/membranes.  

 

1.7 Membrane Requirement 

 
The United States Department of Energy (DOE) has established 4 important 

characteristics for membranes in hydrogen separation. These are as follows [20]: 

1- An operating temperature of 250 – 5000 C  

2- A flux of 150 cm3 cm-2 min-1
 

3- A cost of $1000 per m-2 

4- A durability of 5 years 

 

Porous silica and alumina ceramic membranes are recognised for their chemical 

stability in harsh operating conditions. These porous membranes usually exhibit 

high hydrogen permeability and low selectivity. However, Palladium membranes 

provide excellent hydrogen selectivity but they present high cost, are thermally 

and chemically unstable and suffer from embrittlement when in contact with 

hydrogen at low temperatures [20]. The strong interaction with hydrogen at low 

temperatures results in the cracking and peeling off of the active palladium layer.  

In particular, the high cost and limited availability of palladium has encouraged 

research into alternative membrane materials such as silica and alumina to serve 

as options to palladium [20]. However, the cost implications can be ameliorated 

by combining thin palladium films with alumina and/or by employing less 
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expensive techniques for fabrication of the Pd film [8]. In terms of the 

techniques for fabrication of Pd films, a thickness of 50 µm can be achieved by 

cold rolling, less than 1 µm by electroless plating and about 1 µm by chemical 

vapour deposition [20]. 

 

1.8 Publications/Conferences Undertaking In This Work. 

 

1.8.1 Journal Publications 
 

1. Alkali, A. & Gobina, E. (2014). Hydrogen permeation behavior and annealing 

in Pd & Pd/Ag membranes at high temperature. International Journal of 

Advanced Research in Engineering and Technology (IJARET), 5(5), 205-212. 

2. Alkali, A. & Gobina, E. (2014). Gas separation properties of a Hydrogen 

Permeable Macroporous Ceramic membrane at high temperature. International 

Journal of Advanced Research in Engineering and Technology (IJARET), 5(5), 40-

50. 

Paper in Preparation: 

1. Alkali, A. & Gobina, E. Electroless plating of palladium and palladium alloy 

membranes for hydrogen separation and purification: A review. 

 

1.8.2 International Conferences  
 

Oral Presentation: 

 

1. Alkali, A. & Gobina, E. (2014). Hydrogen permeation behavior and n-value in 

composite palladium membranes. American Society of Mechanical Engineers 

(ASME) 12th Fuel Cell Engineering and Technology Conference in Boston, 

Massachusets U.S.A. 30th June – 2nd July 2014.  

2. Alkali, A. & Gobina, E. (2014). Hydrogen permeation behavior in Palladium 

and Palladium alloy composite membranes. Materials challenges in Alternative 

& Renewable Energy (MCARE) conference held in Tampa, Florida U.S.A.  17th 

– 20th Feb. 2014. 
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3. Alkali, A. & Gobina, E. (2014). Hydrogen separation & Purification using 

composite Inorganic membranes. Fuel Cell Seminar & Exposition held in 

Mohegan Sun, Connecticut, U.S.A. 3rd – 5th November 2012. 

4. Alkali, A. & Gobina, E. (2014). An investigation into the hydrogen separation, 

purification and transport behaviour of a ceramic alumina membrane and its 

comparison with a gamma alumina membrane modified with AlOOH sol. 

European Fuel Cell Conference held in Rome, Italy. 11th – 13th December, 

2013.  

 

 

Poster Presentation: 

 

1. Alkali, A. & Gobina, E. (2011). Hydrogen separation & Purification Using 

Composite Inorganic Membranes. International Hydrogen Research Showcase. 

University of Birmingham, 13th – 15th April 2011. 

2. Alkali, A. & Gobina, E. (2011). Hydrogen preparation in palladium and 

palladium alloy membranes at high temperature. International Conference on 

Inorganic Membranes. University of Twenty, Enschede, Netherlands. 9th – 13th 

July 2012 

 

Field Trip: 

 

December 2014: Attended a field trip at the University of Birmingham Centre for 

Hydrogen and Fuel Cell Research (School of Chemical Engineering) under 

Professor Robert Steinberger-Wilkens. I was also at the University’s school of 

Metallurgy and Materials working on Membrane Separation.  

 

1.9 Thesis Outline  

 

This thesis is structured into 7 chapters. A summary of the contents of each 

chapter is as follows: 

 

Chapter 1. This chapter presents a concise introduction to the research including 

the motivation for the research. The scope, aims and objectives of the research 
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are also presented. The relevance of the hydrogen energy system and membrane 

technology to the global search for a sustainable energy system is also 

discussed. The membrane requirement is also presented including hydrogen 

transport through inorganic membranes.  

 

Chapter 2:  This chapter presents a review of relevant literature for inorganic 

membranes for hydrogen separation & purification including the different gas 

transport mechanisms. The different methods of preparation of composite 

palladium membranes including electroless plating are also presented. 

 

Chapter 3: This chapter concentrates on palladium membranes and it presents 

the experimental methodology for palladium and palladium-silver membranes 

including the electroless plating method and materials used in preparation of the 

composite palladium membranes over porous alumina support. Three composite 

palladium membranes were prepared and tested namely Pd1 (which is a Pd 

membrane prepared using the conventional electroless plating), Pd2 (a Pd 

membrane prepared using the modified electroless method) and Pd3 (which is a 

Pd/Ag membrane also prepared using the conventional electroless plating 

method).  

 

Chapter 4: This chapter concentrates on silica membranes and it presents a 

background of the current work done in silica membranes for hydrogen 

processes. It also presents the methodology for the dip coating used in the 

fabrication of silica membranes for gas permeation tests. Two composite 

membranes SL1 and SL2 were prepared using the dip coating method and the 

results of their  hydrogen permeance and selectivit investigated at different 

coatings for single hydrogen streams.  

 

Chapter 5: This chapter concentrates on alumina membranes and also presents 

an analysis of current work for these membranes in hydrogen processes. The dip 

coating methodology used in modifying the ceramic alumina membranes for 

hydrogen processes is also presented. Two membranes AM1 and AM2 were 

prepared and investigated for hydrogen permeance and selectivity and also the 

permeance of 5 other single gases at high temperature. AM1 is a commercial α-

alumina membrane without any modification while AM2 is a γ-alumina 
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membrane prepared using the dip coating method by modification of the support 

with AlOOH sol. Both membranes were investigated for hydrogen permeation and 

selectivity at five different coatings.  

 

Chapter 6: This chapter presents the results and discussions for the palladium 

and nonpalladium membranes. The palladium membranes are the Pd1, Pd2 and 

the Pd3 (palladium-alloy, Pd/Ag) membrane while the nonpalladium membranes 

are silica (SL1 and SL2 membranes) and ceramic alumina (AM1 and AM2 

membrabnes). 

 

Chapter 7. This chapter presents the conclusions and recommendations that 

were drawn from the investigations carried out on all the membranes prepared in 

this work. Options for future work are also presented.  

 

Appendices: Some print outs of experimental results from the Gas 

Chromatograph analytical equipment and SEM and EDXA are presented. The 

method for calculation of hydrogen flux, gas permeance and selectivity and 

determination of membrane thickness are also presented.  
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CHAPTER 2 
  

2.0 Literature Review   

 

2.1 Hydrogen Production   
 
Hydrogen can be produced in several ways such as through electrolysis of water, 

steam methane reforming, gasification of coal and partial oxidation of natural gas 

[1]. The raw gas contains a number of gaseous impurities which must be 

removed to make the hydrogen in its pure form. The methods for hydrogen 

separation are: pressure swing adsorption (PSA), cryogenic distillation, solvent 

adsorption and membrane separation. Membrane separation has been identified 

as one of the most promising technology due to a number of attributes such as 

its low cost, low energy consumption and simple equipment [1].  

 

Steam reforming of methane is the most widely used method for hydrogen 

production. However, despite its significance in hydrogen production processes, 

the steam methane reforming poses several challenges prominent amongst 

which is the restriction caused by the thermodynamic equilibrium [2]. Steam 

reforming also produces carbon dioxide which is an environmental pollutant. The 

steam methane reforming process is performed in fixed bed reactors. Due to the 

endothermic reaction high temperatures (>8000 C) are required which results in 

enormous drastic operating conditions [2]. Membrane reactors provide promising 

options in overcoming these challenges including high temperature and high 

pressure.  

 

Membrane reactors could perform both the reaction and the separation process 

simultaneously (Process intensification) and can also shift the thermodynamic 

equilibrium in the water – gas shift reaction to convert carbon monoxide to 

hydrogen [3].  
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High temperatures are required for the endothermic reaction as shown in 

equations 2 and 3 [3]: 

 

                       CH4 + H2O   CO + 3H2 …..…………………..…………………………Eq. 2 

                                                                  

The water–gas shift reaction involves the exothermic reaction of carbon 

monoxide with steam [3]: 

 

                      CO + H2O CO2 + H2 ………………………………………………………..Eq. 3 

 

The selective removal of hydrogen from the reaction stream using membranes 

will result in a shift of the thermodynamic equilibrium to the products side. This 

shift will lead to high feed conversion and high purity hydrogen recovery at low 

temperatures [4]. Metals of groups 8-10 of the periodic table are normally used 

as catalysts in steam methane reforming [2].  

 

2.2 Inorganic Membranes for Hydrogen Separation & Purification 

 
Membranes are physical barriers that allow a selective transport of mass specie 

and are selected depending on the application [3].  Membranes are classified as 

either organic, inorganic or hybrids of organic/inorganic. Inorganic membranes 

can further be classified into metallic and ceramic membranes. The metallic 

membranes are usually in the dense phase while the ceramics can be either 

porous or nonporous. The organic membranes can be further classified as either 

polymeric or biological [4]. A membrane has the unique ability to selectively 

allow a component to pass through it while rejecting other components.  

They serve as filters to separate one gas from the feed mixture in form of 

permeate; the rejected components are passed as retentate [5]. In selecting a 

membrane, there is the need to consider some key factors such as the 

membrane permeability, selectivity, durability, mechanical integrity, resistance 

to poisoning etc.  

These factors must be balanced with the cost implications for optimum value and 

efficiency of the membrane [1]. Membranes could be used either as self – 
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supporting OR as composites (supported). As self supporting, the membranes 

exist in stand – alone form as tubes or films without any substrate to give added 

mechanical and thermal strength to the metal layer [1].  

 

The major requirement with the unsupported membranes is that they should be 

thick enough so that they can have the necessary thermal and mechanical 

strength to withstand harsh conditions e.g. high temperature incorporation of 

seals. However, this thickness makes them expensive and also, they yield low 

hydrogen flux since flux is inversely proportional to thickness [1]. As a result of 

the challenges posed by the self supporting membranes in form of thin films such 

as their inability to withstand high temperature, much attention is now directed 

in the use of composite membranes in which a thin layer is deposited on a 

porous support e.g. a thin Palladium film deposited on α – Al2O3 support. The 

support provides the necessary mechanical and thermal strength for the 

membrane to withstand harsh conditions while the thin film enhances the flux 

[1]. 

 

The supports can be either ceramic, glass, stainless steel and other porous 

materials and can enable the preparation of highly effective ultra thin Pd and Pd- 

alloy membranes with significant thermal stability and mechanical strength [1]. 

Ceramic supports such as alumina are widely used due to their stability, 

resistance to corrosion and ability to withstand high temperatures [1]. The 

stainless steel supports also present a good choice because they have a similar 

thermal expansion coefficient to Palladium films compared to glass supports that 

are prone to cracks [6]. Unsupported thick membranes cause several challenges 

including low permeance, low chemical stability and high cost. However, 

supported/composite type membranes of thin films on a porous support yield 

high hydrogen flux and excellent separation properties because the flux depends 

on the thickness and the membrane materials [1].   
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According to the International Union of Pure and Applied Chemistry (IUPAC), 

porous membranes can be classified based on their pore sizes as follows [7]: 

 Macroporous >50 nm,  

 Mesoporous 2 nm < pore size< 50 nm   

 Microporous < 2 nm  

 

Despite their potentials to make a significant impact in addressing the current 

energy crisis, inorganic membranes have certain challenges that need to be 

addressed for effective gas separation and purification. Some of these challenges 

are as follows [4]:  

 Thickness: A membrane should be thin for effective target separation. 

 High Surface activity. 

 Defect – free surface for deposition. 

 Stability and strength to sustain harsh operating conditions. 

 

The most important properties that make a membrane effective in separation 

and purification processes are permeability and selectivity [3]. Permeability is 

defined as ‘the flux of mass through a membrane per unit of area and time at a 

given gradient and is a product of diffusivity and solubility [1]. Diffusivity and 

solubility allow the permeate to pass through the membrane and hydrogen has 

an extremely high diffusivity in palladium which gives it a very high selectivity 

[1]. Permeance is the total flux in terms of the membrane’s ability to drive the 

gas through it and it describes the relationship between permeability and 

thickness of the membrane denoted in molar units as (mol m-2 s-1 Pa-1) [4]. 

Higher flux denotes that a smaller membrane area is required and therefore, a 

lower cost of the process.                                                                                                                                                           

 

In palladium membranes, pinholes and cracks could develop in the film from 

preparation stages and membrane exposure to unfavourable conditions and 

these defects can result in the membrane having a finite selectivity [1]. A high 

selectivity denotes a high hydrogen throughput at ultra pure levels and 
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translates to lower cost of the process since low pressure ratio i.e. the driving 

force, is required for the separation [3].  

 

2.3 Membrane Reactors for Hydrogen Production 

 

A membrane reactor is a multifunctional device which provides process 

intensification in reactions by combining a separation process with a chemical 

reaction in one unit [8]. As a result of this process intensification capability of 

these reactors, they have been widely applied for a range of chemical reactions 

such as dehydrogenation reactions (equilibrium limited), selective oxidations and 

in reaction coupling processes to produce thermodynamically beneficent products 

[8]. The use of membrane reactors for hydrogenation and dehydrogenation 

reactions essentially involves a catalyst and a membrane with the former 

providing conversion and the latter controlling transfer to and from the catalyst 

[8].  

 

In membrane reactors based on supported palladium membranes, the membrane 

can be used as a permselective material for separation and also as a base-

component catalyst for dehydrogenation reaction. However in such cases, the 

reaction would be very slow due to the small surface area and the membrane 

doesn’t act as the primary catalyst [8]. A classification of membrane reactors 

based on permselectivity is shown in figure  2.1. Two main challenges are 

encountered in the direct dehydrogenation of alkanes to alkenes by fluid catalytic 

cracking or as by-product in pyrolysis/cracking furnaces.  

These challenges are [9]: 

1. The endothermic nature of the direct dehydrogenation reaction as shown in 

equation 4.  

                           C3H8 C3H6 + H2 …………………………………………………Eq. 4 

                                                                      H0
733 K = 130 kJ/mol 
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2. Slow activity of the commercial catalysts leading to coke formation. Platinum 

Alumina (Pt/Al2O3) and chromia/alumina (Cr2O3/Al2O3) are the types of 

catalysts used in the direct dehydrogenation.  

 

The above problems have made it necessary to consider the catalytic membrane 

reactor concept in the dehydrogenation of alkanes to alkenes which is now a 

more widely used concept compared to direct dehydrogenation [8].The process 

intensification resulting from the ability of the membrane reactor to combine 

separation and reaction provides advantages such as an energy efficiency and an 

increase in conversion at a lower temperature [10].  

 

In the catalytic dehydrogenation of n-butane in a membrane reactor at high 

temp, E. Gobina and R. Hughes [10] prepared a composite Pd/Ag alloy 

membrane for the catalytic dehydrogenation of n-butane in a membrane reactor. 

In Gobina’s work, increases in the n-butane conversion up to 6 fold above the 

equilibrium value were achieved at 3970 C using oxygen as the sweep gas [10]. 

 

          

Figure 2. 1. Classification of Membrane Reactors Based on Permselectivity 
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There are 3 possibilities that are involved in membrane reactor processes as 

shown in figure 2.1. These are follows [8]:  

1. Selective removal of one of the products from the reaction zone (Extractor): 

This is also referred to as ‘cheating the equilibrium and applies to equilibrium 

limited reaction where the reactant conversion increased beyond the equilibrium 

value.  

The process involves removing the product as it is being formed to improve 

conversion and is the most widely used concept in membrane reactors. 

2.  Supply of reactants to the reaction zone (Distributor) via a membrane so as 

to establish a concentration profile along the reactor. 

3. The establishment of a well defined reaction interface between 2 reactant 

streams. 

 

In catalytic membrane reactors, palladium membranes can be used in catalytic 

membrane reactors for 2 reasons as shown in figure 2.2 [8]. These are as 

follows: 

1) In a dehydrogenation reaction using a packed bed catalyst by removal of the 

hydrogen as a product in equilibrium limited reaction: In this case, the 

establishment of the chemical equilibrium is restricted but reactant conversion is 

enhanced with the removal of the produced hydrogen. Membrane has no primary 

catalytic function.  

2) In a hydrogenation reaction by supplying hydrogen to the reaction: In this 

case where the membrane has a primary catalytic function, diluted hydrogen can 

be used to perform the hydrogenation reaction or hydrogen can be passed 

through the membrane to support the hydrogenation reaction. 
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               Figure 2.2: Membrane reactors based on catalytic activity 

 

The use of a sweep gas is highly recommended in order to balance the reaction 

and permeation rates and also enhance the driving force for optimum results 

[11].  
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2.4 Gas Transport Mechanisms  
 

There are 5 molecular transport mechanisms through membranes as follows: 

viscous flow, solution diffusion, Knudsen flow, molecular sieving and surface 

diffusion. These are shown in figure 2.3: 

          

Figure 2.3: Gas Transport Mechanism in Inorganic Membranes: a) Surface 

Diffusion (b) Viscous Flow (c) Solution - Diffusion (d) Molecular Sieve (e) 

Knudsen Diffusion  

 

2.4.1 Viscous Flow 

 
This mechanism is also known as poiseuille flow regime and it is usually 

dominant in macro porous membranes with large pore sizes over 50 µm. Due to 

the much larger pore diameter than the mean free path, the flow properties are 

dominated by collisions between the molecules [3].  
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2.4.2 Solution Diffusion 
 

The solution diffusion model is based on the 3 key steps namely: sorption, 

diffusion and desorption of the gas through the membrane. The 3 steps explain 

the relationship of the membrane and the gas from the membrane surface to the 

permeation of the membrane as a result of an applied pressure gradient and the 

desorption of the gas at the low pressure side [3]. 

 

    

2.4.3 Knudsen Flow  

 

In Knudsen flow the molecules will collide more with the pore walls than with 

other molecules. This flow regime applies to separation based on differences in 

molecular weight and it occurs when the distance between molecular collisions 

(the mean free path) is larger than the pore diameter [3]. Under circumstances 

of very low pressures and small pore sizes, the molecules will bounce from wall 

to wall as against colliding with one another. The concentration gradient is the 

driving force in this transport regime [3]. The pore diameter is larger than the 

mean free path in viscous flow while the reverse is the case in Knudsen [1]. 

 

 

2.4.4 Molecular Sieve  

 
Molecular sieve involves very small pores where the sieves allow molecules of 

same or smaller sizes to the sieve diameter to pass through while molecules that 

are bigger than the sieve diameter are unable to pass through [12]. In 

ultramicropore applications, the pore sizes are usually similar to the molecular 

sieves such that the molecules come into contact with the potential field of the 

pore walls. 
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2.5 Gas permeation through porous membranes 
 

In gas transport through membranes, there are 2 important processes namely 

sorption and diffusion. Sorption describes the interaction between the gas 

molecules and the surface of the membrane while diffusion describes the rate of 

gas mobility through the membrane. Sorption can occur physically or chemically 

depending on the driving force [13]. Chemisorption usually occurs in palladium 

membranes with strong interaction between the gas molecules and the 

membrane surface while physisorption occurs in porous ceramic and silica 

membranes during weak interaction of the gas molecules with the membrane 

surface. Silica membranes exhibit molecular sieving or activated diffusion 

transport mechanism. The permeation behavior of a gas through a membrane is 

usually presented as permeance or permeability [14].  

To obtain the permeability of the membrane, the unit thickness of the membrane 

is used to normalize the permeance [213]. Permeance in mol m-2 s-1 Pa-1 is 

defined as the quantity of gas crossing a unit area in unit time or flux per unit 

pressure difference between the high pressure and the low pressure sides of the 

membrane [13] [14] as shown in equation 5.      

                    J= 








PA

Q 4.22/
  (mol/m2/s/Pa)……………………………………………..……..Eq. 5     

  

Where J is gas permeance, Q is permeate flow rate, A is membrane area for 

permeation and P is the pressure difference across the membrane            

      

                                        

Selectivity denotes the relationship between gas permeance and the permeance 

of another gas [14]. If JH2 is the permeance of hydrogen and JN2 is the 

permeance of nitrogen through the alumina membrane, then the ideal selectivity 

of hydrogen relative to nitrogen can be represented as follows [14]: 

 

                            αH2/N2 = 
2

2

N

H

J

J
……………………………………………………………………Eq. 6     

 

Where JH2 is the permeance of hydrogen and JN2 is the permeance of nitrogen   
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Gas separation can occur in porous membranes when the mean free path is 

larger than the pore size of the membrane. This results in the gas molecules 

colliding more frequently with the pore wall. In this case, the Knudsen diffusion is 

the governing transport mechanism. In Knudsen diffusion, hydrogen shows an 

inverse square root dependence on both the temperature and molecular weight 

[13]. In porous media, gas phase flow is dependant on the ratio of number of 

molecule-molecule collisions to that of molecule-wall collisions [15]. The Knudsen 

number describes the applicable gas flow and is represented by the equation: 

                                          Kn =  
pd


………………………………………………………….…Eq. 7 

Where   = Mean free path,  dp = Pore diameter 

 

The properties of gas-phase flow through porous media depend on the molecular 

of collision during gas permeation. The mean free path   is the distance 

travelled by a gas molecule during molecular collisions and is given by [15]: 

                                     
22 dP





 ……………………………………………………………Eq. 8 

Where T is the temperature, P is the pressure, d is the pore diameter 

 

Viscous flow occurs when collisions between molecules is dominant as against 

collision between the molecules with the pore walls. 

                                     Jv = 
RT

r





8

2

x

p

d

d
………………………………………………………Eq. 9 

Knudsen diffusion occurs when the mean free path is larger than the pore size in 

which case the Knudsen number Kn >>1 [15].  

In Knudsen diffusion, light molecules pass through the membrane pores faster 

than heavy molecules under same concentration gradient. Impliedly, the 

Knudsen diffusion is dependent on the square root of the molecular weight of the 

diffusing gases. 
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The Knudsen diffusion Jkn is given as [15]: 

                                Jkn = 
RTM

r





23

8
 

dx

dP
………………………………………………..Eq. 10 

Where  is the porosity,  is the tortuosity, r is the mean pore radius, R is gas 

constant, T is the temperature and M is molecular weight. 

 

While viscous flow predominates when Kn <<1. When Kn=1 the mean free path 

and the pore size are similar, the flow mechanism is governed by a combination 

of viscous and Knudsen gas flow mechanisms and Jtot = Jv + Jkn.  

 

The combined effect of viscous and Knudsen transport mechanisms govern the 

flow regime when the mean free path is comparable to the pore diameter. The 

total flux through the porous layers is represented by the equation [15]: 

                            JT = Jv + Jkn = 
x









 




RTM

Pr

RT

PPr

 23

8

8

2

…………………………Eq. 11 

Where Jv and Jkn denote the contributions of viscous and Knudsen transport 

respectively. 

 

2.6 Methods for Fabrication of Membrane 

 
There are several methods for preparation of composite inorganic membranes for 

hydrogen processes. Some of these methods are as follows: 

 

2.6.1 Electroless Plating (ELP) 

 

The Electroless plating method for the deposition of dense films over porous 

substrates has assumed increasing importance and wider applications in the 

fabrication of composite Pd and palladium alloy membranes for hydrogen 

production, separation and purification. It involves plating metallic films on a 
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substrate by reducing metal complex ions in solution using a reducing agent 

without applying an external electric source [16]. A schematic of the electroless 

plating process is shown in figure 2.4. Some of the several advantages the 

electroless plating method enjoys over other methods include its uniformity and 

easiness of coating over any surface of any shape, no energy supplies required, 

low cost, simple equipment and it also avoids accumulation of the deposits 

around the substrate edges to ensure in uniformity of coating [16].  However, it 

also has its drawbacks such as the time consuming procedure as a result of the 

several treatment steps involved [1]. The mechanism of electroless plating for 

the fabrication of palladium-based composite membranes has been well 

investigated and the experience is that the method has a near perfect throwing 

power due to its applicability in both conducting and nonconducting surfaces and 

is applicable as long as the plating solution has access to the substrate surface 

[16]. In the preparation of composite membranes using the electroless plating 

method, a porous support such as stainless steel, Vycor glass and ceramic 

alumina is required onto which a dense metallic film is deposited [16]. 

 

Steel is more commonly used in the process industry. One of the reason being 

that it has more toughness compared to ceramics. However, ceramics also enjoy 

some advantages such as better and less challenging management of cracks and 

pin holes. Surface defects and pin holes are more easily repaired for ceramics 

than for steel. Prior to the deposition of the metal on the support, the 

sensitization and activation steps are carried out on the porous substrate so as to 

create catalytic sites on the non-metallic surfaces and to also stimulate the 

adsorption of the metal ions, enhance strong adhesion of the Pd nuclei on the 

substrate and eliminate the induction period of the metal to ensure better 

uniformity of coating and improved membrane quality.  

 

In the case of palladium deposition, it can coexist with Tin during the 

sensitization step and this could affect the activity of Palladium towards 

hydrazine reducer thus slowing the rate of reaction and leading to a decrease in 

the deposition rate of the Pd metal [17]. On the upside, it creates catalytic sites 

and also reduces the time it takes for the commencement of the deposition of 

palladium seeds onto the porous support which is also known as the induction 
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period. The pre-treatment steps to deposit Pd nuclei onto the substrate also 

reduce the induction period and improve the plating efficiency [18] 

                                 

2.6.2 Electrodeposition (EDP) 

 

The Electrodeposition technique unlike the ELP, uses external electric power as 

shown in figure 2.5. In this method, metal ions found at the anode are moved 

towards the cathode in an electric field. Electrons are accepted by the ions and 

deposited as metal atoms on the cathode [19]. The electrodeposition bath is 

equipped with a vacuum system, a temperature controller and a power supply. It 

has a platinum mesh as the anode and a sample holder as the cathode electrode.  

Positive metallic ions formed at the anode are moved towards a cathodic 

membrane substrate using an applied electric field and are deposited on the 

cathode as atoms [20].   
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Figure 2.5: A Schematic Diagram of the Vacuum Electrodeposition Process 

 
 

2.6.3 Chemical Vapour Deposition (CVD) 

 
The CVD method is used to deposit thin films on a support through the thermal 

deposition of a volatile precursor on the surface of the substrate as shown in 

figure 2.6. The method can be used to obtain the desired thickness of the 

membrane; however, volatile palladium precursors and high purity constituents 

are required [21]. The CVD technique can be used to obtain very thin palladium 

or palladium alloy films. For example, Naotsugu itoh and co workers [21] used 

the forced flow chemical vapour deposition (CVD) technique to prepare a 

palladium membrane with a thickness of 4 μm given a hydrogen flux of 0.1 – 0.2 

mol/m2/s and selectivity exceeding 5000 (H2/N2) at 3000 C [21].  

 

The technique has its drawbacks some of which are that it is prone to 

contamination by the residual carbon. In a forced flow CVD, the vapour of 

volatile palladium precursor such as Palladium diacetate, (CH3COO)2 Pd, enters 

through a porous support and decomposes on the surface [21]. 
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Figure 2.6: A Schematic of Forced Flow Chemical Vapour Deposition 

      

2.6.4 Physical Vapour Deposition (PVD) 

 
In the PVD method for fabrication of thin palladium membranes, high – energy 

sources such as a beam of electrons or ions are used to transfer materials at 

atomic level through bombardment of a palladium precursor. This technique 

involves coating through vaporization as in CVD but the major difference 

between the two is that the PVD does not involve chemical deposition at the 

surface [1]. In magnetron sputtering, the collisions of the Argon ions excited by 

the plasma leads to the atomisation of the precursor which is then deposited on 

the surface of the substrate [1]. The technique has its challenges such as being 

expensive in terms of equipment because there is a very high power density 

required for the evaporation of the solid precursor [1].  
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2.6.5 Photocatalytic Deposition (PCD) 

 

The photocatalytic deposition method involves the use of a photocatalyst under 

UV irradiation to fabricate palladium and palladium –alloy membrane. A 

Schematic of the magnetron sputtering process is shown in figure 2.7. 

In this method, metallic palladium or palladium-alloy ions are reduced when TiO2 

absorbs UV irradiation and the reduced metals are then deposited on the TiO2 

surface to form a layer [22]. 

           

              Figure 2.7: A Schematic of Magnetic Sputtering Method 
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CHAPTER 3 
 

3.0 Palladium and Palladium - Silver Composite Membranes. 
 

3.1. Background 
 

Metals in group 10 and some metallic elements in groups 3-5 can dissolve 

hydrogen; however only palladium has the unique ability to transport hydrogen 

through the metal as a result of the higher solubility of hydrogen in the bulk over 

several temperature ranges [1] [2].  Palladium membranes have received an 

ever – increasing attention in the separation of hydrogen mainly due to their 

ability to exclusively separate hydrogen from other gases [3]. Despite its 

significance in hydrogen separation and purification, pure palladium membranes 

suffer from hydrogen embrittlement when in contact with hydrogen below 3000 C 

and  2 MPa. The embrittlemnt causes cracking, blistering and reduced ductility in 

the metallic layer [1]. The cost challenge posed by palladium is balanced by the 

fact that 80% of the cost of the membranes are in the support costs. 

 

Poisoning is a major constraint encountered in palladium membranes due to the 

susceptibility of palladium to surface deactivation resulting in α and β phases 

which promote recrystallization and leads to bulk defects commonly referred to 

as embrittlement [1]. In both fcc and bcc phases, palladium face – centred – 

cubic (fcc) lattice are retained but the crystal unit cell lattice parameter increases 

for pure palladium in the α phase from 0.3890 nm to 0.3895 nm and for the β 

occurs during exposure to hydrocarbons or sulphur [1]. The hydrogen 

embrittlement is caused by the formation of palladium hydride (PdHx) which 

could lead to pinholes that eventually results in the failure of the membrane [3]. 

The mechanism associated with the embrittlement involves the transformation 

from α to β – phases when there is hydrogen diffusion through the membranes 

at temperatures below 300oC and pressures below 2 MPa [4]. The physical 

dimension of the unit cells in the crystal lattice for the β phase is larger than that 

of α- phase by about 3% which causes strains in the metal. This strain caused by 

the growth of the beta phases results in the embrittlement of the material [1].  

In order to relieve the problems of hydrogen embrittlement and poisoning and 

improve hydrogen permeability, palladium is usually alloyed with metals such as 
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Ag, Cu, Ni, Y, Pt and Au [1]. Alloying palladium with these metals drastically 

reduces the critical temperature for the transformation from α to β phases [1]. In 

alloying, the elements of group 11 are used: Ag, Cu, Au. The main advantage of 

alloying is to avoid the hydrogen embrittlement which leads to peeling off of the 

active palladium layer and renders the membrane inactive. The embrittlement 

occurs when palladium comes in contact with palladium at temperatures below 

3000 C. The alloying also enhanced hydrogen permeation and increases the 

resistance of the membrane to the effect of H2S [1]. 

In terms of material cost, Pd/Ag alloy membranes are less expensive while Au is 

more expensive compared to the others. Pure palladium for hydrogen 

permeation and separation is hampered by high solubility of hydrogen below 

3000 C which leads to the formation of a separate Pd-hydride phase which 

distorts the lattice to cause embrittlement. At temperatures below 3000 C when 

hydrogen comes it contact with Pd, the B – phase in the lattice grows by about 

3% larger than the A-phase which cause strains in the metal leading to 

embrittlement. Alloying lowers the critical temperature[1] [2] . Moreover, the 

alloys are resistant to sulphur poisoning and the alloying reduces the difference 

in size of the lattice between α and β phases to cushion the strain during the 

absorption – desorption of hydrogen [1] [2]. Several experimental studies show 

higher hydrogen permeance for palladium alloy membranes compared to pure 

palladium membranes [2] [3].  

 

3.2 Hydrogen Permeation through Palladium Membranes 

Hydrogen permeation through palladium membranes can be described by the 

equation [5].   

                 J =
L

Q  low
n

high
n PP  .......……………………..……………………………………….Eq. 12 

Where J is Gas flux, Q is Permeability constant, n is pressure exponent, P n
high is 

hydrogen partial pressure in the feed side, P n
low is hydrogen partial pressure in 

the permeate side and L is palladium membrane thickness. 
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The permeation is defined by the solution diffusion transport model based on 

external mass transfer, surface adsorption and desorption, transition to and from 

the bulk palladium and diffusion within the palladium [6] and can be represented 

in figure 3.1. 

      

H2 

H 

H2 

H 

H2 

H 

H 

H2 

DDii       Adsorption/Dissociation 

B Bulk Diffusion 

 Combination 

  Feed: Upstream   Membrane Permeate: Downstream 

 

Figure 3.1: A Schematic of hydrogen permeation across a palladium membrane 

 

The series of steps in figure 3.1 are explained as follows [7]: 

1. External mass transfer where the hydrogen molecules undergo internal 

diffusion from the bulk of the gas phase onto the membrane surface on the high 

pressure side. 

2. The hydrogen molecules are dissociated into atoms through a reversible 

dissociative adsorption also on the high pressure side. 

3. The hydrogen atoms are dissolved into the bulk palladium layer through a 

reversible dissolution process. 

4. The hydrogen atoms undergo diffusion into the bulk metallic layer. 
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5. The hydrogen atoms undergo reversible movement from the bulk metallic 

layer to the membrane surface. 

6. The hydrogen molecules undergo reversible recombination desorption at the 

low pressure side. 

7. External mass transfer of hydrogen molecules on the membrane surface at the 

low pressure side. 

 

The value of the pressure exponential n in equation 2 indicates the rate limiting 

step for hydrogen permeation through the membrane [7]. If bulk diffusion of 

atomic hydrogen is the rate limiting step, n=0.5. If the surface processes i.e. 

either hydrogen dissociative adsorption on the high pressure feed side or the 

atomic hydrogen recombination and desorption at the low pressure permeate 

side controls hydrogen permeation, then n=1. However, when both surface 

processes and bulk diffusion control hydrogen permeation through the 

membrane, then n will vary between 0.5 and 1 [8].   

 

Normally the H2 flux through palladium membranes is expected to follow 

Sievert’s law which states that hydrogen permeation through the membrane is 

directly proportional to the square root of the partial pressure difference in the 

feed and permeate sides [9]. In respect of Sievert’s driving force, the value of 

pressure exponent n=0.5. The activation energy is expressed according to the 

Arrhenius Vant-Hoff equation which describes the effect of temperature in 

hydrogen permeation across palladium membranes as shown in equation 13 

[10]:   

                     J = Ao exp 









RT

Ea

 ………………………………………………………………….Eq. 13

 

Where Ao is the pre-exponential factor, Ea is the activation energy, R is the gas 

constant and T is the temperature.     
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Figure 3.2: A Diagram showing the effect of driving force on gas permeation 

across the membrane 

 

Based on Sievert’s law, the most important driving force for the transport of 

hydrogen in palladium membranes is the pressure difference across the 

membrane.  Figure 3.2 shows an illustration of the effect of the driving force on 

gas permeation through the composite membrane. Gas molecules attempting to 

permeate through the membrane are faced with resistance by the composite 

membrane. However, the driving force lowers the membrane resistance to 

permeation thus allowing some molecules pass through while others are 

rejected. The remaining molecules are referred to as retentate while the 

molecules that pass through by the action of the driving force are referred to as 

the permeate. 
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3.3 Materials and Equipments  

 

This section presents the methodology used in this work for the fabrication of the 

membranes. The materials, equipments, gases and chemicals used are also 

explained in this section. 

 

3.3.1 Materials  

 
The starting support used in this work is ceramic alumina obtained from CTI SA 

(Ceramiques Techniques & Industrielles SA, France). There are 2 types of this 

support in the C.P.I.M.T laboratory at the Robert Gordon University Aberdeen, 

the big and small membranes with specifications shown in Table 3.1 below. 

 

Table 3.1: Specification for small and big membranes used in this work 

Specifications Big Size Membrane Small Size Membrane 

I.D (mm) 20.07 7.34 

O.D(mm) 26 10 

Effective Length (m) 0.32 0.34 

Average Pore size 6000 nm 30 nm 

 

 

In preparing the composite palladium membrane, i.e. deposition of the palladium 

layer over the porous alumina support, only the small support was used because 

of the cost implications of the material. Obviously if the big size is to be used, it 

will demand more palladium for the coating which is a bit expensive. During the 

cause of this study, a 5g bottle of the palladium precursor PdCl2 sold for about 

£250 (Two hundred and fifty British pounds). A picture of the Alumina membrane 

support is shown in Figure 3.3 (A) Big support (B) Small support whle figure 3 

(A) and (B) show the determination of the O.D and I.D of the alumina support 

using vernier calipher. 

 

There are several membrane supports which would have been used for this study 

such as glass and stainless steel but Alumina was chosen for the study due to 
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the advantages it enjoys over other types of support such as its ability to 

withstand high temperature and resistance to corrosion [1].  

 

Table 3.1 shows the outer and inner diameter specifications of both the big and 

small membranes while figure 3.4 shows the method for determination of O.D 

and I.D of the tubular support using vernier calipher. For the silica membranes, 

the same type of support was used to deposit successive silica layers over the 

porous support. However, for the silica membranes, only the big support was 

used because the silica precursor i.e. silicone elastomer was not expensive as 

was the case for palladium membranes.  

 

 

  

(A)        

 

(B) 

 

Figure 3.3: Pictures of alumina support (A) Big membrane (B) Small membrane 
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Figure 3.4: Pictures showing the determination of diameter of alumina support 

using Vernier caliper (A)  Outer diameter (B) Inner diameter 

 

Diameter is the length of a straight line through the centre of a circle. Inner 

diameter is the length of a straight line inside of a tube. For outside coating, 

inned diameter is not used in determining the gas permeance and flux. 
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3.3.2 Equipments 
 

1. Custom test tubes 350 ml: These test tubes were ordered purposely for this 

investigation and used in both the support modification (sensitization & 

activation) and the plating process proper. Prior to the plating process there were 

only the 1000 ml and 500 ml tubes available in the laboratory but these larger 

tubes will need a large quantity of the palladium precursor i.e. PdCl2 which is 

expensive. To ameliorate this problem, this researcher (Abubakar Alkali) 

designed the smaller new custom built 350 mL cylinders which were supplied by 

Vitrum engineers Aberdeen.  A design of the specification for the custom tubes 

drawn up by the researcher with the assistance of vitrum prior to producing the 

tubes is shown in Figure 3.5. 

 

 

 

Figure 3.5: Design specification of the custom tubes for electroless plating 

method 

 

 

This idea has helped greatly in reducing the cost associated with this project by 

reducing the quantity of palladium by about 50%. Also the new 340 mL glass 
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cylinders fit very well for the size of the porous alumina support (small size) 

which has an O.D of 10.7 mm and 34 cm long. 

 

2. Vernier Caliper: This was used to determine the Internal and Outer Diameter 

of the membrane as shown in Figure 3.4. 

 

3. Beakers: Both 200, 500 and 100 ml beakers were used in preparation of 

solution prior to transferring same into the test tube for sensitization, activation 

and plating. 

 

4. Water Jacket: The water Jacket is a big container with an electricity supplier 

ON/OFF control switch into which clean tap water was poured to the neck level 

and heated to a particular temperature. The test tube containing the plating 

solution is placed into this jacket and the temperature of the plating solution 

controlled to the desired plating temperature. 

 

5. Furnace (Carbolite): 5 – 10500 C, type RWF 11/23: This equipment was used 

to calcine the support at higher temperature. 

 

6. Oven (Carbolite): This equipment was used to dry the support when a few 

hours drying is required. 

 

7. Magnetic stirrer: This equipment was inserted into test tube during each 

sensitization, activation and plating procedure and placed unto the electric stirrer 

to ensure proper mix of the plating solution for uniform modification of the 

support and even coating of the palladium layer over the porous support. 

 

8. Fume Cupboard: As these experiments involved using chemicals some of 

which are toxic, it is necessary to use the fume cupboard in preparation of 

solutions for health and safety purposes. The plating solution contains NH4OH 

solution which has a very distressing and foul smell. To avoid the spread of this 

smell, the preparation of the plating solution was conducted in the fume cup 

board. The fume cupboard also housed the retentate tube during gas permeation 

test and serves as the medium through which the gas in the retentate is guided 

away from the laboratory and escapes outside into the atmosphere. 
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9. Drier (Carbolite) 1 – 3000 C, PF120(201): This equipment was used to dry the 

membrane after the sensitization and activation step and also after the metallic 

layer deposition. 

 

10. Graphite seals: These were used to seal the support from any contact with 

the solution to avoid internal deposition. This is necessary since all the plating 

was done using the outer deposition technique. 

 

11. Magnetic stirrer FB15045 (Fisher Scientific): After preparing each solution, 

the test tube containing the solution is placed on the stirrer so as to ensure the 

components are properly diluted and well mixed. This is necessary to achieve an 

evenly coated palladium layer. 

 

12. Thermometer Exia11CT4 (Digitron): For temperature measurements for the 

plating bath and the plating solution. The equipment was also used to measure 

the temperature of the reactor during high temperature permeation and 

membrane annealing. 

 

13. Mass flow meter (Agilent Technologies ADM1000): This equipment was used 

as part of the gas permeation set up to measure gas flow. 

 

14. Pressure Gauge 

 

15. Weighing balance 

 

16. Heating Tape 

 

17. Swagelok Fittings 

 

18. Thermocouple 

 

19. Power regulator (Barnstead Electro Thermal).  
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3.3.3 List of Gases 

 

Both single and mixed gases used in this study were of certified grade and 

supplied by BOC Industrial gases UK. The cylinders have specifications: Some of 

the gases used are extremely dangerous and flammable hence adequate care 

was taken during gas permeation experiments based on health and safety 

standards. 

 

The gases used are as follows:  

1. Hydrogen: (high purity 99.995%, P=175 bar): This gas was used in single gas 

permeation tests. It was used also during reduction of palladium membrane to 

activate the palladium layer prior to gas permeation test. 

 

2. Helium: (Purity 99.99%, P=230 bar) This gas was used as a carrier gas to 

calibrate the GC, perform Helium leak tests. 

 

3. Argon: (Purity 99.995%, P=230) This is another inert gas like Helium and 

used as a carrier gas to calibrate the GC. 

 

4. Nitrogen: (Purity 99.99%, P=230 bar): This gas was used in single gas 

permeation tests. 

 

5. Gas Mixture: A hydrogen mixture with the composition. (H2 = 50/%, 

CO=28%, CO2=10%, CH4 = 8%, N2=4%) was used in all the hydrogen 

separation experiments. 

 

3.3.4 Chemicals 
 

All the chemicals used in this study are of laboratory analytical grade and 

supplied by Sigma Aldrich or Fischer Scientific. The chemicals were used in 

preparing the plating bath for electroless plating deposition and also surface 

modification of the membrane in the 2 step sensitization and activation. 
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The chemicals used are as follows: 

 

1. Stannous Chloride: SnCl2 (99%) CAS No. CAS 7772-99-8: This chemical was 

used in preparing the solution for support modification i.e sensitization step prior 

to depositing the metallic layer. 

 

2. Hydrochloric Acid HCl (0.1 M) CAS No. 7647-01-0. This chemical was used in 

preparing the solution for activation and sensitization. It was also used in 

preparing the plating bath. 

 

3. Ammonia hydroxide NH4OH: This chemical was used to prepare the plating 

bath solution for deposition of the palladium layer.  

 

4. Palladium Chloride PdCl2 (99.9%): CAS 7647-10-1: This chemical was used as 

the palladium precursor in the plating bath solution for deposition of the 

palladium layer. 

 

5. Hydrazine hydrate (35%) N2H4: CAS No. 10217-52-4: This chemical was used 

in preparing the plating bath solution for deposition of the palladium layer. 

 

6. EDTA (99.9+%): CAS No. 6381-92-6. This chemical was used as stabilizing 

agent in the plating bath solution for deposition of the palladium layer. 

  

7. Pd(NH3) NO2: This chemical was used to prepare the activation solution for 

modification of the support. 

 

8. Distilled water: Distilled water was obtained from the Pharmacy and life 

sciences department in RGU and used in preparing the sensitization and 

activation solutions for modification of the support. 

 

9. Silver Nitrate AgNO3: This chemical was used in preparing the plating bath 

solution for codeposition of the Pd/Ag layer. 
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3.4 Experimental Procedure 

 

Figure 3.6 shows a picture of the Gas Chromatograph equipment used in this 

work for analysis of permeate composition during gas separation experiments.  

                         

      

 

Figure 3.6: A Picture of the gas chromatograph for gas analysis used in this work 

 

The permeation tests were carried out in a stainless steel shell and tube 

membrane reactor module. Graphite O-rings were fitted tightly at both ends of 

the membrane reactor module to prevent gas leakages. Gas flow rates were 

measured using a digital flow meter and the separation data collected online 

using a Varian HP 3800 Gas Chromatograph interfaced to a PC and equipped with 

a T.C.D and F.I.D detectors in series. Inlet and exit pressures were controlled 

using back-pressure regulators.  

 

The temperature and pressure were monitored using thermocouples and 

pressure gauges as shown in figure 3.5. Membrane characterization was carried 

out using a scanning electron microscopy (SEM) and energy dispersive x-ray 
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analysis (EDXA) to identify both the morphological features and elemental 

composition. The key components of the gas permeation test are shown in Figure 

3.7. Initially, the composite palladium membrane is inserted into the membrane 

reactor and the seals at both ends placed tightly to prevent leaks. The reactor 

bolts and nuts were also fitted appropriately to stop gas leaks. Possible gas leaks 

through the membrane reactor were investigated using soapy water which shows 

bubbles if there are any gas leakages.  

 

The gas permeation is essentially a cross flow from the feed through the 

membrane to the permeate while the rejected gas flows out through the 

retentate. Gases from the cylinder are fed into the reactor through the feed 

controlled by a pressure regulator.  

 

          

               Figure 3.7: Concept schematic of a gas permeation test plant          

             

The permeate is analysed through the Gas Chromatograph (GC Varian model 

3800) which provides the composition of the permeate in terms of the gases 

present, their concentration (Peak area counts) and purity levels.  
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The flow meter is placed after the GC to enable the measurement of the 

permeate flow rate. The flow meter gives the composition from which the 

separate flow rates of the individual gases can be determined. From this process, 

it can be established that one gas permeates faster than the other and the purity 

levels, permeability and selectivity of the membrane  can also be determined.  

 

3.4.1 Helium Leak Test 

 

Prior to the deposition of the palladium film, it is necessary to determine the 

suitability of the support for deposition by drying it free from any damp or 

moisture and also carrying out a Helium leak test. A 30 nm alumina support with 

specification (I.D. 7.34 mm, O.D. 10 mm, effective length = 34 m) was used for 

the He leak test. The support was dried in an oven at 650 C as shown in figure 

3.7 for 2 hours after which a helium leak test was carried out.  

       

 

                 Figure 3.8: Picture of ceramic alumina support in the oven for drying 
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3.4.2 Support Modification: Sensitization, Activation and Calcination.  
 

Prior to the plating of the palladium layer through the electroless plating method, 

there is the need to seed the support with Pd nuclei. This involves a two step 

process of sensitization and activation to create catalytic sites on the non-

metallic surfaces. This is a standard practice in electroless plating of palladium 

over porous supports [11]. The sensitization and activation processes stimulate 

the adsorption of the metal ions, enhance strong adhesion of the Pd nuclei on the 

substrate and eliminate induction period of the metal to ensure better uniformity 

of coating and improved membrane quality [12].   

 

In order to prepare the support for a more uniform deposition, it was calcined at 

1100 K for 10 hours at a rate of 20 C per minute after which it was stored 

overnight at room temperature. A picture of the support in the furnace during 

calcination is shown in figure 3.9. 

 

 

 

                  

                         Figure 3.9: A Picture of membrane in the furnace for calcination 
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The sensitization and activation procedure was carried out using a 0.005 M Sn 

(11) and a 0.005 M Pd (11) solution respectively. The composition of the 

sensitization and activation solutions is shown in Table 3.2. 

 

 

Table 3.2: Composition of sensitization and activation solutions 

(Sensitization solution):  SnCl2 = 0.36 g 

Distilled water = 320 mL 

0.1 M Hcl = 10 mL 

 

(Activation solution):     

 

Pd (NH3)4(NO3)2 = 1.0 mL 

Distilled water = 320 mL 

0.1M Hcl = 10 mL 

 

 

                    

 

Figure 3.10: A Picture of the sensitization and activation solutions with distilled 

water during support modification before electroless plating 

                       

 

 



   

  56 

  

A picture of the sensitization and activation solutions including distilled water is 

shown in figure 3.10. After the membrane was allowed to cool down to room 

temperature, both ends of the support were sealed to ensure that only the outer 

section of the support comes in contact with the solution. This is necessary since 

it is the outer section of the support that will be plated. Both the sensitization 

and activation processes were carried out simultaneously such that both 

solutions were placed in the fume cupboard.  

 

Another glass cylinder containing distilled water was also placed in the fume 

cupboard to rinse the support after each step. The support was dipped into the 

sensitization solution for 5 minutes and rinsed with distilled water; it was then 

dipped into the activation solution for another 5 minutes and rinsed in distilled 

water. This procedure was repeated 10 times in order to obtain a uniformly 

seeded support. After each dipping, the support was rinsed for 10 seconds in 

distilled water and immersed immediately back into the solution. The 10 seconds 

time in-between each dip for 10 dips gives a total time of 1 minute 40 seconds.  

                                                              

Practically, the time in-between dippings during the modification will be more 

than 10 seconds because there is always a time lag of a few seconds before the 

support is dipped back into the solution or while trying to place the support  

upright vertical position in the glass cylinder. The total time spent on the 2 step 

sensitization and activation process is calculated as follows: 

 

Sensitization step= 5 (minutes)   10 (dips) = 50 minutes 

Activation step = 5 (minutes)   10 (dips) = 50 minutes 

Rinsing with distilled water = 90 seconds   2 = 3 minutes 

                                                         Total: 1 hour 43 minutes 

 

 

The actual time spent on the sensitization and activation could be between 2 – 2 

½ hours. This long time duration makes the process prone to errors and 

contamination. During the sensitization procedure, the support was dipped into 

the solution and held in an upright vertical position to avoid tilting which could 

affect the uniformity of coating.  
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3.4.3 Deposition of the Palladium Layer 

 

After the 2 step sensitization and activation, the support is now ready for 

deposition of the palladium layer. A picture of the electroless plating set up is 

shown in figure 3.11. The composition of the electroless plating bath is presented 

in Table 3.3. A Hydrazine based bath was used to deposit the Pd layer onto the 

activated support. The support was again sealed at both ends with a plastic 

protector to prevent internal deposition. The plating solution was stabilised with 

Na2EDTA and heated in a water bath. Initially the water bath was prepared and 

the glass tube containing the plating solution placed into the water bath. The 

plating solution was heated to a temperature of 600 C.  

 

The temperature of the plating solution was monitored using a thermometer and 

maintained at 600 C. The activated support was then immersed into the plating 

solution at a constant plating time of 30 minutes. The plating solution was 

prepared and placed into the water jacket without the hydrazine reducer. 

However, the 1M N2H4 reducer was added just before the support was inserted 

into the plating solution. The point at which the hydrazine reducer was added 

signals the commencement of the electroless plating process and the plating 

time starts at that point. 

 

Table 3.3: Composition of the plating solution 

                        PdCl2                2.2 g 

                        NH4OH                220 mL 

                        EDTA                25 g 

                        1M N2H4                10 mL 
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Figure 3.11: A Picture of water jacket and plating solution during electroless 

plating 

 

The permeation tests were carried out using the permeation test plant in the 

CPIMT laboratory shown in Figure 3.12. 

 

 

Figure 3.12: A Picture of the gas permeation test plant in the CPIMT laboratory 
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The feed gas was fed through the gas inlet section of the reactor to enable the 

contact of the gas with the active membrane layer for permeation and separation 

purposes. The surface area is determined based on the inner and outer diameter 

specification and the effective length 

 

3.4.4 Modified Electroless Plating Method 
 

A 30 nm pore alumina support was calcined based on the same calcinations cycle 

as in membrane Pd1. The calcined support was dried overnight at room 

temperature after which the support was modified with AlO (OH) sol by dipping 

into the AlO (OH) sol for 30 minutes. The composition of the Al (OH) sol is shown 

in Table 3.4 while figure 3.13 shows a picture of the dipping set up.   Prior to 

dipping, both ends of the calcined support were sealed to ensure that there is no 

deposition on the inner surface of the support. The significance of the 

modification with AlO (OH) sol is to ensure a smooth and uniform surface which 

would enhance uniform of coating of the Pd layer during the electroless plating.  

 

The conventional method of modifying the support through a 2 step sensitization 

and activation is now reduced to a 1 step activation method. In electroless 

plating, catalytic sites containing palladium nuclei need to be created on the 

porous support prior to plating.  
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Figure 3.13: A Picture of the set up for surface modification with Boehmite before 

plating    

 

Table 3.4: Composition of the Boehmite solution for modification of the Alumina 

support 

             Boehmite powder           15.5 g 

             Distilled water           320 mL 

 

 

The activation procedure was carried out for 5 minutes after which it was rinsed 

in distilled water. The procedure was repeated 10 times to obtain a uniformly 

seeded support. After each dipping, the support was rinsed with distilled water. 

After the modification, the support was dried overnight at room temperature. 

 

 

3.4.5 Co-deposition: Elecroless Plating of Pd/Ag Composite Membrane 

 

The same procedure was used as that for preparing Pd1 membrane in section 

3.2.4 except that in this case a different plating bath composition was used 

containing both palladium and silver precursors.  
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A 30 nm alumina support with specification (I.D 7.34 mm, O.D. 10.7 mm, and 

effective length 34 cm) was used. The same calcinations procedure was used as 

that for the Pd1 and Pd2 membranes. In this case, the 2 step sensitization and 

activation procedure for conventional electroless plating was carried out on the 

porous support based on the same procedure and composition of the 

sensitization and activation solutions as described in section 3.2.3. 

 

3.4.6 Electroless Plating of the Pd/Ag Layer 
 

The composition of the Pd/Ag electroless plating bath is shown in Table 3.5 and 

kept at 77%/23%. As can be observed, the solution contains both the palladium 

and silver precursors for codeposition of the Pd/Ag layer. Another method is to 

prepare 2 different solutions containing the palladium and silver precursors 

separately in which case the plating would be carried out separately which will 

result in 2 separate layers of palladium and silver. However, in this study, one 

plating solution containing both precursors was prepared which resulted in a 

single Pd/Ag layer. and the composition of the plating solution was kept at 

77%/23%.  

 

Another advantage of using a single plating bath for both Pd and Ag precursors is 

that a uniform composition of both Pd and Ag will be achieved since the same 

plating time is applied. Both the temperature and plating time were maintained 

as was used during the preparation of Pd1 membrane i.e. 600 C and 30 minutes. 

Plating commences after addition of the hydrazine reducer. 

 

Table 3.5: Pd/Ag Plating bath composition 

                        PdCl2                     2.1 g 

                        AgNO3                     0.7 g 

                        NaEDTA                     31 g 

                        NH4OH                     200 mL 

                       1M N2H4                     10 mL 
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3.4.7 Hydrogen Permeation to Test for Embrittlement 
 

Prior to the permeation test, the membrane was annealed in flowing hydrogen at 

4500 C for 2 hours to enhance alloy formation and activate the metallic Pd layer. 

During the permeation test on membrane Pd1 in section 3.3.1, hydrogen flux 

was measured through the membrane at 1500 C which caused the membrane to 

peel off and embrittle. This made the membrane inactive for hydrogen 

permeation. Therefore, the permeation test for the Pd/Ag membrane (Pd3) was 

measured at 100, 150 and 2000 C which are all below the critical temperature of 

2980 C below which palladium membrane will embrittle. Hydrogen must not come 

into contact with palladium below 2980 C in order to avoid embrittlement. The 

aim of the test is to investigate hydrogen embrittlement which occurs when 

hydrogen comes into contact with palladium below 2980 C which results in cracks 

of the active palladium layer. 

 

3.4.8 Hydrogen Permeation at Higher Temperature 

 
After testing the Pd3 membrane at low temperatures, the hydrogen permeation 

behaviour of the membrane was also investigated at 723, 673 and 623K to 

ascertain the level of enhancement of hydrogen permeation. This will provide a 

basis for comparing the hydrogen permeation behaviour of the Pd/Ag membrane 

(Pd3) with that of the Pd1 and Pd2 membranes. The membrane was annealed in 

hydrogen at 873K, 773K ad 673K for 10 hours to investigate the effect of 

annealing temperature on hydrogen permeation. The same procedure used in 

annealing of Pd1 and Pd2 membranes was also used to anneal Pd3 membrane. 

 

The presence of contaminants such as CO and CO2 is also another problem which 

retards hydrogen separation from the gas mixture containing these compounds. 

Another objective of this test is to investigate the response of the PdAg 

membrane to the inhibiting effect of CO and CO2 on hydrogen permeation.  

The same hydrogen mixture with same composition for Pd1 and Pd2 membranes 

was used to investigate the gas separation properties of the Pd/Ag membrane 

Pd3.  
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CHAPTER 4 
 

4.0. Silica Membanes for Hydrogen Separation and Purification. 
 

4.1. Background 
 

Silica membranes have long been identified as among the most important 

membranes in hydrogen processes and are of unique interest as a result of the 

relevance of hydrogen in fuel cell and other applications [1]. The 2 dominant 

membranes for hydrogen processes are palladium membranes and silica 

membranes. Silica membranes display high permeability and selectivity for 

hydrogen although are not permeable to hydrogen like palladium membranes. 

Moreover, silica membranes enjoy very distinct advantages over palladium 

membranes in hydrogen separation because silica membranes don’t suffer from 

hydrogen embrittlement and material poisoning like palladium membranes. 

Composite silica membranes for hydrogen separation are usually prepared 

through dip coating method or chemical vapour deposition through which silica 

layers are deposited on porous supports such as alumina or Vycor glass (CVD) 

[1]. The high cost of palaadium is balanced by the fact that 80% of the cost of 

the composite palladium membrane is in the support (ceramic alumina, steel or 

vycor glass). 

 

Silica membranes present high selectivity and stability under harsh operating 

conditions. Selectivity is achieved on the alter of permeance, hence it is 

necessary to achieve a balance between both for optimum membrane 

performance [2]. Very high hydrogen permeance have been reported for silica 

membranes over a wide range of temperatures with H2/N2 selectivity of up to 

3000 [2]. For a silica membrane with high hydrogen permeance and selectivity, a 

thin defect-free layer is deposited over a porous support. However, to further 

reduce the gas permeation resistance of the membrane for optimum hydrogen 

throughput, an intermediate layer is usually deposited between the active and 

the support layers.  

 

The intermediate layer serves as a protection for the active layer against the 

formation of defects and pinholes [3]. Silica membranes prepared on modified 
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porous supports have shown high selectivity for hydrogen over Nitrogen. Gu and 

Oyama [3] prepared a silica membrane by depositing the silica layer on an 

intermediate multilayer alumina substrate. They reported high permeance of 5.0 

  10-7 mol  m-2 s-1 pa-1 and good selectivity for hydrogen over Nitrogen over 

1500 at 873 K [3]. The Gu and Oyama group in a separate investigation also 

carried out CVD of tetraethyl orthosilicate on alumina membranes and reported a 

thin silica membrane with high hydrogen permeance and selectivity of up to 5.0 

  10-7  mol m-2 s-1 Pa-1 and 1,500 respectively [3]. Silica membranes have also 

shown promising results in membrane reactors for hydrogen production using 

catalysts and yields above equilibrium have been obtained [3].  

 

 

4.2. The Dip Coating Method 

 

The dip coating method was invented by Jenaer Glaswrk Schott & Gen. in 1939 

for depositing silica films over porous supports [4]. Dip coating is widely used in 

preparation of thin defect free silica membranes. The process involves depositing 

a wet silica layer over porous support through coating of the dry porous support 

surface with a particle dispersed sol. The coating procedure is usually repeated 

several times in order to suppress pinholes or defects.  
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Figure 4.1: A Picture of the dip coating set up for the preparation of composite 

silica membranes 

 

        

A picture of the dip coating process for preparation of silica membranes is shown 

in figure 4.1. 

 

The dip coating procedure involves 3 fundamental steps [1]:  

(1) Dipping the support into the solution.  

(2) Withdrawing the support from the solution. 

(3) Drying the support.  

                        

In the dipping step, the layer is deposited over the surface of the porous support 

by capillary force which drives the solvent suction into the pores of the 

membrane. During the withdrawal step, the drag force could form an adhering 

particle layer as a result of the tangential flow of suspension against the support 

[5]. This tangential flow will either sweep away weakly adsorbed particles and/or 

drive particles into vacant holes. In both cases, the tangential flow could 

suppress the possibility of pin holes during dip coating [5].  
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Several authors have reported high H2 permeance for silica membranes prepared 

using the dip coating method. Alfaro. S. et al [5] synthesized silica membrane on 

porous ceramic alumina support using the dip coating method and reported a 

hydrogen permeance  in the range of 5 to 9   10-7 mol m-2 s-1 Pa-1  and was able 

to separate hydrogen from a binary H2/CH4 gas mixture [6]. Gu & Oyama [3] 

also used the sequential dip coating method to deposit silica layers over porous  

alumina support. However, in this case, an intermediate multilayer γ-alumina 

substrate was deposited over the porous support prior to the deposition of the 

silica layers. The intermediate layer enhanced the membrane performance with 

hydrogen permeance of up to 5   10-7 mol m-2 s-1 Pa-1 and H2/CO, H2/CH4 

selectivities of over 1500 [3].   Yoshino. Y. et al [7] also used the dip coating 

method to deposit a silica layer over an intermediate alumina layer and reported 

a highly selective membrane to hydrogen with permeance values ranging from 5 

  10-8 to 5   10-6  mol m-2 s-1 Pa-1 and H2/N2 selectivity in the range of 30 – 300.    

 
 

4.3. Chemical Vapour Deposition (CVD) in Silica Membranes   
 

 
Silica membranes prepared with CVD have shown enhanced stability and 

integrity.  Unlike the dip coating/sol gel method, the CVD doesn’t need repeated 

coatings. The CVD process involves a system to deliver both reactive and carrier 

gases such as hydrogen or argon and reactive compounds such as metal halides. 

These gases flow through the substrate in a reaction chamber where the 

deposition of the film takes place [1]. The mechanism of the CVD method 

involves both gas phase and surface reaction. There are several ways through 

which film is deposited over the porous support in CVD these include thermal 

decomposition, oxidation and hydrolysis [8].  

 

The reactions can start in the vapor phase leading to film decomposition. Also 

decomposition can occur through the reaction between the substrate surface and 

one of the gases in the vapor phase. Several authors have reported hydrogen 

permeation results for silica membranes prepared through the CVD method [8].      

Lee et al [8] prepared a composite silica membrane by depositing a thin silica 

layer through the CVD of tetraethylorthosilicate (TEOS) over porous alumina 

support using the CVD method and reported a hydrogen permeance in the order  
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10-7 mol m-2- s-1 Pa-1 at 873 K [8]. Kim S-S et al [9] also used the CVD method to 

thermally decompose tetraethoxysilane at 600 – 6500 C on α-alumina tube of 

110-180 nm pore size and γ-alumina coated membrane of 6-8 nm pore size.  

  

4.4. Silica Membranes Vs Palladium Membranes for Hydrogen Separation 

and Purification 

 

Silica membranes can withstand higher temperatures than palladium membranes 

and because several hydrogen production reactions are endothermic and require 

high temperatures, this is a distinct advantage that silica membranes have over 

palladium membranes [1].  Palladium membranes also decline in hydrocarbon 

environments while silica membranes do not suffer from some of these 

disadvantages associated with palladium because they can withstand much 

higher temperatures and are less expensive [1]. Currently, most of the research 

on silica membranes is focused on improving the hydrogen permeation 

properties of silica membranes by modifying the CVD method to control the pore 

sizes and film thickness [1]. Silica membranes have high hydrothermal stability 

which contributes to their application in adsorption processes. Membrane 

materials are hydrophilic in nature. They contain hydroxyl groups which enable 

strong H-bonding with water which could lead to rapid filling of the pores which 

inhibits application of membrane separation in moist gas mixtures. This 

phenomenon also limits the separation properties of the membranes. 

 

4.5 Materials and Equipment 
 
This section presents the methodology used to prepare the silica membranes 

over porous ceramic alumina support. Two types of silica membranes were 

prepared: the one without support modification, and the other where the support 

was modified with Boehmite sol prior to depositing the silica layer. Membrane 

characterization was carried out using SEM and EDXA.  

 

A porous alumina support of average pore size 6000 nm (O.D = 26 mm and I.D 

= 20.07 mm and 6000 nm pore size) was used to prepare composite silica 

membrane. Both single and multi layer deposition was carried out on the porous 
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alumina support. The preparation of the membranes was carried out in two 

parts. In part 1, the composite silica membrane was prepared without any 

modification of the alumina support while in part 2, the alumina support was 

modified with Boehmite sol prior to deposition of the silica layer. The 

investigations were carried out for two separate silica coatings. The modification 

of the support involves deposition of an intermediate layer of Boehmite sol prior 

to deposition of the silica layer. The unmodified support was calcined at 873 K at 

20 C/min to ensure a smooth surface for deposition of the silica layer. The same 

calcination cycle was used for the modified support.  

For the modified support, two sequential dippings were carried out to investigate 

the effect of film thickness on hydrogen permeance and membrane selectivity. 

Film thickness was determined using the weight gain method. The objective is to 

investigate the effect of support modification with AlO(OH) on the quality of the 

silica layer coating and by implication the hydrogen permeation behavior of the 

silica membrane and also that of the other gases. The significance of modifying 

the support was to provide a uniform and defect free surface for deposition.  

This will ensure a more uniform coating of the silica layer and enhance hydrogen 

permeation through the membrane.  

 

4.5.1 Materials  

 
1. Silicone elastomer SYLGARD 184: This chemical was supplied by Farnell and 

used as the silica precursor. 

2. Aluminium monohydrate ALO (OH): (Boehmite Powder). Supplied by Alcan 

Chemical Europe and used in modification of the support. 

3. 2-methyl butane (Isopentane): This chemical was supplied by Fischer 

Scientific and used as the solvent to prepare the silica gel. 

4. SYLGARD Curing agent: This chemical was supplied by Farnell and used for  

5. Acetone: This chemical was supplied by Fischer scientific and used in washing 

up and preparation. 

6. Distilled water: Distilled water was obtained from the pharmacy and life 

sciences department RGU and used in washing up. 
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4.5.2 Equipments 
 

The equipments used for both the preparation of silica and AlOOH modified silica 

membranes are as follows:  

1. Test tube 1000 ml 

2. Beaker 

3. Magnetic stirrer 

4. Furnace 

5. Fume cupboard 

6. Stirrer 

7. Graphite seals 

8. Plastic seals 

9.  Drier 

10. Gas Flow meter 

11. Gas Chromatograph (Varian 3800) 

 

4.5.3 Gases 

 
1. Hydrogen: (Purity 99.995%, P=175 bar): This gas was supplied by BOC gases 

and used in single gas permeation tests and also during reduction of palladium 

membrane to activate the palladium layer prior to gas permeation test. 

2. Helium: (Purity 99.99%, P=230 bar): This gas was supplied by BOC gases and 

used as a carrier gas to calibrate the GC, perform helium leak test and in single 

gas permeation experiments. 

3. Argon: (Purity 99.995%, P=230 bar): This is another inert gas like Helium 

supplied by BOC gases and used as a carrier gas to calibrate the GC, perform 

helium leak test and in single gas permeation experiments. 

4. Nitrogen: (Purity 99.99%, P=230 bar): This gas was supplied by BOC gases 

and used in single gas permeation tests. 

5. Methane: (Purity 99.99%, P=230 bar) This gas was used in single gas 

permeation test. 

6. Carbon Dioxide: (Purity 99.995%, P=50 bar). This gas was used in single gas 

permeation tests. 

7. Gas Mixture: A hydrogen mixture with the composition. (H2 = 50/%, 

CO=28%, CO2=10%, CH4 = 8%, N2=4%). 
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4.5.4 Alumina Support Tubes 

 

The porous alumina support tubes were supplied by CTI (Ceramiques Techniques 

Industrielles SA) France with 6000 nm average pore size, I.D = 20.07 mm, O.D 

= 26 mm and effective length = 0.32 m 

 

4.6 Experimental Procedure 

 

4.6.1 Conventional Method for Preparation of Silica Membranes 

 
To prepare the silica solution, 100 ml of silicone elastomer was weighed into a 

test tube and diluted with 900 ml 2-methyl butane (isopentane). 9 ml of curing 

agent were added into the solution. The solution was prepared under continuous 

stirring for 3 hours to obtain a properly diluted silicone elastomer solution. 

Silicone elastomer was used due to its advantage of improved adhesion 

resistance and tensile strength. Prior to deposition of the silica layer, the 6000 

nm alumina support was first dried at 650 C for 2 hours after which it was stored 

overnight at room temperature. The dried support was dipped into the silica 

solution for 30 minutes.  

 

However, adequate care was taken such that the entire permeable surface area 

of the support was in contact with the solution. Also, the support was placed 

central and vertical to avoid tilting sideways which could lead to uneven coating. 

After the dipping procedure, the support was withdrawn and dried using the  

WEIR 413D motor powered rotatory drier as shown in Figure 4.2 for 3 hours 

after which the membrane was stored overnight at room temperature. The dried 

composite membrane was calcined at 873 K for 10 hours at a rate of 20 C per 

minute to ensure better adhesion of the silica layer to the support. After the 

calcination, the membrane was weighed and then inserted into the membrane 

reactor. The graphite seals were securely tightened to avoid leaks. Gas 

permeation tests were carried out over the temperature range 298 K – 573 K at 

a transmembrane pressure difference of 0.05 to 0.4 bar.  

 

The gas flow from the feed (inlet) was controlled through pressure gauges and 

the permeate and retentate outlets were measured using digital flow meters. In 
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the CPIMT laboratory at the Robert Gordon University, there are 2 types of mass 

flow meter: one measures high flow rates in L/min while the other measures low 

flow rates typically below 1000 mL/min. A uniformly coated silica membrane with 

a smooth surface was obtained. This membrane was dried in an oven at 650 C for 

2 hours prior to permeation tests.   

 

   

 

Figure 4.2: A Picture of Silica membrane dried at room temperature using the 

WEIR 413D motor power rotatory drier. 

 

4.6.2 Modified Method for Preparation of Silica Membranes  

 
In preparing the silica membrane modified with Boehmite sol, 46.1 g of Boehmite 

powrder was diluted in 900 mL of distilled water in a 1000 mL test tube and the 

resulting solution stirred continuously for 3 hours. Boehmite sol can provide very 

good intermediate layers for α-Alumina supports including enabling better 

adhesion of the active layer of the substrate, better control of the coating, 

ensuring a uniformly seeded layer and reducing the defects of the membrane 

support. 
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The same procedure as in section 4.6.1 was used to dry the support after which 

it was dipped into the Boehmite solution under continuous stirring for 1 hour.  

In determining the thickness of the membrane, the weight gain method was also 

used here. However, the thickness for the modified method will be higher than 

that of the conventional method as a result of the introduction of the 

intermediate Boehmite layer. The support was dried using the WEIR 413D 

rotatory drier for 3 hours and stored overnight at room temperature after which 

the deposition of the silica layer was carried out using the same procedure as in 

section 4.6.1. 

  

4.6.3  Gas Permeation Test Plant  

 
 

Gas permeation tests were carried out in a permeation test set up consisting of a 

tube and shell membrane reactor and a gas flow system comprising of three 

connected parts: the feed, permeate and retentate. The other parts of the 

experimental set up consist of the mass flow meter which monitors the gas flow 

rate. It is pertinent to highlight that the same gas permeation set up used for 

palladium membranes in chapter 3 section 3.4 was also used for silica 

membranes.  
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CHAPTER  5. 

5.0. Alumina Membranes for Hydrogen Separation and Purification 

 

5.1. Background  

 

Porous ceramic alumina membranes with different pore sizes can be considered 

for several gas separation applications including hydrogen by reducing the pore 

sizes or by improving specific surface properties [1]. Interest is growing in 

porous ceramic alumina membranes for hydrogen processes due to their ability 

to withstand harsh operating conditions, thermal and mechanical stability as well 

as their resistance to corrosion.  

 

The hydrogen permeation and transport behavior in porous alumina membranes 

has been reported by several authors [2] [3]. Li et al [2] investigated the 

permeance of hydrogen across porous alumina ceramic membrane which was 

graded with a top γ – Al2O3 layer with a pore diameter 4 nm using the sol-gel 

technique [2]. In their work, H2 permeation tests were conducted at temperature 

from 250 C to 5000 C and the group reported a drastic decrease in H2 permeance 

with increasing temperature from 250 C to 2500 C but for temperatures from 3500 

C to 5000 C, the hydrogen permeance was more stable. The H2/N2 selectivity 

reported by the group was between 2.9 – 3.4 which was lower than the 

theoretical Knudsen value of 3.74. The lower selectivity value below the 

theoretical Knudsen value indicates that there was a contribution of viscous flow 

[2]. Y.S Cheng et al [3] also investigated the hydrogen permeance of a 

mesoporous commercial alumina membrane with a nominal pore size of 5 nm. 

Although a hydrogen permeance of over 700 cm2 cm-3 min-1 bar-1 was achieved, 

the alumina membrane could not separate hydrogen from towngas mixture. For 

H2/He selectivity, a separation factor of 1.5 was achieved which was above the 

theoretical Knudsen value of 1.41 [3]. 

 

One of the ways of enhancing hydrogen permeation in alumina membranes is 

through surface modification with AlO (OH) Boehmite sol. This modification 

converts the topmost α- alumina layer to the more stable γ- alumina layer [3]. In 

this research, we investigated the hydrogen permeance and selectivity of a 
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commercial alumina support and the effect of temperature and pressure on gas 

permeance through the membrane. The hydrogen permeation behavior and 

selectivity of the modified γ-alumina membrane was also investigated to 

investigate the effect of the modification on hydrogen permeation. 

 

5.2 Methodology  

 

The ceramic alumina support is a macroporous membrane supplied by CTI 

(Ceramiques Techniques Industrielles SA) France of 6000 nm average pore size, 

I.D = 20.07 mm, O.D = 26 mm and effective length = 0.32 m. A second alumina 

support with same specifications was graded with AlOOH sol using the sequential 

dip - coating method. Both tubes were dried in an oven at 650 C for 2 hours to 

remove any water vapor.  In the dip coating method for preparation of γ-alumina 

membrane, the Boehmite sol was prepared into which the support was immersed 

for 30 minutes under continuous stirring. To prepare the Boehmite sol, 46.1 g of 

the AlOOH powder was weighed and diluted in 1000 mL of distilled water under 

constant stirring.  

 

A fresh Boehmite sol was used for each dipping in order to obtain a uniformly 

coated membrane.  Prior to dipping, both ends of the support were sealed with 

plastic seals to avoid inner deposition. Five sequential dippings were conducted 

and after each dipping, the modified support was dried using the WEIR 413D 

rotatory for 4 hours after which it was again dried using the oven for 10 hours at 

650 C. The support was then calcined at 873 K for 24 hours and a permeation 

test for six single gases carried out. These gases include: H2, He, CH4, CO2, N2 

and Ar. The commercial alumina membrane was named AM0 while the modified 

alumina membrane was named AM1. The experimental set up for gas permeation 

consists of a shell and tube membrane reactor module, a gas flow system 

comprising of three sections; the feed delivery, the membrane system and the 

measurement system. 

 

Gas permeation tests were conducted for both the modified and unmodified 

membranes at temperatures ranging from 298K – 573K. Membrane 

characterization was conducted using Scanning Electron Microscopy (SEM) and 
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the elemental composition of the membrane was analyzed using Energy 

Dispersive X-ray Analysis (EDXA).  

 

5.3 Experimental Procedure   

 

The investigation on commercial alumina support was carried out in two parts. In 

the first part, a fresh unmodified commercial alumina membrane (AM0) was 

investigated for hydrogen permeance and selectivity and also the permeation of 

single gases (He, N2, CH4, CO2 and Ar). In the second part, a separate alumina 

support with the same specifications as the one used in the first part was 

modified with the AlO (OH) sol using the dip coating method (AM1) in order to 

plug any defects or pinholes and ensure a uniform surface for gas permeation. A 

picture of the dip coating method is shown in figure 5.1 

 

The significance of modification of the support with AlOOH sol is to enhance the 

hydrogen permeation behavior of the membrane and also that of the 5 other 

single gases. The permeation behavior of the unmodified membrane was then 

compared with that of the modified membrane to ascertain the effect of the 

support modification in enhancing hydrogen permeation and membrane 

selectivity 

      

 

Figure 5.1: A Picture of the dip coating set up for the modification of ceramic 

alumina support with Boehmite.         
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5.4 Determination of Boehmite Layer Thickness 

 

After each dipping, the weight of the modified membrane AM2 was measured 

using the weight gain technique in order to calculate of the thickness of the γ-

alumina layer. The amount of AlO (OH) deposited was recorded after each 

dipping. The amount of deposited AlO (OH) W was measured by subtracting the 

weight of the alumina support before dipping from the weight after dipping. The 

calculation of the membrane thickness after each coating is presented in 

Appendix G. It is necessary to mention that the thickness was not factored into 

the calculation for gas permeance. Unit thickness is used to standardize 

permeance measurements to enable calculation of the permeability. Nonetheless, 

layer thickness affects gas permeation across the membrane and the higher the 

thickness the higher the membrane resistance to gas permeation. 
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CHAPTER 6 
 

6.0. Results and Discussion 

    

This chapter presents the results and discussions for both palladium and non-

palladium-based membranes prepared and investigated in this work. Prior to the 

electroless deposition of the palladium film, it is necessary to determine the 

suitability of the support for deposition by drying it free from any damp or 

moisture and also carrying out a Helium leak test. A 30 nm commercial alumina 

support with specification (I.D. 7.34 mm, O.D. 10 mm, effective length = 34 m) 

was dried in the oven at 650 C for 2 hours after which a helium leak test was 

carried out.  

 

 

   

Figure 6.1: Helium permeance against inlet pressure for the tubular alumina 

support. 

 

Results of the He leak test shown in figure 6.1 show a maximum Helium 

permeance of 3.13   10-6 mol m-2 s-1 Pa-1 at room temperature. Since the 

support is porous, then helium will permeate through it.  
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The significance of this test is to compare the He permeance before and after 

deposition of the Pd layer so as to ascertain the quality of the deposited Pd layer. 

After the deposition of the Pd layer, the permeation of He should be resisted by 

the Pd membrane because for a dense Pd membrane without defects or any 

pinholes, only hydrogen should permeate through it.  

 

6.1: Palladium  Membrane Prepared Using Conventional Electroless 

Plating Method (Pd1) 

 

After the sensitization and activation step, it was observed that the support 

changed colour from white to dark brown due to the deposition of the palladium 

seeds as a result of nucleation and growth during the activation step. After the 

sensitization and activation process was completed, the support was dried for 24 

hours at room temperature prior to electroless plating for coating Pd layer on the 

support. It can be observed from figure 6.2 that there was a clear colour change 

of the support from white (A), (before the sensitization and activation) to brown 

(B), (after sensitization and activation). A uniformly coated membrane palladium 

membrane named Pd1 with a smooth surface and of thickness 2 µm was 

achieved as shown in figure 6.3. 

 

 

 (A) 

          

 (B) 

 

Figure 6.2: A Picture of tubular ceramic alumina support (A) Before and (B) after 

sensitization and activation showing clear color change. 
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Figure 6.3: A Picture of the palladium membrane Pd1 prepared using 

conventional electroless plating 

 

6.1.1 Helium Leak Test After Palladium Layer Deposition 
 

A He leak test was carried out after the fabrication of the Pd membrane and the 

results shown in Figure 6.4. Helium was used to check for any defects or leaks 

because helium should not permeate a dense palladium membrane. Hence if it is 

detected in the permeate stream, then it means either the membrane is porous 

or there is a leak in the seals.  

 

The maximum He permeance after deposition of the Pd layer was 9.67   10-8  

mol m-2 s-1 Pa-1. The maximum He permeance after deposition was lower than 

the 3.13   10-6 mol m-2 s-1 Pa-1 which was the maximum permeance for the fresh 

unmodified alumina support before deposition of the Pd layer. The lower He 

permeance for the composite Pd membrane indicates that the deposition of the 

metallic Pd layer was successful. Albeit for a defect free and dense Pd 

membrane, only H2 should permeate through when it is dense. 

 

 

Palladium Membrane 

Surface 
Graphite seals at both ends of  
The membrane 
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Figure 6.4: Helium permeance against inlet pressure for the palladium 

membrane Pd1  

 

6.1.2 Permeation Test for Pure N2 Gas Through Pd1 Membrane 
 

The uniformity of coating and smoothness of the metallic surface is an important 

criterion in determining the quality and H2 permeation performance of the 

palladium membrane [1]. To further investigate the smoothness of the coated 

active palladium layer, the permeation of Nitrogen through the membrane was 

investigated at different temperatures and transmembrane pressure difference. 

The investigation was carried out at a temperature between 623K to 723 K and 

transmembrane pressure difference 0.05 – 0.4 bar. Figure 6.5 shows the 

nitrogen flux at feed pressures from 0.05 bar to 0.40 bar. 
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Figure 6.5: Nitrogen Permeance against feed pressure for the Pd1 membrane 

     

         

 

Figure 6.6: H2/N2 selectivity against feed pressure for the Pd1 membrane  
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Figures 6.4 and 6.5 show that both helium and nitrogen permeated through the 

membrane although both gases displayed low permeance. The maximum 

permeance for helium was 1.29   10-7  mol m-2 s-1 Pa-1 at 723 K while the highest 

flux for nitrogen was 1.9 cm3 cm-2 min-1 at same temperature and pressure. The 

highest H2/N2 selectivity observed is 24.12 at 673 K and 0.4 bar which is higher 

than the theoretical H2/N2 Knudsen selectivity (3.74). In Figure 6.6 it can be 

observed that the H2/N2 selectivity increased with increasing temperature and 

pressure as the gases are forced through the membrane pores. In practice, the 

N2 molecules must have permeated through the pores because the membrane is 

porous.  

 

Another factor that could affect the membrane’s hydrogen permeation 

performance is contamination from Tin impurities which occur during the 

sensitization step during the support modification prior to deposition of the Pd 

layer. From the EDXA elemental composition in figure D2 (Appendix D) it can be 

observed that there are Tin impurities which constitutes 3.54 wt% in the 

membrane. These impurities contaminate the active layer and block sites for 

hydrogen permeation which retards hydrogen permeation through the membrane 

[2]. To avoid leakages during the permeation test, the graphite seals were tightly 

fitted and soap bubbles applied to check for leaks in the membrane tubes. The 

total time spent on the 2 step sensitization and activation (support modification) 

process before deposition of the active palladium layer is calculated as follows: 

 

Sensitization step= 5 (minutes)   10 (dips) = 50 minutes 

Activation step = 5 (minutes)   10 (dips) = 50 minutes 

Rinsing with distilled water = 90 seconds   2 = 3 minutes 

                                                         Total:   1 hour 43 minutes 

 

This long time duration during sensitization and activation makes the electroless 

plating process prone to errors and contamination. 
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6.1.3 Single Gas Permeation Test for Pd1 Membrane. 
 

After the preparation of the composite palladium membrane named Pd1, single 

and mixed hydrogen permeation tests were conducted to investigate the 

hydrogen permeation and separation behavior of the membrane. The inlet 

pressure (feed) was adjusted with a pressure gauge. Prior to the permeation 

test, the membrane was reduced in flowing hydrogen at 3500 C for 10 minutes to 

activate the palladium layer. The permeation tests for hydrogen were carried out 

above the critical temperature of 3000 C to avoid hydrogen embrittlement.  

 

 

 

 

Figure 6.7: Hydrogen flux against square root of partial pressure difference for 

the Pd1 membrane 
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Figure 6.8: Arrhenius Vant-Hoff plot for single hydrogen permeation through Pd1 

membrane  

 

Figure 6.7 shows that hydrogen flux is directly proportional to the square root of 

the partial pressure difference between the high pressure (feed) and low 

pressure (permeate). This is in accordance with Sievert’s law thus the value of 

the pressure exponential n = 0.5 which indicates that the rate limiting step in 

hydrogen permeation is bulk diffusion [2].  However, n values of 0.5 are usually 

valid for thick films (>0.5), although several authors have reported n values of 

0.5 for thin films (<0.5) [3] [4] [5]  It can also be observed that Hydrogen flux 

increased  with increasing temperature and transmembrane pressure difference. 

The maximum hydrogen flux observed was 41.0 cm3 cm-2 min-1 at 723 K and 0.4 

bar.  

 

From Figure 6.8, it can be observed that the temperature dependence on 

hydrogen permeation follows the Arrhenius-vant Hoff behavior with a correlation 

coefficient of 0.9989. The activation energy was calculated from the slope as 

10.77 kJ/mol which represents the effect of temperature on hydrogen 

permeation through the membrane. Our observed value is in agreement with 

values reported in literature by several authors [6], [7] [8]. 
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It can also be observed from figure 6.8 that the temperature dependency on 

Hydrogen permeation between 723 and 673 K was less significant compared to 

623 and 673 K. This indicates that at lower temperature, the effect decreased 

but the hydrogen flux increases. In other words, the hydrogen flux at feed 

pressure of 0.3 bar increased at 23.8, 28.6 and 31.3 cm3 cm-2 min-1 for 623, 673 

and 723 K respectively. However the difference in flux between 673 and 623 K 

was 4.8 cm3 cm-2 min-1 which decreased to 2.7 cm3 cm-2 min-1 differential H2 flux 

between 673 and 723 K. This indicates that the temperature effect was becoming 

less significant.   

                 

6.1.4 Effect of Annealing on Hydrogen Permeation Through Pd1 

Membrane 

 

After the permeation test for the Pd1 membrane, it is necessary to investigate 

how best H2 permeation through the membrane can be enhanced/maximised. 

The Pd1 membrane displayed a maximum hydrogen flux of 41.0 cm3 cm-2 min-1 

at 723 K and 0.4 bar. One way of enhancing hydrogen permeation is to anneal 

the membrane in hydrogen at high temperature.  Annealing is a form of heat 

treatment and it results in structural transformation for surface morphology, 

grain size, pore size, removal of water vapour and surface contaminants to 

enhance Hydrogen permeation [9].  

 

The membrane was annealed at 673, 773 and 873 K for 10 hours in hydrogen 

and the temperature allowed to cool down to 623 K at which the hydrogen 

permeation was investigated at each temperature. In other words, the hydrogen 

permeation was measured at 623 K for each of the annealing temperatures i.e. 

673, 773 and 873 K. Annealing temperature can have a significant effect on the 

morphology and surface properties of palladium membranes which in turn could 

facilitate hydrogen permeation [10] 
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Figure 6.9: Hydrogen flux against square root of partial pressure difference after 

annealing the Pd1 membrane 

 

As shown in Figure 6.9, results for the annealed Pd1 membrane indicate n = 0.5 

which implies that hydrogen permeation through the membrane follows Sievert’s 

law as was the case in Figure 6.7 before annealing the membrane. The annealing 

has no effect on the n value and rate limiting step to hydrogen permeation 

through the membrane. Hydrogen permeation increases with temperature giving 

an activation energy of 24.84 kJ/mol which is comparable to values obtained in 

literature [9] [10]. A maximum Hydrogen flux of 80.4 cm-3 cm-2 min-1 after 

annealing the membrane at 873 K was observed which is about two-fold higher 

than that of the Pd1 membrane prior to the annealing. This indicates that 

annealing the membrane at high temperature increased the hydrogen flux by 

about two- fold for the Pd1 membrane. The increase in Hydrogen flux for the 

annealed membranes is attributed to the removal of surface contaminants and 

also the formation of hydride phases [11].  
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6.1.5 Mixed Gas Transport Tests for Pd1 Membrane 

 

The performance of the Pd1 membrane was also investigated for hydrogen 

separation from a dry reformate gas mixture with the composition (H2= 50/%, 

CO=28%, CO2=10%, CH4= 8%, N2=4%) at 623, 673 and 723 K for a 

transmembrane pressure difference of 0.05 to 0.4 bar. The significance of this 

test is to investigate the performance of the membrane in hydrogen separation 

from the gas mixture. The composition of the permeate stream was analyzed 

using an online gas chromatograph.  

 

The procedure adopted is to connect the permeate directly to the Gas 

chromatograph and measure the amount of each gas based on its % composition 

as displayed on the Gas Chromatograph. From the total gas flow rate measured 

from the mass flow meter and the percentage composition of hydrogen, it is 

possible to calculate the flow rate of hydrogen. For example, if the total gas flow 

rate at the permeate side is 4.22 L/min and hydrogen is 99% from the GC 

analyser, then the flow rate of hydrogen is given as 4.22 L/min × 99% = 4.1778 

L/min. 

 

 

Figure 6.10: Hydrogen flux against partial pressure difference for hydrogen 

separation from gas mixture through Pd1 membrane. 
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Figure 6.11: CO and CO2 flux in the permeate stream against feed pressure 

before annealing the Pd1 membrane 

 

 

Figure 6.12: Hydrogen flux against partial pressure difference for hydrogen 

separation from gas mixture after annealing Pd1 membrane 
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From figure 6.10, it can be observed that the n value increased to 0.62 for the 

mixed gas separation which indicates a deviation from Sievert’s law. The n value 

decreased to 0.55 when the membrane was annealed at higher temperature as 

shown in Figure 6.12. The value of the pressure exponential n before and after 

annealing the membrane indicates that hydrogen permeation through the 

membrane is determined by both surface processes and bulk diffusion. The 

temperature dependence on hydrogen permeation before annealing gave 

activation energy of 11.57  kJ/mol which is higher than the values for single gas 

permeation before annealing the Pd1 membrane at 10.77 kJ/mol and lower after 

annealing at 24.84 kJ/mol. The activation energy increased to 28.30 Kj/mol for 

the gas mixture hydrogen separation when the membrane was annealed at high 

temperature. In this case, higher temperature annealing led to an increase in the 

activation energy.  

 

It can also be observed that there was a significant decrease in hydrogen flux 

compared to the results for single gas permeation. The H2 flux is more stable 

with temperature and the maximum H2 flux observed for Pd1 hydrogen single 

gas permeation is 41.0 cm3 cm-2 min-1 at 723 K at a transmembrane pressure 

difference of 0.4 bar. For the mixed gas separation, the maximum H2 flux 

observed was 17.8 cm3 cm-2 min-1 also at 723 K at a transmebrane pressure 

difference of 0.05 bar to 0.4 bar. This represents a decrease of more than 2 fold 

for the mixed gas separation. 

 

The Pd1 membrane should normally display high H2 flux unless there are 

impediments such as pin holes, defects or carbonaceous elements/compounds 

such as CO and CO2. From figure 6.11, it can be observed that there is the 

presence of impurities CO and CO2 in the permeate stream which suggests that 

both gases permeated through the membrane. Both gases are part of the 

composition of the mixed gas stream. Expectedly for a palladium membrane, the 

membrane should have permeated only hydrogen but this was not the case. The 

lower H2 flux in the gas mixture can be attributed to the presence of carbon 

monoxide in the gas mixture which interacts with the membrane surface to 

impede hydrogen permeation [2].  

 



   

  96 

  

This trend has also been observed by several authors [2] [12] [13]. CO inhibits 

hydrogen permeation through palladium membranes by blocking the sites for 

hydrogen adsorption and dissociation and decreasing the surface reaction rate. 

The amount of carbon monoxide is also increased by the presence of carbon 

dioxide in the mixture through the reaction of carbon dioxide with hydrogen to 

produce water and carbon monoxide. Invariably this increases the amount of 

carbon monoxide and by implication, the inhibition to hydrogen permeation [3]. 

 

       

 

Figure 6.13: Flux of CO and CO2 in the permeate stream against feed pressure 

after annealing the Pd1 membrane 

 

 

 Figures 6.11 and 6.13 show the flux of CO and CO2 in the permeate stream 

against the feed gas pressure before and after annealing in hydrogen 

respectively. The CO concentration decreased after annealing which explains why 

the hydrogen flux increased after annealing the membrane. Annealing at high 

temperature ensured that there was an enhanced permeation for hydrogen as 

less CO was able to permeate through the membrane. Decrease in the CO 
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concentration implies that the surface reaction rate is faster compared to what it 

was before annealing the membrane. 

 

It can be observed that the maximum flux for CO was 8.28 × 10-3 cm3 cm-2 min-1 

at 723 K and 0.4 bar before annealing which decreased to 7.40 × 10-3 cm3 cm-2 

min-1 at the same temperature and pressure after annealing. Although CO2 reacts 

with hydrogen on the palladium surface to produce water and CO, both CO and 

CO2
 and hydrocarbons cause reduction to hydrogen permeation in palladium and 

palladium alloy membranes.  

However, this reduction is dependant on the operating temperature as reported 

by several authors such as K. Hou and R. Hughes [14] who investigated the 

effect of impurities on hydrogen permeation and reported that CO has a 

significant adverse inhibiting effect on hydrogen permeation through the Pd/Ag 

membrane at temperatures less than 623 K [14].  

 

In this work, the findings are different from Hou and Hughes’ conclusion because 

the inhibiting effect of CO and CO2 on hydrogen permeation was observed at 

temperatures at and above 623 K (i.e 623 – 723 K). Moreover, these findings are 

for a pure palladium membrane while Hou and Hughes investigated a Pd/Ag 

membrane. In another investigation, Amano et al [15] reported a significant 

hindrance to hydrogen permeation through the palladium membrane with 

addition of CO and CO2 at temperature below 523 K and 473 K. This corroborates 

the findings in this project although the temperatures investigated here are 

higher compared to Amano’s. Hara et al [16] also observed significant adverse 

CO inhibiting effect on hydrogen permeation through palladium membranes at 

temperatures below 553.  K. Amandusson et al [17] also reported the CO effect 

to be more pronounced at lower temperatures due to the formation of thicker CO 

layers at lower temperatures.  

 

It can be concluded based on these findings that the inhibition effect of CO and 

CO2 on hydrogen permeation through palladium membranes is temperature 

dependent. Less CO inhibiting effect to hydrogen permeation through palladium 

membranes is observed at high temperatures compared to lower temperature. 
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The average Hydrogen purity (%) before and after annealing is shown in Table 

6.1. 

 

Table 6.1: Average H2 purity in the dry gas reformate before and after annealing 

the Pd1 membrane 

Before annealing            

Temperature (K)                  H2 Purity (%)                    

723 94.12               

673 91.56              

623 89.74           

After annealing  

873 96.87 

773 94.61 

673 93.58 

  

 

From Table 6.1, it can be observed that hydrogen purity increased with 

temperature and the maximum recovery for pure hydrogen achieved through the 

membrane is 96.87 % after annealing at 873 K. The hydrogen purity expected 

under normal conditions for a dense palladium membrane is at least 99.99%. 

The slightly lower hydrogen purity was mainly due to the impurity gas i.e. CO 

which inhibits hydrogen permeation across the membrane. 

             

  

6.1.6 Hydrogen Transport, Rate Limiting Step and n-value in Pd1 
Membrane.  

  

Any deviations from Sievert’s law can be caused by many factors including 

defects in the metallic layer, high pressures of hydrogen, temperature, 

contaminants/carbonaceous compounds and grain boundaries [3]. In Figure 6.7, 

it can be observed that there is a linear fit with R2 values of 0.9933, 0.9943 and 

0.9943 for 723, 673 and 623 K respectively. The average correlation coefficient 

is 0.995. Our observed value for n is 0.5 which indicates that hydrogen 

permeation through the palladium membrane Pd1 obeys Sievert’s law and bulk 

diffusion controls hydrogen permeation. The thickness of the Pd layer for Pd1 
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membrane is about 2 µm and our observed n value at temperatures above 723 K 

is in agreement with those reported in literature and consistent with the values 

for thin palladium films (≤5 µm) [18] [19]. 

 

For thick membranes n values greater than 0.5 can be attributed to defects and 

pinholes which is governed by Knudsen or viscous flow transport mechanisms [3] 

[20].The n value is reported to decrease with temperature due to the surface 

reaction rate as the temperature increased [3]. However, higher pressures have 

been reported to lead to increase in the n value especially in cases of defects 

where hydrogen permeation is through defects in the thin films [3]. The 

maximum H2/N2 selectivity of the membrane is 7.01 which is above the 

theoretical Knudsen selectivity of 3.73. A metallic Pd layer with defects /pinholes 

is likely to deviate from Sievert’s law because hydrogen permeation will be other 

than through the bulk metal.  

 

The observed value of the pressure exponential n is also 0.5 as was observed 

before the annealing. Although the membrane was annealed at 873, 773 and 673 

K, the permeation test was conducted at 623 K and an increase in the hydrogen 

flux was observed for the annealed membrane. Temperature increase has been 

reported to affect the n value due to several reasons including the removal of 

contaminants, reduction in the reaction rate etc [3]. For a palladium membrane 

with defects, hydrogen permeation occurs via a mixed Knudsen/viscous flow. The 

hydrogen flux through defects can be expressed by the sum of a term 

proportional to the pressure difference (Knudsen flow) and a term proportional to 

the square root of the partial pressure (viscous flow). Hence for a palladium 

membrane with leaks and defects, the pressure exponent n will be higher than 

0.5. A thickness of 1 µm has been reported to be the critical level where the 

hydrogen desorption reaction (where n=1) as part of the surface processes, is 

the rate limiting step. Deviations from Sievert’s law were reported for thickness 

<1 um thickness and also for low temperatures [3].  

 

It can be observed from Figure 6.10 that the value of n has increased to 0.62 

which is a deviation from Sievert’s law.  In this work, the increase in the n value 

after the test with hydrogen mixture is attributable to the effect of carbonaceous 

contaminants in the mixture. The contaminants in the mxture i.e CO, CO2, CH4 
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all have a suppressing effect on hydrogen permeation permeation by competing 

with hydrogen for sites on the palladium surface. In this regard, the adsorption 

of the impurities decreases the rate of hydrogen absorption/desorption reactions. 

When the inhibiting effect of the contaminants to hydrogen permeation is severe, 

the n value moves to unity or very close to it and the surface processes will 

control hydrogen permeation. However, in our observed value of n= 0.62, the 

inhibiting effect is not severe hence the value is closer to Sievert’s driving force 

than it is to unity.  

 

As reported by F. Guazzone et al [3], high pressure of hydrogen could cause 

deviation of Sievert’s law in membrane with thickness >1 µm. In fact this group 

of workers concluded that 1.1-2 bara for >1 µm palladium membrane thickness 

will certainly lead to deviation from Sievert’s law. However, in our experiment, 

the pressure range used is 0.05 – 0.4 bar which is less than the range stated by 

Guazzone and his group [3]. For high operating pressures, deviations from 

Sievert’s should be expected and n values of 0.5-1 in which case a combination 

of bulk diffusion and surface processes will control hydrogen permeation through 

the membrane. 

 

6.1.7 Hydrogen Embrittlement 
 

Hydrogen embrittlement is one of the challenges posed by palladium membranes 

in hydrogen separation and purification which occurs as a result of α – β 

transition below the critical temperature of 2930 C and pressure (2 MPa) which is 

accompanied by a lattice expansion of 3.4% [21]. This expansion results in an 

internal stress which leads to defects and peeling of the palladium layer. The Pd1 

membrane was used to investigate hydrogen embrittlement in palladium 

membranes. Since permeation tests using this membrane for both single and 

mixed gas have been carried out, then we can afford to use the membrane to 

investigate hydrogen embrittlement. To investigate this phenomenon, hydrogen 

permeation tests were conducted on the Pd1 membrane at 1500 C and 

transmembrane pressure difference of 0.5 - 0.4 bar. During the permeation test 

an abnormal smell and noise were observed coming out of the membrane 
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reactor. At this point, the gas supply was switched off and the reactor removed 

from its position and the membrane retrieved.  

It was discovered that the Pd layer had cracked and peeled off from the 

substrate as shown in Figure 6.14 which implies that H2 embrittlement has 

occurred thus rendering the membrane inactive.  

 

 

 

 

 

 

 

                 

Figure 6.14: A Picture of the peeled Pd1 membrane after hydrogen 

embrittlement 

 

6.1.8 Observations for Pd1 Membrane   

From the investigations carried out on membrane Pd1, the following inference 

can be drawn: 

1. A maximum hydrogen flux of 80.4 cm3 cm-2 min-1 was observed after 

annealing the membrane in hydrogen at 873 K. However, the membrane is 

porous because He and N2 permeated through the it.  

2. The highest percentage hydrogen purity achieved is 96.87 % after annealing 

the membrane at 873 K.  

3. The membrane suffered from hydrogen embrittlement when hydrogen 

(referred to as ‘cold hydrogen’) was permeated through the membrane at 

1500 C. 

4. The preparation of the membrane using the electroless plating method took a 

long time to accomplish. The 2-step sensitization and activation took about 1 

Peeled Membrane due to 
Embrittlement 

Palladium Membrane 

Surface 

Graphite seals at both ends of  
The membrane 
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hour 45 minutes. It is apparent that the 2 step sensitization and activation 

process is cumbersome and prone to impurities/errors.  

 

6.2 Palladium Membrane Produced Using the Modified Electroless Plating 

Method (Pd2) 

 

From the observations for Pd1 membrane, it is necessary to prepare another 

membrane such that the permeation and purity of hydrogen could be enhanced. 

The new approach should avoid the threat of impurities from Tin during the 

sensitization step so as to enhance hydrogen purity and also address the long 

period it takes in the membrane preparation. The long period for sensitization 

and activation makes the electroless plating method not only cumbersome but 

also prone and susceptible to errors and contamination. It is in this regard that a 

new method was developed which skipped the sensitization step during support 

modification prior to electroless plating so as to achieve 3 key objectives: 

 

1. Avoid Sn(11) Tin impurities 

2. Reduce the overall time duration of the electroless plating process. 

3. Prepare a Pd membrane of better quality with better adhesion of the 

Palladium film on the substrate for enhanced hydrogen permeation. 

 

Although the sensitization step was skipped in the new method, the activation 

step was conducted for nucleation and growth of the Pd ions prior to the 

deposition. Also, the alumina support was modified with Boehmite sol using the 

dip coating technique prior to the activation method to avoid defects on the 

ceramic support and ensure a smoother surface for uniform coating of the 

palladium layer.     

                        

A uniformly seeded support was obtained from this procedure although the 

membrane produced is a bit darker compared to the one obtained for the 

modified support as shown in figure 6.15. For the deposition of the Pd film onto 

the modified porous support, the same procedure was used as that for the 

conventional method. A constant plating time of 30 minutes was maintained. A 
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uniformly seeded palladium membrane named Pd2 of thickness 2 µm was 

obtained as shown in figure 6.15. 

 

 

 

 

 

Figure 6.15: A Picture of the Pd2 membrane prepared using modified electroless 

plating method 

 

6.2.1: He &  N2 Permeation Through Pd2 membrane  

  
A leak test was carried out on the Pd2 membrane as was the case for the Pd1 

membrane in order to ascertain whether the membrane is dense or porous. It 

can be observed from figure 6.16 that Helium permeated through the membrane 

with a maximum permeance of 9.11   10-8 mol m-2 s-1 Pa-1. This indicates that 

the membrane is porous since He was able to permeate through it. However, the 

He flux observed is lower than that of the Pd1 membrane prepared using 

conventional electroless plating method. This indicates a more smooth finish and 

more uniformly coated membrane compared to the Pd1 membrane. The Pd2 

membrane was also investigated for Nitrogen permeation and the results in 

figure 6.17 show that the maximum flux observed is 1.37 cm-3 cm-2 min-1 which 

is lower than that of the Pd1 membrane. The fact that the observed He 

permeance and N2 flux for the Pd2 membrane are lower than those of the Pd1 

membrane is an indication that the Pd2 membrane has a smoother finish and is 

more uniformly coated compared to the Pd1 membrane.  

 

Palladium layer 
(Active surface) Ceramic edge Plastic tube  
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Figure 6.16: Helium flux against inlet pressure for the Pd2 membrane 

 

 

 

Figure 6.17: N2 flux against feed pressure for the Pd2 membrane 
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6.2.2 Single Gas Hydrogen Permeation Through Pd2 Membrane  
 

Single and mixed gas permeation tests were conducted for the Pd2 membrane. 

Prior to the test, the membrane was reduced in flowing hydrogen at 3500 C for 

10 minutes to activate the palladium layer just as was done for the Pd1 

membrane. Figure 6.18 shows the Hydrogen flux as a function of the partial 

pressure difference on the feed and permeate sides at 723, 673 and 623 K. It 

can be observed that there is a deviation from Sievert’s law with the value of the 

pressure exponential n=1. At unity, the rate limiting step for hydrogen 

permeation through the membrane are the surface processes involving hydrogen 

dissociative adsorption on the palladium layer and/or atomic hydrogen 

recombination and desorption at the permeate side. The n value at unity 

indicates a fast rate of hydrogen permeation through the membrane normally 

associated with thin palladium membranes (<5 µm).  

 

 

                                                                                                                                                            

Figure 6.18: Hydrogen flux against partial pressure difference for the Pd2 

membrane 

 



   

  106 

  

The n=1 is for the Pd2 membrane prepared using the modified electoless plating 

methodin which an intermediate Boehmite layer was used which means the 

hydrogen permeation was controlled by surface processes including hydrogen 

dissociative adsorption on the palladium surface and/or atomic hydrogen 

recombination and desorption. 

The hydrogen permeation increased with temperature and pressure giving an 

activation energy of 16.96 kJ/mol. A maximum Hydrogen flux of 54.5 cm3 cm-2 

min-1 was observed at 723 K and a transmembrane pressure differential of 0.4 

bar. This indicates an increase of 13.5 cm3 cm-2 min-1  in hydrogen flux for the 

Pd2 membrane compared to the Pd1 membrane. Therefore, the new method of 

skipping the sensitization step has led to the fabrication of a Pd membrane that 

enhanced hydrogen permeation.  

 

It can be inferred from the Pd1 membrane prepared using the conventional 

method that there was the hindrance to hydrogen permeation was more 

pronounced compare to the Pd2 membrane prepared without the sensitization 

step. It can also be observed from figure 6.19 that the maximum H2/N2 

selectivity is 40.74 which is higher than that for the Pd1 membrane i.e. 7.05 and 

is an indication of a more uniform coating and better adhesion of the metallic 

film to the substrate. The maximum H2/N2 selectivity of the Pd2 membrane is 

higher than the theoretical H2/N2 selectivity of 1.41. 

 

 .  
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Figure 6.19: H2/N2 selectivity against feed pressure for the Pd2 membrane. 

The hindrance to hydrogen permeation from the Pd2 membrane is from the Tin 

impurities and also poor adhesion of the Pd layer to the porous substrate. The 

enhanced H2 flux for the Pd2 membrane suggests that despite skipping the 

sensitization step, catalytic sites were created through the activation process. 

The creation of these catalytic sites was made possible by the modification of the 

porous alumina substrate with AlOOH sol which was chemisorbed on the alumina 

substrate [22]. The time duration for the electroless plating was reduced by 50 

minutes which in effect reduced the cumbersome nature of the electroless plating 

process. 

The time used for the modified electroless plating time is as follows: 

Activation step = 5 (minutes)   10 (dips) = 50 minutes 

Rinsing with distilled water = 90 seconds   2 = 3 minutes 

                                                         Total: 53 minutes 

 

The increased hydrogen flux is an indication that the adhesion of the palladium 

layer on the porous support has been enhanced and a more uniformly coated 

membrane was achieved.  
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6.2.3  Effect of Annealing on Hydrogen Permeation Through Pd2 

Membrane 

 

The effect of annealing on hydrogen permeation for the Pd2 composite 

membrane was also investigated at 873, 773 and 673 K using the same 

procedure as that for membrane Pd1 and the results shown in Figure 6.18. The 

temperature dependence on hydrogen permeation gave an activation energy of 

9.22 kJ/mol which is lower than the activation energy for hydrogen permeation 

prior to annealing the Pd2 membrane.  

 

It can also be observed that there is a deviation from Sieverts driving force just 

as was the case for the membrane before annealing. The pressure exponential n 

was unity just as was the case before annealing. The fact that the value of the 

pressure exponential n remains the same after annealing the Pd2 membrane 

indicates that annealing the membrane at high temperature has no significant 

effect on the rate limiting step in hydrogen permeation although annealing the 

membrane at higher temperature enhanced hydrogen permeation performance 

of the membrane. 

 

 

Figure 6.20: Hydrogen flux against partial pressure difference for the annealed 

Pd2 membrane 
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It can be observed in Figure 6.20 that the Pd2 membrane displayed hydrogen 

flux of 94.5 cm3 cm-2 min-1 at 723 K and transmembrane pressure difference of 

0.4 bar which is higher than that of the annealed Pd1 membrane prepared using 

the conventional method. The temperature dependence on hydrogen permeation 

also gave activation energy of 14.37 kJmol-1 which is consistent with values 

reported in literature [2] [23]. There is an observed trend in the activation 

energy in the different investigations for Pd1 and Pd2 membranes. For hydrogen 

single gas permeation for Pd1, the activation energy was 10.77 kJ/mol which was 

higher than when the membrane was annealed at 873, 773 and 673 K (8.50 

kJ/mol). The same trend was also observed for Pd2 membrane which gave an 

activation energy of 16.96 kJ/mol for hydrogen single gas permeation but this 

value decreased to 14.37 kJ/mol when the membrane was annealed.   

 

Also in the Pd2 investigations for gas mix, the activation energy was 11.57 

kJmol-1 but when the membrane was annealed at 873, 773 and 673 K, the 

activation energy increased to 28.30 kJ/mol. 

 

6.2.4 Mixed Gas Separation and Hydrogen Purity for Pd2 Membrane 

 
Mixed gas permeation tests were also conducted for the Pd2 membrane for the 

gas mixture with the composition H2 = 50 %, CO= 28%, CO2 = 10%, N2= 4%, 

CH4= 8%. The procedure for the Pd1 membrane for this investigation was also 

used for the Pd2 membrane. The Pd2 membrane separated hydrogen from the 

gas mixture and also enhanced the hydrogen permeation compared to the Pd1 

membrane. The flux of CO in the Pd2 permeate stream determined from the GC 

separation results is shown in Table 6.2.  

 

 

Table 6.2: Flux of CO in the permeate stream for mixed gas separation before 

and after annealing Pd2 membrane 

 Before annealing  

(cm3 cm-2 min-1
) 

After annealing  

(cm3 cm-2 min-1
) 
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Feed 

Pressure 

(Bar) 

723 K 

 

673 K 

 

623 K 

 

   873 K 

 

773 K 

 

673 K 

 

0.05 5.36E-04 1.06E-03 1.48E-03 4.51E-04 6.43E-04 1.07E-03 

0.10 8.12E-03 1.21E-03 1.76E-03 6.10E-04 1.11E-03 1.58E-03 

0.15 1.35E-03 1.56E-03 2.07E-03 6.32E-04 1.47E-03 1.73E-03 

0.20 2.09E-03 1.96E-03 3.08E-03 1.16E-03 1.72E-03 1.89E-03 

0.25 2.27E-03 2.55E-03 3.37E-03 1.56E-03 2.19E-03 2.47E-03 

0.30 2.72E-03 3.05E-03 3.90E-03 2.21E-03 2.53E-03 2.63E-03 

0.35 3.09E-03 3.57E-03 4.48E-03 2.63E-03 2.62E-03 2.98E-03 

0.40 3.21E-03 4.13E-03 5.16E-03 3.09E-03 2.93E-03 3.22E-03 

 

 

Figure 6.21: Hydrogen flux against partial pressure difference for hydrogen 

separation from gas mixture for the Pd2 membrane. 
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Figure 6.22: Hydrogen flux against partial pressure difference for hydrogen 

separation from gas mixture after annealing the Pd2 membrane 

It can be observed from Figure 6.21 that the maximum H2 flux is 23.8 cm3 cm-2 

min-1 at 723 K which is higher than the H2 flux (17.8 cm3 cm-2 min-1) for the Pd1 

membrane prepared using the conventional electroless plating method. However, 

there was a deviation from Sievert’s law both before and after annealing the 

membrane. The value of the pressure exponent n is equal to 0.85 which reduced 

to 0.76 after annealing the membrane at high temperature as shown in figure 

6.22. This implies that both the surface process and bulk diffusion are 

responsible for hydrogen permeation through the membrane. The value for the 

pressure exponential n for the mixed gas separation investigation for Pd2 

membrane is unity compared to that of Pd1 membrane which indicates that 

hydrogen permeation through the Pd2 membrane is faster than through the Pd1 

membrane. This is despite the fact that both membranes have comparably same 

thickness. 

 

The surface processes in hydrogen permeation through composite palladium 

membranes involve 2 steps [24]: 

 

H2 (gas) = 2H (adsorbed Hydrogen). 

H (adsorbed) = H (bulk). 
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In the first case, the dissociative adsorption of H2 molecules which impedes the 

surface reaction and the preceding transition of atomic hydrogen from surface to 

the bulk metallic layer. However, both or either of the 2 steps could control 

hydrogen permeation depending on the rate. If the rate of H2 dissociative 

adsorption dominates the surface resistance, then the surface rate will depend 

on molecular H2 movement rate at the surface. On the other hand, if the H2 

adsorption rate through the bulk is faster, then the surface resistance will 

depend on H2 concentration in the bulk metal.  

 

For mixed gas separation, the Pd2 membrane displayed a better hydrogen 

separation performance and higher purity compared to the Pd1 membrane.  

The higher hydrogen flux for the Pd2 membrane suggests that the Pd2 

membrane was more uniformly coated and denser compared to the Pd1 

membrane. The concentration of CO in the permeate stream decrease with 

temperature but increases with pressure as shown in Table 6.2.  

This implies that increasing the temperature led to decrease in the CO effect and 

enhanced hydrogen permeation. As hydrogen and CO compete for available sites 

for permeation on the membrane surface, temperature increase supports 

hydrogen permeation hence less of the impurity CO permeates. The same 

observation was made for the Pd1 membrane although the CO flux is higher for 

the Pd1 membrane compared to the Pd2 membrane. 

  

It can be observed that hydrogen flux is increasing with temperature as shown in 

figure 6.22, H2 flux 723 K>673 K>623 K hence hydrogen is winning the 

competition with CO for available sites for permeation on the membrane surface. 

Since hydrogen is displacing CO, it shows that the inhibiting effect of CO is 

reduced by the temperature increase. This is significant because for hydrogen 

production from Syngas which is mainly CO and H2, there is the need to avoid 

the inhibiting effect of CO on the palladium surface. In this work, it is shown that 

increasing the temperature will reduce the CO inhibiting effect. 

 

 6.2.5 Hydrogen Purity for Pd2 Membrane 
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Table 6.3: Average hydrogen purity in the dry gas reformate before and after 

annealing Pd2 membrane 

Before annealing            

Temperature (K)                  H2 Purity (%)                    

723 96.63      

673 93.89 

623 92.47 

After annealing  

873 96.95 

773 95.14  

673 94.82 

 

 

It can be observed from Table 6.3 that higher hydrogen purity was achieved for 

the Pd2 membrane prepared using the modified electroless plating method.  

The maximum hydrogen purity observed for the Pd2 membrane was 96.95% 

after annealing at 873 K. 

6.2.6 Observations for Pd2 membrane 

 

From the investigation for Pd2 membrane prepared using the modified 

electroless plating method, the following observations were made: 

 

1. A maximum hydrogen flux of 94.5 cm3 cm2 min-1 was observed after annealing 

the membrane at 873 K which is higher than that observed for the Pd1 

membrane  prepared using the conventional electroless plating. 

2. The increased hydrogen purity for the Pd2 membrane is due to less 

contamination owing to the skipping of the sensitization step. Annealing the 

membrane also increased the purity of hydrogen because higher temperature 

promotes hydrogen permeation while impeding the permeation of contaminant 

CO which retards the permeation of hydrogen through the membrane.   

3. The purity of hydrogen increased to 96.95% for the modified electroless 

plating method after annealing the membrane at 873 K. 

4. A deviation from Sievert’s law was observed with the value of the pressure 

exponential n at unity which implies that surface processes control hydrogen 
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permeation. This was attributed to the adverse effects of CO impurity on 

hydrogen permeation.  

 

6.3 Results for Pd/Ag Composite Membrane 

 

As shown in figure 6.23, the Pd/Ag membrane produced on ceramic alumina 

support using the codeposition electroless plating has a shiny surface and 

smoother compared to Pd1 and Pd2 membranes produced using the conventional 

and modified electroless plating methods respectively. The Pd3 membrane was 

tested for both hydrogen single gas permeation and mixed gas separation. The 

significance of the tests is to investigate hydrogen embrittlement, effect of 

annealing, hydrogen purity and rate limiting steps to hydrogen permeation 

through the membrane.  

 

 

 

 

 

 

 

 

 

Figure  6.23: A Picture of the Pd3 membrane prepared using codeposition 

electroless plating method 

 

Plastic tube  Plastic tube  

Shiny Pd/Ag (Pd3) membrane surface  
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6.3.1 Helium & N2 Leak Test 
 

It is necessary to ascertain whether the membrane was dense or porous just as 

was done for Pd1 and Pd2 membranes. It is for this reason that a Helium 

permeation test was also carried out for the Pd3 membrane and the membrane 

was found to be permeable to both He and N2. The highest He permeance 

observed was 1.28   10-7 mol m-2 s-1 Pa-1 as shown in Figure 6.24 and a 

maximum N2 permeance of 1.37 cm3 cm-2 min-1 which indicates that the 

membrane is porous. This shows that the He permeance is higher than for both 

Pd1 and Pd2 membranes while the N2 flux was lower than for both Pd1 and Pd2  

Membranes. 

 

 

 

            

Figure 6.24: Helium permeation against inlet pressure for the Pd3 membrane 
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Figure 6.25: N2 flux against feed pressure for the Pd3 membrane  

 

 

6.3.2 Single Gas Permeation Test for Pd3 Membrane at Low Temperature 

 

Prior to the permeation tests, the membrane was reduced in flowing hydrogen at 

3500 C for 10 minutes to activate the palladium layer. It can be observed from 

Figure 6.26 that the highest hydrogen flux was 21.8 cm3 cm-2 min-1 at 473 K at 

4734 K and 0.4 bar giving a pressure exponential n value of 0.5 and activation 

energy of 20.30 kJ/mol. A plot of hydrogen flux against the difference in the 

square root of the high and low pressure sides gave a linear relationship in 

conformity with Sievert’s law with a pressure exponent n value of 0.5. The rate 

limiting step is bulk diffusion as was also observed for the Pd1 membrane. 
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Figure  6.26: Hydrogen flux against partial pressure difference for the Pd3 

membrane at low temperature to test for embrittlement 

 

After the permeation test, the membrane was retrieved but there was no peeling 

off or cracks of the palladium layer hence no hydrogen embrittlement occured. 

This is an indication that the Pd/Ag membrane effectively avoided the α – β 

miscibility gap at lower temperatures thus resisting the hydrogen embrittlement. 

Results for the permeation test at high temperature are displayed in Figure 6.28 

and it shows an increase in hydrogen flux with temperature and transmembrane 

pressure difference giving activation energy of 15.76 kJ/mol.  

 

The maximum hydrogen flux observed was 67.5 cm3 cm-2 min-1 at 723 K which is 

higher than that of Pd1 (i.e. 41.0 cm3 cm-2 min-1) and Pd2 (54.5 cm3 cm-2 min-1) 

under the same conditions. The maximum H2/N2 selectivity observed for the Pd3 

membrane at low temperature was 16.52 at 723 K and 0.4 bar as shown in 

figure 6.27. 
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Figure 6.27: H2/N2 selectivity against feed pressure for the Pd3 membrane 

 

 

 

Figure 6.28: Hydrogen flux against partial pressure difference for the Pd3 

membrane at high temperature. 
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6.3.3 Effect of Annealing Pd3 Membrane on Hydrogen Permeation 

 

The membrane was annealed in hydrogen at 873, 773 ad 673 for 10 hours to 

investigate the effect of annealing temperature on hydrogen permeation.  

The annealing was carried out at 873, 773 and 673K. However, the temperature 

was allowed to equilibrate to 623K where at which hydrogen permeation 

measurement was carried out. The activation energy observed was 16.32 kJ/mol 

which was higher than that prior to annealing the membrane. 

 

  

 

Figure 6.29: Hydrogen flux against partial pressure difference after annealing the 

Pd3 membrane  

                                      

As shown in Figure 6.29, hydrogen permeation across the membrane after 

annealing obeys Sievert’s law and a maximum hydrogen flux of 98.1 cm3 cm-2 

min-1 was observed at 873 K which is higher than the hydrogen flux of the 

membrane prior to annealing i.e. 67.5 cm=3 cm-2 min-1. The hydrogen flux for 

Pd3 membrane after annealing is higher than that for both Pd1 and Pd2 

membranes i.e. 80.4 cm3 cm-2 min-1 and 94.5 cm3 cm-2 min-1 respectively. For 

the Pd2 membrane, there were no threats of Sn impurities since the sensitization 



   

  120 

  

step was skipped. However, for Pd1 and Pd3 membranes, the threat of Sn 

impurities was real since the sensitization step was carried out with Tin solution.  

 

6.3.4 Gas Separation and Hydrogen Purity 

 
The objective of this test is to investigate the response of the Pd/Ag membrane 

to the inhibiting effect of these compounds to hydrogen permeation. The same 

hydrogen mixture with same composition for Pd1 and Pd2 membranes was used 

to investigate the gas separation properties of the Pd/Ag membrane named Pd3.  

As can be observed from Figure 6.30, the membrane was able to separate 

hydrogen from the gas mixture and also achieve a maximum hydrogen flux of 

37.6 cm3 cm-2 min-1 which is about 2 fold higher than the flux for Pd1 membrane 

and higher than that of Pd2 membrane from the town gas mixture i.e. 17.8 cm3 

cm-2 min-1 and 23.8 cm3 cm-2 min-1 respectively. This indicates that alloying with 

silver has enhanced hydrogen permeation and also achieve a Sievert driving 

force with bulk diffusion controlling hydrogen permeation (n=0.5) despite the 

thickness of the membrane (2 µm) and the presence of CO and CO2 in the 

mixture. The activation energy calculated was 19.42 kJ/mol. 

 

 

Figure 6.30: Hydrogen flux against partial pressure difference for mixed gas 

separation for the Pd3 membrane 
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The effect of annealing the Pd3 membrane for hydrogen separation from the gas 

mixture was also investigated at 873, 773 and 673 K. The results in Figure 6.31 

show a maximum hydrogen flux of 40.9 cm3 cm-2 min-1 at 873 K and a 

transmembrane pressure difference of 0.4 bar. This is higher when compared to 

the hydrogen flux before the membrane was annealed and also higher compared 

to the annealed membranes Pd1 and Pd2 respectively. The activation energy was 

also higher at 20.85 kJmol-1 compared to that before the membrane was 

annealed at 19.42 kJmol-1.  

                

Figure 6.31: Hydrogen flux against partial pressure difference for hydrogen 

separation from gas mixture after annealing the Pd3 membrane. 

 

The alloying with silver enhanced the separation of hydrogen from the gas 

mixture due to the ability of silver to suppress the inhibition effect of carbon 

monoxide. The component CO gas in the mixture inhibits hydrogen permeation 

through competitive adsorption by blocking the sites for permeation through 

reaction to reduce the hydrogen partial pressures. 23% Ag was used as shown in 

Table 3.5 on page 63 and the Ag is able to reduce the competitive adsorption 

effect of the CO thereby enhancing hydrogen permeation. The concentration of 

CO in the permeate stream permeate is shown in Table 6.4.   
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The silver enrichment increases the spacing in the metal lattice which 

counteracts the effect of CO and speeds up the permeation of hydrogen. Apart 

from enhancing hydrogen permeation and avoiding hydrogen embrittlement, 

alloying with silver also reduces the cost of production by reducing the amount of 

palladium to be used.  

 

The results of investigation conducted for both single gas permeation and mixed 

gas separation implies that further addition of silver could enhance both 

hydrogen permeation and separation. However, high concentration of silver could 

lead to less sites for hydrogen permeation due to the ‘competitive advantage’ 

that silver enjoys over palladium. 

  

Table 6.4: Flux of CO in the permeate stream before and after annealing Pd3 

membrane 

           Before annealing 

            (cm3 cm-2 min-1) 

           After annealing  

             (cm3 cm-2 min-1) 

Feed 

Pressure 

(Bar) 

  723 K 

 

  673 K 

 

  623 K 

 

   873 K 

 

   773 K 

 

  673 K 

 

0.05 2.74E-04 7.95E-04 7.02E-04 8.63E-04 7.89E-04 7.23E-04 

0.10 3.90E-04 8.76E-04 7.97E-04 8.95E-04 8.36E-04 7.81E-04 

0.15 7.1E-04 9.36E-04 8.63E-04 9.27E-04 8.95E-04 8.39E-04 

0.20 1.23E-03 9.85E-04 9.33E-04 9.59E-04 9.21E-04 8.94E-04 

0.25 1.46E-03 1.02E-03 9.82E-04 9.88E-04 9.56E-04 9.29E-04 

0.30 1.97E-03 1.26E-03 1.05E-03 9.93E-04 9.92E-04 9.63E-04 

0.35 2.08E-03 1.89E-03 1.28E-03 1.03E-03 1.27E-03 1.05E-04 

0.40 2.21E-03 2.45E-03 1.79E-03 1.26E-03 1.46E-03 1.27E-03 

 

Table 6.5: Average hydrogen purity in the dry gas reformate for Pd3 membrane 

Before annealing            
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Temperature (K)                  H2 Purity (%)                    

723 97.88              

673 95.75                      

623 94.17           

After annealing  

873 98.86 

773 97.21 

673 96.23 

 

 

Table 6.4 shows the CO flux before and after annealing the membrane and it can 

be observed that annealing marginally reduced the amount of CO in the 

permeate stream. Table 6.5 shows the average hydrogen purity for the gas 

mixture separation before and after high temperature annealing in hydrogen. It 

can be observed that an optimum purity of 98.86% was observed after annealing 

the Pd3 membrane (Pd/Ag). The alloying with silver has led to an enhanced flux 

of hydrogen by suppressing the inhibiting effect of CO.  

 

 

Table 6.6: Comparison of activation energy for composite membranes 

Metallic  

layer 

Support Pore 

size 

(nm) 

Thickness 

(µm) 

n value Activation 

Energy  

(kJ.mol-1) 

Reference 

Pd Alumina 30 2 0.5 - 1 10– 28.30 This work 

PdAg Alumina 30 2 0.5 - 1 15– 20.85 This work 

Pd Alumina n/a 1 0.85 8.8       24 

PdAg Alumina  1.6  35.20        2 

PdAg Alumina  1.7  4.4       25 

PdAg Alumina 0.1 2.5 0.5 17       26 

Pd. Alumina  3 0.5 10.3        2 

PdAg Alumina 30 6 1 8.43       23 

Pd   7.5 0.61 11-12       27 

PdAg Alumina 150 8.6 0.5 8.22       28 

Pd.   10.3 0.65 12.3       29 
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Pd  10-200 11.4 0.58 8.88       30 

Pd.   15 0.65 10       31 

PdAg.   20 0.76 10       32 

 

 

As shown in Table 6.6, our observed values for activation energy are in 

agreement with the values obtained in literature. After the investigation for Pd3 

membrane in this work, it is clear that a higher hydrogen flux was achieved and 

the cost of the membrane lowered compared to the Pd1 and Pd2 membranes. 

The cost target for palladium membranes as specified by the U.S department of 

energy’s (DOE) for hydrogen separation for 2015 is that a membrane material 

should be less than $100/ft2 as shown in Table 6.7. Other organizations around 

the world working towards a sustainable energy system have also set their 

separate targets using the DOE’s as a reliable benchmark. According to table 6.7, 

the 2011 targest for membrane stability/durability is 1031 hours which is 43 

days. However, this target was upgraded to 5 years for 2015.   

 

In this regard, it is necessary to encourage research that could provide options 

for palladium with a view to meeting this technical cost target and also achieving 

highly stable membrane. It is this reason that necessitated our next set of 

investigation on silica membranes. Silica membranes offer unique options to 

palladium membranes in terms of cost and chemical stability in hydrogen 

production in membrane reactor applications and high temperature hydrogen 

separation [33]. It is for these reasons that investigations were conducted on 

silica membranes for hydrogen separation and purification.  

 

 

Table 6.7: Technical targets for hydrogen separation using membranes ( U.S 

DOE) 

Performance Criteria DOE target for 2015 

H2 flux 300 ft3 h-3 ft-2 

Cost <100 $/ft2 

H2 purity 99.99% 
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Stability/Durability 5 years (2015) 

1,031 hours (43 days: Target for 2011) 

 

 

6.3.5 Summary of observations for Pd3 membrane 
 

The following observations were made during the investigation of hydrogen 

permeation in both single and mixed gas streams:  

1. A maximum hydrogen flux of 98.1 cm3 cm-2 min-1  was observed after 

annealing the membrane at 873 K which is higher than the hydrogen flux for the 

palladium membranes prepared using both the conventional and modified 

electroless plating methods.  

2. When the PdAg membrane was investigated at low temperature below 3000
 C, 

no hydrogen embrittlement was observed and the membrane didn’t suffer from 

any cracks or peeling of the metallic layer. The alloying with silver was able to 

suppress the H2 embrittlement. 

2. The PdAg membrane achieved a higher hydrogen flux compared to the Pd 

membrane Hydrogen permeation through the membrane obey Sievert’s driving 

force for both single and mixed gas streams. This was in direct contrast to the 

observation for Pd-only membranes Pd1 and Pd2 where a deviation from 

Sievert’s law was observed due to the effect of CO.  This was due to the ability of 

the Ag to suppress the permeation inhibiting effect of CO. 

3. The cost of the PdAg membrane was less compared to the Pd membranes Pd1 

and Pd2 because less palladium precursor was used in the Pd3 membrane 

fabrication. 

 

4. Hydrogen purity increased to 98.86% for the Pd3 membrane which is higher 

than 96.95% for the Pd2 membrane, also annealing in hydrogen enhanced 

hydrogen permeation through the membrane.  
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6.4 Silica Membranes SL1 & SL2 

 

Two Silica membranes were fabricated using the porous big membrane tubular 

ceramic support of 6000 nm pore size. In the first instance, the Silica membrane 

was prepared using the conventional dip coating method where the Silica layer 

was deposited onto the ceramic support. A smooth and uniformly coated 

membrane named SL1 of thickness 24.63 µm was achieved. In the second 

instance, a modified dip coating method was used to deposit Silica layer of 

thickness 31.19 µm onto the porous ceramic alumina support.  

 

The Silica membrane prepared using the modified dip coating method was 

named SL2. This section presents the results from the permeation investigations 

conducted on the two silica membranes prepared in this work: SL1 and SL2. 

Both single and mixed gas permeation tests were carried out for hydrogen and 

five other single gases namely H2, CO2, He, CH4, N2 and Ar at temperature range 

from room temperature to 573 K and a transmembrane pressure difference from 

0.05 to 0.4 bar. The selectivity of the membrane to hydrogen in relation to the 

five other single gases is also presented and discussed. 

 

6.4.1 Single Gas Permeation Test for SL1 Membrane after first dip  

 

Figure 6.32 shows the hydrogen permeance of the SL1 silica membrane after 

first dip showing an increase in permeance with decreasing temperature and 

pressure. The maximum permeance observed was 3.12 10-7  mol m-2 s-1 Pa-1 at 

573 K. The dominant gas transport mechanism in porous membranes is Knudsen 

flow. In Knudsen diffusion, gas permeance is inversely proportional to the square 

root of temperature and molecular weight. Hence, a diffusing gas should have an 

independent relationship with temperature if the gas transport is governed by 

only Knudsen. This means that if the gas transport is Knudsen, then an increase 

or decrease in temperature should have no effect on gas permeation. However, it 

can be observed from figure 6.32 that the pemeance icreases with temperature 

which menas that thee is an effect of temperature on gas pemration through the 

membrane. The increase in hydrogen permeance with temperature indicates that 

hydrogen permeation through the silica membrane is mainly by activated surface 
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diffusion. Increasing the temperature of permeation contributes to the surface 

diffusion of the molecules and subsequently increased the movement of 

molecules within the pores. 

 

 

Figure 6.32: Hydrogen permeation against inverse square root of temperature 

for the SL1 membrane after first dip. 

 

The permeance of hydrogen is at least one order of magnitude higher than the 

other gases. The results indicate the order of permeance as follows: 

H2>He>CO2>CH4>N2>Ar which does not follow the order of molecular size as 

follows:  CH4 (3.8 A) > N2 (3.64 A) > Ar(3.4 A) >  CO2 (3.3 A) > H2 (2.89 A) > 

He (2.65 A). Comparing the two orders indicates that they do not agree which is 

an indication that the gas transport mechanism is other than Knudsen diffusion 

and governed by activated surface diffusion.  

 

Table 6.8 shows the SL1 membrane selectivity to hydrogen with respect to the 

other 5 single gases at 573 K. The ideal selectivity of hydrogen with respect to all 

the single gases were above the respective theoretical Knudsen selectivity except 

H2/Ar. However, there is also the contribution of viscous flow which is evident 

from the pressure dependency of hydrogen permeance. If the activated surface 
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diffusion and viscous flow occur in parallel, the sum total permeance of the 

adsorbable gases is given by equation 14 [33]: 

 

              Qtotal = Qsurface diffusion + Qviscous flow …………………………………………….Eqn 14 

 

Normally, the pressure dependency on gas permeance is characteristic of viscous 

flow transport mechanism and depicts the possible presence of defects. When 

the hydrogen permeance is becoming more stable and independent of pressure, 

the Knudsen flow becomes more likely and will prevail when the pressure has no 

influence on hydrogen permeation. At the point when pressure has no effect on 

hydrogen permeation, there will be straight line relationship and this will give 

support to a strict Knudsen flow. The contribution of viscous flow could also 

result from the presence of cracks and defects in the membrane leading to a 

decrease in the rate of hydrogen permeation through the membrane. The 

deposited silica layer over the porous support will penetrate through the pores 

and repair some of the defects or pinholes on the porous support. In this regard, 

the higher the thickness of the silica layer, the more likelihood for eradication of 

pinholes and defects on the porous support but the higher the resistance to 

hydrogen permeation and the lower the permeance. However, the increase in 

permeance with upstream pressure is also a characteristic of the viscous flow 

mechanism but is normally associated with defects in the active silica layer.  
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Table 6.8: Ideal selectivity for hydrogen in relation to He, CO2, CH4, N2 and Ar at 

573 K for the SL1 membrane after first dip 

Feed 

Pressure 

(Bar) 

    Ideal 

Selectivity 

   H2/CH4 

   Ideal 

Selectivity 

   H2/He 

    Ideal 

Selectivity  

    H2/Ar 

   Ideal 

Selectivity  

   H2/N2 

    Ideal 

Selectivity  

   H2/CO2 

Knudsen 

Selectivity 

    

 

 

0.05 

 

 

4.35 

 

 

1.62 

     

 

5.39 

   

 

2.63 

  

 

3.30 

H2/He 

= 

1.41 

 

 

0.10 

 

 

3.62 

 

 

1.43 

   

  

4.81 

   

 

2.46 

  

 

3.09 

H2/N2 

= 

3.73 

 

 

0.15 

 

 

3.36 

 

 

1.38 

    

 

4.45 

   

 

2.36 

  

 

2.97 

H2/CO

2=4.6

7 

 

 

0.20 

 

 

3.25 
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As shown in Table 6.8, the maximum H2/He selectivity observed was 1.62 at 573 

K and 0.05 bar which was higher than the theoretical Knudsen selectivity of 1.41. 

The H2/He selectivity decreases with pressure but increases with temperature in 

contrast to permeance which increases with pressure. The permeance of Helium 

follows the same trend as hydrogen but Helium shows slightly more stability at 

higher temperature as shown in figure 6.33. The maximum He permeance was 

2.63 10-7  mol m-2 s-1 Pa-1 at 573 K which drops more sharply with pressure. 

 

  

                                               

Figure 6.33: Helium permeance against inverse square root of temperature for 

the SL1 membrane after first dip. 
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Figure 6.34: Nitrogen  permeance against inverse square root of temperature for 

the SL1 membrane after first dip 

     

    

The permeance of Nitrogen through membrane SL1 was also investigated under 

the same conditions as for hydrogen and Helium. As shown in Figure 6.34, the N2 

permeance increased with temperature and transmembrane pressure. The 

maximum permeance was 1.37 10-7 mol s-1 m-2 Pa-1 at 573 K and 0.4 bar which 

is lower than the hydrogen permeance under the same conditions.  

 

The increase in permeance with increasing temperature indicates that N2 

transport is through activated surface diffusion. However, it can also be observed 

that the N2 permeance is slightly more stable than both hydrogen and helium. 

The stability of N2 permeance indicates that the effect of activated surface 

diffusion mechanism is reducing which implies that the likelihood of a Knudsen 

flow is more pronounced at lower temperature.  Figure 6.35 shows the H2/N2 

selectvity of the  SL1 membrane. The maximum H2/N2 selectivity of the 

membrane was 2.63 at 573 K and a transmembrane pressure difference of 0.05 

bar which is lower than the theoretical Knudsen selectivity of 3.73. However, the 

selectivity increases with temperature but decreases with increase in the 

transmembrane pressure difference.  
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Figure 6.35: H2/N2 selectivity against inlet pressure after first dip for the SL1 

membrane 

 

The permeance of CO2 through the SL1 membrane at different temperature for 

transmembrane pressure differential of 0.05 to 0.4 bar is shown in figure 6.36. It 

can be observed that the maximum permeance was 1.83   10-7  mol m-2 s-1 Pa-1 

measured at 573 K and 0.05 bar. The CO2 permeance exhibited the same 

behavior as H2 and N2 with activated surface diffusion mechanism governing the 

gas transport through the membrane with contribution of viscous flow.  

 

Under the Knudsen transport mechanism, there exists an inverse dependence of 

gas permeance on gas molecular weight. CO2 is a heavier gas compared to CH4, 

and Ar but displayed higher permenace than these gases as shown in the order 

of permeance of the gases. show that CO2 displayed a higher permeance 

compared to the other 3 heavier gases which is a further confirmation that the 

gas transport is activated surface diffusion with contribution of viscous flow.  

 

The order of permeance of the heavier gases is CO2 (3.3 A) >CH4 
 ( 3.8 A) > N2 

(3.64 A) >Ar (3.4 A) but for Knudsen flow, it should be CH4 (3.8 A) t > N2 (3.64 

A) > Ar (3.4 A) > CO2 (3.3). This indicates that the order of Knudsen flow was 
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not followed as CO2 which has the highest permeance among the heavier gases 

should ordinarily have had the least under Knudsen flow. CO2 permeates faster 

than N2 which is in agreement with the order of molecular size or kinetic 

diameter of these gases i.e. CO2 (3.3 A) < N2
 (3.6 A) since CO2 with a lower size 

compared to N2 is expected to found accommodation through the membrane 

pores more easily than N2. However, this trend doesn’t depict a Knudsen flow 

which is expected to be the other way round. The order of molecular size is 

normally expected to account for the ranking of gases in terms of their 

permeance in silica membranes under a molecular sieving transport mechanism. 

                        

               

Figure 6.36: CO2 permeance against inverse square root of temperature for the 

SL1 membrane after first dip 

               

The H2/CO2 ideal selectivity was also determined based on the permeance ratio 

of the 2 gases under same temperature and transmembrane pressure. As shown 

in figure 6.37, the selectivity increases with temperature but decreases with 

transmembrane pressure differential and the highest selectivity was 3.61 

observed at 298  K and 0.15 bar which is lower than the theoretical Knudsen 

selectivity of 4.67. Moreover, the selectivity can be improved by depositing 

another silica layer which will increase the density of the active layer and repair 

any possible defects or pinholes. However, the downside of depositing another 
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silica layer is reduction in the permeance of the membrane. This is in tandem 

with the norm in membrane processes where gas permeance is usually sacrificed 

to improve selectivity and vice versa.  

             

 

Figure 6.37: H2/CO2 selectivity against inlet pressure for the SL1 membrane after 

first dip 

 

The permeance of CH4 through the SL1 membrane was also investigated under 

the same conditions as for the other gases previously discussed in this section. 

The result shown in figure 6.38 indicate that the maximum permeance observed 

was 9.98   10-8 mol m-2 s-1 Pa-1 at 573 K and transmembrane pressure 

differential of 0.4 bar. The CH4 permeance was higher than N2 and Ar and as 

such does not follow the order of molecular size of the gases. CH4 (3.8 A) is a 

heavier gas compared to N2 and Ar hence it is expected to encounter more 

resistance to permeation if the criteria for molecular differentiation is through 

size selectivity.  

 

The lighter gases i.e. H2 and He, permeated faster than CH4. and the CH4 

permeance became more stable with increasing pressure and lower temperature 

which shows increasing tendency towards Knudsen diffusion. The decrease in CH4 
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permeance was clearly more significant at lower temperature. This trend 

indicates that knudsen flow is less likely at lower temperatures but more likely at 

higher temperature because the permeance remained stable.  

 

For a Knudsen flow, the permeance should be independent of temperature. As 

observed from figure 6.39, the highest H2/CH4 selectivity observed is 4.47 at 473 

K and 0.05 bar which is higher than the theoretical Knudsen selectivity i.e. 2.82. 

The relatively high selectivity is also another indication of the uniformity of the 

coated active silica layer. However, it can also be observed that CH4 has a higher 

selectivity relative to hydrogen than He which is a lighter gas compared to CH4. 

 

   

                                                            

Figure 6.38: CH4 permeance against inverse square root of temperature for the 

SL1 membrane after first dip. 
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Figure 6.39: H2/CH4 selectivity for the SL1 membrane after first dip 

 

The permeance of Ar through the SL1 membrane was also investigated under the 

same conditions as for the other gases. The results in figure 6.40 show an 

increase in permeance with increasing temperature which depicts an activated 

surface diffusion transport mechanism. However, Ar displayed the lowest 

permeance across the SL1 membrane compared to all the other gases albeit Ar is 

larger in size compared to H2, He and CO2 but lower in size compared to CH4 and 

N2. The maximum permeance observed was 8.32   10-8 mol m-2 s-1 Pa-1 at 573 K 

and transmembrane pressure differential of 0.4 bar. Also the permeance trend 

across the transmembrane pressure indicate that there is more stability for Ar 

permeance across the membrane compared to the other gases.  

 

The permeation behavior of Ar across the SL1 membrane is governed by the 

activated surface diffusion mechanism with some contribution of viscous flow just 

like the other gases investigated. The highest H2/Ar selectivity was 6.01 at 298 K 

and a transmembrane pressure difference of 0.05 bar which is higher than the 

theoretical Knudsen selectivity of 4.45. Ar with the lowest permeance displayed 

the highest selectivity relative to hydrogen.  
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However, if the permeance of hydrogen increases, then the H2/Ar selectivity 

increases provided that the Ar permeance remains same as shown in figure 6.41. 

                                

 

Figure 6.40: Ar permeance against the inverse square root of temperature for 

the SL1 membrane after first dip. 
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Figure 6.41: H2/Ar selectivity for the SL1 membrane after first dip 

6.4.2 Gas Permeation Through SL1 Membrane after second dip 

 
Although the SL1 membrane showed high gas permeance especially for 

hydrogen, the membrane selectivity for hydrogen with respect to the other gases 

is low. For example, H2 selectivity over CH4, CO2 and CO for silica membranes up 

to 1500 has been reported in literature [33]. It is necessary to device a means of 

repairing any possible defects in the membrane support with a view to improving 

the support quality and by implication, the hydrogen permeation/selectivity of 

the membrane. This can be done by deposition of another silica layer. The 

second silica layer will plug any pinholes and repair any defects which impede 

membrane quality and loss of separation ability. Although it could repair any 

defects or pinholes in the membrane, the deposition of the second layer will also 

increase the gas permeation resistance of the membrane. After the second 

coating, an additional layer of thickness 18.06 µm was added which increased 

the total thickness of the active silica to 42.69 µm. 
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Figure 6.42: H2 permeace agaisnt inverse square root of temperature for the SL1 

membrane after second dip 

 

Figure 6.42 shows hydrogen permeance after the second dip which is higher than 

the permeance of the 5 other single gases i.e He, CO2, CH4, N2 and Ar.  It was 

observed that the permeance of all the gases is lower than their respective 

permeance for the first coating. Hydrogen permeance was higher than Helium by 

about 1 order of magnitude which is attributed to the effect of higher 

temperature which opened up the pores for hydrogen permeation but this effect 

was less pronounced for the other 5 gases.  

 

The highest permeance for hydrogen is 2.89   10-7 mol m-2 s-1
 Pa-1 which is lower 

compared to 3.12   10-7 mol m-2 s-1 Pa-1 observed at 573 K and 0.4 bar for the 

first coating. The decrease in the permeance of hydrogen and the other gases is 

due to the increase in the silica layer thickness which increased the membrane 

resistance to permeation. The permeance after the second coating increased with 

increasing temperature which indicates that activated surface diffusion is the 

prevailing gas transport mechanism as was the case after the first coating.  
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Figure 6.43: (a) He permeance and (b) CO2 permeance against inverse square 

root of temperature for the SL1 membrane after the second dip 

 

Figures 6.43 (a) and (b) show the plot of permeance of He and CO2 respectively 

against the inverse of square root of temperature at different transmembrane 

pressure. The permeance of both gases -2.17   10-7 mol m-2 s-1 Pa-1 and 1. 33  
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10-7 mol m-2 s-1 Pa-1 - are comparably lower than their highest pemeance at first 

coating i.e. 2.63   10-7 mol m-2 s-1 Pa-1 and 1.83   10-7 mol m-2- s-1 Pa-1 for He 

and CO2 respectively.  

 

It can also be observed that the permeance decreased with temperature which 

indicates an activated surface diffusion transport mechanism. One noticeable 

difference in the permeance of the 2 gases is that the permeance of He was 

more stable compared to that of CO2 which indicated more propensity towards 

Knudsen diffusion for Helium compared to CO2. Temperature emhances surface 

diffusion because it promotes the mobility of the gas molecules within the pores 

of the membrane. The higher the temperature the higher the rate of duffusion of 

the gas through the pores of the membrane. 
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Fi

gure 6.44: (a) CH4 and (b) N2 permeance against inverse square root of 

temperature for the SL1 membrane after the second dip 
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Figure 6.45: Ar permeance against square root of temperature for the SL1 

membrane after the second dip 

 

Figure 6.44 (a), (b) display the permeance of CH4 and N2
 respectively and Figure 

6.45 shows the permeance of Ar against the inverse square root of temperature 

at different pressure for the second coating. The same permeation behavior can 

be observed as in the first coating with a decrease in the permeance with 

increasing temperature. The permeance of both gases decreased with the 

additional layer to 8.62   10-8 mol m-2 s-1 Pa-1 and 1.27   10-7 mol m-2 s-1 Pa-1 

for CH4 and N2 respectively.  

 

The selectivity of the membrane after the second coating for hydrogen over the 

other five single gases was also investigated and compared with the H2 

selectivity for the second coating. The ideal selectivity results are displayed in 

Tables 6.9, 6.10, 6.11, 6.12 and 6.13. Fig. 6.45 shows the permeance of Ar for 

the second coating – 8.04    10-8 mol m-2 s-1 Pa-1 
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Table 6.9: H2/He selectivity at different temperature and pressure for the SL1 

membrane after second dip. 

Feed Pressure 

     (Bar) 

573 K 473 K 373 K 323 K 298 K 

     0.05 1.38 1.35 1.36 1.38 1.41 

     0.10 1.33 1.38 1.39 1.40 1.40 

     0.15 1.38 1.40 1.38 1.42 1.44 

     0.20 1.37 1.44 1.41 1.46 1.44 

     0.25 1.41 1.44 1.48 1.44 1.43 

     0.30 1.41 1.44 1.53 1.56 1.46 

     0.35 1.45 1.51 1.45 1.44 1.50 

     0.40 1.45 1.43 1.37 1.43 1.48 

                       

      

Table 6.10: H2/CH4 selecivity at different temperature and pressure for the SL1 

membrane after second dip 

Feed Pressure      

      (Bar) 

 

573 K 

 

473 K 

 

373 K 

 

323 K 

 

298 K 

      0.05 2.21  2.17 2.24 2.22 2.22 

      0.10 2.29 2.36 2.36 2.36 2.32 

      0.15 2.26 2.36 2.41 2.56 2.34 

      0.20 2.27 2.35 2.41 2.34 2.26 

      0.25 2.34 2.41 2.38 2.32 2.22 

      0.30 2.36 2.36 2.69 2.57 2.22 

      0.35 2.37 2.40 2.27 2.23 2.16 

      0.40 2.38 2.34 2.11 2.13 2.14 
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Table 6.11: H2/CO2 selectivity at different temperature and pressure for the SL1 

membrane after second dip 

Feed Pressure 

      (Bar) 

 

573 K 

 

473 K 

 

373 K 

 

323 K 

 

298 K 

      0.05 2.39 2.16 2.00 1.38 1.68 

      0.10 2.47 2.30 2.09 1.88 1.69 

      0.15 2.49 2.36 2.09 1.88 1.67 

      0.20 2.53 2.33 2.12 1.85 1.63 

      0.25 2.52 2.36 2.10 1.81  1.60 

      0.30 2.51 2.34 2.42 2.05 1.59 

      0.35 2.54 2.37 2.02 1.81 1.59 

      0.40 2.50 2.26 1.90 1.73 1.58 

                                         

           

      

Table 6.12: H2/N2 selectivity at different temperature and pressure after second 

dip 

Feed Pressure  

      (Bar) 

573 K 473 K 373 K 323 K 298 K 

      0.05 2.28 2.38 2.34 2.37 2.40 

      0.10 2.35 2.47 2.50 2.46 2.40 

      0.15 2.34 2.52 2.52 2.53 2.49 

      0.20 2.36 2.49 2.50 2.50 2.47 

      0.25 2.44 2.55 2.53 2.44 2.36 

      0.30 2.48 2.55 2.61 2.67 2.39 

      0.35 2.52 2.64 2.47 2.43 2.40 

      0.40 2.54 2.58 2.39 2.35 2.38 
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Table 6.13: H2/Ar selectivity at different temperature and pressure for the SL1 

membrane after second dip 

 

 

 

 

 

 

 

 

 

 

                       

 

The membrane selectivity for H2 over all the gases decreased with pressure but 

increased with temperature for both the first and second coatings. For H2/He 

after the second coating, the highest selectivity observed was 1.56 which is 

lower than 1.62 after the first coating as shown in Table 6.8. Both are higher 

than the theoretical Knudsen selectivity of 1.41. For H2/CH4, the highest 

selectivity observed was 2.69 after the second coating as shown in table 6.10 but 

this was lower than the highest selectivity i.e. 4.35 after the first coating. Both 

selectivities are higher than 2.82 which is the theoretical Knudsen selectivity. The 

same behavior was observed for H2/CO2 selectivity where the highest selectivity 

for the second coating i.e. 2.54 as shown in Table 6.11 is lower than that for the 

first coating i.e. 3.30. But in this case, the ideal selectivities for both the first and 

second coating were lower than the theoretical Knudsen selectivity of 4.67.  

 

The H2/N2 selectivity however, was slightly higher for the second coating i.e. 

2.67 as shown in Table 6.12 compared to the first coating- 2.63- but both are 

lower than the theoretical Knudsen selectivity of 3.73. The H2/Ar selectivity 

decreased after the second dip from 5.39 for the first dip to 3.15 for the second 

dip.  

 

Feed Pressure   

     (Bar) 

 

723 K 

 

673 K 

 

623 K 

 

573 K 

 

523 K 

      0.05 2.734 2.78 2.75 2.71 2.73 

      0.10 2.74 2.86 2.83 2.74 2.75 

      0.15 2.74 2.84 2.84 2.74 2.76 

      0.20 2.75 2.78 2.78 2.74 2.69 

      0.25 2.78 2.82 2.78 2.64 2.60 

      0.30 2.78 2.77 3.15 3.01 2.57 

      0.35 2.73 2.80 2.67 2.62 2.54 

      0.40 2.67 2.6 2.44 2.47 2.50 
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The quality of the membrane can be inproved so as to achieve a more selective 

membrane by polishing, however this method is adaoted to flat surfaces hence 

tedous and repetitive. The use of thin intermediate layers is a more attractive 

option which can be used to generate a smooth surface to improve the chemical 

adhesion of the silica layer to the support. 

 

6.4.3 Modification of the Alumina support with Boehmite sol for silica 

deposition 

 
Modification of the tubular ceramic Alumina support with Boehmite sol prior to 

the silica deposition is one way of achieving a smooth and uniform surface for 

deposition of the silica layer and repairing any possible defects on the support. 

This is with a view to enhancing the hydrogen permeation behavior of the 

membrane. In this section, results are presented for the second stage of 

investigation on silica membranes where the alumina support was modified with 

Boehmite sol and investigated for hydrogen permeation and also the permeation 

of the 5 gases investigated for the SL1 membrane. The commercial alumina 

membrane of 6000 nm average pore size was dried in an oven for 2 hours at 650 

C after which it was calcined at 873 K for 10 hours at 20 C/minute. The 

significance of the support modification with Boehmite is to produce smaller and 

more uniform pores, reduce surface roughness and ensure in a continuous 

structure. The small and uniform pores will result in a high hydrogen selective 

silica membrane.  

 

After the calcination, the support was dipped in the Boehmite sol for 30 minutes 

after which it was dried overnight at room temperature. After drying, the support 

was calcined based on the same calcination cycle as before dipping. The weight 

gain method was used to calculate the thickness of the modified support. A 

smooth and uniformly coated silica membrane named SL2 with an estimated 

thickness of 31.19 µm was obtained. The intermediate Boehmite sol provided an 

intermediate region between the coarse macroporous silica support and the 

active silica layer. The modification of the α – alumina support with AlO(OH) sol 

prior to deposition of the silica layer results in a uniform surface for the 

deposition of a hydrogen selective silica layer. It was observed that the thickness 
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of the SL2 membrane has now increased compared to the thickness of 

membrane SL1 in which no support modification was carried out prior to 

deposition of the silica layer. This increase is due to the extra thickness of the 

Boehmite layer which will increase the resistance to permeation but will also fix 

defects or pinholes in the support and provide a smooth surface for the silica 

deposition. 

 

6.4.4 Single Gas Permeation Tests for the SL2 membrane after first dip 

 

The thickness of the SL2 membrane after modification with Boehmite sol and 

deposition of the silica layer was calculated as 31.19 µm. Single gas permeation 

tests were carried out for hydrogen and 5 other single gases as carried out for 

SL1 membrane at temperature and transmembrane pressure difference of 573, 

473, 373, 323 and 298 K and 0.05 - 0.4 bar respectively.  

                                                        

 
Figure 6.46: Hydrogen permeance against inverse square root of temperature for 

the SL2 membrane after first dip 

It can be observed from Figure 6.46 that the maximum hydrogen permeance 

observed for the modified SL2 silica membrane of 30 nm average pore size is 

4.05   10-7 mol m-2 s-1 Pa-1 at 573 K and transmembrane pressure differential of 
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0.4 bar. This is higher than the maximum hydrogen permeance for the 

unmodified silica membrane SL1 at first coating i.e 3.12   10-7 mol m-2 s-1 Pa-1 

10-6 at the same temperature and pressure differential. However, it can be 

observed that the increase in hydrogen permeance was more significant at lower 

temperature and more stable at higher temperature which indicates more 

propensity to Knudsen diffusion at higher temperature. It can be inferred that 

although the Boehmite layer increased the thickness of the membrane but 

served to fix the defects and pinholes associated with the membrane which 

enhance gas permeation through the membrane.  

 

The increase in H2 permeance also indicates that surface roughness has been 

minimized/eliminated and there is a more continuous structure and uniform pore 

size distribution. Apart from having a higher hydrogen permeance, the SL2 

modified membrane also displayed a more stable hydrogen permeance than the 

SL1 unmodified membrane. This is as a result of the minimized surface 

roughness and continuous and uniform pore size distribution which enhance 

hydrogen permeation. The hydrogen permeance increases with increasing 

temperature and transmembrane pressure difference thus depicting a viscous 

flow and surface diffusion mechanism which was the case for the SL1 unmodified 

membrane.  

 

The Boehmite is an intermediate layer which is meant to enhance gas 

permeation through the membrane by making the surface smoother and more 

uniform. However, as the boehmite layer is deposited, the thickness of the 

membrane increases and since gas permeation is inversely proportional to 

thicknes, the permeance will decrease with an additional layer. However, the 

permeance increased when compared to the permeance before the modification 

of the support with Boehmite.  
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Figure 6.47: Helium permeance against inverse square root of temperature for 

the SL2 membrane after first dip 

            

 

Figure 6.48: H2/He selectivity for the SL2 membrane after first dip. 
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As can be observed from figure 6.47, the maximum helium permeance through 

the SL2 modified membrane at first coating increased to 3.06 10-7  mol m-2 s-1 

Pa-1 from 2.63 10-7  mol m-2 s-1 Pa-1  for the unmodified SL1 membrane at 573 K 

and 0.05 bar. However, the He permeance was more stable compared to the H2 

permeance although it showed a little wobble at low temperature i.e. 323 and 

298 K. In fact, the Helium permeance was largely unaffected by the increase in 

the transmembrane pressure. This is a departure from the transport mechanism 

for He permeation in SL1 which was clearly dominated by surface diffusion 

transport mechanism with some contribution of viscous flow. 

 

As shown in figure 6.48, the maximum H2/He selectivity for both the SL1 and 

SL2 membranes was almost same but different temperature and pressure 

conditions: 1.62 for the SL1 at 0.05 bar and 573 K  and 1.80 for the SL2 

membrane at 298 K and 0.40 bar. However, both values are higher than the 

theoretical Knudsen selectivity of 1.41 which indicates that the permeance of H2 

and He increased proportionately when the membrane was modified.  

The H2/He selectivity for both membranes was clustered at low temperatures but 

generally decreased at higher temperature for the SL1 membrane.    

                                              

              

Figure 6.49: CO2 permeance against inverse square root of temperature for the 

SL2 membrane after first dip.  
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Figure 6.50: H2/CO2 selectivity for the SL2 membrane after first dip    

  

 

Figure 6.51: CH4 permeance against inverse square root of temperature for the 

SL2 membrane after first dip.      
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Figure 6.52: H2/CH4 selectivity at different temperature for the SL2 membrane 

after the first dip 

 

The CO2 and CH4 permeance and H2/CO2 and H2/CH4 selectivity of the SL2 

membrane after the first dip is shown in Figures 6.49 – 6.52. It can be observed 

that there is an increase in the permeance of both gases with increase in 

temperature and transmembrane pressure difference which suggests that surface 

diffusion controls gas permeation through the membrane with contribution of 

viscous flow. For the SL2 modified membrane, the highest CO2 permeance is 

2.54 10-7 mol m-2 s-1 Pa-1 which is higher than the CO2 permeance of 1.83 10-7 

mol m-2 s-1 Pa-1  for the SL1 membrane while the highest permeance for CH4 is 

2.03 10-7  mol m-2 s-1 Pa-1 which is higher than the CH4 permeance for the SL1 

membrane after the first coating i.e. 9.98 10-8  mol m-2 s-1 Pa-1.  

 

One observed difference in the gas permeation behavior of SL1 as against that of 

SL2 is that the permeance of CH4 decreased more slowly for SL2 as against a 

deeper drop for SL1. The highest H2/CO2 selectivity was 2.64 at 298 K and a 

transmembrane pressure of 0.4 bar which is lower than the theoretical Knudsen 

selectivity of 4.67.  
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The increase in permeance for the SL2 membrane and the corresponding 

decrease in selectivity is conventionally correct and stems from the fact that  

there was an increase in the permeance for both hydrogen and CO2 after 

modification with AlOOH sol.  For the H2/CH4 selectivity, the highest selectivity 

obrserved was 3.13 at 323 K for a transmembrane pressure difference of 0.05 

bar which is higher than the theoretical Knudsen selectivity of 2.82. The highest 

H2/CH4 selectivity for SL2 membrane is however lower than same for the SL1 

membrane which is 4.35 at same temperature and transmembrane pressure.  

             

 

Figure 6.53: N2 permeance against inverse square root of temperature for  

the SL2 membrane after the first dip.  
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Figure 6.54: H2/N2 selectivity at different temperature for the SL2 membrane 

after first dip 

 

The permeance of N2 and H2/N2 selectivity is also shown in Figures 6.53 and 6.54 

respectively. However, the H2/N2 selectivity increased from 2.63 for the SL1 

membrane to 3.61 for the SL2 membrane at 298K K and 0.05 bar. The ideal 

selectivity for both membranes is lower than the theoretical Knudsen value of 

3.73. For the SL2 membrane, the difference in permeance at different pressure 

was less significant compared to the SL1 membrane but the stability of both 

membranes in terms of the applicable gas transport mechanism is identical. The 

drop in gas permeance with decreasing temperature also confirms surface 

diffusion as the dominant gas transport mechanism with contribution of viscous 

flow.     
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Figure 6.55: Ar permeance against the inverse square root of temperature for 

the SL2 membrane after first dip 

   

                                  

Figure 6.56: H2/Ar selectivity at different temperature for the SL2 membrane 

after first dip 
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From the Ar permeance shown in Figure 6.55, it can be observed that the 

permeance increased from 8.32 10-8  mol m-2 s-1 Pa-1 for SL1 membrane to 1.51 

10-7  mol m-2 s-1 Pa-1  for the SL2 membrane. From figure 6.56, it can be 

observed that the highest H2/Ar selectivity observed was 3.88 at 373 K and 0.4 

bar which is above the theoretical Knudsen selectivity of 4.45.  

 

6.4.5 Single Gas Permeation Tests for the Modified Silica Membrane after 

Second Dip 

 

A second silica layer was deposited on the SL1 membrane after the first dip using 

the same procedure as for the first coating. The thickness of the second silica 

layer was calculated as 19.70 µm which brought the total thickness of the SL2 

membrane to 50.89 µm. The significance of the second layer deposition is to 

repair any defects or pinholes in the silica layer for improved gas permeation and 

selectivity. A uniformly coated membrane with a continuous silica layer was 

obtained. However, the thickness of the membrane increased to 50.89 µm owing 

to the additional silica layer.  

 

 

Figure 6.57: Hydrogen permeance against inverse square root of temperature for 

the SL2 membrane after second dip    
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Figure 6.58: Helium permeance against the inverse square root of temperature 

for the SL2 membrane after second dip 
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Figure 6.59: H2/He selectivity at different temperatures for the SL2 membrane 

after second dip. 

It can be observed from figure 6.57 that hydrogen permeance decreased with 

temperature and differential pressure with a maximum of 3.15 10-7  mol m-2 s-1 

Pa-1 at 573 K and 0.4 bar. This indicates more resistance to permeation 

compared to 4.05 10-7  mol m-2 s-1 Pa-1  for the SL2 membrane after the first 

coating which confirms that there could be some defects or pinholes in the 

alumina support. This is because the hydrogen permeance has now increased for 

the same type of support under the same conditions except that in this case the 

support was modified.  

 

The H2 permeance is less stable compared to the He permeance in figure 6.58 

which means that there is more likelihood for Knudsen diffusion in He than in H2. 

The modification with AlO (OH) sol has improved the surface structure and 

morphology of the membrane which enhanced hydrogen permeation through the 

membrane. As shown in figure 6.59, the highest H2/He ideal selectivity was 1.80 

at 298 K and 0.05 bar which is higher than the theoretical Knudsen selectivity of 
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1.41. The ideal selectivity increased with temperature but became more stable 

with increasing transmembrane pressure.   

                                   

 

Figure 6.60: CO2 permeance against inverse square root of temperature for the 

SL2 membrane after second dip. 
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Figure 6.61: H2/CO2 selectivity at different temperature for the SL2 membrane 

after second dip 

 

Figures 6.60 and 6.61 show the CO2 permeance and H2/CO2 selectivity for the 

SL2 membrane after second dip. It can be observed that there is a decrease in 

the CO2 after the second coating from 2.54 10-7  mol m-2 s-1 Pa-1  to 2.41 10-7  

mol m-2 s-1 Pa-1  which could be attributed to the increased resistance to 

permeation after the second coating.  The highest H2/CO2 selectivity after the 

second coating was 2.08 at 298 K and 0.05 bar which was below the theoretical 

Knudsen selectivity of 4.67.  

 

              

 

Figure 6.62: CH4 permeance against inverse square root of temperature for the 

SL2 membrane after second dip 

  

The CH4 permeance is shown in Figure 6.62 and it decreased with temperature 

and transmembrane pressure after the second dip but appears to be more stable 

with increasing transmembrane pressure which depicts increased deviation  from 

activated surface diffusion and closeness to Knudsen diffusion. The maximum 
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CH4 permeance after the second coating was 2.33 10-7  mol m-2 s-1 Pa-1 at 573 

K and 0.4 bar.  

 

The H2/CH4 selectivity is shown in figure 6.63 and it increases with temperature 

with the highest selectivity of 2.39 at 289 K and 0.05 bar which is lower than the 

theoretical Knudsen selectivity of 2.82. However, after the first coating the 

highest H2/CH4 selectivity observed was 3.13 at 323 K and 0.05 bar which is 

higher than the theoretical Knudsen selectivity. This indicates that the H2/CH4 

selectivity of the membrane decrease after the second coating. 

   

 

Figure 6.63: H2/CH4 selectivity at different temperature for the SL2 membrane 

after second dip 
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Figure 6.64: N2 permeance against inverse square root of temperature for the 

SL2 membrane after second dip 

The maximum N2 permeance for the SL2 membrane shown in figure 6.64 

decreased after the second coating to 1.63 10-7  mol m-2 s-1 Pa-1  from 1.72 

10-6  mol m-2 s-1 Pa-1  for the first coating but the decrease was relatively stable 

with increasing transmembrane pressure. The same trend was observed after the 

first coating which relates to a closer tendency towards Knudsen diffusion. The 

H2/N2 selectivity is shown in figure 6.65 and it can be observed that the 

maximum  selectivity was 3.18 at 573 K which increased with temperature and 

pressure. 

 

The highest H2/N2 selectivity was 3.86 at 298 K and 0.05 bar which is higher 

than the theoretical Knudsen selectivity of 3.73. However, the highest H2/N2 

selectivity after the first coating was 3.61 at 298 K and 0.05 bar which is lower 

than the theoretical Knudsen selectivity of 3.73. This indicates a decrease in 

selectivity of the SL2 membrane after deposition of the second layer.  



   

  165 

  

 

      

 

Figure 6.65: H2/N2 selectivity for the SL2 membrane after second dip 

 

 

The Ar permeance through the SL2 membrane also decreased after deposition of 

the second silica layer as shown in Figure 6.66 due to the increased resistance to 

permeation. The Ar permeance for SL2 membrane after the first coating was 

1.51 10-7  mol m-2 s-1 Pa-1 mol m-2 s-1 Pa-1 which dropped to 1.38 10-7 mol m-2 

s-1  Pa-1. After the first coating, the highest H2/Ar selectivity was 3.88 at 373 K 

and 0.4 bar which was lower than the theoretical Knudsen selectivity of 4.45 as 

shown in figure 6.67. However, after the second coating, the selectivity dropped 

to 3.16 at 298 k and 0.05 bar which is lower than the theoretical Knudsen 

selectivity.    
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Figure 6.66: Ar permeance agsinst the inverse square root of temperature for 

the SL2 membrane after second dip 
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Figure 6.67: H2/Ar selectivity at different temperature for the SL2 membrane 

after second dip 

 

Table 6.14: Comparison of hydrogen permeance SL1 and SL2 at 573 K and 0.4 

bar after the first and second dips 

Temp.  

  (K)  

   SL1 (1st coating) 

  (mol m-2 s-1 Pa-1) 

 

  SL1 (2nd coating)   

  (mol m-2 s-1 Pa-1) 

 

  SL2 (1stcoating)  

 (mol m-2 s-1 Pa-1) 

 

SL2 (2nd coating) 

(mol m-2 s-1 Pa-1) 

 

    

573  

         

3.12 10-7 

          

2.89 10-7 

      

4.05 10-7 

    

 3.15 10-7   

    

473 

 

 2.97 10-7 

          

2.74 10-7 

      

3.81 10-7 

     

2.93 10-7 

   

 373 

         

2.80 10-7 

          

2.62 10-7 

      

3.63 10-7 

     

2.69 10-7 

    

323  

         

2.67 10-7 

          

2.51 10-7 

      

3.46 10-7 

     

2.56 10-7 

    

298 

        

2.58 10-7 

          

2.42 10-7 

      

3.29 10-7 

     

2.49 10-7 
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Permeance for all the gases decreased when an additional layer was deposited on 

the SL2 membrane which indicates that the increase in thickness resulted in an 

increase in the membrane resistance to permeation. The inference is that the low 

hydrogen selectivity is due to the adsorption ability of the other 5 gases i.e CO2, 

N2, CH4, He and Ar through the silica membrane. A comparison of H2 permeance 

for the SL2 membrane at second coating is shown in Table 6.14 and it can be 

observed that there was a decrease in H2 permeance with increasing thickness 

after the first coating. 

 

6.4.6 Gas Permeance against Kinetic Diameter 

  
The permeance of hydrogen and the other gases investigated for the 6000 nm 

silica membrane modified with AlOOH sol  is in the order H2 > He > CO2 > CH4 > 

N2 > Ar. However, the order of the gas permeance was not in tandem with the 

order of the kinetic diameter which is CH4 > N2 > Ar > CO2 > H2 > He. It would 

have been ‘expected’ that the gas permeance will follow the order of kinetic 

diameter since the permeance is related to the size, molecular dimensions and 

also the pore structures.  

 

Hydrogen has lower kinetic diameter compared to CO2, CH4, Ar and N2 but has 

the highest permeance through the silica membrane at the temperature 

investigated i.e 298, 323, 373, 473 and 573 K. Also Helium which has the lowest 

kinetic diameter has a higher permeance compared to all the gases except 

Hydrogen. The trend can be explained in terms of the diffusion and sorption of 

the gas molecules through the membrane. Hydrogen has a greater diffusivity 

through the silica membrane compared to the other gases.  

 

6.4.7 Gas Permeance against Molecular Weight 

 
The order of molecular weight of the gases investigated is CO2 > Ar > N2 > CH4 

> He > H2.  The order of gas permeance didn’t follow the order of molecular 

weight of the gases. In fact, it is nearly an inverse relationship except for CO2 

which has the largest molecular weight but is the third in the permeance ranking. 

Hydrogen with the lowest molecular weight has the highest permeance. The 
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gases with higher molecular weight display lower permeance due to the higher 

resistance to permeation. Hence Ar, N2, CH4 with higher molecular weight show 

low permeance due to the resistance they encounter and have a lower 

permeance compared to H2 and He. This phenomenon could also explain the 

increase in gas permeance with increase in temperature because increase in 

temperature should expectedly enhance gas permeation through the pores of the 

membrane. H2 and He with lower molecular weights show a higher permeance 

compared to the gases with higher molecular weight due to the surface diffusion 

phenomenon and the low resistance to permeation. 

 

6.4.8 Observations for SL1 and SL2 membranes  

 

From the investigations for gas permeation through the SL1 and SL2 membranes 

prepared through the dip coating method, the following observations are drawn: 

 

1. Hydrogen displayed higher permeance 

compared to the 5 other gases. 

2. Gas permeance increased with 

temperature and transmembrane pressure difference but decreased with the 

number of coatings as a result of increased thickness and by implication 

enhanced resistance to permeation. 

3. The membrane selectivity for hydrogen in 

respect of the other 5 gases generally increased with temperature but 

decreased with pressure.  

4. Silica membranes are cheaper to produce 

compared to palladium membranes 

 

The silica membranes investigated in this work for hydrogen permeation 

produced low selectivity and moreover the hydrogen permeance through the 

silica membranes could be enhanced. It is therefore necessary to look further 

into other alternatives membranes with a view to achieving higher hydrogen 

permeance and selectivity at low cost. Alumina ceramic membranes are options 

in hydrogen permeation and can withstand high temperature and pressure.  
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Our next set of investigations involved testing hydrogen permeation through 

ceramic alumina membranes. 

 

6.5 Ceramic Alumina Membranes 
 

This section presents results and discussions for both the commercial ceramic 

Alumina membrane AM0 of 6000 nm average pore size and the modified 

membrane AM1. The AM0 membrane is a commercial ceramic alumina 

membrane not graded with any layer while the AM1 membrane of thickness 

10.65 µm at first dip was prepared by depositing a layer of Boehmite over the 

porous ceramic alumina support using the dip coating method.  

 

6.5.1 Single Gas Permeation Test for the Commercial Ceramic Alumina 

Support AM0 

The permeance of hydrogen and the other 5 gases (He, CO2, CH4, N2, Ar) for the 

unmodified ceramic α- alumina support AM0 and the modified γ-alumina 

membrane AM1 were investigated at pressure differential 0.05, 0.10, 0.15, 0.20, 

0.25, 0.30, 0,35 and  0.4 bar and temperature 573, 473, 373, 323 and 298 K. 

Figure 6.68 shows the hydrogen permeance at different temperature and feed 

pressure for the commercial alumina membrane AM0. 
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Figure 6.68: Hydrogen permeance against feed pressure for the ceramic alumina 

support AM0 

The increase in H2 permeance with increase in temperature and differential 

pressure indicates a direct relationship between temperature and pressure with 

hydrogen permeance. The same trend was observed for the other gases i.e. He, 

CO2, CH4, N2 and Ar as shown in figure 6.69 where it can be observed that the 

gas permeance increased with increasing temperature and pressure. However, 

the temperature effect was more significant for hydrogen compared with the 

other 5 gases. The highest permeance for hydrogen was 9.72 10-7 mol m-2 s-1 

Pa-1 observed at 573 K and a feed pressure of 0.4 bar. Hydrogen has the highest 

permeance compared to the other gases which indicates higher mobility of 

hydrogen molecules through the membrane pores as a result of the temperature 

effect leading to increasing permeance. 

 

The increase in gas permeance with temperature indicates that activated surface 

diffusion is the gas transport mechanism with some contribution of viscous flow. 

Surface adsorption is generally inversely proportional to temperature as reported 

by Li, X et al (2012) [34] and Wu et al (1993) [35] [36]. In their work and in line 

with this phenomenon, this group reported a decrease in hydrogen permeance 

with temperature. However, in this investigation, the reverse was the case 

because gas permeance increases with temperature hence the high temperature 
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enhances the surface diffusion of Hydrogen in the alumina membrane.  The 

increase in H2 permeance with increasing feed pressure also indicates a viscous 

flow gas transport mechanism [37]. The increase in gas permeance with 

increasing temperature also indicates that the rate of viscous flow is increasing 

hence the resistance to permeation is reduced as the temperature is increased 

[34].  

 

 

 

Figure 6.69: Gas permeance against temperature at 0.05 bar for the Alumina 

support. 

                

It can be observed that at 0.05 bar, hydrogen permeance was almost same with 

Helium permeance but as the temperature increased, hydrogen permeance 

gradually increased more drastically while He permeance decreased very slowly. 

The same trend was observed for the other gases, CO2, CH4, N2 and Ar which 

also increased slowly. The rapid increase in the permeance of hydrogen indicates 

that hydrogen permeance is dependent on temperature and differential pressure 

which indicates a viscous flow mechanism.  
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The observed maximum permeance for hydrogen is 4.89 10-7 mol m-2 s-1 Pa-1 

which is at least one order of magnitude higher than the permeances of the other 

gases at same temperature and pressure. An increase in permeance with 

temperature indicates a gas transport mechanism other than Knudsen because in 

Knudsen diffusion, gas permeance will be independent of pressure and will 

decrease with temperature. This suggests that the gas transport mechanism in 

this investigation is activated surface diffusion with contribution of viscous flow. 

 

 

 

Figure 6.70: H2/N2 selectivity against feed pressure for the alumina support AM0 

 

It can be observed from figure 6.70 that the H2/N2 selectivity is in the range   

1.29 – 2.23 and the highest selectivity -2.23- at 0.05 bar and 298 K is lower 

than the theoretical Knudsen selectivity of 3.73 and indicates that the gas 

transport mechanism is activated surface diffusion with contribution of viscous 

flow. This is because for Knudsen diffusion, the selectivity would have been 

higher than theoretical Knudsen selectivity. Although there was no particular 

trend for gas selectivity for all the gases investigated, the selectivity generally 

increases with temperature but decreases with pressure which also suggests a 

viscous flow transport mechanism.  
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Tables 6.15. 6.16 and 6.17 show the H2/N2, H2/CO2 and H2/Ar selectivity. From 

the results, none of the selectivities was above the theoretical Knudsen 

selectivity values. The low selectivity can be attributed to the decrease in the 

contribution of surface adsorption in gas permeation through the membrane and 

a contribution of viscous flow regime. The low selectivity could also be attributed 

to defects or pin holes in the membrane which also indicates viscous flow gas 

transport mechanism. The H2/He selectivity is in the range 1.08 – 1.22. 

 

It should be noted that the membrane displayed selectivity for all the gases 

relative to hydrogen although it was low and below the theoretical Knudsen 

value. In terms of gas permeance/molecular weight relationship, results indicate 

that H2 and He with lower molecular weight permeated faster than the other 

gases i.e. CO2, N2, CH4 and Ar. The permeance of the gases investigated doesn’t 

follow the order of the molecular weight of the gases which is as follows: CO2 

(44.01)>Ar (39.948)> N2 (28.0134)>CO (28.011)>CH4 (16.044)>He (4.02)> H2 

(2.016). 

 

Table 6.15: H2/N2 and H2/He selectivity for the Alumina support AM0 

            H2/N2 Selectivity             H2/He Selectivity 

Feed 

Pressure 

(Bar) 

573                

  K 

473 

  K 

373 

  K 

323 

  K 

298 

  K 

573 

  K 

473 

  K 

373 

  K 

323 

  K 

298 

  K 

0.05 1.78 1.97 2.11 2.17 2.23 1.22 1.18 1.13 1.17 1.15 

0.10 1.56 1.62 1.69 1.49 1.72 1.13 1.21 1.14 1.15 1.11 

01.5 1.45 1.52 1.51 1.53 1.58 1.16 1.13 1.18 1.17 1.12 

0.20 1.36 1.39 1.42 1.46 1.43 1.17 1.19 1.15 1.16 1.14 

0.25 1.31 1.36 1.34 1.38 1.41 1.10 1.14 1.18 1.13 1.18 

0.30 1.33 1.3 1.32 1.35 1.37 1.15 1.11 1.14 1.11 1.09 

0.35 1.37 1.44 1.46 1.48 1.51 1.14 1.16 1.19 1.18 1.13 

0.40 1.29 1.32 1.35 1.37 1.39 1.16 1.12 1.16 1.13 1.08 
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Table 6.16: H2/CO2 and H2/CH4 selectivity for the Alumina support AM0 

 

Table 6.17: H2/Ar selectivity for the Alumina support AM0 

 
 

            H2/CO2 Selectivity             H2/CH4 Selectivity 

Feed 

Pressure 

    (Bar) 

573 

  K 

473 

  K 

373 

  K 

323 

  K 

298 

  K 

573 

  K 

473 

  K 

373 

  K 

323 

  K 

298 

  K 

0.05 1.24 1.31 1.35 1.28 1.19 1.53 1.71 1.82 1.93 1.67 

0.10 1.27 1.20 1.23 1.22 1.18 1.39 1.54 1.49 1.63 1.58 

01.5 1.21 1.26 1.23 1.28 1.18 1.29 1.31 1.46 1.52 1.63 

0.20 1.29 1.28 1.34 1.33 1.24 1.23 1.31 1.25 1.28 1.29 

0.25 1.11 1.13 1.15 1.14 1.16 1.17 1.19 1.23 1.28 1.31 

0.30 1.10 1.12 1.17 1.09 1.12 1.14 1.15 1.19 1.18 1.17 

0.35 1.15 1.12 1.18 1.14 1.15 1.12 1.17 1.16 1.19 1.16 

0.40 1.12 1.14 1.15 1.14 1.16 1.14 1.19 1.14 1.18 1.16 

  Feed 

Presure 

  (Bar) 

                                              

 
                                 H2/Ar Selectivity 

        573 K        473 K      373 K       323 K        298 K 

      0.05       2.21       2.32       2.45       2.29        2.54 

      0.10       1.86       2.23       2.28       2.25        2.71 

      0.15       1.76       2.09       2.16       2.19        2.58 

      0.20       1.66      2.11       2.06       1.93        2.82 

      0.25       1.61      1.97       2.01       1.76        2.23 

      0.30       1.42      1.77       1.82       1.73        1.89 

      0.35       1.48      1.78       1.63       1.59        1.57 

      0.40       1.25      1.64       1.53       1.59        1.62 
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6.5.2. Gas Permeance against Kinetic Diameter for the AM0 Membrane 
 

There was a correlation between the order of permeance of the gases and their 

kinetic diameter as shown in figure 6.71. The order of permeance didn’t exactly 

follow the order of kinetic diameter of the gases for the alumina membrane. 

Order of kinetic Diameter: CH4 (3.8)>N2 (3.64)>Ar (3.4)>CO2 (3.3)>H2 

(2.89)>He (2.65) The order of permeance of the gases is as follows: H2>He>CO2 

>CH4 >Ar>N2       

   

 

Figure 6.71: gas permeance against kinetic diameter at 573 K and 0.05 bar for 

the alumina support AM0 

 

The Order of permeance is as follows: H2>He>CO2 >CH4 >Ar>N2 

Hydrogen permeated faster than all the other 5 gases despite having a lower 

kinetic diameter (2.89 Å) than all the gases except He (2.65 Å). The observed 

permeance of H2, He and CO2 with lower K.D was much higher than that of N2, Ar 

and CH4 with higher K.D. H2 with a smaller K.D can fill the pores of the 

membrane more readily than the CH4, N2 and Ar with higher K.D at low 

temperature where these smaller molecules have better mobility within the 

membrane pores [36].  
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The higher permeance of H2 is due to the effect of surface diffusion through the 

alumina membrane. This trend also suggests viscous flow mechanism in the H2 

transport through the membrane. There is a higher hindrance to permeation for 

the heavier gases- CO2, Ar, N2 and CO while the lighter gases permeated faster 

through the membrane. 

 

6.5.3 Gas Permeation Tests for the Modified Alumina Membrane AM1 
 

To plug any pin holes or defects and enhance hydrogen permeation, the Al2O3 

tubular support was modified with Boehmite sol through successive deposition of 

layers using the dip coating method. The thickness of the membrane was 

calculated using the weight gain method as 10.65 µm. Figure 6.72 shows the 

hydrogen permeance of the modified γ-alumina membrane AM1 after the first 

coating. The thickness of the membrane after first coating determined using the 

weight gain method is 10.65 µm. The results indicate that a maximum H2 

permeance observed is 9.85   10-7 mol m-2 s-1 Pa-1 was observed at 573 K and 

0.4 bar which represents an increase of 1.3   10-8 mol m-2 s-1 Pa-1 compared to 

the hydrogen permeance before the modification of the support with Boehmite 

sol. 
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Figure 6.72: Hydrogen permeance against feed pressure for the modified AM1 

membrane after first dip 

The modification enhanced surface diffusion of hydrogen molecules through the 

membrane pores leading to increased hydrogen permeance with increasing 

temperature and pressure. Molecular diffusion has been known to enhance the 

permeance of gases in nanoporous inorganic membranes hence these gas 

molecules with higher diffusivity permeate faster than those with lower diffusivity 

[34].  Hydrogen is more diffusive than CO2 hence hydrogen molecules enjoy 

more mobility and can retain in the permeate stream longer than CO2 and by 

implication exhibit a higher permeance compared to CO2
 [34].  Just as in the gas 

permeance for the AM1 membrane, Hydrogen permeance increased with increase 

in pressure which suggested that viscous flow existed in the gas transport for all 

the gases investigated. The H2 permeance increased with temperature but 

decreased with the number of coatings as more layers of the Boehmite sol were 

deposited as a result of the increased resistance to permeation.  

 

In the modified membrane, the pore size is expected to decrease due to the 

additional layer of the AlO (OH) sol as the sol occupies parts of the membrane 

pores. The increase in gas permeance is attributable to the enhanced solubility of 

hydrogen through the porous support as a result of the temperature and 

pressure effect. Impliedly, the resistance to H2 permeation decreases as the 

permeation temperature is increased which indicates that increasing the 

temperature enhances surface diffusion and enhanced gas permeation. The same 

trend was observed for the other gases based on the same order of permeance 

as follows: H2>He>CO2>CH4>N2>Ar. It can be observed from figure 6.72 that 

hydrogen permeance at 298 K was higher compared to that of the unmodified 

AM0 membrane. Also the increase in gas permeance was more drastic between 

298 – 373 K but it became more stable between 373 – 573 K. This indicates that 

the effect of temperature is more significant at lower temperature. 
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Figure 6.73: Gas permeance against temperature at 0.05 bar for the AM1 

membrane after first dip 

       

 

Figure 6.74: H2/N2 selectivity against feed pressure for the AM1 membrane 
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The membrane selectivity for hydrogen in respect of He, N2 and CO2 is shown in 

figure 6.74 and Tables 6.18, 6.19 and 6.20. It can be observed from figure 6.74 

and Table 6.18 that the maximum H2/N2, H2/CO2 and H2/He permselectivity are 

3.69, 1.96 and 1.52 was measured for the γ-alumina at 573 K and 0.05 bar. The 

H2/He selectivity 1.52 is higher than the theoretical Knudsen selectivity of 1.41 

while the H2/N2 selectivity 3.69 is slightly lower than the theoretical knudsen 

selectivity of 3.73. Also, as shown in Table 6.19, the maximum  H2/CO2 

selectivity is 2.09 and lower than the theoretical Knudsen value of 4. 67. In the 

same vein, the H2/CO2 permselectivity of 1.35 was observed at 373 K and 0.05 

bar for the modified Al2O3 substrate at 298 K which is below the theoretical 

Knudsen selectivity. 

 

It can be observed from Table 6.18 that the H2/N2 selectivity is in the range 1.21 

– 3.69 which indicates that the highest selectivity is above the theoretical 

Knudsen value of 3.73. This is a departure from the highest H2/N2 selectivity for 

the unmodified AM0 membrane -2.23- which was below the Knudsen value.  

The higher selectivity above the Knudsen value indicates that the gas transport 

mechanism is Knudsen diffusion with contribution of viscous flow.  

 

The same trend was observed for H2/He where the selectivity range is 1.07 – 

1.52 which is above the theoretical Knudsen value. However, as shown in Table 

6.19, the H2/CO2 selectivity was observed to be below the Knudsen selectivity 

and is in the range 1.19 – 1.96. Also, the same scenario was observed for H2/CH4 

which was in the range 1.15 – 2.01. The H2/Ar selectivity also decreased from 

the highest value of 2.82 for the AM0 membrane at 298 K and 0.20 bar to 2.76 

for the AM1 membrane at 298 K and 0.05 bar as shown in Table 6.20.  
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Table 6.18: H2/N2 and H2/He selectivity for the AM1 membrane after first dip 

 

Table 6.19: H2/CO2 and H2/CH4 selectivity for the Alumina membrane AM1 after 

first dip 

Feed 

Pressure 

(Bar) 

            

          H2/CO2 Selectivity 

             

            H2/CH4 Selectivity 

 573 473 373 323 298 573 473 373 323 298 

0.05 1.96 1.66 1.75 1.63 1.58 1.93 1.96 1.87 2.01 1.75 

0.10 1.73 1.50 1.53 1.52 1.42 2.03 1.74 1.25 1.79 1.83 

0.15 1.81 1.44 1.44 1.47 1.39 2.09 1.62 1.34 1.74 2.09 

0.20 1.76 1.39 1.52 1.24 1.21 1.67 1.48 1.21 1.26 1.29 

0.25 1.59 1.36 1.26 1.20 1.19 1.72 1.35 1.25 1.23 1.21 

0.30 1.62 1.28 1.21 1.25 1.23 1.55 1.40 1.26 1.21 1.17 

0.35 1.25 1.32 1.22 1.26 1.26 1.41 1.47 1.21 1.17 1.22 

0.40 1.27 1.27 1.27 1.22 1.18 1.38 1.37 1.20 1.12 1.15 

 

 

Feed 

Pressure 

(Bar) 

           

          H2/N2 Selectivity 

             

           H2/He Selectivity 

 573 473 373 323 298 573 473 373 323 298 

0.05 3.69 3.28 2.36 2.53 2.24 1.52 1.47 1.29 1.25 1.23 

0.10 3.43 2.85 2.27 2.06 2.27 1.47 1.25 1.26 1.28 1.17 

01.5 2.97 2.46 2.19 2.04 2.06 1.42 1.22 1.21 1.21 1.13 

0.20 2.38 2.13 2.06 2.03 1.83 1.38 1.21 1.20 1.24 1.07 

0.25 2.25 2.08 1.95 1.85 1.79 1.26 1.28 1.17 1.15 1.16 

0.30 2.13 1.97 1.78 1.56 1.54 1.29 1.19 1.09 1.19 1.18 

0.35 2.17 1.86 1.63 1.21 1.46 1.31 1.22 1.11 1.16 1.16 

0.40 2.09 1.71 1.59 1.37 1.27 1.24 1.27 1.16 1.15 1.21 
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Table 6.20: H2/Ar selectivity for the Alumina membrane AM1 after first dip 

Feed 

Presure 

 (Bar) 

                                             
 
                              H2/Ar Selectivity 

        573 K        473 K      373 K       323 K        298 K 

      0.05       2.21      2.34       2.49       2.52        2.76 

      0.10       2.27      2.16       1.88       2.24        2.71 

      0.15       2.18      1.21       1.92       2.13        2.34 

      0.20       1.93      1.93       2.37       2.07        1.92 

      0.25       1.62      1.67       1.51       3.01        2.02 

      0.30       1.72      1.61       1.42       1.53        1.94 

      0.35       1.58      1.45       1.35       1.55        1.45 

      0.40       1.63      1.24       1.29       1.42        1.26 

 

 

6.5.4 Gas permeance and Selectivity after Second Dip for the AM1 

Membrane 

 

After the permeation test for the first coating, a second layer of the AlO (OH) sol 

was deposited using the dip coating method. The thickness of the AM1 

membrane increased to 19.37 µm as a result of an additional layer of 8.72 µm 

which presents increased resistance to hydrogen permeation. The membrane 

was also dried and calcined using the same procedure as for the first coating.  

Gas permeation tests were carried out at 573, 473, 373, 323 and 298 K to 

investigate the hydrogen permeance and selectivity of the membrane. The 

maximum hydrogen permeance was 5.89 10-7  mol m-2 s-1 Pa-1 observed at 573 

K and 0.05 bar as shown in figure 6.75 which is lower than the maximum 

hydrogen permeance after the first coating. The thickness of the membrane 

increased almost 2 fold after the second dip thus significantly increasing the 

membrane’s resistance to gas permeation. It can be observed that gas 

permeance increased with temperature and pressure which was the same trend 

observed after the first coating although the gas permeance was lower compared 

to the second coating.  
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Figure 6.75: Hydrogen permeance against feed pressure for the alumina 

membrane AM1 after second dip. 

 

 

Figure 6.76: Gas permeace against temperature at 0.05 bar for the AM1 

membrane after the second dip. 
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From figure 6.76, it can be observed that there was a more drastic increase in 

hydrogen permeation compared to the 5 other gases. The permeance of the 

other 5 gases was less affected by the increase in temperature compared to the 

results after the first dip. This could be attributed to the increased thickness of 

the membrane. The effect of temperature is determined by the thickness of the 

membrane and as more layers are deposited, the effect of temperature becomes 

less pronounced. It can be observed from Table 6.21 that the H2/N2 selectivity 

range 1.22 – 3.51 with the highest selectivity of 3.51 observed at 298 K and 

0.05 bar which was below the theoretical Knudsen value of 3.73.  

 

This indicates that the highest H2/N2 selectivity has decreased after the second 

dip from 3.69 to 3.51 however, the  H2/N2 highest selectivity observed after the 

first dip was 3.69 at 573 K and 0.05 bar while after the second dip, it was 3.51 

at 0.05 bar and 298 K. For the H2/He selectivity, as observed in Table 6.21, the 

range observed was 1.15 – 2.18 which is above the theoretical Knudsen 

selectivity of 1.41 and also higher than the maximum selectivity after the first 

dip -1.53.   

 

The H2/He selectivity increased from 1.53 to 2.18 after the second dip. In Table 

6.22, it can be observed that the H2/CO2 selectivity observed was in the range 

1.28 – 2.53 which is lower than the theoretical Knudsen selectivity although it 

increased from 1.96 after the first dip to 2.53 after the second dip. A similar 

observation was made for the maximum H2/CH4 selectivity as shown in Table 

6.23 which increased after the second dip from 2.09 to 2.96 which is higher than 

the theoretical Knudsen selectivity of 2.82 and suggests that the gas transport 

mechanism is Knudsen diffusion with contribution of viscous flow. The observed 

H2/Ar selectivity is in the range 1.12 – 3.09 as shown in Table 6.23 which is 

lower than the theoretical Knudsen selectivity of 4.45.    
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Table 6.21: H2/He selectivity for the Alumina membrane AM1 after second dip 

 

 

Table 6.22: H2/CO2 and H2/CH4 selectivity for the Alumina membrane AM1 after 

second dip 

Feed 

Pressure 

(Bar) 

            

         H2/CO2 Selectivity 

             

         H2/CH4 Selectivity 

 573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

573 

K  

473 

K 

373 

K 

323 

K 

298 

K 

0.05 1.62 1.94 2.03 2.05 2.53 1.90 2.02 2.21 2.51 2.96 

0.10 1.59 1.92 1.72 1.89 2.01 1.82 1.73 2.95 1.93 1.98 

01.5 1.43 1.63 1.57 1.52 1.79 1.63 1.52 1.73 1.76 1.87 

0.20 1.67 1.56 1.42 1.63 1.52 1.93 1.63 1.57 1.52 1.62 

0.25 1.28 1.49 1.61 1.67 1.39 1.52 1.65 1.28 1.40 1.49 

0.30 1.32 1.51 1.55 1.74 1.57 1.27 1.52 1.44 1.38 1.27 

0.35 1.58 1.57 1.40 1.45 1.62 1.21 1.43 1.39 1.45 1.23 

0.40 1.38 1.53 1.31 1.56 1.69 1.56 1.41 1.28 1.46 1.22 

Feed 

Pressure 

(Bar) 

           

        H2/N2 Selectivity 

            

       H2/He Selectivity 

 573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

0.05 1.59 2.09 1.96 2.09 3.51 1.42 1.45 1.21 1.31 2.18 

0.10 1.62 1.74 1.75 2.12 2.53 1.29 1.48 1.29 1.27 1.91 

01.5 1.53 1.48 1.48 1.75 1.62 1.28 1.23 1.20 1.25 1.70 

0.20 1.47 1.56 1.45 1.61 1.51 1.20 1.27 1.24 1.26 1.56 

0.25 1.31 1.25 1.42 1.53 1.73 1.16 1.21 1.21 1.21 1.20 

0.30 1.23 1.29 1.41 1.67 1.74 1.22 1.18 1.17 1.15 1.26 

0.35 1.25 1.22 1.48 1.52 1.75 1.26 1.19 1.19 1.17 1.18 

0.40 1.26 1.26 1.25 1.56 1.62 1.32 1.17 1.23 1.18 1.22 
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Table 6.23: H2/Ar selectivity for the Alumina membrane AM1 after second dip 

Feed 

Presure 

(Bar) 

                                              
   
                               H2/Ar Selectivity 

        573 K        473 K      373 K       323 K        298 K 

      0.05       1.60       1.93       1.93       2.20        3.09 

      0.10       1.57       1.79       1.86       1.79        2.21 

      0.15       1.42       1.58       1.75       1.68        2.13 

      0.20       1.36       1.49       1.22       1.49        1.64 

      0.25       1.24       1.26       1.25       1.23        1.85 

      0.30       1.51       1.15       1.27       1.22        1.56 

      0.35       1.12       1.18       1.16       1.18        1.21 

      0.40       1.23       1.27       1.23       1.21        1.27 

 

6.5.5  Gas Permeance and Selectivity after Third Dip 

 

After the third dip, the thickness of the modified membrane AM2 increased to 

27.11 µm as a result of an additional layer of 7.74 µm thickness which enhanced 

the membrane resistance to hydrogen permeation. The enhanced resistance to 

hydrogen permeation after the third dip resulted in a decrease in the hydrogen 

permeance from 5.89 10-7 mol m-2 s-1 Pa-1 after the second coating to 4.20 10-

7  mol m-2 s-1 Pa-1 as shown in figure 6.77.  
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Figure 6.77: Hydrogen permeance against feed pressure for the AM1 membrane 

after third dip  
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Figure 6.78: Gas permeance against temperature at 0.05 bar for the AM1 

membrane after third dip.               

Gas permeance increased with temperature and pressure as shown in figure 6.78 

which represents gas permeance at 0.05 bar and temperature 298 – 573 K. 

However, it can be observed that the temperature effect was more significant for 

hydrogen and helium permeation compared to the results after the second dip. 

The other gases also displayed increasing permeance with temperature especially 

Helium. Compared to the results after the second dip, it can be observed that the 

increased thickness has less effect on temperature for the third dip.  

It can be observed from Table 6.24 that the H2/N2 selectivity is in the range 1.95 

– 4.57 which represents an increase compared to the selectivity after the second 

dip. The membrane displayed hydrogen selectivity relative to all the gases except 

CO2. As shown in Table 6.26, for H2/Ar selectivity, it is only after the third dip 

that a value above Knudsen was achieved as against the previous 2 dips where 

the value was below Knudsen in both dips.  

 

Table 6.24: H2/N2 and H2/CO2 selectivity for the alumina membrane AM1 after 

third dip 

Feed 

Pressure 

(Bar) 

            

           H2/N2 Selectivity 

             

       H2/He Selectivity 

 573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

0.05 4.57 4.21 3.79 3.23 3.19 1.42 1.54 1.51 1.63 1.71 

0.10 3.88 3.95 4.24 3.51 3.42 1.26 1.27 1.46 1.48 1.63 

01.5 3.19 3.63 3.88 3.57 3.55 1.22 1.21 1.38 1.41 1.41 

0.20 2.59 2.69 3.21 2.75 3.23 1.26 1.20 1.43 1.39 1.17 

0.25 2.63 2.41 2.73 2.72 3.45 1.31 1.25 1.21 1.25 1.24 

0.30 2.08 2.55 2.44 2.97 2.91 1.19 1.17 1.09 1.19 1.19 

0.35 1.95 2.29 2.19 2.45 3.01 1.53 1.26 1.11 1.12 1.22 

0.40 2.03 2.87 2.21 2.26 2.73 1.17 1.22 1.16 1.23 1.18 
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Table 6.25: H2/CO2 and H2/CH4 se;ectivity for the Alumina membrane AM1 after 

third dip 

Feed 

Pressure 

(Bar) 

            

      H2/CO2 Selectivity 

             

      H2/CH4 Selectivity 

 573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

573 

K 

473 

K 

373 

K 

323 

K 

298 

K 

0.05 2.21 2.48 2.42 2.71 2.63 1.95 3.02 2.71 2.54 2.58 

0.10 1.93 2.21 2.33 2.58 2.85 2.24 2.56 2.63 2.26 2.47 

01.5 1.24 1.85 2.17 2.25 2.21 1.84 1.95 2.12 2.04 2.14 

0.20 1.53 1.71 1.82 1.69 1.73 1.66 1.82 1.97 1.96 2.56 

0.25 1.45 1.68 1.73 1.54 1.86 1.51 1.73 2.05 1.73 2.18 

0.30 1.36 1.73 1.50 1.49 1.66 1.56 1.75 1.84 1.61 1.90 

0.35 1.42 1.52 1.53 1.38 1.57 1.43 1.63 1.73 1.68 1.73 

0.40 1.25 1.36 1.36 1.41 1.55 1.39 1.59 1.67 1.62 1.66 

 

Table 6.26: H2/Ar selectivity for the Alumina membrane AM1 after third dip 

Feed 

Presure 

 (Bar) 

                                              
 
                              H2/Ar Selectivity 

        573 K        473 K      373 K       323 K        298 K 

      0.05       5.21       5.52       5.52       4.85        4.43 

      0.10       4.95       5.07       5.24       4.20        4.50 

      0.15       4.56       4.93       4.44       3.85        3.86 

      0.20       4.06       4.23       4.25       3.65        3. 21 

      0.25       3.50       3.60       3.74       3.14        3.74 

      0.30       3.32       4.02       3.77       3.25        3.55 

      0.35       3.07       3.75       3.62       3.52        3.62 

      0.40       2.86       3.42       3.26       3.27        3.73 
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6.5.6  Gas permeance after fourth Dip 

 

After depositing the fourth AlO (OH) layer, the thickness of the AM2 membrane 

increased to 34.85 µm due to an increased 7.74 µm thickness of the fourth layer. 

However, after the 4th coating, only hydrogen and CO2 permeated through the 

membrane. While hydrogen permeated through the membrane at all the 

temperatures investigated, CO2 permeance was observed at all temperature 

investigated except room temperature (573, 473, 373 and 323 K and 

transmembrane pressure difference of 0.05 – 0.4 bar). As shown in figure 6.79, 

the maximum hydrogen permeance observed is 8.50 10-8  mol m-2 s-1 Pa-1 at 

573 K and 0.4 bar which indicates a significant decrease in the hydrogen 

permeance of 3.35 10-7  mol m-2 s-1 Pa-1 compared to the results after the third 

dip.  

The maximum CO2 permeance observed was 6.73 10-8  mol m-2 s-1 Pa-1 

observed at 573 K and 0.4 bar which is lower than that after the third coating. 

The inability of the other gases i.e. He, N2, CH4 and Ar to permeate through the 

membrane is attributable to the enhanced thickness of the membrane. There 

was not enough driving force for the gases to overcome the membrane 

resistance to permeation as a result of the increased thickness of the membrane. 

From the H2/CO2 selectivity of the membrane shown in Table 6.27, it can be 

observed that the maximum selectivity was 1.28 at 473 K and 0.05 bar which is 

lower than the theoretical Knudsen selectivity of 4.67. The observed trend 

through the permeation investigation is that the H2/CO2 selectivity has been 

consistently below Knudsen at successive dips.   
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Figure 6.79: H2 and CO2 permeance against feed pressure for the AM1 

membrane after fourth dip. 

 

Table 6.27: H2/CO2 selectivity for the Alumina membrane AM1 after fourth dip 

  

 
 

Feed 

Presure 

  (Bar) 

  
     
                                   H2

/CO2  Selectivity 

        
     573 K 

        
     473 K 

      
     373 K 

       
     323 K 

      0.05       1.16       1.22       1.20       1.22 

      0.10       1.12       1.26       1.15       1.19 

      0.15       1.18       1.06       1.06       1.20 

      0.20       1.05       1.08       1.02       1.02 

      0.25       1.07       1.12       1.01       1.06 

      0.30       1.15       1.19       1.04       1.02 

      0.35       1.09       1.21       1.17       1.09 

      0.40       1.10       1.16       1.05       1.01 
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6.5.7 Hydrogen Permeance after fifth Dip 
 

After the 5th dip, the thickness of the AM1 membrane increased to 41.63 µm 

after the deposition of the 5th layer of 6.78 µm thickness. However, only 

hydrogen permeated through the membrane and no other gas permeance was 

observed. Hydrogen is more diffusive compared to the other gases investigated 

hence there was enough driving force for it to permeate through the membrane 

despite the increased thickness resulting from the 5 successive layers deposited 

over the porous support. The maximum hydrogen permeance decreased to 6.93 

10-8  mol m-2 s-1 Pa-1  as shown in figure 6.80 due to the increased resistance to 

permeation as a result of the additional layer. The significance of this 

investigation is that at certain thickness, the AlO (OH) modified alumina 

membrane can permeate only hydrogen. This is important especially for scaling 

up purposes and also in the search for more options for hydrogen permeation 

using composite membranes. 

 

  

Figure 6.80: Hydrogen permeance against feed pressure for the AM1 membrane 

after fifth dip  
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6.5.8 Observations for the AM0 and AM1 Membranes 

 
The following observations were made from the investigations for modification of 

alumina support using Boehmite sol: 

1. Alumina membranes show good adaptability for hydrogen permeation when 

modified with Boehmite.  

2. Alumina membranes when modified with Boehmite sol at a certain thickness 

permeates only hydrogen but not the other 5 gases: He, CO2, N2, CH4 and Ar. 

3. The findings for the modified membrane AM2 are significant especially for 

scaling up purposes. 

4. Alumina supports modified with Boehmite sol present options in hydrogen 

purification in terms of cost.    
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CHAPTER 7 

7.0 Conclusions and Recommendations for Future Work 

 

7.1 Validation of Results 

The Uniformity of coating has a significant effect on the hydrogen permeation 

behavior of the membrane. A more uniformly coated and shiny finish was 

obtained for the Pd/Ag (Pd3) membrane from the codeposition electroless plating 

method. The Pd3 membrane displayed the highest hydrogen flux compared to 

the Pd2 and Pd1 membranes prepared using the modified and conventional 

electroless plating methods respectively. Apart from the uniformity of coating, 

other factors could also account for the higher hydrogen flux observed for the 

Pd3 membrane such as presence of leaks from graphite seals and loose bolts and 

nuts from the membrane reactor during the permeation tests.  

In the course of this work, it was observed that it is very important to fix the 

graphite seals at both ends of the membrane and replace them periodically. 

There is also the need to properly install the membrane reactor onto the 

permeation test rig and tighten the bolts and nuts properly as loose bolts and 

nuts could result in gas leaks. Also, when the membrane reactor is removed from 

the test rig, it should be cleaned properly from the inside such that no particles 

are left which could distort the placement of the membrane in the reator. The 

modification of the support with Boehmite Sol before deposition has resulted in 

enhanced hydrogen permeation for both the Palladium, Silica and Ceramic 

Alumina membranes. The Pd1 membrane was prepared without any surface 

modification with Boehmite but the 2-step sensitization and activation process 

was conducted before deposition of the palladium layer. When the ceramic 

support was modified with Boehmite before deposition for the Pd2 membrane, 

the hydrogen flux increased. However, the third membrane Pd3 prepared using 

the codeposition electroless plating method, a higher hydrogen flux compared to 

both Pd1 and Pd2 membranes was observed.  

For the Silica membranes, the SL2 membrane modified with Boehmite displayed 

a higher hydrogen permeance compared to the SL1 membrane which was not 

modified with Boehmite.  The modified ceramic Alumina membrane AM1 also 

displayed a higher hydrogen permeance compared to the AM0 membrane.  
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The Boehmite Sol plugs any defects or pinholes on the porous support thereby 

enhancing hydrogen permeation through the membrane.   

 

7.2 Conclusions 

 

Hydrogen separation and purification using inorganic composite membranes has 

been widely accepted as a viable option. However, it is still early days to posit 

that the challenges in palladium, silica and alumina membranes in hydrogen 

processes have benn fully investigated and addressed.  The major challenge in 

palladium membranes is how to achieve, thin defect free palladium layer with 

uniform densification of the active palladium layer, durability and high hydrogen 

recovery. The threat of impurities as inhibitors to hydrogen permeation and 

separation has also posed major challenge to the application of palladium 

membranes in hydrogen separation. Another challenge in palladium membranes 

has been cost and the ability to withstand harsh operating conditions. 

 

 

The summary of the conclusions in this work is as follows: 

 

1. The Pd/Ag membrane (Pd3) prepared in this work displayed a higher hydrogen 

flux compared to the Pd membranes prepared using the conventional electroless 

plating method (Pd1) and the modified electroless plating method (Pd2). 

2. A maximum hydrogen flux of 98.1 cm3 cm-2 min-1 was observed for the Pd/Ag 

membrane prepared using the codeposition electroless plating method after 

annealing the membrane in hydrogen at 873 K. This was higher than the 

maximum hydrogen for both palladium membranes prepared using the 

conventional electroless plating method (80.4 cm3 cm-2 min-1) and the modified 

electroless plating method (94.5 cm3 cm-2 min-1) under same conditions.   

 

3. Annealing the membrane in hydrogen at higher temperature enhanced the 

hydrogen flux through the membrane. The Pd/Ag membrane displayed the 

highest flux at 873 K. 
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4. The Pd/Ag membrane prepared in this work achieved a hydrogen purity of 

98.86% and increase in temperature results increasing hydrogen purity. 

Hydrogen purity through the palladium membranes was enhanced in 2 ways: By 

annealing at high temperature and alloying with silver. 

 

5. The effect of carbonaceous contaminant carbon monoxide in hydrogen 

permeation through palladium membranes and the pressure exponent n was also 

investigated. CO cause deviations from Sievert’s law but annealing the palladium 

membrane at high temperature decreases the inhibition of CO to hydrogen 

permeation through palladium membranes. 

 

6. A modified method for electroless plating was developed which skips the 

sensitization step during support modification. A maximum hydrogen flux of 

9was achived using the method compared to the conventional method which 

involves the 2 step sensitization and activation. The modified method also 

reduced the effect of contamination in the active Pd layer in hydrogen 

permeation through palladium membranes. Through this method, it was 

observed that Tin impurities during sensitization also contribute to inhibiting 

hydrogen permeation through palladium membranes and by extension, 

devaitions from Sievert’s driving force. 

 

7. The effect of carbonaceous contaminant carbon monoxide in hydrogen 

permeation through palladium membranes and the pressure exponent n was also 

investigated. CO cause deviations from Sievert’s law but annealing the palladium 

membrane at high temperature decreases the inhibition of CO to hydrogen 

permeation through palladium membranes. 

  

8. CO inhibits hydrogen permeation in palladium membranes. However, this 

effect decreases with increase in temperature and can be surpressed by alloying 

with silver. Alloying with silver drastically dampens the effect of CO in hydrogen 

permeation and achieved a sievert’s driving force with n value of 0.5.  

The Pd/Ag membrane produced in this work also achieved a higher hydrogen flux 

compared to the Pd-only membrane. 
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9. Silica membranes were investigated as alternatives and it was observed that 

these membranes display low hydrogen permeation compared to palladium 

membranes. However, silica membranes present veritable options to palladium 

membranes in terms of cost. 

 

10.  Silica membranes permeated other gases, He, CO2, N2, CH4 and Ar which is 

in contrast to a dense defect free palladium membrane that permeates only 

hydrogen.  

   

11. A method of achieving cost effective alumina membranes for hydrogen 

permeation was also developed through modification of the commercial alumina 

support with Boehmite sol. It was concluded that at certain Boehmite layer 

thickness of the alumina support, only hydrogen can permeate through the 

membrane. This is significant in scaling up of inorganic membranes for hydrogen 

processes 

 

12. In the surface modification method for alumina membranes, it was observed 

that the mean free path for intermolecular travel during collisions, decrease with 

the number of Boehmite layers. This was attributed to the decrease in pore size 

of the membrane with increase in layer thickness. The boehmite layers deposited 

onto the membrane surface lead to a change in the pore structure of the 

membrane with the pore size decreasing as a result of the additional layers.  

The decreased pore size results in enhanced resistance to hydrogen permeation 

and also serves to repair any possible defects/pinholes in the pore structure of 

the membrane. 
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7.2 Recommendations for Future Work 
 

This work recorded some achievements based on the results from the 

several experimental investigations that were conducted. However, 

research is an ongoing process and certain areas will form the basis for 

future work. These are:  

 

1. To investigate the effect of CO on hydrogen permeation at high 

temperature above 873 K so as to provide a better understanding of how 

temperature suppress deviation from Sievert’s driving force in hydrogen 

permeation so as to provide a better understanding of how temperature 

suppress deviation from Sievert’s driving force in hydrogen permeation 

through palladium membranes. 

 

2. To investigate the effect of CO on deviations from Sievert’s law based 

on the grain sizes of the membrane. It is an area where not much work 

has been carried and will provide a better understanding as to how CO 

inhibits hydrogen permeation in palladium membrane. 

 

3. To investigate the use of sweep gas in hydrogen separation using 

palladium and palladium alloy membranes at high temperature in terms of 

the effect of these sweep gases in cushioning the effect of contaminants 

such as CO on hydrogen permeation 

 

4. To investigate the effect of varying the concentration of Pd and Ag 

during codeposition to ascertain how it affects hydrogen permeation at 

different temperature and pressure. 

 

5. To investigate how the rate of electroless plating could affect the 

uniformity of coating of the palladium layer by varying the electroless 

plating time and membrane thickness. This is one way of addressing the 

problems of surface roughness and pin holes that could occur during 

electroless plating which affects densification and uniformity of coating.  
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6. To investigate the durability and long term stability of Palladium 

membranes to establish the active life of each membrane which will be 

beneficial in terms of time and resources especially for scaling up 

purposes. 

 

7. To investigate the hydrogen separation and the effect of high 

temperature annealing in Silica membranes for a better understanding on 

how the membrane’s hydrogen permeation behavior and selectivity can be 

enhanced. 

 

8. To investigate Hydrogen transport in alumina membranes from the 

relationship between mean free path and the pore size of the membrane 

at high temperature This will provide a better understanding of the 

applicable transport mechanism for hydrogen permeation. This is from the 

basis of the surface modification method for alumina membranes 

developed in this work. 
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                   Appendix A: GC Method for Gas Analysis  
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Figure A.1: A Scanned copy of Alkali Test Method used in the Varian HP 3800 

Gas Chromatograph for Gas Analysis 
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Appendix B: Typical GC Chromatogram Result for Single Gas Hydrogen 

Permeation Test  

 

 

Figure B1: A Scanned copy of the result for hydrogen single gas permeation test 

using the Varian HP 3800 Gas Chromatograph 
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Figure B2: A Scanned copy of the Gas Chromatogram showing clear hydrogen 

peak based on the result shown in figure B1. 

. 
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Appendix C: Typical GC Chromatogram Result for Mixed Gas Hydrogen 

Permeation Test  

 

                

 

Figure C1: A Scanned copy of result for hydrogen mixed gas separation test 

using the Varian HP 3800 Gas Chromatograph showing the gas retention times. 
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Figure C2: A Scanned Copy of the Gas Chromatogram showing clear H2 peak and 

its retention time (0.495), CO retention time (2.419) and N2 (1.151) that are 

also shown in figure C1. 
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Appendix D: Membrane Characterization: SEM and EDXA for Pd1 

Membrane 

 

The Pd1 membrane was characterized using the Leo Model S430 Scanning 

Electron Microscopy (SEM) which is linked online with Energy Dispersive X-ray 

Analysis (EDXA) to obtain the morphological and structural features of the 

membrane. Small pieces of the membrane were broken after the permeation 

tests and used to obtain the elemental composition of the membrane from the 

energy dispersive x-ray analysis (EXDA). 

 

The SEM micrographs in Figure D1 (A-C) show the Pd layer at inner, outer and 

cross sections as a thin layer with a thickness of 2 µm. The image also 

demonstrates a reasonably clear interface between the Pd layer and the 

macroporous alumina support which suggests a good adhesion of the layer with 

the support. It can also be observed that the grain sizes are initially small and 

uniform around the edges but became open inwards while the outer section has 

bigger grain sizes. Small sol particles results in immediate formation of a gel 

layer and avoidance of pore clogging.  

 

Figure D2 shows the EDXA results indicating the elemental peaks while figure D3 

shows the elemental composition of the palladium membrane which indicates the 

presence of Pd and other elements. The elements from the alumina support are 

Al and Ti while Pd is from the metallic layer. Sn is from the solution used in the 

sensitization step during the 2 step support modification. However, it can also be 

observed from figure D3 that there are other elements such as Na, C and O 

which could be from the water used in the preparation of the solution and other 

possible handling imperfections. Pd has the highest weight % of 56.75 while Sn 

also is reasonably present in the sample at 3.54 %. The Sn could contaminate 

the active layer and impede hydrogen permeation. 
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(A). Cross section                                  (B). Outer section  

                                  

                                               (C). Inner section                                     

 

Figure D1: SEM Micrographs for Pd1 membrane showing (C) Inner (B) Outer and 

(A) Cross Section  
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      Figure D2: EDXA spectrum showing elemental peaks for the Pd1 membrane 
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Figure D3: Elemental composition for the Pd1 membrane 

 

Spectrum processing :  

Peaks possibly omitted : 1.760, 18.650 keV 

 

Processing option : All elements analyzed (Normalised) 

Number of iterations = 3 

 

Standard : 

C    CaCO3   1-Jun-1999 12:00 AM 

O    SiO2   1-Jun-1999 12:00 AM 

Na    Albite   1-Jun-1999 12:00 AM 

Al    Al2O3   1-Jun-1999 12:00 AM 

Ti    Ti   1-Jun-1999 12:00 AM 

Pd    Pd   1-Jun-1999 12:00 AM 

Sn    Sn   1-Jun-1999 12:00 AM 

 

Element Weight% Atomic%  

         

C K 14.79 38.57  

O K 18.65 36.50  

Na K 2.56 3.49  

Al K 2.72 3.16  

Ti K 0.98 0.64  

Pd L 56.75 16.70  

Sn L 3.54 0.93  

    

Totals 100.00   
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Appendix E: Calculation of Hydrogen Flux 
 

The flux for hydrogen through the Palladium membrane was calculated at each 

temperature and transmembrane pressure. Only the small support (OD= 7.34 

mm, ID= 10.07 mm) was used to deposit thin palladium films and the hydrogen 

flux calculations apply to only the palladium membranes. 

The following presents a sample calculation for Hydrogen flux through the 

palladium membranes from the measured values and stated conditions: 

                       Transmembrane Pressure differemce: 0.4 bar 

                       Temperature : 3500 C (623 K) 

                       Membrane O.D = 10.07 

                       Pd Layer thickness = 2.116 µm 

                       Hydrogen flow rate = 1.117 L/min 

 

Sample Calculation: 

                       Flux = Flow rate/ Area 

 To calculate the area (Small membrane):  

 

To determine r2 (radius for O.D) and r1 (radius for I.D) 

 

                       O.D = 10.07 mm 

                             = 0.01007 m 

  

To determine the O.D, there is need to include the Pd layer (Pd layer 2 m ): 

                                O.D = (0.01007 + 2 10 -6) m  

                                      = 0.01007 

                                   r2
 = 

2

010702.0
 = 0.005351 m          
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d

c
   , Therefore   c = d   

                             Area = 
2r  

A =Circumference (0.0053512 )142.3  

A = (10.07 )142.3 2 (0.00002863 )142.3  

   = 1130.26 00002863.0  

   = 0.10164 m2 

    = 1016.4 cm2 

 

                        Hydrogen flow rate = 1.117 L/min 

                                                    = 1117 cm3 min-1 

                         Hydrogen flux = 
4.1016

1117
  

                                              = 1.10 cm3 cm-2 min-1 
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Appendix F: Sample Calculation of Gas Permeance and Selectivity 
 

The permeance of the single gases was calculated for the Silica and Alumina 

membranes. The big support was used to fabricate the Silica and Alumina.  

 

Sample calculation of Gas permeance:  

                        Transmembrane Pressure differemce: 0.4 bar 

                        Temperature : 3000 C (573 K) 

                        Membrane O.D = 25.91 mm 

                        Membrane I.D  =  20.07 mm 

                        He flow rate = 0.184  L/min 

               Molar volume of a gas at S.T.P = 22.4 L 

                                 
d

c
   , Therefore   c = d   

                            Area = 
2r  

To calculate the area of the Palladium membrane with O.D of 10.07 mm 

O.D = 25.91 mm 

Radius r = O.D/2  

= 25.91/2 = 12.96 mm 

= 0.01296  

A =Circumference (0.012962 )142.3  

A = (12.96 )142.3 2 (0.0001678 )142.3  

   = 40.72 00052722.0  

   = 0.02146 m2 

    = 214.87 cm2 
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                        Permeance = 
4000087.214

)4.22/60/184.0(


 

                        =1.59 
1110  mol m-2 s-1 pa-1 

 

                           Sample calculation for Selectivity: 

                       Stated conditions from permeation experiment: 

                       Differential Pressure = 0.25 bar 

                       Temperature = 573 K 

                       H2 permeance = 3.23 610 mol m-2 s-1 Pa-1  

                       CO2 permence = 1.41 610  mol m-2 s-1 Pa-1  

 

                       Selectivity 
2/2 COH = 

6

6

1041.1

1023.3







 

                                                 = 2.29  
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Appendix G: Calculation of Thickness for Silica Membrane 

 

The weight gain method was used to calculate the thickness of the silica and 

alumina layers in both membranes. The method involves weighing the support 

before and after deposition of the silica layer. For both membranes, the big size 

membrane with the following specification was used: I.D = 20.07 mm,        

O.D= 26.0 mm, Effective length = 0.32 m 

 

Silica membrane SL1 after first dip: (Conventional method):  

First Dip in Silica Solution:  

                               Weight of membrane = 279.80 g 

                               Weight after dipping = 293.5 g 

                               Weight after drying and calcination = 281.30 g 

                               Weight gain = Weight after drying – Weight of Membrane  

                                                 = 281.30 – 279.80 

                                                 = 1.50 g 

 

                                Surface Area = D L 

 

Where D is the Outer Diameter of the membrane, L is the effective length of the 

membrane. 

                                 D= 2.6 cm 

                                L = 0.32 m 

               Surface Area = 3.142   2.6   32 

                                  = 261.41 cm2 

                              Density of Silicone 2.33 g/cm3                                                            

                             Volume = weight gain/density 

                                        = 1.50 g/2.33 gcm3 

                                        = 0.64377 cm3 
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                               Thickness = Volume/ Surface Area 

                                              = 0.64377 cm3/261.41 cm2 

                                              = 0.0024627 cm 

                                              = 24.627 µm 

 

Second Dip in Silica Solution:  

                           Weight of membrane after permeation test= 280.7 g 

                           Weight after dipping = 295.1 g 

                           Weight after drying and calcination = 281.8 g 

                           Weight gain = Weight after drying – Weight of Membrane  

                                             = 281.8 – 280.7 

                                             = 1.1 g 

Thickness based on same procedure used for the first dip = 18.06 µm 

So to obtain the total thickness, the thickness for the second dip should be added 

to the thickness for the first dip: 

                                              24.627 + 18.06 = 42.687 µm 

 

Therefore, after the first and second dips the thickness of the SL1 membrane is 

42.687 µm. 
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First Dip Silica membrane SL2 (Modified method) 

It should be noted that for the modified method, the support was dipped in 

Boehmite solution prior to the deposition of the Silica layer. 

 

                                  Weight of support = 276.7 g 

                                  Weight after dipping in Boehmite solution = 279.3 g 

                                  Weight after drying = 277.9 g 

                                  Weight after dipping in Silica Solution = 287.5 g 

                                  Weight after drying and calcination = 278.4 

                                  Weight gain = 278.6 - 276.7 

                                                    = 1.9 g 

Thickness of the membrane based on the procedure in calculating the thickness 

after first dip = 31.19 µm 

 

Second dip Silica membranes SL2 (Modified method): 

                            Weight of support after permeation test = 278.1 g 

                            Weight after dipping in Boehmite solution = 278.9 g 

                            Weight after drying = 278.3 g 

                            Weight after dipping in Silica solution = 298.4 g 

                            Weight after drying and calcination = 279.2 

                            Weight gain = 279.3 – 278.1  

                                              = 1.2 g 

                               Thickness = 19.70 µm 
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Therefore, the thickness of the SL2 membrane after the first and second dips    = 

27.91 µm + 19.70 µm 

= 50.89 µm 

 

Therefore, after the first and second dips, the thickness of the silica membrane 

prepared using the modified dip coating method is 50.89 µm  
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Appendix H: Membrane Characterisation for Ceramic Alumina Membrane 

 

The SEM micrographs and EDXA elemental composition of the α-alumina 

membrane AM1 are shown in Figure 5.2 and Table 5.1 respectively. The 

morphology of the cross section is shown in Figure 5.2 (a). The outer section in 

Figure 5.2 (b) shows a more homogeneous pore structure with a smaller grain 

size compared to both the inner and cross sections. Smaller grain sizes usually 

lead to better gas selectivity of the membrane due the relatively smaller 

boundaries associated with small grains. 

 

    

(a) Cross section                             (b)  Inner Section 

 

                                  

                                            (c ) Outer section                                  

               Figure H1: SEM Micrographs of Ceramic Alumina Membrane AM0 
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Figure H2: EDXA Results for Ceramic Alumina Membrane AM0 
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Figure H3: Elemental Composition of Ceramic Alumina Membrane AM0 

 

 

 

 

Spectrum processing :  

No peaks omitted 

 

Processing option : All elements analyzed (Normalised) 

Number of iterations = 4 

 

Standard : 

O    SiO2   1-Jun-1999 12:00 AM 

Al    Al2O3   1-Jun-1999 12:00 AM 

P    GaP   1-Jun-1999 12:00 AM 

Ti    Ti   1-Jun-1999 12:00 AM 

 

Element Weight% Atomic%  

         

O K 49.67 72.96  

Al K 6.06 5.28  

P K 0.13 0.10  

Ti K 44.14 21.66  

    

Totals 100.00   
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Appendix I: Calculation of Thickness for Modified Ceramic Alumina 

Membrane AM1 

 

First Dip AM1 membrane:  

                       Weight of the Support before dipping  = 277.6 g 

                       Weight of membrane after dipping = 281.3 g 

                       Weight of membrane after drying and calcination = 278.7 g 

                       Weight gain = Weight after drying – Weight of Membrane  

                                         = 278.7 – 277.6 g 

                                         = 1.1 g 

 

                      Surface Area = D L 

Where D is the Outer Diameter of the membrane, L is the effective length of the 

membrane. 

                                      D= 2.6 cm 

                                      L = 0.32 m 

                     Surface Area = 3.142   2.6   32 

                                        = 261.41 cm2 

 

                     Density of Alumina 3.95 g/cm3 

                     Volume = weight/density 

                                 = 1.1 g/3.95  gcm3 

                                 = 0.278481 cm3 

                     Thickness = Volume/ Surface Area 

                                    = 0.278481 cm3/261.41 cm2 

                                    = 0.0010653 cm 

                                    = 10.65 µm 
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Second dip AM1 membrane: 

                       Weight of the AM1 membrane after permeation test = 278.5 g  

                       Weight of membrane after dipping = 283.6 g 

                       Weight of membrane after drying and calcination = 279.4 g 

                       Weight gain = Weight after drying – Weight of Membrane  

                                         = 279.4 – 278.5  

                                         = 0.9 g 

 

Thickness after second dip = 8.72 µm 

                      Total thickness = 10.65 + 8.72  

                                             = 19.37 µm 

 

Third Dip AM1 membrane: 

                     Weight of the AM1 membrane after permeation test = 279.3 g 

                     Weight of membrane after permeation test = 279.3 g 

                     Weight of membrane after drying and calcination = 280.1 g 

                     Weight gain = Weight after drying – Weight of Membrane  

                                       = 279.9 – 279.3  

                                       = 0.8 g 

                        Thickness = 7.74 µm 

 

Total thickness after first, second and third dips:  

                                      = 19.37 + 7.74 

                                      = 27.11 µm 

 

Fourth Dip AM1 membrane: 

                      Weight of the AM1 membrane after permeation test = 279.8 g 
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                      Weight of membrane after dipping = 289.8 g 

                      Weight of membrane after drying and calcination = 280.6 g 

                      Weight gain = Weight after drying – Weight of Membrane  

                                        = 280.6 – 279.8  

                                        = 0.8 g 

 

                         Thickness = 7.74 µm 

                 Total thickness = 27.11 + 7.74 

                                        = 34.85 µm 

 

Fifth Dip AM1 membrane: 

                        Weight of the AM1 membrane after permeation test = 280.5 g 

                       Weight of membrane after dipping = 295.7 g 

                       Weight of membrane after drying and calcination = 281.3 g 

                       Weight gain = Weight after drying – Weight of Membrane  

                                         = 281.2 – 280.5  

                                         = 0.7 g 

 

                              Thickness = 6.78 µm 

                       Total thickness = 34.85 + 6.78 = 41.63 µm 
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