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ABSTRACT 

This thesis presents results of a successful simulation study using CO2-EOR 

technique to enable production from an offshore heavy oil field, named here as 

Omega, which is located offshore West Africa at a water depth around 2000 m. 

The findings and contributions to knowledge are outlined below: 

1. Long distance CO2 transportation offshore – The solution to the space 

and weight constraints offshore with respect to CO2-EOR, is a tie-back via 

long distance CO2 dense phase transportation from onshore to offshore.  

2. Cold heavy oil production (CHOP) using CO2-EOR technique - Based 

on conditions investigated, Miscible Displacement was found to be more 

efficient for deepwater production. However, Immiscible Displacement can 

offer greater reliability with regards to CO2 sequestration.  

3. CO2 sequestration during CHOP using CO2-EOR technique – Lower 

CO2 may be released post start-up operation, followed by gradual decline 

of CO2 retention after the production peak. CO2 retention increases with 

increasing reservoir pressure, starting with 17.7 % retention at 800 psig 

to 32.8 % at 5000 psig, based on peak production analysis. 

4. Techno-economic Evaluation – Miscible displacement is asssociated 

with higher cash flow stream that extend throughout the lifetime of the 

asset due to continuous production while Immiscible Displacement has a 

longer payback period (in order of 22 years) due to the time lag between 

the CO2 injection and the incremental heavy oil production. 

5. Mathematical Modelling – Improved mathematical models based on 

existing theories are proposed, to estimate the CO2 requirement and 

heavy oil production during CHOP using CO2-EOR technique, and to 

provide an operating envelope for a wide range of operating conditions. 

As part of further work, the proposed models will require more refinement 

and validation across a broad range of operating conditions, could be adapted 

and modified to increase its predictive capability over time. 

Keywords: CO2-EOR, Heavy Oil, Recovery, Cold Process, Miscible, 

Immiscible, Displacement, System Modelling, CO2 Sequestration. 
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NOMENCLATURE 

A = Cross sectional area of the pipe     in2 

Bo = formation volume factor     (rb/stb) 

CE = EOR Constant       - 

Cd = Drag coefficient,       - 

D  = Pipe inside diameter       in  

E  = Panhandle/Weymouth efficiency factor   - 

Eo  = Eotvos number       - 

f = Moody friction factor      - 

g  = Gravitational acceleration      (32.2 ft/ s2) 

gc  = Conversion factor (32.2 (lbm ft) / (lbf s2))     

GLR = Gas Liquid Ratio       scf/bbl 

GOR = Gas Oil Ratio       scf/bbl 

H1      = Upstream elevation       ft 

H2      = Downstream elevation       ft 

k = Effective horizontal permeability    md 

L  = Length         mile  

Mr  = Morton number 

Mw  = Molecular weight       lbm/lbmol 

Pb = Bubble point pressure      psi 

phf = Flowing tubing head pressure     psi 

P  = Pressure         psi 

P1  = uUpstream pressure       psi 

P2  = Downstream pressure       psi 

∆PHH  = Pressure change due to hydrostatic head    psi 

PI  = Productivity index       stb/d/psi 

QG  = Gas flow rate        ft3/d 

Q   = Volumetric  flowrate      ft3/d 

S        = Elevation adjustment parameter, dimensionless 

Re or NRe = Reynolds Number 

R  = Ideal gas constant      j/mol K 

re  = Radius of drainage       ft 

rw  = Radius of wellbore       ft 
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S#  = Total skin 

T  = Temperature        (°F) 

vsl = Terminal settling velocity     ft/s  

We = Weber Number 

za  = Average compressibility factor 

∆z  = Elevation change       ft 

WC = Water cut 

T  = Average temperature      °F 

u = Flow velocity       ft/s  

2CO  = Specific gravity of CO2 

z  = Gas deviation factor at T and P  

Greek Symbols 

σ = Interfacial tension 

β = Angle of inclination  

  = Dynanic Viscosity      cP 

ρ  = Density         lb/ft3 

Subscript 

G, g  = Gas 

CO2 = Carbon Dioxide 

SI Metric Conversion Factors 

cP x 1.0*E-03 = Pa·s 
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1. INTRODUCTION 

With heavier hydrocarbons accounting for almost triple the combined world 

reserves of conventional oil and gas, it sounds rational to think that the answer 

to the challenges of our future energy supply resides in heavy oil exploitation.   

Heavy oil deposits are present worldwide both onshore and offshore. Offshore 

heavy oil development poses significant challenges, which may be associated 

with low reservoir deliverability (i.e. low pressure, low API gravity and very high 

crude viscosity); cold and difficult environment (water depth). These challenges 

require fit for purpose techniques for converting these resources into easily 

recoverable production and a reliable mathematical model to predict pressure 

drop and the gas requirements during Enhanced Oil Recovery (EOR). 

Heavy oil, owing to its physical properties, requires more than just the known 

conventional oil (light or medium crude oil) extraction techniques to facilitate its 

mobility and production to the surface.  

This chapter provides a brief statement on the technology employed to date for 

heavy oil production, the gap in the current technology, and the proposed 

methodology, which leads to the objectives of this research study.  

A brief description of the strategy for meeting these objectives is also outlined, 

and finally a succinct summary of each chapter is presented. 
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1.1 Background 

As the oil and gas fields mature and the existing reservoirs are becoming 

incapable to flow naturally, producers / operators are forced to look for 

alternatives, either new production wells or means to maintain production from 

existing wells, in order to ensure continuous cash flow and positive return on 

investment (ROI). 

Nevertheless, new technology development and progress in artificial lift have 

made feasible exploration into challenging environments, such as deepwater 

development, and have allowed more oil fields to be discovered and better 

understood. Despite the growing concern on the continuing decline in oil 

reserves worldwide, the U.S Department of Energy/Energy Information 

Administration (U.S. DOE/EIA), the Society of Petroleum Engineers (SPE) and 

other pioneers anticipate significant expansion of world oil production in the 

future due to the application of advanced oil production technology [1, 2, 3]. 

1.2 Well / Reservoir Unloading Issues and Mitigation 

Improved Oil Recovery (IOR) is known to be the solution for liquid loading 

problem in the well. The IOR includes a series of technologies such as infill 

drilling, hydraulic fracturing, horizontal drilling, advanced reservoir 

characterisation, enhanced oil recovery (EOR), and numerous other methods 

that can be used to increase the volume of recoverable oil from reservoirs. 

EOR, known as tertiary recovery and usually initiated after primary and 

secondary recovery, has been practiced since the 1950s in various conventional 

oil reservoirs, particularly in the United States. One of the EOR processes that 

will likely have the largest worldwide potential is Miscible flooding wherein 

carbon dioxide (CO2), nitrogen or light hydrocarbons are injected into oil 

reservoirs where they act as solvents to move residual oil. Amongst the three 

options, CO2 flooding has proven to be the most frequently useful technique 

given the potential environmental benefit. In the USA, geologically sourced CO2 

has been produced in Colorado and shipped via pipeline to West Texas and New 

Mexico for decades for EOR [4]. 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	19	

 

1.3 Behaviour of CO2 in the Reservoir 

The difficulties posed by deepwater oilfield production require that the 

characteristics of CO2 as a mean for recovering more oil be fully understood. The 

literature reports that the miscibility of a reservoir’s oil with the injected CO2 is a 

function of pressure, temperature and the composition of the reservoir’s oil. 

Laboratory results have demonstrated that the injection of CO2 would result in 

swelling of the oil by over 20%, a significant reduction in oil viscosity, and a 

95% reduction in interfacial tension [5]. 

“At sufficiently high pressures, CO2 is Miscible with oil, and, once dissolved, it 

has two effects. First, it causes the oil to swell, thereby lowering the oil’s 

viscosity significantly and making it flow more easily in response to pressure 

gradients. Second, under Miscible conditions, it reduces the interfacial (capillary) 

forces that cause oil to stick to the reservoir rock. An additional effect occurs in 

carbonate reservoirs, whereby injected CO2 mixes with water to form an acid 

solution that dissolves some of the rock, thereby enhancing the permeability and 

possibly changing the rock fabric in other ways” [6]. 

The substantial recovery improvement would result from excluding the water 

from the fracture flow system within the reservoir structure as the carbon 

dioxide replaces the water. The carbon dioxide would then process oil in the 

exposed blocks of matrix pores. The oil would swell, reduce in both viscosity and 

interfacial tension, and then drain into the fracture system for production at 

completions lower within the reservoir structure [7]. 

1.4 Gaps in Current Technology 

Tie-back to Offshore Platform for EOR - Long distance CO2 pipeline 

transportation from onshore to offshore for EOR application has not been 

investigated to a great extent in the past. Most offshore platforms have serious 

limitations with regards to space and weight in order to accommodate additional 

equipments / facility such as the separation unit needed for CO2 capture which 

itself is usually significant in weight. In addition, the requirement of CO2 in 

continuous process and in large scale to suit the EOR application; makes it very 

challenging if not almost impossible at this stage to look for solution of CO2 

supplies within the subsea environment. Hence, long distance tie-back for 
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supplying CO2 offshore looks very promising as emerging solution for CO2-EOR 

offshore. 

CO2-EOR for Heavy Oil Recovery Offshore -  CO2-EOR technology may be in an 

advanced stage as far as the onshore development is concerned, but is yet to be 

adapted offshore and particularly for heavy oil reservoirs. 

As the conventional crude is in decline worldwide, the heavy crude exploration is 

being given more attention as means to mitigate the increasing demand in 

global energy. Advances in research to close the knowledge gap will play a 

fundamental role on any future CO2-EOR in heavy oil development offshore. 

CO2 Sequestration during EOR - There is currently an ambiguity in the published 

literature on whether storing CO2 is possible with EOR and some analysts think 

that this method is powerless to reduce CO2 emissions. International Energy 

Agency (IEA) Report titled “Carbon Dioxide Capture and Storage in the Clean 

Development Mechanism (CDM)” claims that CO2-EOR projects will result in 

increased carbon emissions from incremental oil production above a No Further 

Activity (NFA) baseline [8, 9]. The above statement is in disagreement with the 

NETL Report released on 7 Feb 2008, which clearly states that “CO2 enhanced oil 

recovery (CO2-EOR) offers the potential for storing significant volumes of carbon 

dioxide emissions while increasing oil production” [9]. 

”The IPCC Special Report on Carbon Dioxide Capture and Storage”, recognize 

that depleted oil fields could provide an attractive, early option for storing CO2 

(particularly with CO2-EOR), but concluded that the oil fields would provide only 

a relatively small volume of CO2 storage capacity. A report titled “EOR in 

Wyoming, Prospects and Challenges”, prepared by the department of geology 

and geophysics of the University of Wyoming (15 June 2003) re-assures the 

state of Wyoming that “Most of the injected CO2 stays in the reservoir, although 

some may break through at production wells. Even after CO2 breakthrough, oil 

production can continue for some time, and the produced CO2 can be separated, 

recovered and re-injected”. 

This uncertainty or misconception of the CO2-EOR subject relies on the lack of 

thorough investigation in order to provide a better understanding. This study will 

attempt to provide a better understanding on the application of CO2 for EOR, in 
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addition to the points discussed below, by investigating the possibility of CO2 

storage using EOR. This study will emphasize on the CO2-EOR significance to 

increase production and as a possible solution to reduce the greenhouse gas 

emissions. 

Similar to conventional oil, heavy oil is a vital resource with a substantial global 

reserve. Heavy oil, with its dense and highly viscous nature, wax, carbon and 

asphaltene content, does not offer the option for primary recovery but requires 

some advance techniques to facilitate production. Currently there are two types 

of heavy oil recovery processes known as Cold Flow and Hot Flow. The difference 

between the two processes is the thermal medium involved in the hot flow to 

assist the movement of the heavy oil to the production facility. The hot flow 

techniques include: steam injection, where steam is injected into a nearby well 

to heat the heavy oil reservoir; and the steam assisted gravity drainage (SAGD) 

which is similar to VAPEX (Vapour Extraction), where two horizontal wells are 

drilled and steam is injected into the upper one to heat the reservoir and the 

warm oil flow by gravity through the lower well. However, these techniques are 

known to be extremely costly and very energy demanding. 

The cold production of heavy oil is a non-thermal process of heavy oil recovery 

which has been economically successful in several heavy oil fields in Alberta and 

Saskatchewan [10]. The cold flow technique includes methods such as: water 

alternating with gas (WAG) where the gas acts as solvent to reduce the oil 

viscosity and the water pushes the oil out of the reservoir. Other cold flow 

techniques include the use of Electrical Submersible Pump (ESP) and Hydraulic 

Submersible Pump (HSP). Waterflood is also used but is known to offer a much 

lower recovery factor than other methods. Although these techniques may be 

beneficial in term of productivity, they are known to produce large amount of 

wastes that have no commercial value and that represent a substantial 

environmental liability if improperly disposed [11]. 

1.5 Problem Statement 

The application of CO2-EOR has never been performed for heavy oil production in 

an offshore environment. At the time this research proposal was initiated there 

was yet no published work or literature on these subjects. 
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Although injection of CO2 for EOR could be technically feasible and the potential 

for increased recovery substantial, there are several challenges surrounding the 

business particularly in the offshore environment. Despite challenges such as 

CO2 sources, CO2 Capture and CO2 Storage, there are other likely challenges that 

could be encountered during the development or implementation of such project. 

Transporting CO2 in a subsea environment could potentially pose significant 

challenges both from a Flow Assurance and Operation perspectives, and will 

require appropriate hydrodynamic models for pressure and temperature 

predictions / management along the gathering system network and suitable 

monitoring planning in place to maintain the integrity of the pipeline. The heat 

transfer predictions and pipeline integrity management are outside the scope of 

this thesis. 

In addition, applying CO2-EOR in a subsea development for heavy oil production 

may involve other challenges related to process boundary conditions, battery 

limits and the design requirements of the transportation systems. These issues 

are broken down into three (3) categories as: 

1) Process characteristics at the onshore source, i.e. knowing what are the 

conditions and quality of the CO2 required at the onshore source. In this 

study, CO2 is assumed to be pure and the conditions (e.g. pressure, dry / 

dense CO2) required at the onshore source to achieve Miscible and 

Immiscible displacement is investigated. The complexity of a typical 

injection-production system for EOR, added to a long tie-back transporting 

CO2 from onshore to offshore, will require the use of suitable software and 

development of fit for purpose predictive models. 

2) Design requirements of the pipeline system and the well completions, i.e. 

determining the characteristics of the flowline system and identify the 

type of well completion suitable for the operation. The production 

architectural design and integrity management is outside the scope of this 

study. However, the influence of horizontal and vertical well completion 

during CO2-EOR have been explored. 

3) Process requirements at the reservoir, i.e. the pre-requisites of the heavy 

oil reservoir to accommodate CO2 EOR; the reservoir fluid composition; 
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Miscible or Immiscible condition. As the water depth increases, the 

bottomhole pressure plays an important part in the dynamic of oil from 

the reservoir to the surface.  

Companies have already captured most of the benefits of earlier breakthrough 

technologies in mature areas, and are now required to increase their 

maintenance capital just to maintain production levels from their established 

production base [12]. Most cost effective solution for the production of heavy oil 

is to use technology to maintain recovery, and today, CO2-EOR comes as a 

renewal in the world of cold production of heavy oil. A such, knowledge based 

research is needed to help reduce the challenges faced by the operators and to 

explore how possible CO2-EOR can optimize the productivity of the heavy oil 

reservoir through effective assuring flow. Effective assuring flow will result from 

a comprehensive analysis and prediction of the production system performance 

during CO2-EOR, which this research work was looking into. Therefore, another 

challenge of this research project was to develop a comprehensive methodology 

of injection and to provide a better understanding of the pipeline systems 

behaviour during CO2 transportation and injection. 

In spite of more than 30 years' experience in injection of CO2 for increased oil 

recovery on land in the USA and more than decades of research work in the area 

of artificial lift for EOR, CO2 injection in offshore oil fields with the possible 

implication and related Flow Assurance issues still remains a major challenge to 

the operators and researchers. CO2-EOR within an offshore environment has 

never been used or investigated for heavy oil production. This research work 

mirrors into a real offshore situation and conduct a detailed investigation of flow 

characteristics within a long subsea tie-back transporting CO2. 

In one way or another, it is very apparent from the above arguments that CO2-

EOR, whether used for conventional oil recovery or Cold Heavy Oil Production 

(CHOP), will be beneficial in the short or long term both from economic and 

environmental perspectives. 

1.6 Research Aim 

The aim of this research was therefore to investigate the use of CO2-EOR 

technique for Cold Heavy Oil Production (CHOP) in a subsea environment. 
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CO2 capture and subsea separation are outside the scope of this thesis. 

1.7 Key Research Objectives 

The research objectives were to: 

 Explore the feasibility of CO2-EOR for Cold Heavy Oil Production (CHOP) 

offshore. Establishing the Source-Sink interaction and the influence on the 

reservoir productivity. Generally, the availability of natural (geologic) CO2 

supplies from a subsea production environment is very limited. Hence, the 

use of CO2-EOR in offshore would have to rely on CO2 captured from an 

onshore coal and natural gas-fired power plants, as well as industrial 

plants (e.g. refineries, ethanol, ammonia, hydrogen and natural gas 

processing plants and other). A typical example is the Shell and SSE 

Peterhead Carbon Capture and Storage Project, where up to 10 million 

tonnes of CO2 emissions could be captured from the Peterhead Power 

Station (Aberdeenshire, Scotland), and transported by pipeline, 

approximately 100 km offshore in the depleted Goldeneye gas reservoir, 

at a depth of more than 2 km for long-term storage under the floor of the 

North Sea [13]. 

 Using appropriate Oil and Gas computer simulation tools to investigate the 

influence of CO2 injection in the productivity of the reservoir and CO2 

sequestration during CHOP. 

 Establish the process requirements at the onshore facility and at the 

reservoir.  

 Assess the cost benefit of a typical CHOP using CO2-EOR technique 

through a techno-economic evaluation. 

 Investigate CO2 sequestration during heavy oil recovery using CO2-EOR 

technique. 

 Develop a predictive model, using mathematical representations of the 

injection-production system during CO2-EOR for CHOP, based on exiting 

theories. 

1.8 Anticipated Contribution to Knowledge 

 Enhanced understanding of the CO2 transportation offshore - 
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The study will investigate long distance CO2 transportation in harsh “low 

temperature” environment offshore for enhanced heavy oil recovery, and 

will establish suiable process and design conditions.  

 Increased knowledge for CHOP using CO2-EOR - 

Smaller and economical topside rig / platform, with weight reduction and 

smaller footprints are generally the requirements offshore. Consequently, 

additional needs such as the CO2-EOR injection system and associated 

equipments may pose ‘unnecessary’ space constraints and perhaps be a 

‘show-stopper’ in the project development. Using an integrated surface 

and sub-surface facility modelling, the study will investigate the recovery 

of heavy oil using a remote onshore CO2 injection without the needs for 

recompression at the offshore platform. 

 Establish a research based evidence, CO2 sequestration during CHOP using 

CO2-EOR technique - 

The results of this investigation will bring more emphasis on the subject of 

CO2 storage during CO2-EOR, which have a direct impact in our daily life 

through less polluted environment. 

 An improved mathematical representation of CHOP using CO2-EOR 

technique - 

fit for purpose improved models, consistent with existing theories, and 

suitable for heavy oil recovery using CO2-EOR application, will be 

proposed. 

1.9 Research Strategy 

This research explores a subsea development system consisting of a long 

distance subsea pipeline transporting CO2 from an onshore source to be injected 

into a deepwater reservoir for Cold Heavy Oil Production. This is a new and 

challenging concept, not previously investigated, particularly in a remote and 

exigent environment as that of deepwater. A schematic representation of the 

concept is shown in Figure 1.1. 
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 Figure 1.1: Diagrammatic Representation of the Integrated System 

The exigency of this novel concept requires that the research be broken into 

three different campaigns as described below. Each campaign seeks to provide 

the necessary theory, design and process requirements needed to satisfy the 

delivery of CO2 from the source to the sink while achieving the production of 

heavy oil. 

 Source 

This study did not cover the capture process of CO2, but assume sufficient 

availability of CO2 onshore, ready for transportation offshore. An 

investigation was carried out to determine the required conditions of CO2 

at the onshore facilities. The required pressure onshore will be 

investigated taking account of the volume of CO2 and the total length of 

the pipeline. 

 Pipeline System and Well Completion 

The pipe size, material, configuration and the characteristics of the well 

completion will influence the production profile as well as the process 

requirements at the onshore terminal. A suitable computer program was 

used to establish the optimum size of the pipeline on the basis of the 

capacity of the transported CO2 and the required arrival pressure in the 

reservoir. 
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The type of well completion will influence the overall production cost and 

will play an essential part in the accessibility of the reservoir. Different 

completions were explored and the suitability of the selected type of 

completion and its characteristics was justified against deliverability. 

 Sink (Reservoir) 

It is known that CO2-EOR can have a positive impact in some of the 

conventional oil reservoirs which is caused by the reduction in oil viscosity 

to facilitate the displacement of oil. Effective CO2-EOR for heavy oil 

production will also depend on the reservoir characteristics and fluid 

properties. CO2-EOR can be achieved using two processes known as 

Miscible or Immiscible displacement. The two processes are fundamentally 

temperature, pressure and reservoir composition dependant. Complete 

miscibility of the injected CO2 with the reservoir fluid will be achieved 

under the minimum miscibility pressure (MMP), i.e. under the right 

reservoir temperature and pressure. The Immiscible process occurs either 

when the reservoir fluid is heavier (i.e. less favorable) or when the 

reservoir pressure is below the required MMP to enable reduction in oil 

viscosity which in turn will facilitate the sweeping effect. As a mean to 

remediate to the reservoir immiscibility issue, the Immiscible process is 

generally supplemented by another oil displacement mechanism to 

contribute to the heavy oil recovery by blending the CO2 with solvent such 

as water, methane, butane and propane to reduce the CO2 MMP for the 

reservoir fluid where CO2 is injected into [14, 15, 16, 17]. In another 

word, if the reservoir pressure is lower than the CO2 MMP, the MMP of the 

CO2 and reservoir fluid mixture can be reduced by blending the CO2 with 

adequate solvent. Alternating water injection or foam with CO2 could also 

be optional to increase the reservoir sweeping efficiency [18]. Hence, 

another challenge in this study will be to identify the suitability of either 

Miscible or Immiscible displacement for heavy oil reservoirs. 

1.10 Structure of the Thesis 

Chapter 1 presents background information on heavy oil recovery with a general 

discussion on the gaps in the current technology, which thus lead to the principal 
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aim and the framework of this research study. 

Chapter 2, provides a comprehensive technical review of previous works done on 

the heavy oil production, the application and limitations of each of the 

techniques, highliting the gap in technology. 

Chapter 3 gives a description of the methodology adopted for this research work 

and the breakdown of the studies (simulation cases) performed. 

Chapter 4 presents the simulation results of the long distance CO2 

transportation, the CO2-EOR for CHOP and the CO2 sequestration during CO2-

EOR for CHOP, and the techno-economical evaluation of a typical CO2-EOR for 

CHOP. 

Chapter 5 presents the improved mathematical modelling of the integrated 

injection and production system for CHOP using CO2-EOR. 

Chapter 6 summarises the main findings and contribution to knowledge, and 

support the claim that there is greater certainty about the accuracy of the 

simulation results and established models.  

Chapter 7 highlights the areas deemed necessary for further work, derived from 

the outcome of this research works. 
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2. HEAVY OIL RECOVERY-TECHNICAL REVIEW 

2.1 Introduction 

The importance of oil since its discovery has raised the curiosity and awareness 

of industries on the true nature and understanding of this resource.  

Conventional oil production goes through three distinct recovery stages namely: 

Primary, Secondary and Tertiary Recovery where various techniques are 

employed to maintain production of crude oil at maximum levels.  

Heavy oil (non-conventional oil), owing to its physical properties, requires more 

than just the known conventional oil extraction techniques to facilitate its 

mobility and production to the surface. 

This chapter presents a review of literature relevant to this research area with 

particular emphasis on the heavy oil production, the current applicable recovery 

techniques and their limitations. 

Enhanced oil recovery (EOR) using carbon dioxide (CO2) can increase oil 

production beyond what is typically achievable using conventional recovery 

methods. A fraction of the injected CO2 can remain stored underground during 

the EOR process, which will contribute to a safer environment by reducing 

pollution to the atmosphere. The state of play, covering Investigation 

(simulation and laboratory works) and Field Application, of heavy oil recovery 

using CO2-EOR technique, the possible environmental impact caused by heavy 

oil extraction and the likelihood of CO2 storage during EOR are also discussed in 

this chapter. 

2.2 World Oil Reserves 

Based on year 2013 data, the Central Intelligence Agency (CIA) estimates the 

world proven oil reserves to be approximately 1.6 trillion barrels of crude [19]. 

The total world oil reserves are shown in Figure 2.1, the world oil reserves by 

country is shown in Figure 2.2 and full details are provided in appendix 1. 
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Figure 2.1: Total World’s Oil Reserves [19] 
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Figure 2.2:World Oil Reserves by Region [19] 
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Most world oil reserves are non-conventional; and it is reported that the heavier 

hydrocarbons (which may include heavy oil, extra heavy oil, Bitumen) account 

for more than six trillion barrels (one trillion m3) of the oil in place worldwide, 

triple the combined world reserves of conventional oil and gas [20]. Canada and 

Venezuela are known to possess an estimated 3.6 trillion barrels (570×109 m3) 

of bitumen and extra heavy oil, about twice the volume of the world's reserves 

of conventional oil [21]. These resources represent the key to easing energy 

supply concerns in the near term and the future [22]. 

It is widely believed that heavy oil is underestimated in comparison to 

conventional oil because of poorer quality data.  

The U.S. Geological Survey estimates approximately three trillion barrels of 

heavy oil in the world as illustrated in Figure 2.3 below [23].  

 

Figure 2.3: Estimated World’s Heavy Oil Reserves by Region [23] 

Although the climate change idea is making a global call for a reduction in 

energy demand and minimize carbon fuel supply, it is believed that  this 

transition will not happen that soon. The literature reports that the energy 

consumption is significantly on the rise and is projected that it will increase by 

36% above 2008 levels by 2035 [24]. The rise in oil demand will inevitably 

open the door for heavy oil exploitation (due to the decline in conventional oil) 

and signal its importance in the international market. 
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Furthermore, more than half of the oil discovered since 2000 is in deepwater oil 

fields, and the production of oil from these reservoirs is expected to grow [25]. 

Deepwater discoveries and activities / development are worldwide, i.e. Gulf of 

Mexico, Brazil, West Africa and South East Asia. 

Generally, conventional (light) oil is defined as oil with API gravity greater than 

25°. Heavy Oil, with API gravity between 10°API and 20°API and a viscosity 

greater than 100 cP. Natural Bitumen (oil) has an API gravity less than 10° with 

viscosity greater than 10,000 cP. 

The challenges of heavy oil production include, but are not limited to the 

followings: 

 Low deliverability due to low reservoir energy (low pressure, low API 

gravity and very high viscosity). 

 Complex thermodynamic phase behaviour during transportation (e.g. 

emulsion, foaming, wax deposition due to high content of Asphaltenes and 

resin). 

 Water handling issues due to the early breakthrough of produced water. 

2.3 Heavy Oil – Characteristics, Geological Origin and Recovery 

Process 

2.3.1 Characteristics 

Heavy oils are defined as asphaltic, dense (low API gravity), and viscous oils that 

are typically composed of relatively low proportions of volatile compounds with 

low molecular weight such as benzene, toluene, ethylbenzene, and xylene 

(BTEX). They also typically contain some two ring naphthalenes and high 

proportions of high molecular weight compounds. The high molecular weight 

compounds can be paraffins (straight chain alkanes), asphaltenes (aromatic-type 

hydrocarbon), resins and other compounds with high melting points and high 

pour points [26]. Heavy oil with high pour point and high viscosity will have less 

of a tendency to spread which will make recovery process difficult, especially in 

deep and ultra deepwater. 
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The American Petroleum Institute (API) categorizes crude oil into four groups on 

the basis of their heaviness and viscosity, and a typical representation is 

presented in Table 2.1. 

Table 2.1: Crude Oil Categorization and the Physical Properties 

Crude Oil Type Description & Characteristics API Gravity (o) Viscosity (cP) 

Light Oil Conventional oil – Can be 
produced using primary recovery 
method 

≥ 20 < 100 

Heavy Oil Dense, viscous with some 
impurities (waxes and carbon) – 
Require advance production 
technology & diluents at regular 
distances along the pipeline 

10 - 20 100 - 10000 

Extra Heavy 
Oil 

Similar to heavy oil < 10 100 - 10000 

Natural 
Bitumen 

Oil sands, denser than heavy oil  < 10 > 10000 

2.3.2 Geological Origin 

Most scientists believe that crude oil is not heavy at the origin, and that almost 

all crude oils originate with API gravity between 30° and 40°. Oil becomes heavy 

only after substantial degradation during migration and after entrapment [27]. 

A variety of biological, physical, and chemical processes have been implicated in 

degradation. Bacteria borne by surface water metabolize paraffinic, aromatic, 

and naphthenic hydrocarbons into heavier molecules [28]. Formation water 

washes away some of the lighter, highly water-soluble hydrocarbon molecules. 

In a process called devolatilization, a poor-quality seal allows lighter molecules 

to separate and escape. 

Heavy oils are typically produced from geologically young reservoirs: 

Pleistocene, Pliocene, and Miocene [20]. Because these reservoirs are shallow, 

they have less effective seals and are thus exposed to conditions conducive to 

the formation of heavy oils. Collecting oil from seeps and digging by hand were 

the earliest and most primitive means of recovery, followed by mining and 

tunnelling [20].  
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The literature reports that heavy oil reservoir temperatures and pressures are 

unlikely to be high due to low gas content caused by the absence of lighter 

components [29], and high crude viscosity and low permeability usually 

constraint the reservoir productivity, and consequently strategy to boost 

production is generally required from an early stage. 

2.3.2.1 Heavy Oil Offshore Development 

Heavy and extra heavy oil deposits are occurring in 127 basins according to the 

United State Geological Survey (USGS), and around 4800 billion barrels of 

bitumen and ‘heavy oil’ have been identified worldwide [30]. 

Around 500 billion barrels of recoverable  heavy oil are located offshore [31]. 

A global illustration of offshore heavy oil deposits worldwide is shown in Figure 

2.4 below (in violet). 

 

Figure 2.4: Heavy Oil Deposits Word Map [30] 

UK (North Sea) & Offshore Brazil 

There are several reported offshore heavy oil fields under development, and 

beside the Gryphon, Harding, and Alba fields (North Sea), there are some well 
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known fields	such as those being operated by Statoil known as Peregrino, Grane, 

Mariner and Bressay. 

Peregrino is an heavy oil, with  13 oAPI and with high viscosity. The field is 

located in block BM-C-7 operated by Statoil with Sinochem, offshore of Brazil, 

east of Rio de Janeiro, in the southwest part of the Campos Basin area. The 

heavy oil in place is estimated to be approximately 2.3 billion barrels [32]. 

Peregrino reservoir is 53 miles (85 km) off the coast, 328 to 390 feet (100 to 

120 m) of water depth, and is 2,300 m (7,546 ft) beneath the seabed offshore 

Brazil.  

Grane is an offshore heavy oil field (19o API) in the North Sea, in Block 25/11,  

located on the western coast of Norway 185 km off coast, west of the city of 

Haugesund), with about 755 million barrels in 405 ft (123.4 m) water depth. It is 

known to be Norway's first heavy oil production and Statoil's largest heavy oil 

field.  

Mariner field is located in the UK North Sea, Block 9/11a and 9/11b, at water 

depths between 97 m and 112 m, approximately 130 km off the nearest British 

coast, and is reported to be the largest new offshore development in the UK in 

more than a decade. The Mariner Field consists of two shallow reservoirs, the 

Maureen Formation and the Heimdal Sandstones of the Lista Formation, with 

nearly 2 billion barrels of oil in place and expected reserves of more than 250 

million barrels of oil. Both formations yield heavy oil of around 12o to 14o API 

[33]. 

The Bressay heavy oil field is located within Blocks 3/27b, 3/28a, 3/28b, 9/2a 

and 9/3a of the UK Continental Shelf (North Sea), approximately 135 km east of 

Shetland, in water depth varying from 91 to 118 m, and the expected 

recoverable heavy oil (11o API) volume is 200-300 million barrels. 

There are other known heavy oil fields such as the Captain and Jubarte:  

Captain heavy oil Field is located in Block 13/22a of the UK North Sea, 

approximately 130 km northeast of Aberdeen. The heavy oil (19o API) reserves 

estimated at 956 million barrels, in 340 ft (104 m) water depth.  
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Jubarte heavy oil field is located 70 km offshore from the state of Espírito Santo 

in Brazil, in Campos Basin,  block BC-60, at a water depth of 1,300 m. The 

project is owned and operated by Petrobras, with heavy oil reserves estimated 

at 600 million barrels (17o API). 

Africa (Offshore) 

The Dome Flore block is located in West Africa, offshore Senegal and Guinea 

Bissau, in the area administered by the Agence de Gestion et de Cooperation 

(AGC) and contains an estimated 800 million barrels of heavy oil in place. 

Thirteen wells have been drilled into the block, and several have penetrated 10-

13o API heavy oil deposits, in shallow Oligocene reservoirs, which lies in 50 m of 

water, approximately 70 km offshore [34]. 

Pazflor is located in deepwater offshore Angola block 17, 150 km off the coast of 

Angola and 40 km north-east of Dalia, which lies in 600  m-1,200m water 

depths, and  is operated by Total Exploration and Production (E&P) Angola, a 

wholly owned subsidiary of Total, with a 40% interest. The Oligocene reservoirs 

are located in water depths from 1,000 m to 1,200 m, contain light oil of around 

35°-38° API oil and will be developed using a production loop including riser 

bottom gas lift. The Miocene reservoirs, in 600 m to 900 m waters, contain 

heavy oil of around 17°-22° API, which will be recovered using subsea gas / 

liquid separation and liquid boosting [35, 36]. 

Cegonha heavy oil field is  located in the northern area of Kwanza Basin offshore 

Angola, Block 6, which lies in the water depth from 50 m to 500 m, is operated 

by Petrobras, and contains around 135 million barrels of heavy oil [37]. 

The Emeraude Field is a major heavy oil accumulation, lying offshore Pointe-

Noire (Republic of Congo) at a water depth of 60 m [38]. Further discovery was 

recently made, known as the Elephant discovery, in the Haute Mer A license area 

in offshore Congo (Brazzaville), 550 m of water depth, 80 km offshore Congo 

(Brazzaville), containing heavy oil around 14° API gravity [39]. 

The West Tano is a heavy oil field offshore Ghana, with estimated reserves 

around 23.4 million barrels of 15o API heavy oil, operated by Tullow Oil.  

The Morondava basin is located along the west coast of Madagascar and is a 

proven petroleum province with onshore discoveries of oil sands and subsurface 
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heavy oil deposits exceeding 20 billion barrels. The offshore Morondava basin is 

largely underdeveloped and is considered to retain the same petroleum system 

that produced the onshore accumulations [40]. 

2.3.3 Recovery Process 

By its nature, heavy oil in most cases necessitates dissimilar production 

techniques to conventional oil; poses significant transportation challenges and 

requires generally heavy CAPEX and long payback times. Although some heavy 

oil production can be accomplished via conventional methods, such as vertical 

wells, pumps, and pressure maintenance, these methods are considered highly 

inefficient.  

Owing to different reasons including advances in oil production technology, 

heavy oil production is progressively becoming a potential business for many 

operators.  

Heavy oil recovery methods may fall under primary, secondary or tertiary 

recovery depeding on the reservoir charaeristics. The tertiary recovery includes 

thermal or hot production, non-thermal production known as cold production or 

production using gas injection (although water injection is sometime involved), 

chemical injection and microbial injection. An illustrative representation is shown 

in Figure 2.5 below. 

The selection of any of these methods depends on many factors, including the 

stage of reservoir production, formation and fluid properties, reservoir geology, 

and the economics. 
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Figure 2.5: Hydrocarbon Recovery Processes  

A typical trend of a timeline of hydrocarbon (heavy and light oil) recovery 

methods in the USA is shown in Figure 2.6, Figure 2.7 and Figure 2.8 for 

Termal, Non Thermal (Gas) and Chemical recovery process respectively. Data 

gathered from literatures [44, 45]), and indicate a constant decline in projects 

using thermal methods from 1980 to 2005 which may be attributed to a 

considerable growth in CO2-EOR projects. The growth in CO2-EOR projects is 

basically sustained by the economics surrounding the business, with cheap 

available sources of CO2 and transportation system (pipeline).  
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Figure 2.6: Thermal Recovery Methods Timeline in USA 
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Figure 2.7: Non Thermal (using Gas) Recovery Methods Timeline in USA 
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Figure 2.8: Chemical & Microbial Recovery Methods Timeline in USA 

2.3.3.1 Primary Recovery 

It is the first stage of heavy oil production in which natural reservoir energy, 

such as gravity drainage, displaces hydrocarbons from the reservoir into the 

wellbore and up to the surface. However, as the reservoir pressure declines, it 

becomes necessary to implement an artificial lift system to continue production. 

Cold heavy oil production with sand (CHOPS) is an example of primary recovery 

technique involving the continuous production of sand to improve the recovery 

of heavy oil from the reservoir. 

2.3.3.2 Secondary Recovery – Improved Oil Recovery 

This stage of recovery involves the injection of pressurized gas or water, or a 

combination of gas and water to drive to the surface some of the fluids 

remaining after the first stage (primary recovery). These methods also fall within 

the non-thermal EOR. 

In conventional oil reservoirs, it is reported that additional 25% to 30% of the oil 

in place may be recovered via secondary methods [61].  

In conventional oil and heavy oil reservoirs, a significant portion of the original 

oil or heavy oil in place remains in the reservoir after primary and secondary 
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recovery because of geological factors (e.g. no contact between the reservoir 

crude and the injected water or gas, i.e. crude bypassed) and characteristics of 

heavy oil (interfacial and viscous effects). By means of enhanced oil recovery 

(EOR) methods, additional heavy oil can be mobilized.  

The EOR technology can be grouped into four main categories as shown in 

Figure 2.5 above: Thermal recovery, Non thermal recovery, Chemical and 

Microbial injection. 

2.3.3.3 Tertiary Recovery – Enhanced Oil Recovery 

2.3.3.3.1 Thermal Recovery Process 

It is a thermal stimulation process used to reduce the heavy oil viscosity, hence 

facilitate heavy oil mobilization. 

Steam processes are generally applied to shallow heavy oil reservoirs that due to 

their extremely high viscosity cannot be economically recovered by primary 

recovery methods.   

The thermal recovery method is generally grouped under two categories known 

as in situ combustion and injection of heated fluids. 

With the in situ combustion, heat is generated inside the reservoir, e.g. Toe-to-

Heel-Air-Injection (THAI), where air is injected into the vertical well (injector) to 

generate combustion, which reduces the oil viscosity and enable heavy oil to 

flow from the end of the horizontal producer (toe) up to the heel.  

The injection of heated fluid, include methods such as steam floods, cyclic steam 

stimulation (also known as huff and puff, whereby steam is injected under high 

pressure and temperature in different stages (cycles)). 

Steam Assisted Gravity Drainage (SAGD) is another example of injection of 

heated fluid [62], and involves a pair of horizontal wells drilled from a central 

wellpad and separated by a short distance. In a plant nearby, steam generators 

powered by natural gas heat water and transform it into steam. The steam then 

travels through aboveground pipelines to the wells. It enters the ground via the 

steam injection (top) well. The steam heats the heavy oil to a temperature at 

which it can flow by gravity into the producing (bottom) well. The steam 

injection and oil production happen continuously and simultaneously. The 
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resulting oil and condensed steam emulsion is then piped from the producing 

well to the plant, where it is separated and treated. The water is recycled for 

generating new steam. 

Eighteen thermal recovery or hot flow projects are active in the Lloydminster, 

using either steam stimulation, in-situ combustion, huff and puff (cyclic-steam-

thermal), oxygen or air fed fireflood to heat the reservoir, or a combination of 

steam stimulation and in-situ combustion [63]. A summary is presented in 

Table 2.2 below [63, 64]. 
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Table 2.2: Thermal Recovery in Lloydminster [64] 
Project Name Short Description Technology 

Applied 
Project 
Name 

Short Description Technology 
Applied 

Mobil-GC Kitscoty 
51-2W4 

95 wells on 640 acres and taps 
the Lloydminster Sparky 
Sandstone K-pool 

Wet Combustion 
Thermal Fireflood 

Dome 
Lindberg 
18-55-5W4 

56 well project uses an 
oxygen fed fireflood to 
heat the reservoir. 

Oxygen 
Fireflood 

Mobil-GC Silverdale 
491W4 

Located in township 49-1W4, 
the 82 well project begun in l975 
and comprises 640 acres, 
tapping the Lloydminster Sparky 
Sandstone Q-pool. 

Wet Combustion 
Thermal Fireflood - 
Fire in the formation 
is kept ignited by 
injecting an 
air/water mixture 

Dome 
Chauvin 
26-42-3W4 

Using Cyclic steam 
stimulation, Dome 
Chauvin is a 4 well 
thermal pilot with a total 
estimated cost to date of 
$360,000. 

CSS 

Westmin Lindberg 
3-13-6W4 

Well was completed with high 
stress, high temperature 
materials and works on a one 
month steam injection, four 
month production cycle 

CSS Dome 
Morgan 35-
51-4W4 

43 well project using a 
combination of steam 
stimulation and in-situ 
combustion and Dome 
has invested $28 million  

CSS & In Situ 
Combustion 

Husky Aberfeldy 20-
49-26W3 

36 producing wells, 12 
observation wells and 7 wells for 
steam injection. 

Steam Drive Mobil Celtic 
¼ -10-23-
52W3 

Using a combination of 
wet combustion and 
steam stimulation, this 
25 well EOR project has 
5 injector wells and 20 
producers, drilled in an 
inverted nine spot 
pattern. 

Wet 
Combustion & 
CSS 

Husky Aberfeldy 1, 
12, 50-27W3 

610 acre project using six active 
injection wells and 38 producers. 
This reservoir has been depleted 
on primary and waterflood, but 
twenty producing wells are 
presently averaging 50 cubic 
meters of oil per day. 

Fireflood (North of 
Steam Flood 

Husky 
Golden 
Lake 11-
48-23W3 

7 producing wells and 1 
injector in an inverted 7 
spot pattern. It will 
operate on air to start 
and be converted to 
oxygen at a later date. 

Oxygen 
Fireflood 

Husky Pikes Peak 1-
50-24W3 

Husky Pikes Peak is an eleven 
well huff and puff thermal 
project and consists of 11 new 
and thermally completed wells. 

CSS Husky 
Golden 
Lake 
Waseka 
14-48-
23W3 

17 producing wells, 2 
injectors and 2 
observation wells. 

Fireflood 

Murphy Lindberg 6-
13-58-54  

7 well huff and puff project,  
begun in 1974 and converted to 
steam drive in 1981 after 
producing for six years. 

CSS Norcen 
Bodo 

EOR project 3 km. 
northwest of Bodo began 
on 20 acres, and 
expanded to 105 acres 
later. Has 9 producing 
wells and one injector, 
being expanded to 24 
producers and 7 air 
injectors; 

Fireflood 
Expansion 

Petro-Can Kinsella 
14-30-48-8W4 

Four producing wells, 1 injector 
and three observation wells. 

Fireflood Murphy 
Eyehill 16-
40-28W3 

25 wells, 9 injectors and 
16 producers. 

Fireflood 

Texas Gulf N. 
Battleford 23-46-
18W3 

20 well EOR project, started in 
the mid 1970's and uses both 
steam drive and cyclic stream as 
the thermal process. There are 
four, five spot patterns drilled, 
and one, nine spot. 

Steam Drive and 
Fireflood 

Home 
Kitscoty 
51-2W4 

three wells, 2 of which 
have been drilled and 
the third was planned 
for later stage. 

CSS 

Thermal recovery accounts for about 393,000 BOPD which is about 7% of the US 

production, while oil recovered using CO2-EOR is about 196,000 BOPD which is 

about 3% of U.S. production. The amount of oil recovered by hydrocarbon 

Miscible EOR (mostly natural gas injection) accounts for about 86,000 BOPD, 
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which is about 1.5 % of U.S. production and nitrogen Miscible/Immiscible EOR 

accounts for about 32,000 BOPD, which approximately 0.5% of U.S. production. 

These methods account for well over 99% of all U.S. EOR production with 

considerably less than 1% coming from chemical EOR and microbial EOR which 

is still in the research stage” [65]. 

Overall, most thermal processes are generally linked with high equipment, and 

facility costs (e.g. steam generation) and considerable safety concerns, hence 

are progressively been overtaken by the non-thermal processes. 

2.3.3.3.2 Non Thermal Recovery Process 

Water flooding is a non-thermal method which involves the injection of water to 

displace the heavy oil.  

However, gas injection (i.e. CO2, natural gas or nitrogen, or any combination) is 

known to be the most-commonly used method of EOR, which may be due to the 

cheap and ready availability of the gas sources. The application of nitrogen EOR 

is generally not cost effective. CO2-EOR is gaining attention as it is considered to 

boost recovery significantly and be environmentally friendly due to the 

sequestration aspect of the process. 

Other non-thermal methods include cold flow with sand, Cyclic Solvent Injection 

(CSI), and Vapour Extraction (VAPEX).  

Cold flow with sand, also known as Cold Heavy Oil Production with Sand 

(CHOPS), is a process that involves the pumping of the heavy oil from the 

reservoir with no heat involved. It is reported that pumping out sand, release 

permeable sand tubes of very high porosity (wormholes) in the sand formation, 

allowing more heavy oil to move within the reservoir and to be recovered. 

Although, additional recovery may be achieved, disposing the large quantity of 

sand produced has always proved very challenging in this method. 

Cyclic Solvent Injection (CSI) involves a mixture of solvent to be injected into 

the reservoir to facilitate recovery of heavy oil. Cyclic Solvent Injection (CSI)  

method is usually compared to Cyclic Steam Stimulation (CSS) in a sense that 

the method also goes through different cycles, i.e. after the injection of mixture 

solvent (injection period), the solvent mixture is allowed to mix with the 

reservoir crude (soak period), and then followed by the production (production 
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period). The solvent mixtures used in the Cyclic Solvent Injection (CSI) process 

is generally gaseous (to easily fill up the voidage created during primary 

recovery; generally, it is methane or carbon dioxide, with propane or butane), 

high solubility with the reservoir heavy oil, and be readily available 

(inexpensive).  

Vapour extraction (VAPEX) involves the injection of a solvent vapour to reduce 

the viscosity and improve the mobility of the heavy oil. The method (VAPEX) is 

comparable to SAGD, but instead of steam used in SAGD, VAPEX uses 

hydrocarbon solvents to mix with the heavy oil, hence enable it to flow more 

easily.  

A number of heavy oil reservoirs under solution gas drive (cold production) have 

obtained anomalous primary performance results: low production gas–oil ratios, 

high oil production rates, and recovery of unexpectedly large amounts of oil 

[66]. This unusual behaviour has been attributed to two production mechanisms 

named: Foamy Oil Process and Wormholes formation. 

During the foaming process, gas bubbles expand, giving the oil a foamy 

character as the bubbles are trapped by the oil; recovery is then enhanced by 

solution gas drive. Oil recovery with primary techniques can be as high as 20% 

for some heavy foamy oil reservoirs. The wormholes mechanism is internal 

erosion in unconsolidated sand reservoirs, which can create a network of high-

permeability channels, termed “wormholes.” This mechanism can enhance 

drainage by a factor of ten (10) or more. Wormhole formation and localization 

apparently are still not completely well understood, which makes it difficult to 

optimise production [66]. 

2.3.3.3.3 Chemical Injection for Enhanced Oil Recovery 

Chemical EOR involves the addition of chemical agent such as polymers, 

surfactants, alkaline to the heavy oil reservoir, which will modify the fluid 

properties to make it more easily recoverable. The chemical EOR is known to 

improve sweep efficiency by the decrease in mobility ratio, lowering of oil-water 

interfacial tensions with a reduction in oil viscosity (emulsification) and increase 

in capillary number. The total number of chemical EOR projects worldwide is 

reported to be approximately 27 [55]. 
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Coupled with the unavailability of chemical in large quantities, considerable delay 

in response and reduced well spacing required; the chemical EOR has always 

been known to be very costly; as the oil or heavy oil price rises so does the price 

of chemical, hence chemical EOR never gained widespread acceptance.  

2.3.3.3.4 Microbial Injection for Enhanced Oil Recovery 

The microbial injection for EOR (MEOR) is a technology that requires the 

injection of bacteria or micro-organisms into the heavy oil reservoir to improve 

the movement of fluids. It is reported that the micro-organisms injected into the 

reservoir will create an in-situ microbial growth that will directly influence the 

structure and properties of the reservoir fluids through various processes 

including: Biodegradation of crude (i.e. low oil-water interfacial tension and 

reduced oil viscosity); well stimulation via gas production (bacteria produced 

gases such as CO2, N2, H2, and CH4 that can improve oil recovery through gas 

dissolution into oil and oil viscosity reduction); permeability modification (also 

known as selective plugging whereby bacteria are used to produce polymers, 

biomass, to reduce the permeability of highly permeable zones); production of 

chemicals (organic acids, alcohols, solvents, surfactants and polymers that can 

improve oil recovery can be produced by a range of micro-organisms) [67, 59, 

68].  

MEOR depends on the physical-chemical properties of the reservoir, i.e. salinity, 

pH, temperature, and pressure. With the exception of bacteria that can bear the 

high salinity and temperature within most reservoirs, some micro-organisms 

such as moulds, yeasts, algae, might be incapable to grow under most reservoirs 

conditions [58]. 

Although the use MEOR might be independent of the crude price, and may also 

have the advantage of using some bacteria that can prevent the production of 

unwanted component such as hydrogen sulphide; the MEOR is at a very early 

stage, i.e. research stage, with a lack of understanding of microbial activities 

within the reservoir and the impact on the life cycle operation; no published field 

experience, neither in conventional or heavy oil field.  

Likewise, as in the chemical EOR, the MEOR can pose serious safety, health and 

environmental risks. Perhaps MEOR might be suitable for marginal and shallow 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	47	

 

oil fields; the envisaged large quantities of microbes required with the likely risk 

of plugging the well will make this technique very restrictive and very 

challenging for deepwater, coupled with environmental impact in the event of 

any unpleasant incident. 

2.4 CO2-EOR for Heavy Oil Recovery 

2.4.1 Mechanism 

CO2 injection is one of the EOR techniques that consists of injecting CO2 at high 

pressure into an oil reservoir to mobilize oil that has not been extracted using 

traditional methods. 

CO2 injection into the reservoir, interacts with the reservoir rock and the crude, 

to create appropriate conditions, as listed below, that facilitate recovery [69]:  

(i) Reduction of the capillary forces that hold back oil flow through the pores 

of the reservoir. This is achieved by a reduction in the interfacial tension 

between oil and the reservoir rock;  

(ii) Oil swelling (oil volume expansion), and viscosity reduction;  

(iii) Reservoir crude phase change that increase its fluidity;  

(iv) Improvement in volume sweep efficiency via favorable mobility 

characteristics of oil and CO2. 

During CO2 EOR, 40% of the injected CO2 is being produced and can be re-

injected [70, 71].  

The method for calculating the mass CO2 storage capacity (MCO2) in the 

reservoir during EOR operations, which is a function of the recovery factor, 

original oil in place (OOIP), and oil shrinkage has been proposed by Shaw and 

Bachu [70] as: 

At Breakthrough (BT): 

MCO2 = ρCO2res x RFBT x OOIP / Sh (2.1) 

At any Hydrocarbon Pore Volume: 

MCO2 = ρCO2res x [RFBT + 0.6 (RF%HCPV – RFBT)] x OOIP / Sh (2.2) 
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Where: 

ρCO2res  = Density of CO2 at reservoir conditions; 

RFBT  = Recovery Factor at CO2 Breakthrough; 

RF%HCPV = Recovery Factor at the assumed Percentage Hydrocarbon Pore 

Volume (HCPV) of injected CO2; 

OOIP = Original Oil in Place; 

Sh = Oil shrinkage factor (1/Bo, where Bo is the Oil formation volume 

factor). 

For Water Alternating Gas injection (WAG), the net CO2 stored in the reservoir 

was proposed by Bachu et al [72] as: 

Net CO2 retained = WAGIOR efficiency x WAGscore efficiency x OOIP x 

WAGCO2 factor alpha x Bo / Bg (2.3) 

Where: 

WAGIOR efficiency = Targeted incremental oil recovery factor by CO2 WAG 

operations; 

WAGscore efficiency = Factor between 1 and 2, which is related to the net CO2 

utilisation efficiency when expressed in reservoir volumes 

With regard to Gravity Stable Gas Injection (GSGI): 

Net CO2 = GSGICO2 factor x GSGIscore CO2 factor x OOIP x 0.7 Bo / Bg (2.4) 

Where: 

GSGICO2 factor = Incremental oil recovery factor by GSGI operations; 

GSGIscore CO2 factor = May be equal to 1 depending on project implementation. 

0.7 OOIP = 0.7 was identified by the authors to account for a fraction 

of OOIP and water left in the formation post GSGI operations 

[72]. 

However, better predictions could be achieved by appropriate numerical 

reservoir simulations, which may consider the effect of water invasion, gravity 
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segregation, reservoir heterogeneity and CO2 dissolution in the formation water 

[73]. 

CO2 is known to be highly soluble in oil and this solubility leads to the swelling of 

oil, reduce its viscosity and decrease its density, which in turn facilitates 

mobility. It is reported that the swelling mechanism becomes a prevailing factor 

in low pressure applications (i.e. P<1000psia) of CO2 in reservoir systems with 

low API such as heavy oil.  

CO2-EOR can be achieved under two displacement processes known as Miscible 

or Immiscible displacement. These two processes are very much dependent on 

temperature, pressure and reservoir composition. 

2.4.1.1 Miscibility 

Miscibility is described as: the ability of two or more substances to form a single 

homogeneous phase when mixed in all proportions [73]. CO2 miscible 

displacement implies the injection of CO2 into the reservoir at the required 

miscible temperature and pressure to facilitate movement of the hydrocarbon 

out of the reservoir to the surface. As a result of this miscibility, there is a 

reduction in the crude viscosity, an increase in relative permeability and the 

elimination of interfacial tension between the oil and injected CO2, hence no 

capillary forces to prevent the mobility of the oil. Under these conditions, the 

literature reports that all reservoir crude oil (100%) being contacted by the 

injected CO2 can be displaced [74]. However, additional oil recovery is usually 

limited to around 5-20% of OOIP [75], due to viscous fingering (CO2 flowing 

more easily within the reservoir than oil) and an early breakthrough of CO2.  

Miscible CO2 displacement may not be achieved instantaneously, but 

progressively through a process generally called Multiple Contact Miscibility 

(MCM), where a complex phase interaction between the injected CO2 and the 

reservoir oil occurs. This interaction also leads to a complex phase behaviour of 

the CO2 – oil mixture, which in turn is influenced by the reservoir temperature, 

reservoir pressure, injected CO2 composition, and oil composition [76].  

The pressure at which miscibility can be achieved is known as minimum 

miscibility pressure (MMP) and can be predicted experimentally or using 

empirical equations with a reasonable accuracy. 
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The Slim Tube Experiment is generally used to establish conditions at which 

miscibility can occur. Miscible displacement is achieved at the flooding pressure 

or minimum miscibility pressure (MMP) where about 95% of the oil in the tube is 

recovered after about 1.3 pore volumes of fluid have been injected. Below this 

pressure, oil recovery decreases dramatically [77]. 

The minimum miscibility pressure (MMP) depends on the composition of crude 

oil, the purity of CO2 and the reservoir conditions (pressure and temperature); 

and a miscible CO2 displacement technique is achievable when CO2 is injected at 

a pressure higher than that of MMP, which in turn must be lower than the 

reservoir pressure [69]. 

At the MMP, the density of CO2 is similar to that of the crude oil, i.e. CO2 is in a 

dense phase, and becomes fully miscible with oil.  

2.4.1.2 Immiscibility 

Immiscible displacement occurs when the reservoir pressure is below the 

minimum miscible pressure (MMP) of the oil, and there is an identifiable 

separation of the injected CO2 and the reservoir oil. 

CO2 immiscible process can improve the sweeping efficiency as well as the 

recovery of conventional or heavy oil through a vaporisation process [78]. The 

hydrocarbon fractions may get vaporized into the gaseous CO2 phase and the 

decrease or shrinkage in the oil indicates the extraction. So, even with the MMP 

not reached, the injected CO2 can partially dissolve in the reservoir crude, hence 

causing some swelling (i.e. expansion of the crude). Moreover, the addition of 

CO2 in heavy oil may reduce its viscosity by a factor of 10 [73]. 

Some typical CO2 Immiscible pilot studies include the Putaohua reservoir in 

Sanan area of Daqing oilfield [79], and Forest Reserves & Oropouche Projects in 

Trinidad [80]. The incremental oil recovery ranged from 4 to 9%. In Daqing, it 

is reported that CO2 injection was carried out after waterflood while in Trinidad 

CO2 injection was conducted post water and gas injection. 

2.4.1.3 Miscible vs. Immiscibility 

The critical pressure (1073 psia or 73.77 Bar) and temperature (87.8 oF, or 31 
oC) of CO2 are very important to determining the miscibility and immiscibility of 
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oil reservoirs. For miscibility to occur, CO2 must exist as a critical fluid (i.e. 

Dense phase, liquid-like, supercritical CO2). A supercritical CO2 occurs when CO2 

is at or above its critical point (critical temperature and pressure).  

At atmospheric condition, i.e. 1.01 Bar and 15.56 oC, the density of pure CO2 is 

1.87 kg/m3. At critical point, the density of pure CO2 is 388.3 kg/m3. As the 

pressure and temperature increase gradually above the critical point, CO2 will 

remain within the supercritical state, at which condition, its density can increase 

up to 750 kg/m3.  

A typical pressure-temperature phase diagram of CO2 is shown in Figure 2.9 

below for illustration. 

 
Figure 2.9: Phase Diagram of CO2 

Miscible CO2 is only possible for the reservoir temperature exceeding the critical 

temperature of CO2 and reservoir minimum miscibility pressure (MMP; which 

increases with temperature and is at least equal to the critical pressure of CO2) 

[81]. 

Immiscible conditions exist at reservoir temperature and pressure generally less 

than the critical temperature of CO2 and temperatures above the critical 

temperature when reservoir pressure is less than the MMP pressure. Under 

Immiscible conditions, liquid or gas-like phases of CO2 are possible. The 

miscibility and immiscibility criteria as provided [81], are shown in Table 2.3. 
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Table 2.3: Miscibility and Immiscibility Conditions Based on CO2 Critical Temperature & 
Pressure 

Criteria  Conditions Comments 

Tres < 86oF Immiscibility - 
86oF < Tres < 90oF Miscibility / 

Immiscibility 
Either Possible 
TCO2 = 87.8oF 

Tres > 90oF Miscible Possible - 
  - 
Pres < 1000 psia Immiscible - 
1000 psia < Pres < 1200 psia Miscible / Immiscible Either Possible PCO2 = 1073 psia 
Pres > 1200 psia Miscible Possible - 

2.4.1.4 CO2-EOR Screening Criteria 

It has been acknowledged by previous investigators that not all oil or heavy oil 

reservoirs are suitable for CO2-EOR and storage for various reasons ranging from 

technical challenges to the cost surrounding such a project. Preliminary 

screening criteria for selecting oil or heavy oil reservoir suitable for CO2-EOR and 

storage were proposed by Shaw and Bachu [70]. Standardized CO2 

sequestration screening criteria are provided by  Nelms and Burke [82], but 

sounds more theoretical, less explicit and less adaptable as the technical 

screening guideline proposed by Taber et al [83, 84] (see Table 2.2). 

Criteria recommended by various authors for the technical screening of Miscible 

CO2-EOR are presented in Table 2.4. 

Table 2.4: Screening Criteria for Miscible CO2-EOR (Light Oil) 

Reservoir Parameter [85] [84] [86] [83] 

Depth (m) < 3000 >700 >914 i) > 1219; ii) > 1006 
iii) > 853; iv) > 762 

Temperature (oC) < 90 - - - 
Pressure (MPa) >83 - >103  
Permeability (mD) >1 - - - 
Oil Gravity (oAPI) >40 >26 >30 i) 22-27.9; ii) 28-31.9 

iii) 32-39.9; iv) > 40 
Viscosity < 2 < 15 < 12 < 10 
Fraction of Oil 
Remaining 

>0.30 >0.30 >0.25 >0.20 

Investigation of the influence of some reservoir parameters on the CO2-EOR was 

carried out by Rivas et al [87], through a series of reservoir simulations, and an 

optimum value for reservoir and oil properties suitable for CO2-EOR was 

established. The results of the findings are presented in Table 2.5 below. The 

suitability of such criteria for heavy oil certainly needs more investigations. 
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Table 2.5: Optimum Value for Reservoir Parameters for CO2-EOR Suitability 

 Reservoir Parameters Optimum Values Parametric Weight 

API Gravity (oAPI) 37 0.24 
Remaining Oil Saturation 60% 0.2 
Pressure over MMP (MPa) 1.4 0.19 
Temperature (oC) 71 0.14 
Net Oil Thickness (m) 15 0.11 
Permeability (mD) 300 0.07 
Porosity 20% 0.02 

2.5 CO2-EOR Technique – State of Play 

2.5.1 A Worldwide Overview 

USA remain the leader in the implementation of the CO2-EOR technique, since 

starting the first miscible displacement project in 1972 in the Permian basin 

(SACROC field). 

A worldwide snapshot is presented in Table 2.6 below 

Table 2.6: Active CO2-EOR Projects Worldwide [45] 

 Country Process No. of Project Production rate (b/d) 

USA 
Miscible 70 205775 

Immiscible 1 102 
Canada Miscible 2 7200 
Turkey Immiscible 1 6000 
Trinidad Immiscible 5 313 

However, year a 2010 survey indicates that the number of miscible projects in 

the USA has increased to 103, and the immiscible to 5 [88].  

2.5.2 Investigation and Field Application 

Technical and economical evaluation of EOR for two heavy oil (18-24o API) fields 

(four reservoirs in total) in Africa based on 13 established and emerging 

methods including chemical processes, gas injection, thermal and microbial EOR, 

are reported by Hon Vai Yee et al [89]. Data required for the study include: 

 Fluids rock properties; 

 Driving mechanism; 

 Production data; 

 OOIP and recoverable reserves; 
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 Relative permeability curves. 

The Miscible CO2 injection was found not suitable for any reservoir due to higher 

calculated MMP (Minimum Miscible Pressure) while the Immiscible gas injection 

was a viable solution. 

The methods used were not really spelled out in the literature, no reservoir 

simulation were carried out. Although the study showed that the In-Situ 

Combustion and steam flooding EOR processes could be the most technical and 

economical EOR, it might not be appropriate to conclude that these are the most 

effective EOR for heavy oil reservoir in Africa, bearing in mind that the EOR 

techniques are also reservoir dependant, and two fields out of many that exist in 

Africa might not necessarily typify or characterize all the African heavy oil 

reservoirs. 

A laboratory investigation, including pressure/volume/temperature (PVT) studies 

and core-flood experiments have been carried out by Raj et al [90], for 

assessing the suitability and effectiveness of three injection gases (flue gas 

containing 15 mole% CO2 in N2, a produced gas containing 15 mole% CO2 in 

CH4, and pure CO2) for heavy oil recovery (~14° API gravity collected from 

Senlac reservoir located in the Lloydminster area, Saskatchewan, Canada). As 

reported by the author, pure CO2 appeared to be the best recovery agent, 

followed by the produced gas. 

With a sensitivity of water alternating CO2, a reduction in either waterflood or 

CO2 injection rate resulted in an increased in oil recovery and showed the 

interference of viscous, capillary and diffusive forces [91]. 

Hydrocarbon extraction can be easily enhanced at pressures above 1200 psig, 

[92]. A slim tube displacement experiment test indicated that at pressures as 

high as 3800 psig, CO2 might reach miscibility with viscous oil [92]. This 

suggests why the author concluded that in the recovery of heavy oil by CO2 

flooding at high pressure, oil displacement efficiency can be as high as that of 

Miscible displacement. Following the coreflooding test, the author concludes that 

there is no significant improvement in oil displacement efficiency by using the 

CO2-WAG injection method, which appears to be different from the results 
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obtained by Srivastava et al [91]. The author suggests a CO2 alternating brine 

injection will reduce the CO2 utilisation factor. 

For the purpose of investigating the feasibility of CO2 flooding process under 

Immiscible conditions for stock tank oil of 22o API, the following conventional 

flooding methods were tested: 

1) CO2 flood (secondary oil recovery); 

2) Waterflood with reservoir brine; 

a) CO2 continuously injected after waterflood; 

3) CO2-alternate-brine (1:1 WAG ratio) flood after waterflood; 

4) CO2-alternate-brine (2:1 WAG ratio) flood after waterflood; 

5) CO2 huff’n’puff stimulation (cyclic injection mode). 

The results indicate that CO2 immiscible flooding is an effective method for high 

pressure viscous oil recovery. 

Using the steam version of the in-situ combustion numerical model by Coats 

[92], the Immiscible Displacement mechanism of CO2 in a simultaneous 

injection of CO2 and steam in a heavy oil reservoir was evaluated and it was 

concluded that the viscosity reduction effect of CO2 in heavy oil, in a steam 

stimulation process is the major contributor that increased recovery in a high 

compressibility reservoir [93]. In a normal compressibility reservoir, the major 

benefit is derived from the solution gas effect of injected CO2. The author noticed 

little improvement in the final recovery of the steam and CO2 drive in 

comparison to the steam drive case, which is certainly controversial to the 

results reported by Shubao and Shunli [94] and Hornbrook [95]. This probably 

suggests the importance of reservoir conditions in the recovery performance. 

The displacement mechanisms were investigated using four recovery methods, 

steam, steam injection with CO2, steam injection with surfactant, steam injection 

with CO2 and surfactant, using a laboratory physical mode and a (CMG suite of 

software (e.g. GEM, IMEX)) numerical simulation model [96]. The author 

concluded that the oil recovery of the simultaneous injection of steam; CO2 and 

surfactant is higher than that of steam injection; steam with CO2 and steam with 

surfactant. CO2 dissolution in oil helps to improve flow performance of heavy oil. 
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CO2 decreases the temperature of steam during the CO2 alternating steam 

injection process, which impact on the expansion of steam chamber. 

High pressure displacement on the recovery of West Sak crude oil (19.2o API, 

hence heavy oil) using steam and CO2 was also investigated by Hornbrook [95] 

in a laboratory experimental test conducted in an unconsolidated sandpack (2” 

diameter and 4ft long). The authors claimed that the simultaneous injection of 

CO2 and steam increased recovery, reduced injection temperatures, and reduced 

the heat input required. It was also reported that the optimum CO2 and steam 

molar ratio of maximizing recovery is 1:3. This will depend on parameters such 

as recovery rate, injection rates, pressure, API and other, considering that the 

authors only focused on the influence of CO2 addition during the steam drive. 

Slim Test Displacement (STD) tests supported by Equation-of-State (EOS) 

predictions were used to evaluate the ability of various solvents such as CO2, n-

butane and various mixtures of Prudhoe Bay natural gas (PBG) and natural gas 

liquids (NGL), to miscibly displace heavy, asphaltic West Sak crude [96]. 

Results indicate that for enriched gas drives, the development of dynamic 

miscibility occurs via simultaneous vaporizing and condensing mechanisms. 

STD test results indicate that the ultimate oil recoveries, even for first contact 

miscible (FCM) solvent were considerably lower due to asphaltene precipitation. 

Asphaltene tests were conducted for various solvent-West Sak crude mixtures to 

determine the amount of precipitation and its effect on oil composition. STD 

results and EOS predictions indicate that CO2 was unable to develop dynamic 

miscibility with West Sak crude at reservoir pressure (6650 psia) and 

temperature (80 oF) conditions. 

A series of experiments were conducted using a cylindrical tube (1D) and 

rectangular box (3D) to investigate the effects of simultaneous injection of CO2 

and CH4 together with steam on the recovery of heavy oil (12.4o API) mixed with 

unconsolidated limestone [98]. The gases together with steam resulted in 

higher incremental heavy oil recoveries compared to steam injection alone. 

Investigation using ECLIPSE (By Schlumberger) was carried out, considering the 

West Sak reservoir, to explore the effect of CO2 and water injection (individually 

or simultaneously) for the purposes of EOR and CO2 storage [98]. A 3D black oil 
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simulator was constructed accounting for the oil swelling and viscosity reduction, 

and the results showed higher recovery when a combination of water and CO2 

injection was carried out in early production life. The authors also claimed that 

CO2 storage is at its maximum if depletion precedes CO2 injection and large 

quantity of CO2 storage was very likely. Recovery using liquid CO2 injection was 

almost identical to that of waterflood due to its reduced mobility compared to 

that of dry CO2. Significant improvement with water alternating CO2 injection 

and simultaneous water-CO2 injection was noticed compared to water or CO2 

injection alone. Water-CO2 ratio played an important factor in the CO2 retention, 

with a ratio below one lower CO2 was required and higher CO2 storage was 

noticed at high injection pressure. Water-CO2 ratio above one favored lower CO2 

retention factor. 

Correlations were developed for the prediction of CO2 solubility, oil swelling 

factor and viscosity change for CO2-saturated heavy oils, based on 

experimentally measured data (physical properties of heavy oil before and after 

CO2 saturation) [99]. Temperature, pressure and specific gravity are required 

within the CO2-solubility and swelling factor correlations, while the crude 

viscosity is required for predicting the mixture viscosity. The author claims that 

the correlations can be applied in the context of heavy oils and can also be used 

to estimate the quantity of CO2 required to reduce the oil viscosity, hence to 

facilitate mobility. 

Reservoir simulation was carried out to [100]: 

1) Investigate the possible formation of a second liquid during CO2 injection 

and its influence on oil recovery; 

2) Assessing the Immiscible and Miscible oil recovery using solvent injection 

(continuous injection, slug and WAG injection) for the Schrader Bluff 

which is a shallow water heavy oil reservoir located in the Alaskan North 

slope. 

The results indicated the existence of a second liquid phase which did not have 

any impact on the oil recovery process. It was justified that the second liquid 

phase was mainly CO2 content and only had about 0.05% of the heavier 
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hydrocarbon (C11+). Miscible WAG was more effective than the Immiscible 

process. 

Simulation using a modified EOS to match laboratory saturation pressure and 

swelling was carried out to investigate the Immiscible CO2 process in heavy oil 

reservoirs and Immiscible gas injection alternated with water resulted in higher 

recovery compared to the slug injection [101]. 

Schrader Bluff is a heavy oil reservoir in Alaska (USA) with almost 1.5 billion of 

recoverable heavy oil. The lack of potential primary recovery technique and the 

abundance of CO2 in the region triggered off the need to investigate the CO2 for 

enhanced recovery of heavy oil. A study was conducted with the objective to 

establish a suitable solvent (CO2 / Propane) that will develop miscibility with the 

Schrader Bluff reservoir heavy oil [102]. The investigation was experimentally 

based and involved carrying out slim tube tests to assess the miscibility of CO2 

with the Schrader Bluff reservoir heavy oil. Unfortunately, the results of the slim 

tube test indicated that the two fluids were Immiscible at reservoir conditions. 

The effect of slug size and WAG ratio were assessed using 50% of Prudhoe Bay 

Gas (PBG) with 50% NGL (as solvent) injected on 4ft core-flood (long 

sandpacks). The core-flood experiments showed that large size slug (>0.2PV, 

Pore Volume) of 50%PBG/50%NLG had no significant improvement in the 

Schrader Bluff heavy oil recovery, while a single small size of 50%PBG/50%NLG 

mixture or CO2 slug had higher improvement per unit slug size. These results 

indicated that CO2 was more effective than the PBG in IOR for the Schrader Bluff 

case, although not Miscible with the Schrader Bluff heavy oil. The authors also 

concluded that the simulation of CO2 injection into the Schrader Bluff heavy oil 

reservoir indicated strong possibility of the formation of a second liquid phase. 

Sensitivity and the importance of physical effects in the modelling of Miscible or 

Immiscible CO2 injection in sandstone and carbonate reservoirs is discussed 

thoroughly based on fields case study [103]. It was concluded that CO2 is an 

effective displacing agent, but the physical effects occurring at CO2 flood need 

accurate modelling and further research, e.g. CO2-rich liquid phase and 

thermodynamic aspect of its formation need to be modelled properly to account 

for fingering effects and diffusive CO2 transfer mechanisms. Fingering effect is 

referred to the hydrodynamic instability, when a more mobile fluid displaces a 
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less mobile one. Evaluation of CO2 or CO2-WAG processes were performed on 

many of the Norwegian Continental shelf reservoirs, and most of the studies 

proved the technical feasibility of the EOR technology; however, the following 

points were raised as being the major blockage of the non continuity or 

implementation of the project: 

 Insufficient quantities of low cost CO2 in the area; 

 Transport and storage of CO2 on the offshore platforms; 

 Surface facilities not fit for potential corrosion associated with carbonated 

water; 

 Inadequate handling capacity on the platform; 

 Contamination of producing gas; 

 Low EOR potential and un-attractive project economics. 

Measures that can increase the EOR potential of CO2 injection in heterogeneous 

reservoirs were also proposed as: 

 Re-injection of the produced gas; 

 Reallocation of injected CO2 volume between existing and optimised well 

patterns; 

 Continuous well control, isolation of offending perforation intervals, well 

re-perforation programs; 

 Methods of fluid mobility control and sweep improvement; 

 Optimisation of injection scenario. 

Results of laboratory investigation of CO2 immiscible displacement using both 

continuous injection and WAG for Trinidad crude oil is presented by Mangalsingh 

[104]. The results indicated that CO2 continuous or WAG Immiscible 

displacement was more efficient than waterflood. However, the WAG process 

resulted in higher recoveries than continuous CO2. 

Findings of modelling of CO2 sequestration within an aquifer that CO2 can only 

occupy 1% of the pore volume storability factor and likely as much as 100 times 

less [105], which currently challenges the 1-4% reported in the literature. The 
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authors related their approaches to a commercial power plant and established 

that CO2 storage in aquifer was probably not a viable option due to the size of 

the aquifer or number of wells required for a given CO2 to be stored. This 

conclusion is very equivocal as current thinking favors the aquifer as one the 

potential CO2 geological storages. 

The concluding remarks by [105], that underground CO2 sequestration is not 

feasible at any cost, was based on the two following assumptions:  

 Effective CO2 storage requires the presence of a hydrological isolated, and 

completely closed geologic structure.  

 Any other storage system, except as described above, is guaranteed to 

leak. 

The above assumptions have been heavily criticized on the basis of various 

literature reviews and decades of CO2 injection experience [106]. 

Approaches (pressure-limited storage capacity estimation) employed by [105] 

to estimate CO2 storage capacity have been rejected in favour of methodologies 

that reflect more realistic assumptions (i.e. storage efficiency approach, 

representing the amount of CO2 that can be stored in a given volume of pore 

space), and based in part upon knowledge gained from ongoing CO2 storage 

projects [106]. Moreover, CO2 sequestration in deep geological formation field 

projects such as the Statoil Sleipner project (North Sea) with approximately 1 

MtCO2/year being injected and rigorously monitored for more than a decade. 

Three are other large commercial carbon capture and storage projects, Snohvit, 

In Salah and Weyburn, which further substantiate that underground CO2 

sequestration is feasible, and prove that the assertion by [105] that 

underground storage of large volumes of CO2 is impossible is unfounded.    

2.6 CO2 Transportation Offshore 

CO2 can be transported in gaseous, liquid or solid form and transportation can 

either be by road tankers, pipelines or ships for gaseous and liquid CO2. Pipelines 

are known to be the most common method for transporting long distance of 

large quantities of CO2. Compressed CO2, liquefaction and solidification are 

processes use to reduce the volume of CO2 to facilitate transportation. Gaseous 
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CO2 is generally compressed above 8MPa pressure to avoid phase change (two 

phase flow). 

CO2 transportation is already a proven concept onshore and predominantly in 

the USA. A list of the well known 47 high-pressure pipelines in the USA, with 

approximately 6600 km length in total is shown in Table 2.7 below [107]. The 

services are generally for EOR, food and beverage, and other uses. 
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Table 2.7: Major High Pressure  (Onshore) CO2 Transportation in USA [107] 

Pipelines Owner / Operator Length 
(km) 

Diameter 
(inch) 

Estimated Max 
Capacity 

(MMCF/D) 

Estimated Max 
Capacity  

(Million ton/yr) 

Location 
(USA) 

Adair Apache 24 4 47 1.0 Texas 
Anton Irish Oxy 64 8 77 1.6 Texas 

Beaver Creek Devon 137 - - - Wyoming 

Borger, TX to Camrick, OK Chaparral Energy 138 4 47 1.0 Texas, Oklahoma 

Bravo Oxy Permian 351 20 331 7.0 New Mexico, Texas 

Centerline Kinder Morgan 182 16 204 4.3 Texas 

Central Basin Kinder Morgan 230 16 204 4.3 Texas 

Chaparral Chapparral Energy 37 6 60 1.3 Oklahoma 

Choctaw (aka NEJD) Denbury Onshore, LLC 294 20 331 7.0 Mississippi, Louisiana 

Comanche Creek (currently 
inactive) 

PetroSource 193 6 60 1.3 Texas 

Cordona Lake XTO 11 6 60 1.3 Texas 

Cortez Kinder Morgan 808 30 1117 23.6 Texas 

Delta Denbury Onshore, LLC 174 24 538 11.4 Mississippi, Louisiana 

Dollarhide Chevron 37 8 77 1.6 Texas 

El Mar Kinder Morgan 56 6 60 1.3 Texas 

Enid-Purdy (Central  Oklahoma) Merit 188 8 77 1.6 Oklahoma 

Este I to Welch, TX ExxonMobil, et al 64 14 160 3.4 Texas 

Este II to Salt Creek Field ExxonMobil 72 12 125 2.6 Texas 

Ford Kinder Morgan 19 4 47 1.0 Texas 

Free State Denbury Onshore, LLC 138 20 331 7.0 Mississippi 

Green Line I Denbury Green Pipeline, LLC 441 24 850 18.0 Louisiana 

Jo�re Viking Penn West Petroleum, Ltd 13 6 60 1.3 Alberta 

Llaro Trinity CO2 85 12-8 77 1.6 New Mexico 

Lost Soldier/Werrz Merit 47 - - - Wyoming 

Mabee Lateral Chevron 29 10 98 2.1 Texas 

McElmo Creek Kinder Morgan 64 8 77 1.6 Colorado, Utah 

Means ExxonMobil 56 12 125 2.6 Texas 

Monell Anadarko - 8 77 1.6 Wyoming 

North Ward Estes Whitting 42 12 125 2.6 Texas 

North Cowden Oxy Permian 13 8 77 1.6 Texas 

Pecos County Kinder Morgan 42 8 77 1.6 Texas 

Powder River Basin CO2  , PL Anadarko 201 16 204 4.3 Wyoming 

Raven Ridge Chevron 257 16 204 4.3 Wyoming, Colorado 

Rosebud Hess - - - - New Mexico 

Sheep Mountain Oxy Permian 656 24 538 11.4 Texas 

Shute Creek ExxonMobil 48 30 1117 23.6 Wyoming 

Slaughter Oxy Permian 56 12 125 2.6 Texas 

Sonat (reconditioned natural gas) Denbury Onshore, LLC 80 18 150 3.2 Mississippi 
TransPetco TransPetco 177 8 77 1.6 Texas, Oklahoma 

W. Texas Trinity CO2 97 12-8 77 1.6 Texas, NM 

Wellman PetroSource 42 6 60 1.3 Texas 

White Frost Core Energy, LLC 18 6 60 1.3 Michigan 

Wyoming CO2 ExxonMobil 180 20-16 204 4.3 Wyoming 

Canyon Reef Carriers Kinder Morgan 224 16 204 4.3 Texas 

Dakota Gasification (Souris Valley) Dakota Gasification 328 14-13 125 2.6 North Dakota, Sask 

Pikes Peak SandRidge 64 8 77 1.6 Texas 

Val Verde SandRidge 134 10 98 2.1 Texas 

 Totals: 6,611     
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However, there are no published literatures on CO2 transportation offshore and 

similarly there have been no offshore CO2-EOR field projects reported to date, 

although there are several proposed and implemented hydrocarbon gas injection 

(WAG) projects in the North Sea; the Gullfaks and Brage field projects are 

ongoing WAG injection for EOR [108, 109].  

As far design and operation are concerned, CO2 pipelines may be similar to 

natural gas pipelines; however, the fundamental difference lies in the fact that 

CO2 is normally transported as a supercritical fluid. The supercritical pressure is 

higher than the operating pressure used in most natural gas pipelines, which 

typically range from 200 to 1,500 psi [110]. Generally, there are booster 

stations (pumps rather than compressor, due to the liquid behavior of the 

supercritical CO2) along the pipeline route to maintain the necessary pressure for 

the CO2 pipelines.  

It is believed that, significant progress in research and technology is required to 

make CO2 transportation offshore feasible to the extent needed to achieve 

successful EOR offshore.  

The application of CO2-EOR in deepwater will require that the challenge to 

preserve the long distance CO2 pipeline to meet the compatibility requirements 

between the source (onshore) and the sink (reservoir) in harsh (cold) offshore 

environment be overcomed.  

Pure CO2, i.e. no water, oxygen, nitrogen and methane concentrations, is a pre-

requisite, but this specification on its own does not warrant dense phase 

operation, particularly in a very long distance pipeline exposed to cold ambient 

fluid. One of the objectives of this study is to ensure that the condition at which 

the compressed CO2 leaves onshore is maintained throughout the 250 km 

distance offshore, and reaches the reservoir in the same phase. In such 

condition, the pipeline has to operate almost in an adiabatic process, with 

negligible heat loss due to environmental impact. 

Despite that deepwater is generally associated with colossal investments in 

capital, long-term commitment and great rewards, the challenges surrounding 

such development are also very huge, from the exploration, drilling to the 
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completion and production stage. Success in these challenging environments 

requires detailed understanding, advanced and established technology. 

2.7 CO2 Storage / Sequestration 

CO2 sequestration relates to the techniques used for the long term CO2 storage 

for the purpose of global warming mitigation. 

There are two main storage options known as: Ocean Storage and Geological 

Storage. Due to substantial uncertainties, Legal and HSE issues surrounding the 

Ocean Storage, this storage option lacgs behind and faces enormous hurdles to 

be attractive. 

As for geological storage, three main types of geological environments are being 

considered for carbon sequestration: 

1) Oil and gas reservoirs; 

2) Deep saline reservoirs / aquifers; 

3) Un-mineable coal seams. 

In each case, CO2 would be injected, in a dense form, below ground into a 

porous rock formation that holds or previously held fluids. CO2 is injected around 

1000 meters or more below sea-bed (reservoir), the pressure allows CO2 to 

become and remain supercritical, a dense phase (relative liquid), and thus less 

likely to migrate out of the geologic formation. 

The storage capacity for CO2 storage in geological formations is potentially huge 

if all the sedimentary basins in the world are considered. The USA is estimated 

to have 3.7 trillions metric tons of CO2 storage capacity and the world capacity 

for geologic storage is estimated to be potentially as large as 10 trillions metric 

tons of CO2 [111]. 

Oil and Gas Reservoirs. Pumping CO2 into oil and gas reservoirs to boost 

production (EOR) is practiced in the petroleum industry today. The United States 

is a world leader in this technology and uses approximately 32 Mt CO2 annually 

for EOR, according to DOE [112]. In an EOR application, the integrity of the CO2 

that remains in the reservoir is well understood and very high, as long as the 

original pressure of the reservoir is not exceeded [112]. 
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The advantage of using this technique for long term CO2 storage is that 

sequestration costs can be partially offset by revenues from oil and gas 

production. CO2 can also be injected into oil and gas reservoirs that are 

completely depleted, which would serve the purpose of long term sequestration, 

but without any offsetting benefit from oil and gas production. CO2 can be stored 

onshore or offshore; to date, most CO2 projects associated with EOR are 

onshore, with the bulk of U.S. activities in West Texas. 

In-Salah CO2 capture and sequestration (by BP & Sonatrach) in Algeria started in 

2004 and the injection was suspended in 2011 due to concerns about the 

integrity of the seal (i.e. possible vertical leakage into the caprock). During the 

project lifetime, 3.8 Mt of CO2 was successfully stored in the Krechba Formation 

and no leakage of CO2 was reported [113]. 

CO2 sequestration in an old oil field at Weyburn (by Petroleum Technology 

Research Centre (PTRC) & EnCana Corp) in Canada and the CO2 escape has 

been estimated to be less than 1% per 1000 years. 

Coal Bed Methane (CBM). Coal beds contain large amounts of methane-rich 

gas that is adsorbed onto the surface of the coal. The typical CBM recovery 

process consists of depressurizing the bed, usually by pumping water out of the 

reservoir. However, another technique is to inject CO2 into the bed. Tests have 

shown that the adsorption rate for CO2 to be approximately twice that of 

methane, giving it the potential to efficiently displace methane and remain 

sequestered in the bed [112]. CO2 recovery of CBM has been demonstrated in 

limited field tests, but more investigation is needed to understand and optimize 

the process. 

One of the advantages of CO2 sequestration in coal beds is that many of the 

large un-mineable coal seams are near electricity generating facilities that can 

be a large point of CO2 sources; hence, reducing the transportation cost as 

limited pipeline would be needed. 

Saline Formations / Aquifier. Saline formations can be defined as 

sedimentary rocks saturated with formation water containing high 

concentrations of dissolved salts. Although sequestration of CO2 in deep saline 

formations may not have any added value by-products, it may have a viable 
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long term solution as far as storage capacity and access to a CO2 source for 

injection purposes are concerned. In USA alone, deep saline formations could 

potentially store up to 500 billion tons of CO2 [114]. CO2 sequestration is being 

performed offshore in saline aquifers at Sleipner (Statoil) in Norway, and similar 

project is also ongoing at Snohvit in the Barents Sea. At both sites the CO2 is 

judged to be permanently stored. 

Saline and other types of reservoirs also have two additional trapping 

mechanisms that help trapping / storage of the CO2 known as: Solubility and 

Mineral trapping. Solubility trapping is basically the dissolution of CO2 into the 

reservoir fluids; Mineral trapping is the reaction of CO2 with minerals in the host 

formation to form carbonates. As the CO2 moves through the deposit, it comes 

into contact with un-carbonated formation water and reactive minerals. A 

portion of the CO2 dissolves in the formation water and becomes permanently 

fixed by reactions with minerals in the host rock. Over long periods of time, the 

CO2 might all dissolve and some be fixed by mineral reactions, essentially 

becoming permanently sequestered [115]. 

The CO2 storage projects known to date, with the type of storage and current 

capacity are presented in Table 2.8. 

Table 2.8. Existing / Planned CO2 Sequestration 
Project 
name 

Country Injection start 
(year) 

Approximate 
average daily 
injection rate 

(tCO2 day) 

Total 
(planned) 

storage (tCO2) 

Storage reservoir 
type 

Weyburn Canada 2000 3,000-5,000 20,000,000 EOR 
In-Salah Algeria 2004 

(suspended in 2011) 
3,000-4,000 17,000,000 Gas field 

Sleipner Norway 1996 3,000 20,000,000 Saline formation 
K12B Netherlands 2004 100 8,000,000 Enhanced Gas 

Recovery 
Frio USA 2004 (1000 planned 

for 2006+) 
1600 Saline Formation 

Fenn Big 
Valley 

Canada 1998 50 200 ECBM 

Qinshui 
Basin 

China 2003 30 150 ECBM 

Yubari Japan 2004 10 200 ECBM 
Recopol Poland 2003 1 10 ECBM 
Snohvit  Norway 2008 2,000 31 – 40 Mt Saline Formation 

2.8 Environmental Challenges 

The environmental impact caused by oil sand / heavy oil extraction is heavily 

criticized by environmental groups such as Greenpeace [116]. 
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Just like all mining and non-renewable resource projects, it is without doubt that 

heavy oil / oil sands development will leave footprints on the environment. 

Concerns have been raised due to possible contamination with the land, water 

and the air, which will occur as described below: 

I. Land - large deposits of toxic chemicals during the extraction; 

II. Water - During the separation process and through the drainage of rivers; 

III. Air - Release of CO2 and other emissions. 

Production of bitumen and synthetic crude oil (Synthetic crude is the by-product 

of bitumen/extra heavy oil) emits higher greenhouse gas (GHG) than the 

production of conventional crude oil, hence to offset GHG from the heavy oil / oil 

sands and other, sequestering the captured CO2 must be very crucial. 

Other HSE issues may well be related to CO2 transportation. Therefore, just as 

there are standards for natural gas admitted to pipelines, standards for ‘pipeline 

quality’ CO2 should emerge as the CO2 pipeline infrastructure develops further 

[116]. 

2.9 Summary 

The literature survey on CO2-EOR, CO2-EOR for heavy oil and CO2 sequestration, 

discussed above has demonstrated that neither of these topics have a complete 

solution or is free of ambiguities, despite the enormous efforts made by previous 

workers. 

CO2-EOR is a well developed technology that has been used for decades for 

conventional oil reservoir and can be adapted for heavy oil reservoirs. About 79 

CO2-EOR operations were active in 2004 Worldwide, amongst which 70 Miscible 

CO2-EOR and one Immiscible were in the USA [69]. Two active Miscible CO2-

EOR exist in Canada, five Immiscible Displacement pilot fields in Trinidad and 

one commercial Immiscible operation in Turkey. 

The experiences gained on CO2 onshore transportation, CO2-EOR for 

conventional oil recovery, heavy oil production using other means and the 

lessons learnt from earlier involvement in USA (California, Alaska) and Canada 

might be useful to some extent for future heavy oil development offshore using 

CO2-EOR technique. 
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Below are the key points gathered from this review: 

1) Although some literatures report that heavy oil is mainly found in shallow 

water [117], this study will focus on potential CHOP in deepwater 

environments. 

2) As growth continues, it may become more difficult to secure rights-of-way 

for the pipelines, particularly in highly populated zones that produce large 

amounts of CO2 (IPCC Report). This perhaps suggests that subsea 

development with regards to CO2 transportation (for EOR or Storage) may 

well be the future focus and deployment for Oil & Gas Operators, in which 

case the knowledge gathered through dedicated investigations will be 

vital. 

3) With regard to heavy oil recovery, the ESPs (Electrical Submersible 

Pumps) and HSPs (Hydraulic Submersible Pumps) have never been found 

attractive due to the maintenance and replacement costs that could 

significantly exceed the expectations. The thermal-aided recovery 

mechanism or hot flow process such as conventional steam-flood or SAGD 

may well be attractive onshore but seem doubtful offshore for several 

reasons: 

 Large surface facilities required, which is very unlikely to be 

available offshore, 

 Known to be energy inefficient, 

 Exorbitant in term of cost. Although waterflood could possibly be 

seen as a viable option, it has the disadvantage of a lower recovery 

factor than some of the Cold Flow processes. 

4) Although, concerns over CO2-EOR are progressively being shifted from the 

doubts of being a potential CO2 sequestration technique to the quantity 

of CO2 that can be stored underground during the EOR process, more 

deployment, research and incentive from the government and industries 

are still needed to improve the existing technologies and remove the 

ambiguities with better understandings. One of the objectives of this 

research work is to remove the ambiguities over CO2 sequestration 

during heavy oil recovery using CO2-EOR.  
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5) Design of CO2 Miscible flood needs to take into consideration parameters 

such as: 

a) Reservoir conditions; 

b) Solvent and crude oil properties; 

c) Solvent slug size (Laboratory Core-flood studies have shown that this 

varies between 2-10% of pore volume [118]; 

d) Miscibility; 

e) Displacement stability (Displacement instabilities during Immiscible 

CO2 flooding are functionally of Rock-fluid properties, Fluid Saturation 

Distribution, Viscous forces, Rock Wetability, Miscibility); 

6) Factors contributing to the EOR during Immiscible CO2 are: 

a) Injection rate / Increased Injectivity; 

b) Swelling of oil – (Compositional effect); 

c) Oil viscosity (Viscous effect); 

d) Chemical interaction between CO2, formation / injection water and 

reservoir rock; 

e) Transfer of CO2 from Fractures to matrix involving diffusive, 

gravitational and capillary forces. 

7) Reservoir Permeability is not critical if sufficient rates can be injected 

[83]. The author also claimed using the API Gravity vs Reservoir Depth 

that below API 22, CO2 Miscible process is not longer possible, and 

between API 13 – 21.9 in Depth 1800ft, CO2 Immiscible is possible, but 

below API 13 CO2 immiscible is not possible. 

8) Immiscible displacement projects can store larger volumes of CO2 than 

Miscible Displacement projects [98]. 
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3. METHODOLOGY & BENCHMARKING 

Introduction: This chapter describes the means and methodology used to 

accomplish individual task and identify the ordering of simulation cases 

performed. 

The intention was to identify and lay down those principles and methods that 

govern the modelling process so that the key objectives of this research can be 

attained. As such, in this chapter, the modelling approach and methodology for 

analysing the results are defined, the number, type and stage of simulation 

model performed is outlined as well as the tools used to accomplish the 

modelling. 

The modelling activities were broken down into three different categories: 

1- Long distance CO2 transportation offshore (deepwater); 

2- Integrated injection-Production Modelling for heavy oil production using 

CO2 – EOR technique; 

3- CO2 sequestration during heavy oil production using CO2-EOR technique. 
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3.1 Overall Concept 

A block flow diagram mapping the research project is shown in Figure 3.1. The 

diagram is designed to provide a clear overview of the research concept, and 

graphically outlining the exact nature of the investigations, summarising the 

proposed methods and the potential issues or challenges surrounding the 

investigation. The boxes are connected to other boxes by lines and arrows to 

represent the sequence and dependency relationships. 

CO2 injection for EOR is interlinked with three other processes, each having 

different technologies and issues which need to be assessed and properly 

understood. The three (3) processes are: 

 CO2 Capture 

 CO2 Transportation 

 CO2 Monitoring during storage 

CO2 Capture and monitoring processes do not form part of this study, but only 

covered in this document partially for information purposes. 

 

 

 

 

 

 

 

 

 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	72	

 

 
Figure 3.1: Overall Work Flow Diagram 
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3.2 Field Description 

The field name, graphics or layout and explicit description will not be provided 

for confidentiality reasons. However, this is a field development offshore Africa 

that may push the technology frontier to another level.  

The field to some extend is comparable to other offshore developments, with the 

particularity that the study in this case is intended to explore other future 

avenues not previously done, and this includes: 

 Deeper water (ultra deepwater) heavy oil production with total depth of 

4000 m. 

 Long distance CO2 pipeline tie-back to offshore platform, i.e. CO2 injection 

from an onshore plant, 250 km away from the injection pad. 

 Very low reservoir deliverability, i.e. low reservoir pressure, low API 

gravity and very high viscosity, hence requiring some form of mitigations 

at a very early stage. 

The development is intended to bring several wells into production, which were 

all drilled around the 90s. The heavy oil field, named here as Omega, is located 

offshore West Africa. Although the water depth is such that it can be considered 

as deepwater, the analysis has extended its depth to that of ultra-deepwater to 

mirror a nearby field that has recently been successfully appraised but future 

development has been suspended for many reasons. The reservoir conditions 

are 2500 psig and approximately 150o F (65.6o C), but this study has looked into 

different conditions, with reservoir pressure varying from 1000 psig to 4000 psig 

to cover the life of the field and other nearby reservoir pressures. An average 

peak daily production from one of the highest producing wells is anticipated to 

be around 16700 STB/D production, and could significantly be more if all the 

wells are online. 

The Omega heavy oil field is located approximately 150 km away to the nearby 

coast, however, this distance has been extended to 250 km for the purpose of 

this study. 

Similar to nearby fields, Omega heavy oil is planned to be produced by means of 

a floating processing, storage, and offloading (FPSO) unit. The technical 
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challenge of producing Omega is that the oil is heavy crude (15–19° API) 

produced from the Miocene reservoirs of that region. 10o and 20° API oil gravity 

was considered for the study. 

There is a plan for subsea separation units (SSU) made up of typical separators 

and suitable dedicated pumps for spanning the heavy fluids up to the topside, to 

be located at each field near the wellhead.  

The Omega heavy oil will be flowing from the subsea separation units (SSU) to 

the FPSO through 10 inch / 12 inch flexible riser, using the dedicated integrated 

production system.  

However, enormous operational challenges related to the subsea production unit 

and the complexity of the heavy oil hydrodynamic behaviour are foreseen 

throughout the life of field, hence alternatives production methods are 

considered. 

Artificial lift is required at an early stage of production due to the lower reservoir 

pressure, low API and high viscosity. CO2-EOR technique for producing the heavy 

oil of the Omega field is being considered. 

Heavy oil is generally known to be an onshore business, however, this study has 

surveyed few shallow and deepwater developments worldwide. 

Shallow water (less than 400 m) and deepwater (greater than 400 m, but less 

than 1500 m) heavy oil developments are happening in the UK Continental Shelf 

and offshore Brazil respectively, but any development at water depth above 

1500 m has not being reported yet in the literature and probably does not exist 

as far as current heavy oil production record is concerned, which is a 

fundamental challenge of this investigation, coupled with the use of CO2 injected 

in-situ or remotely to enhance the heavy oil recovery.  Most offshore heavy oil 

production is via water or steam flooding, or water alternate gas injection. 

Table 3.1 below shows a close comparison with other offshore heavy oil 

reservoir characteristics from different continents [119, 64, 13 ]. 
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Table 3.1: Typical Offshore Heavy Oil Development 

Continent Europe South America Africa 
Country UK Norway Brazil Trinidad Tobago Angola X 
Field Captain Grane Jubarte Soldado Pazflor Omega 
Operated By Texaco Statoil Petrobras Trimmar Total E&P Angola X 
Distance Offshore (km) 130 185 77 35 150 250 

API Gravity (oAPI) 19 19 17 16-20 17-20 10 & 20 
Water Depth (m) 104 123.4 1300 30 600 - 900 2000 
Depth Below sea bed (m) 884 1500 1900 1200 - 1800 1200 - 2100 2000 
Reservoir Pressure (Psi) - - 2466 2600 2900 Variable 
Estimated Reserves (MMSTB) 956 755 600 - 590 500 
Porosity (%) 27 - 30 27 - 33 - 27 - 29 30 20 
Permeability (Darcy) 7 7 - 0.7 - 0.8 1.2 0.1 
Viscosity at Reservoir Cond (cP) 50 - 150 10 14 - 16 - 64 >100 
Reservoir Temperature (oC) 31 77 60 38 60 48.9 

3.3 Technical Approach 

3.2.1 Omega Field Production - Benchmarking 

Calibration of one reservoir performance was carried out, via history matching / 

parametric study, to ensure a more realistic representation of the reservoir 

conditions prior to embark on detailed investigation and sensitivity analysis. 

Initially, a suitable productivity index was established by benchmarking against 

the projected heavy oil production rate through one of the Omega wells. During 

early field life, typical expected heavy oil rate from a low and high producing well 

was around 8000 STBD to 16700 STBD respectively. 

Figure 3.2 illustrates a range of potential rates for different productivity index 

(PI) between 6 to 20 STB/d/psi. 
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Figure 3.2: Typical Well Production Rate - Benchmarking 

The test data used is a combination of limited field data from Reservoir 

Management Group (RMG) and scaled up data obtained from linear extrapolation 

to extend the range of data required for validation. 

Figure 3.3 illustrates typical predicted reservoir pressure from various 

correlations for a well producing around 8000 STBD.  
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Figure 3.3: Typical Predicted Flowing Pressure – Rate: 8000 STBD 
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Results indicate consistent prediction from all correlations up to 2000 m depth, 

and thereafter, each correlation indicates an almost unique trend. 

Prediction from different well tubing correlations at various production rates is 

presented in Table 3.2 below, and detailed results are included in Appendix 2. 

The standard deviation from the mean is very high in all cases, which indicates 

how wide spread the predictions are. Prediction varies from one correlation to 

another. 

The results are summarised in Table 3.2 below.  

Table 3.2: Predicted Flowing Pressure from Various Correlations 

Test Data Predicted Data - Results from Varous Correlation Statistical 
Analysis 

Oil Rate  
(STB/D) 

Pressure  
(Psig) Pressure (Psig) Mean Std 

Dev. 

- - Duns & Ros 
Modified 

Hagedorn 
Brown 

Fancher 
Brown 

Mukerjee 
Brill 

Beggs & 
Brill Orkiszewski Duns & Ros 

Original 
GRE (modified 
by PE) - - 

2000 2658.6 3101 2759 2668 2879 2893 2606 3069 2844 2853 175 

4000 3072.4 3695 3431 3382 3450 3489 3215 3654 3488 3475 151 

6000 3486.2 4098 3918 3889 3937 4043 3708 4121 3994 3963 133 

8000 3900 4514 4372 4356 4407 4566 4191 4570 4465 4430 127 

10000 4313.8 4960 4836 4829 4889 5042 4810 5033 4944 4918 91 

12000 4727.6 5391 5274 5272 5341 5524 5252 5476 5397 5366 99 

14000 5141.4 5832 5716 5716 5797 6032 5698 5925 5854 5821 116 

16700 5700.0 6455 6333 6333 6434 6754 6319 6558 6495 6460 146 

18000 5969 6771 6643 6642 6754 7121 6632 6878 6819 6783 164 

20000 6382.8 7279 7138 7137 7267 7712 7132 7392 7337 7299 194 

A graphical representation of the prediction trend is shown in Figure 3.4 below. 

At lower rates, the error margin with Francher-Brown and Orkisewski 

correlations is within 0 to -2%, but increase up to 12% at higher production 

rates. 
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Figure 3.4: Predicted Flowing Pressure against Production Rates 

A deviation (percentage error) from the expected reservoir pressure against test 

data is presented in Table 3.3 below. 

The percentage error is wider at low flowrate, except Francher-Brown and 

Orkisewski, which are very close to the expected trend.  

At higher rate, there is almost a typical trend amongst all the correlations, 

except Beggs & Brill with overprediction. 

Table 3.3: Estimated Error Margin from the Predicted Pressure 

Test Data Predicted Data - Results from Varous Correlation 
Oil Rate  
(STB/D) 

Pressure  
(Psig) % Error 

    
Duns and 
Ros Modified 

Hagedorn 
Brown 

Fancher 
Brown 

Mukerjee 
Brill 

Beggs & 
Brill Orkiszewski 

Duns and 
Ros Original 

GRE (modified 
by PE) 

2000 2658.6 17 4 0 8 9 -2 15 7 

4000 3072.4 20 12 10 12 14 5 19 14 

6000 3486.2 18 12 12 13 16 6 18 15 

8000 3900.0 16 12 12 13 17 7 17 14 

10000 4313.8 15 12 12 13 17 12 17 15 

12000 4727.6 14 12 12 13 17 11 16 14 

14000 5141.4 13 11 11 13 17 11 15 14 

16700 5700.0 13 11 11 13 18 11 15 14 

18000 5969.0 13 11 11 13 19 11 15 14 

20000 6382.8 14 12 12 14 21 12 16 15 
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3.2.2 Omega Field Study – Modelling Approaches 

An extended study of the Omega field was considered by scaling some of the 

field parameters as previously discussed to reflect the possible emerging 

challenges of the future. 

The new concept was based on a 240 km subsea pipeline transporting CO2 from 

an onshore compression station. The total pipeline length was 250 km (on and 

offshore sections), the water depth was 2 km and the depth below the seabed 

was 2 km. The transported CO2 was injected into the heavy oil reservoir via a 

vertical injection well (initial investigation). With regard to the production 

system, the heavy oil was produced to the topside separator via a subsea 

wellhead having 4 inch / 6 inch tubing size and 8 inch casing diameter. Single 

injection and production wells were used. However, more than one well was also 

possible depending on the capacity requirements. The schematic representation 

of the integrated injection and production system is shown in Figure 1.1. 

The reservoir thickness and radius were 300 ft and 2500 ft respectively, the 

reservoir temperature was 120 oF and the original oil in place (OOIP) was 500 

MMSTB. As from the production history, the initial reservoir pressure was 

variable (2500 psig to 4000 psig) depending on the well. The black oil PVT and 

Influx Performance data used for the simulation are presented in Table 3.4. 

Table 3.4: Reservoir Data 

Parameters Reservoir Data Parameters Reservoir Data 

Separator Single Stage Reservoir Pressure 1000 - 4000 psig 
Heavy Oil Viscosity 100 & 2000 cP Reservoir Temperature 120 oF 
Oil Gravity 10 & 20 API Water Cut 0 (Initially) 
Gas Gravity 0.7 Total Gas Oil Ratio 100 & 500 scf/STB 
Water Salinity 10000 ppm Productivity Index 20 STB/day/psi 

3.2.3 Long Distance CO2 Transportation Offshore 

The objective of this investigation was to assess the behaviour of the CO2 (pure) 

along the subsea pipeline, to determine the pressure requirement for various 

pipeline capacity, pipeline sizes and flow conditions. This exercise was helpful to 

establish the process and design requirements necessary for the integrated 

modelling. 

The operating conditions for dry and dense CO2 phase required to perform the 

steady state simulations were identified on the CO2 phase diagram which is 
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available on the public domain [95]. Two separate conditions were evaluated 

based on the pressure dictated at the pipeline inlet: Dry gas phase and dense 

phase, in order to assess the flow condition along the pipeline and to establish 

the exact nature of CO2 as it reaches the reservoir. The pipeline sizes used for 

the investigation varied from 6 inch to 14 inch diameter. The inlet pipeline and 

the seabed temperatures were 70 oF and 41 oF respectively. The pipeline was 

assumed coated with 3LPE (3 layer polyethylene coatings) for corrosion 

protection and 100 mm concrete coating for buoyancy control offshore. 

The steady state simulator “Pipesim” by Schlumberger was used to carry out a 

steady state analysis initially. 

3.2.4 Integrated Injection-Production System Modelling 

The objective of the integrated injection-production modelling was to bring the 

injection and production systems together as a single module for the purpose of 

heavy oil production using CO2-EOR technique. 

The injection system comprised the subsea pipeline transporting CO2 from the 

surface facility and connected to the subsea structure ready for injection. The 

production system was connected to the topside separator via a subsea wellhead 

having 4 inch/6inch tubing size and 8 inch casing diameter. The schematic 

representation of the integrated configuration system is shown in Figure 1.1. 

The integrated system modelling was performed using the Petroleum Experts 

package “GAP/PROSPER/MBAL” (IPM v6.4). 

The advantage of the Petroleum Expert products is that the challenge of 

modelling the entire systems from the reservoir, gathering lines, including choke 

valves, pumps and compressors (if applicable), to the risers is remediated in an 

integrated manner by linking GAP (pipeline models) with PROSPER (well models) 

and MBAL (reservoir / tank models) together to achieve a full field production 

forecast.  

In order to assess the performance of CO2-EOR technique for heavy oil 

production, the following main cases based on different production data 

(forecast) with varying reservoir pressure, GOR, were investigated: 
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1) Case 1: Reservoir pressure 4000 psig, GOR 500 scf/STB, heavy oil 

specific gravity 20 oAPI, injection pressure 3000 psig; 

2) Case 2: Reservoir pressure 1000 psig, GOR 100 scf/STB, heavy oil 

specific gravity 20 API, injection pressure 3000 psig; 

3) Case 3: Reservoir pressure 4000 psig, GOR 500 scf/STB, heavy oil 

specific gravity 10 API, injection pressure 5000 psig; 

4) Case 4: Effect of multiple injection wells on the productivity. 

Further cases (sensitivity analysis) were investigated for a wide range of 

reservoir production history to cover both Miscible and Immiscible conditions. 

The production forecast performed for different reservoir conditions under both 

Miscible and Immiscible conditions followed the criteria presented by Ahmed 

[120] which is shown in Table 3.5 below. 

Table 3.5: Miscibility and Immiscibility Criteria 

Temperature Pressure Condition Comments 

Tres < 86 oF Pres < 1000 psia Immiscible - 
86 oF < Tres < 90 
oF 

1000 psia < Pres < 1200 
psia 

Miscible / 
Immiscible 

 Either Possible PCO2 = 1073 
psia, TCO2 = 87.8 oF 

Tres > 90 oF Pres > 1200 psia Miscible Possible - 

The sensitivity cases carried out are listed below: 

5) Case 5: Miscible Process and the influence on the reservoir production 

trend; 

6) Case 6: Immiscible Process and the influence on the reservoir 

productivity; 

7) Case 7: Varying Reservoir Pressure at Constant GOR for different CO2 

injection Pressure; 

8) Case 8: Constant reservoir pressure at various GOR for different CO2 

injection pressure; 

9) Case 9: Sensitivity of GOR, viscosity, heavy oil API and injection 

pressure. 
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3.2.5 CO2 Sequestration during Heavy Oil Production using CO2-EOR 

Following successful investigation of heavy oil recovery using CO2-EOR, the 

effort was shifted to exploring any occurrence of CO2 sequestration. 

The investigation focussed on the following areas: 

 CO2 sequestration during Miscible and Immiscible conditions; 

 CO2 sequestration using the integrated surface and sub-surface modelling; 

REVEAL, the 3D reservoir simulator by Petroleum Experts, was used to model 

the reservoir in 3D with a grid block of dimension 25, 25, 15 in X, Y and Z 

directions respectively. A block size of 500 ft x 500 ft x 200 ft, grid depth of 

10000 ft and a single porosity was considered. Two wells, one producer and an 

injector, and both horizontal were investigated. The model was homogenous as 

shown in Figure 3.5 below. 

 

Figure 3.5: Block grid (Horizontal Well) – Illustration Only 

Tables 3.6 and 3.7 present the reservoir and fluid properties used in the 

simulation and the aquifer properties are given in Table 3.8. 
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Table 3.6: Fluids Properties & Rock Properties 

 Data Units 
Rock Compressibility  3 x 10-5 1/psi 
Permeability 100 mD 
Reservoir Porosity 0.2 Fraction 
Well Control: Constant injection Pressure 3000 psig 
Water Compressibility 2.9 x 10-6 1/psi 
Heavy Oil Specific Gravity 15 oAPI 
Heavy Oil Viscosity 523 - 2188 cP 
Heavy Oil FVF 1.19 RB/STB 
Water FVF 0.99 RB/STB 
Gas FVF 0.0034 RB/STB 
Gas Oil Ratio, GOR 500 scf/STB 
Reservoir Temperature 122 - 200 oF 
Water gravity 1.068 Sp. gravity 
Gas Gravity 0.7 Sp. gravity 

Table 3.7: Residual Saturation used for the Simulation 

 Data Units 
Critical Oil / Gas Residual Saturation, Sogc 0.05 Fraction 
Critical Oil / water Residual Saturation, Sowc 0.2 Fraction 
Critical water Residual Saturation, Swc 0.2 Fraction 
Critical Gas Residual Saturation, Sgc 0.2 Fraction 
End Point Oil / water Relative Permeability, Krow 1 Fraction 
End Point Oil / Gas Relative Permeability, Krog 1 Fraction 
End Point water Relative Permeability, Krw 1 Fraction 
End Point Gas Relative Permeability, Krg 1 Fraction 
Corey Exponent for Oil-water 2 - 
Corey Exponent for Oil-Gas 2 - 

Table 3.8: Aquifer Properties 

 Data Units 
Aquifer Model Infinite Linear - 
Aquifer Porosity 0.2 Fraction 
Aquifer Permeability 1000 mD 
Aquifer Compressibility 3 x 10-6 1/psi 
Thickness 300 feet 
Encroachment Angle 90 degree 
Width 300 feet 
Region 1 X_West, From (1, 1, 1) to (1, 25, 15) - 
Region 2 X_West, From (25, 1, 1) to (25, 25, 15) - 

The initial pressure used in this analysis was 2500 psig, with the temperature of 

200 oF. The CO2 was injected into the reservoir through a horizontal well, 8 km 

long and completed over a length of approximately 492.13 ft (150 m). The 

reservoir gas was modelled as CO2. With a critical pressure of 1073 psi and 

critical temperature of 87.8 °F, CO2 will be in a supercritical state at bottom-hole 

injection and reservoir conditions; hence CO2 was defined in the model as gas 

with the corresponding dense phase density. 
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Both Black Oil and Compositional Models were used. The Peng-Robinson (PR) 

EOS was selected to generate the VLP (Vertical Lift Performance) files for the 

injection and production system using PROSPER. The production system was 

modelled as a black oil model while the injection system remained compositional 

to take into account the properties of CO2. 

The following two methods were used to interpret the REVEAL results in order to 

quantify the CO2 sequestration during CO2-EOR: 

 Mass conservation of CO2 around the reservoir loop; 

 Production profiles evaluation. 

3.2.5.1 Mass Conservation 

This approach considered the mass of CO2 entering ( injCOm 2 ) and leaving 

( outCOm 2 ) the reservoir and the mass of CO2 retention ( SeqCOm 2 ) within the 

reservoir, which is conveyed in the following expression: 

 
SeqCOoutCOinjCO mmm 222     (3.1) 

Where: 

injCOm 2  : Mass flowrate of CO2 entering the reservoir; 

outCOm 2  : Mass flowrate of CO2 exiting the reservoir (CO2 produced); 

SeqCOm 2  : Mass flowrate of CO2 retained in the reservoir (CO2 

Sequestration). 

The density of CO2 changes as its pressure (P) changes and using the ideal gas 

Equation-of-State (EOS), the CO2 density (CO2) can be calculated at the 

appropriate pressure, and hence the volumetric flowrate of CO2 ( SeqCOQ 2 ) can be 

established using the expression below. “T” stands for temperature and “Mw” for 

the molecular weight of CO2 and the other terms have their usual meanings. 
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(3.2) 

Where: 
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SeqCOQ 2  : Volumetric flowrate of CO2 sequestrated; 

CO2   : Density of CO2; 

P  : Pressure at reference point; 

T   : Temperature at reference point; 

MW  : Molecular weight of CO2. 

3.2.5.2 Production Evaluation 

The CO2 sequestration ( SeqCOQ 2 ) is estimated as the difference between the 

injected CO2 ( injCOQ 2 ) and the produced CO2 ( outCOQ 2 ), taking into account the 

rates of CO2 production during steady or quasi-steady state since the reservoir 

gas was modelled as CO2. 

The term WIoutCOQ 2 , represents the produced CO2 when there is no CO2 injection. 

 

   WIoutCOoutCOinjCOSeqCO QQQQ 2222    (3.3) 

Where, 

WIoutCOQ 2  : Produced CO2 (original gas in place) when there is no CO2 

injection. 

In case where the reservoir gas is modelled differently other than CO2, the 

WIoutCOQ 2  in the equation 3.3 may be omitted. WIoutCOQ 2  was found to be less 

than 1% of that produced during CO2 injection, hence the impact on the overall 

results was negligible, as far the simulations are concerned. 

The CO2 retention as a function of barrel of heavy oil produced (Seqco2) was 

calculated using the volumetric flow rate of heavy oil produced (Qoil prod) and the 

CO2 sequestration by the following expression: 

 

 

prodoil

SeqCO
CO Q

Q
Seq 2

2
  

 

(3.4) 

 

Where. 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	86	

 

SeqCO2  : CO2 retention / sequestration per barrel of produced heavy oil; 

Qoil prod  : Volumetric flowrate of heavy oil produced. 

The CO2 requirement / utilisation per barrel of heavy oil produced (CO2(Req)) 

was obtained using the required CO2 injection as follows: 

 

 

prodoil

injCO

Q

Q
qCO 2

2 )(Re    (3.5) 

Where, 

CO2(Req)  : CO2 requirement per barrel of produced heavy oil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	87	

 

4. RESULTS AND DISCUSSION 

Introduction: This chapter presents and discusses results of the simulations 

outlined in chapter 3. 

The forecast or output obtained from the simulator was analyzed and 

interpreted. 

Results are presented in four main areas of focus: 

1. Long distance CO2 transportation from onshore to offshore; 

2. Cold Heavy Oil Production using CO2-EOR technique; 

3. CO2 sequestration during heavy oil production using CO2-EOR technique; 

4. Techno-economic evaluation of typical Cold Heavy Oil Production using 

CO2-EOR technique. 

The final sub-section summarizes the key findings of the investigation. 
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4.1 Long Distance CO2 Transportation Offshore 

The objective of investigating long distance CO2 transportation offshore was to 

establish a relationship between the onshore pressure requirements for various 

pipeline capacity and the pipeline sizes and flow conditions. Pure CO2 from the 

onshore facilities was transported by a 250 km pipeline to the subsea manifold 

where compression or pumping might be required for injection into the heavy oil 

reservoir. The results are presented and discussed below for two cases: Dry CO2 

and Dense CO2. 

4.1.1 Dry Gas (CO2) Phase 

The pressure required for different CO2 flowrate is shown in Figure 4.1. The 

results show that long distance dry CO2 (gas phase) transportation offshore is 

possible, but may not be an effective technique or solution for enhanced heavy 

oil recovery which require high injection pressure just as any EOR. Typical CO2 

injection pressure in the North Sea might vary between 2900–4351 psi (200-300 

bar) [123]. Recompression will be inevitable in such circumstances (if using dry 

CO2 phase) to meet the EOR objectives. 

4.1.2 CO2 Dense Phase 

The lowest allowable pressure at the pipeline outlet must be 1073 psig, which is 

the pressure below which CO2 may change to the gas phase, hence resulting in 

low density and high flow velocities. The backpressure was set to be that of 

reservoir pressure with 4000 psig and the process conditions along the pipeline 

and at the onshore were determined using PIPESIM software. The required 

pressure at the pipeline inlet for different CO2 flowrate and pipe sizes is shown 

on Figure 4.2. 

Under the conditions investigated, no differences were experienced between the 

results obtained using Peng-Robinson (PR) and Soave Redlich Kwong (SRK) 

Equation of State (EOS). As opposed to the dry CO2 pipeline simulation results, 

intermediate recompression for pipeline transporting CO2 dense phase prior to 

injection into the reservoir via the well was not necessary provided that the 

pressure remained significantly high to make an immediate impact into the 

reservoir. With the high injection pressure required to facilitate mobility of the 

heavy oil from the reservoir to the topside facilities, it can be stated that CO2 
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during EOR application for Cold Heavy Oil Production (CHOP) will behave as 

supercritical fluid, expanding to fill the heavy oil reservoir as a gas, but with the 

density identical or greater to that of raw water. 

The density variation along the pipeline between 967 kg/m3 to 1028 kg/m3 was 

an essential indication that most part of the pipeline CO2 was in a dense phase. 

Keeping a long distance CO2 pipeline principally in a dense phase without liquid 

formation in cold environments (i.e. 41 oF as in this case) will be a huge 

challenge. The temperature along the subsea pipeline dropped rapidly to the 

ambient seabed temperature, signalling there could be possible corrosion issue 

(if water condenses) in the long prospect if corrective actions are not taken by 

means of chemical injection or regular pigging. Alternatives to heating CO2 at 

the source in such circumstances are preferable, as the heated CO2 would barely 

mitigate against the harsh cooling effect of the sea water. 
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Figure 4.1: Dry CO2 Pipeline – 
Pressure Requirement for Various 
Pipe Sizes  

 Figure 4.2: CO2 Dense Phase Pipeline – 
Pressure Requirement for Various Pipe 
Sizes 

4.2 Cold Heavy Oil Production Using CO2-EOR Technique 

Results of the four preliminary cases investigated are presented and discussed in 

the sub-sections 4.2.1 to 4.2.4. 

4.2.1 Case 1: Reservoir Pressure 4000 Psig, GOR 500 Scf/STB, Heavy Oil 

Specific Gravity 20 API, Injection Pressure 3000 Psig. 

Under the above condition, two sub-conditions were investigated, one under 
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which the production was possible and CO2 injection was used to boost the 

recovery (i.e. considering that there will be subsea separation); and another 

case (considering no subsea separation) where the separator was located at the 

topside platform, 2km above the seabed making a total depth of 4 km (water 

depth + depth below sea-bed) and production was primarily not possible under 

these circumstances due to insufficient reservoir pressure to initiate natural 

recovery of the resources. The production forecast was performed from year 

1997 to 2020 and the results with and without CO2 injection for both cases are 

shown from Figures 4.3 to 4.10. 
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Figure 4.3: Case 1 – Reservoir 
Pressure Forecast (With / Without 
CO2 Injection) 

 Figure 4.4: Case 1 – Heavy Oil 
Production Forecast (With / Without 
CO2 injection) 
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Figure 4.5: Case 1 – Total Gas 
Production Forecast (With / Without 
CO2 Injection) 
 
 

 Figure 4.6: Case 1 – injection Pressure 
(With / Without CO2 Injection) 
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Figure 4.7: Case 1 – Reservoir 
Pressure Forecast (With / Without 
CO2 Injection) 

 Figure 4.8: Case 1 – Heavy Oil 
Production Forecast (With / Without 
CO2 injection) 
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Figure 4.9: Case 1 – Total Gas 
Production Forecast (With / Without 
CO2 Injection) 

 Figure 4.10: Case 1 – Injection 
Pressure (With / Without CO2 
Injection) 

CO2 injection raised the reservoir pressure as indicated in Figure 4.3 and 4.6. 

As the reservoir pressure increased, so did the rate of recovery, as noticed from 

the production traces (Figure 4.4). The heavy oil recovery doubled in the year 

2002, from 7960 STB/D (without CO2 injection) to 16890 STB/D (with CO2 

injection). Heavy oil recovery in the year 2018 was not possible when the 

reservoir pressure reached 1000 psig (Figure 4.4, without injection), however, 

the production forecast projected steady production at about 2000 STB/D, with 

continuous CO2 injection. The gas production also increased significantly as a 

result of CO2 injection as shown in Figure 4.5. 

The 20 years forecast showed that the heavy oil recovery and gas production 

(for the case where production was not initially possible due to low energy) was 

boosted from zero production (without CO2 injection) to a rapid production as 

the result of CO2 injection as shown in Figure 4.7. This production trend clearly 

indicates the positive impact of CO2 injection for this particular reservoir 

condition and production system as shown in Figure 4.8. 

Before the gas breakthrough, the averaged gas production was minimal in 

proportion of heavy oil production. As the averaged gas production rate began to 

rise sharply which possibly corresponded at the period of reservoir “gas 

breakthrough”, the gas recovery was boosted causing the peak heavy oil 
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production as shown in Figure 4.9. Following this phenomenon (peak heavy oil 

production), the averaged gas production continued to rise while the heavy oil 

production was in decline. The heavy oil production was in decline as a result of 

the injection pressure (at the reservoir) declining as shown in Figure 4.10. 

4.2.2 Case 2: Reservoir Pressure 1000 Psig, GOR 100 Scf/STB, Heavy Oil 

Specific Gravity 20 API, Injection Pressure 3000 Psig. 

However, under this condition where the initial reservoir pressure was 1000 psig 

with the GOR at 100 scf/STB, the behavior along the integrated system was 

completely different and production was only possible after several years of 

continuous CO2 injection. 

The reservoir pressure with and without CO2 injection in Figure 4.11 shows 

significant increase as the injection of CO2 starts. The production trend is shown 

in Figure 4.12, and indicates several years of delay prior to initial heavy oil 

recovery. 

This probably suggests that low pressure reservoir with low GOR is most likely 

not very practical for CO2-EOR CHOP due to the inefficiency of the process and 

the long payback time caused by many years of zero production even at 

significant high injection pressure. 
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Figure 4.11: Case 2 – Reservoir 
Pressure Forecast (With / Without 
CO2 Injection) 

 Figure 4.12: Case 2 – Heavy Oil 
Production Forecast (With / Without 
CO2 injection) 
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Figure 4.13: Case 2 – Total Gas 
Production Forecast (With / Without 
CO2 Injection) 

 Figure 4.14: Case 2 – Injection 
Pressure (With / Without CO2 
Injection) 

Similar trend is noticed in the gas production profile in Figure 4.13, where the 

gas production starts almost simultaneously with heavy oil, after several years of 

no production at continuous CO2 injection. 

Figure 4.14 shows that the injection pressure starts to reduce once the 

production is initiated, due to gas breakthrough. Hence higher sustained 

injection rate or larger transmission line (with less pressure drop) may be 

required. 

4.2.3 Case 3: Reservoir Pressure 4000 Psig, GOR 500 Scf/STB, Heavy Oil 

Specific Gravity 10 API, Injection Pressure 5000 Psig. 

Despite the high injection pressure used in this case compared to other cases 

discussed above, it was evident that the production rate was hampered by the 

non-Newtonian behavior of the reservoir fluid which exhibited high viscous 

characteristics. The heavy oil viscosity varied from 2010 cP to 1820 cP during 

the injection process. The production forecast indicated continuous and smooth 

production from year 2000 to 2020 as shown in Figures 4.15 to 4.18. 
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Figure 4.15: Case 3 – Reservoir 
Pressure Forecast (With / Without 
CO2 Injection) 

 Figure 4.16: Case 3 – Heavy Oil 
Production Forecast (With / Without 
CO2 injection) 
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Figure 4.17: Case 3 – Total Gas 
Production Forecast (With / Without 
CO2 Injection) 

 Figure 4.18: Case 3 – Injection 
Pressure (With / Without CO2 
injection) 

4.2.4 Case 4: Effect of Multiple Injection Wells on the Productivity 

Multiple vertical injection wells were found to impact on the productivity in 

accordance with the production system characteristics. The performance of the 

CO2-EOR for CHOP was influenced by the injection depth. The efficiency of the 

injection process increased at deeper injection depth. 

The impact of vertical and horizontal well on the well productivity was assessed 

and the results indicate that the horizontal wells have better enhancement ability 
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than the vertical wells, due to the closeness of the injection and production wells 

to each other and the contact area provided with the reservoir. The heavy oil 

production may be increased by several folds with the horizontal wells compared 

to the vertical wells. The production trends shown below are purely for 

illustration purposes. This sensitivity analysis was carried out at similar injection 

pressure (5000 psig), and at high initial reservoir pressure, 5000 psig which will 

certainly justify the early and appreciable recovery shown in the production 

trends even without CO2 injection.  

With the vertical wells, the injection well was distanced away, approximately 

6151 ft, from the production well. Both wells were perforated within the 15, 14 

and 13 layers. In Figure 4.19 subplots (A, B, C, D) shows the heavy oil (A), gas 

production (B), water production (C) and CO2 injection rates (D). The production 

profiles for the two scenarios, “No CO2 injection” and “With CO2 injection”, are 

plotted together, with the heavy oil rate showing almost a steadily decline from 

year 2006 and the water production ending in 2035, when no CO2 is injected. 

With CO2 injection, the heavy oil and gas trends are sustained and gradually 

boosted with increasing CO2 injection rate.  
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Figure 4.19: Vertical Wells and the Production Trends 
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In Figure 4.20 subplots (A, B, C, D) below show heavy oil (A), gas production 

(B), water production (C) and CO2 injection rates (D). The production profiles for 

three different locations of the injection well, with the maximum distance from 

the injection well to the production well being approximately 6151 ft. The results 

indicate that the productivity of the well is increased as the injection well gets 

closer to the production well, showing by the peak heavy oil production occurring 

earlier when the gap between the well is reduced. There is an increase in gas 

production, but lower water removal. 
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Figure 4.20: Vertical Wells – Effect of Well Location on the Production Trend 

With regards to the horizontal well, the distance between the injection outlet and 

the production inlet was approximately 1993 ft. As the location and position of 

the wells influence the production trend, the two wells were positioned in 

opposite directions and lowered at the bottom of the grid. 

In Figure 4.21 subplot (A, B, C, D) below show the heavy oil (A), gas 

production (B), water production (C) and CO2 injection rates (D). Results show 

that high production was maintained steady at around 13350 STB/D from late 
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2006 to the end of production history (2050) with CO2 injection, while 

progressive decline was noticed from 15000 STB/S (2006) ending around 11000 

STB/D (2050) when there was no CO2 injection. 
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Figure 4.21: Horizontal Wells and the Production Trends 

4.2.5 Miscible and Immiscible Process 

High pressure reservoir (above 1000 psig) is known to be suitable for CO2 

Miscible process by enhancing the flow performance. However, this study has 

demonstrated that under certain conditions such as that of non Newtonian heavy 

crude with high viscosity, the reservoir pressure will probably need to be as high 

as 4000 psig to create an instantaneous impact on the productivity. Meanwhile, 

with CO2 immiscible process occurring at reservoir pressure below 1000 psig, the 

production forecast has demonstrated that heavy oil recovery was achieved by 

compensating the low reservoir pressure using high injection pressure to force 

the heavy oil towards the production well. 

Key findings and differences between the two techniques are summarized in 

Table 4.1 below. 
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Table 4.1: Miscible and Immiscible Recovery – Results Summary 

 Miscible Process Immiscible Process 

Recovery Start Time 0 – 1 Year (Immediate Impact) > 15 Years  
Recovery Volume  High  Low 
Cost Implication 
(Qualitative) 

Low  High 

General Remarks Pipeline integrity could be an 
issue due to high pressure 
demand 

Could be used to maintain 
production 

4.2.5.1 Miscible Process 

The reservoir pressure was kept constant at 4000 psig and the injection pressure 

at the pipeline inlet (onshore) ranged from 2000 psig to 7000 psig. Other 

parameters remained as follows: heavy oil 20o API specific gravity and GOR (500 

scf/STB). 

The results showed that heavy crude extraction was easily enhanced at injection 

pressure as high as 3000 psig, provided that the reservoir pressure was around 

4000 psig. The production forecast (year 2000 to 2020) presented in Figure 

4.22 showed the variation in maximum heavy oil production and the averaged 

CO2 injection rates at different injection pressure. 
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Figure 4.22: Production Rates (Prediction) at various Injection Pressure – Reservoir 
Pressure 4000 psig, GOR 500 scf/STB 
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4.2.5.2 Immiscible Process 

Immiscible process was investigated using lower reservoir pressure (1000 psig) 

with the injection pressure at the pipeline inlet varying from 800 psig to 7000 

psig. The heavy oil specific gravity was 20o API. Different production trends 

compared to the results obtained with a high initial reservoir pressure (4000 

psig) were experienced. Even at injection pressure as high as 7000 psig, the 

production forecast showed no recovery until 01/05/2003 (see Figure 4.23). The 

production trend shows a rapid production initially, leading to the peak, followed 

by a curvy decline which gradually lead to a steady state production. 

In Figures 4.23 and 4.24 Subplots (A, B, C, D) illustrate the heavy oil recovery 

trend (A) and the total gas production rate (B) with varying CO2 injection 

pressure from 1000 psig to 7000 psig; and the heavy oil recovery trend (C) and 

total gas production rate (D) at varying CO2 injection pressure from 800 psig to 

900 psig. 

The variation in heavy oil peak production was between 800 to 1000 STB/D as 

the injection pressure reduced from 7000 psig to 4000 psig in increment of 1000 

psig. The difference in maximum production was approximately 2000 STB/D as 

the injection pressure reduced from 3000 psig to 2000 psig, and much more 

lower (3000 STB/D) when the injection pressure reduced from 2000 psig to 

1000 psig. This indicates that the production was significantly influenced by the 

injection pressure and that under Immiscible condition significant injection 

pressure will be required to compensate the low reservoir pressure. Although 

production was possible at 1000 psig and 900 psig injection pressure, production 

could only start from year 2016 and 2023 respectively, leading to about 16 and 

23 years of continuous CO2 injection with zero recovery. 

Heavy crude displacement by CO2 injection is known to rely on the phase 

behaviour of CO2 and the interaction within the reservoir. The reservoir 

temperature and pressure can significantly affect the miscibility of the two 

components (CO2 and heavy oil). At low reservoir pressure, recovery of the 

heavy oil to the surface was significantly delayed until mobility of the heavy 

crude was possible. Due to low pressures hindering the fluids Immiscible or 

delaying the mobility of the fluids, swelling and the heavy oil viscosity reduction 
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was the pre-requisites prior to the fluid displacement mechanism to be possible. 

The long period of no production at continuous CO2 injection was either caused 

by the lack of sufficient energy (low reservoir and injection pressures) to push 

the fluids out of the reservoir or the inefficient fluids interaction to create the 

required swelling and viscosity reduction, or a combination of the two effects. 

At 900 psig injection pressure which was below the CO2 critical pressure, the 

heavy oil displacement was possible despite more than two decades of zero gas 

or heavy oil production. The heavy oil production trend in Subplot C was 

extended beyond year 2020 as shown in other Subplots (A, B, D) to illustrate 

the time lag during recovery at low injection pressure. A much smaller ROI 

(Return on Investment) and longer payback time reaffirms that the Immiscible 

process for heavy oil reservoir in some conditions may not be a viable option. 
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Figure 4.23: Effect of CO2 Injection 
Pressure (Reservoir Pressure at 1000 
psig – Heavy Oil Production) 

 Figure 4.24: Effect of CO2 injection 
Pressure (Reservoir Pressure: 1000 
psig – Gas Rates) 

4.2.5.3 Varying Reservoir Pressure at Constant GOR for Different CO2 

Injection Pressure 

The productivity of the reservoir was further investigated by varying the 

reservoir pressure and the injection pressure while keeping the GOR constant at 

100 scf/STB. 
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With the injection pressure below 4000 psig, the production forecast indicated 

that the recovery was unlikely when the reservoir pressure varied between 2000 

psig and 4000 psig. 

However, at 1000 psig (reservoir pressure), the heavy oil recovery was 

achievable when the injection pressure was below 3000 psig, but with longer 

period of zero production. The period of zero production was shortened as the 

reservoir pressure increased; and no heavy crude displacement occurred before 

the reservoir pressure was sufficient to push the heavy crude toward the 

production well up to the surface facilities located 4 km above the reservoir. 

4.2.5.4 Sensitivity of GOR, Viscosity, Heavy Oil API and Injection 

Pressure 

Figure 4.25 and 4.26 (Subplot A, B, C, D) show, the maximum heavy oil 

production rate at reservoir pressure varying from 1000 psig to 4000 psig and 

fixed GOR of 100 scf/STB (Subplot A). The maximum heavy oil production rate 

at constant reservoir pressure of 4000 psig and varying GOR from 100 to 500 

scf/STB is shown in Subplot B. The maximum heavy oil production rate at 

constant reservoir pressure of 4000 psig, fixed GOR of 500 scf/STB, fixed CO2 

injection pressure of 5000 psig and varying heavy oil viscosity from 10 to 10000 

Cp is shown in Subplot C. The maximum heavy oil production rate at constant 

reservoir pressure of 4000 psig, fixed GOR of 500 scf/STB, fixed CO2 injection 

pressure of 5000 psig and varying heavy oil API specific gravity from 10 to 18 
oAPI is shown in Subplot C. 

Initially (early life), the maximum heavy oil production occurred at the lowest 

GOR (100 scf/STB) potentially because high GOR implies lesser recoverable oil, 

and progressively the peak heavy oil production decreased as the GOR reduced. 

This indicates that the heavy oil recovery increased later with higher GOR due to 

increased CO2 injection rate. At 3000 psig injection pressure, the heavy oil 

recovery (although very unstable) was also possible, but only when the GOR was 

400 and 500 scf/STB. 

By considering different heavy oil specific gravity varying from 10o API to 18o 

API, a reasonably good range of heavy oil types was taken into account. Heavy 

oil viscosity is known to vary between 100 cP and 10000 cP. The viscosity effect 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	103	

 

has been assessed to cover from 10-10000 cP. The results are shown in Subplot 

C, and reveals that the production was spontaneous as soon as the injection was 

initiated when the viscosity was 10 cP. Production started two months after the 

injection was initiated when the viscosity was 100 cP and approximately one 

year later when the viscosity was 1000 cP and 10000 cP.  

As expected, the heavy oil recovery increased and was sustained for longer 

period for heavy oil with higher API specific gravity. 

These results suggest that the heavy oil recovery is considerably influenced by 

the reservoir properties, the fluid interaction and mixing process, and other 

thermodynamic effects that effectively enable the dynamic of the fluids within 

the reservoir up to the surface. 
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Figure 4.25: Sensitivity Analysis 
Results (Subplots A, C) 

 Figure 4.26: Sensitivity Analysis 
Results (Subplots B, D) 

4.2.6 CO2 Sequestration during Heavy Oil Production Using CO2-EOR 

Carbon dioxide emissions from power plants and stationary industrial sources 

account for more than 60% of global greenhouse gas emissions. This CO2 can be 
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captured, stored, transported offshore and injected into heavy oil reservoirs for 

enhanced oil recovery (EOR). Thus, CO2 capture and storage and EOR present 

opportunities for the oil industry to participate in activities that will substantially 

reduce emissions, and, in the case of EOR, increase the recovery from oil field 

[122]. 

During CO2-EOR, a small amount of the injected CO2 dissolves in the oil. 

Laboratory results have demonstrated that the injection of CO2 would result in 

swelling of the oil by over 20%, a significant reduction in oil viscosity, and a 

95% reduction in interfacial tension [123]. This will make oil flow more easily in 

response to pressure gradients [124]. CO2-EOR is known to allow recovery up 

to 20 % of the OOIP (Original Oil in Place) [125]. Approximately 53 to 82 % 

more oil could be produced by the CO2 flood than is produced by water in the 

best areas of the waterflood, according to the test conducted by [126, 127]. 

There is variety of speculation with respect to CO2 storage during EOR, some 

believe that CO2-EOR in a conventional oil reservoir will result in increased 

carbon emissions from incremental oil production [128]. Others believe that 

40% or up to two-thirds of the injected CO2 is being produced and can be re-

injected [129, 130]. 

In the Bati Raman heavy oilfield (9° to 15° API), in southeast Turkey, close to 

the Turkish-Iraqi border, where Immiscible Displacement using CO2-EOR, 

approximately 1700 tonnes of CO2 is injected daily, 16% to 60% of which is 

recycled [131]. 

CO2-EOR enables chemical and physical interaction of the injected CO2 with the 

reservoir rock and fluids, creating favorable conditions that improve oil recovery. 

These conditions include: 

(i) The reduction of the capillary forces that inhibit oil flow through the 

pores of the reservoir by reducing the interfacial tension between oil and 

the reservoir rock; 

(ii) The expansion of the volume of the oil (oil swelling) and the subsequent 

reduction of its viscosity; 

(iii) The development of favorable complex phase changes in the oil that 

increase its fluidity; 
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(iv) The maintenance of favorable mobility characteristics of oil and CO2 to 

improve the volume sweep (replacement) efficiency [69]. 

As such, in this study, the subject of CO2 sequestration during heavy oil 

production was investigated and the results are discussed in this section. 

In Figure 4.27 Subplots (A, B, C, D, E, F, G, H) show the effect of temperature 

varying from 50 oF to 200 oF on various heavy oil properties such viscosity (A), 

density (B), heavy oil (FVF) formation volume factor (C), Z-Factor (D); reservoir 

gas viscosity (E), reservoir CO2 density (F), gas (FVF) formation volume factor 

(G), and the (CGR) condensate gas ratio (H). 

The temperature range is between 50 oF to 200 oF (Subplots A, B, C, D) while 

the pressure vary from 100 psig to 5000 psig. Mobility of heavy oil is known to 

be much easier at high temperatures. At 200 oF, the reservoir heavy oil viscosity 

was approximately 25 cP, as the temperature reduced the heavy oil viscosity 

increased. During the injection, as the reservoir heavy oil comes in contact with 

the injected CO2 at lower temperature (50 oF - 70 oF), the heavy oil viscosity will 

significantly vary as the reservoir temperature will reduce. Hence, the heavy oil 

viscosity profile showing the heavy oil viscosity variation at different 

temperatures, and indicating that the heavy oil viscosity could rise up to 7730 cP 

at 50 oF if the reservoir pressure was to reach 5000 psig. The heavy oil density 

was very close to that of water and varied between 57.5 lb/ft3 to 60.2 lb/ft3 at 

the temperatures and pressures investigated. The heavy oil FVF was almost 

constant. 
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Figure 4.27: Variation of Reservoir Heavy Oil and Gas (CO2) Properties with temperature 

and pressure 

As shown in Figure 4.27 Subplots (A, B, C, D, E, F, G, H), the reservoir gas 

thermodynamic properties were deliberately modelled to reflect those of CO2. 

The reservoir gas was modelled as retrograde condensate to take into account 

the phase change at various temperatures and pressures. CO2 is expected to 

reach the reservoir in supercritical state due to the high pressure within the 

transported line as well as the reservoir. This phenomenon is effectively 

represented in the modelling by the retrograded condensate process which take 

into account the condensate CO2 being lost in the gas stream. The phase 

behavior of the reservoir gas is adequately illustrated in the density and CGR 

profiles at various pressures. With regards to the density profile, the gas density 

sharply rise from 15 lb/ft3 (dry gas phase) to 52.5 lb/ft3 (dense phase) when the 

pressure reaches 1073 psig. Above 1073 psig, the variation in density was very 

slow and only change from 52.5 lb/ft3 to 57.8 lb/ft3 (3000 psig). The high 

reservoir gas density at 1073 psig was in agreement with conventional 

knowledge and also ascertained that the properties of the fluid were 

appropriately modelled. The CGR reflected the phase variation of CO2 within the 

reservoir at different pressure as shown in Figure 4.27 Subplot H. 
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REVEAL was also used to calculate the reservoir CGR and gas FVF with the dense 

phase CO2 density and viscosity for pressure varying from 100 psig to 3000 psig. 

The CGR increased with increasing pressure, from 28 STB/MMSCF at 100 psig to 

123 STB/MMSCF at 3000 psig. There was negligible variation in the reservoir gas 

(CO2) viscosity and FVF at different pressures and temperatures. The reservoir 

FVF was about 0.004 ft3/scf and the viscosity ranged approximately from 0.023 

cP to 0.048 cP. 

In Figure 4.28 Subplots (A, B, C, D) show the variation at different temperature 

and pressure of the reservoir water viscosity (A), density (B) and (FVF) 

formation volume factor (C) and Z Factor (D).  

The temperature ranged between 50 oF to 200 oF and the pressure varied from 

100 psig to 5000 psig. The viscosity was about 0.34 cP at 200 oF and 

progressively increased with reducing temperature.  

The maximum viscosity was 1.4 cP at 50 oF. The density varied between 60.5 

lb/ft3 to 63.5 lb/ft3, and the variation was very minimal. The FVF was 

approximately 1 RB/STB and the compressibility factor was extremely low. 
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Figure 4.28: Variation of Reservoir Water Properties with temperature and pressure 

In Figure 4.29 Subplots (A, B, C, D, E, F, G, H) show the variation of the 

reservoir fluids properties: heavy oil viscosity (A), gas viscosity (B), heavy oil 

FVF (C), gas FVF (D), heavy oil density (E), gas density (F), water density (G) 

and water FVF (H) at varying temperature from 50 oF to 200 oF when the 

reservoir gas is modelled as natural gas as opposed to CO2.  

It is comprehensible that the maximum gas density is 0.0595 lb/ft3 and the 

maximum viscosity is 1.3 cP. The heavy oil viscosity increased as the 
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temperature dropped and other fluid behaviors with respect to temperature rise 

or drop are typical expected trends, which have already been discussed above in 

this section 4.2.6. The heavy oil viscosity reduces with reduction in pressure, 

with the highest value (viscosity) occurring at a lower temperature. 

The heavy oil FVF increases with increasing temperature and pressure, but the 

oil density is high at low temperature and low pressure, and reduces as the 

pressure and temperature increases. 
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Figure 4.29: Reservoir Fluids Properties and Influence of temperature and pressure 
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In Figure 4.30 Subplots (A, B, C, D) show the heavy oil production rates (A) 

when the injection pressure was 5000 psig, the calculated CO2 sequestration per 

barrel of heavy oil produced (B), the percentage retention per barrel of heavy oil 

produced (C) and the CO2 requirements per barrel of heavy oil produced (D).  

The results reveal that the percentage of CO2 sequestration was 100% for 

months post start-up. This may be justified by the theory that the injected CO2 

which is in dense phase expand as it reaches the reservoir. As the CO2 expands, 

it reduces the reservoir fluid (heavy oil) viscosity by dissolving into the heavy 

crude. This process facilitates the mobility of heavy oil within the reservoir and 

toward the production system. Results also show that the CO2 sequestration 

reduced sharply from 100% to 47% when the heavy oil production reached the 

first peak and reduced further to approximately 22% when the second peak 

production occurred.  

A sharp decline in production was also noticed, which was almost reflected by a 

continued decline in the percentage of CO2 retention. In year 2020, a rather slow 

reduction in the heavy oil production was noticed, at which stage the CO2 

sequestration remained almost stable around 22%.  

The CO2 sequestration per barrel of heavy oil produced remained extremely high 

at the start-up as no CO2 was released. But as soon as CO2 production started, 

the CO2 retention per barrel varied between approximately 1500 SCF/STB to 

2000 SCF/STB.  

The volume of CO2 utilised per barred of heavy oil produced was significantly 

higher (11.2 MSCF/STB) at the beginning of the production when there was no 

CO2 being produced, sharply reducing to approximately 4 MSCF/STB as the 

production rose to the peak, stabilised for a couple of years before progressively 

increasing as the heavy oil production reduced. 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	111	

 

2000 2020 2040 2060
0

20

40

60

80

100

Time (Year)

C
O

2 
S

eq
ue

st
ra

tio
n 

(%
)

CO2 Percentage Sequestration

2000 2020 2040 2060
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Time (Year)

H
ea

vy
 O

il 
P

ro
du

ct
io

n 
(S

T
B

/D
)

Heavy Oil Production

2000 2020 2040 2060
0

0.5

1

1.5

2

2.5
x 10

4

Time (Year)

C
O

2 
S

eq
ue

st
ra

tio
n 

(S
C

F
/S

T
B

)

CO2 Squestration Per 
Barrel of Produced H O

2000 2020 2040 2060
0

0.5

1

1.5

2

2.5
x 10

4

Time (Year)

C
O

2 
R

eq
ui

re
m

en
t 

(S
C

F
/S

T
B

)

CO2 Requirements Per 
Barrel of H O

Figure 4.30: CO2 Sequestration – Reservoir Pressure: 2500 psig, Injection Pressure: 

5000 psig 

4.2.6.1 Analysis Based on CO2 Mass Balance 

In Figure 4.31 Subplots (A, B, C, D) show the mass of CO2 sequestrated (A), 

the CO2 retention per barrel of heavy oil (B), the CO2 requirements per barrel of 

heavy oil (C), and the percentage of CO2 retention (D) with the CO2 injection 

pressure fixed at 5000 psig. 
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Figure 4.31: CO2 Sequestration at 5000 psig Injection Pressure – Analysis by Mass 

Balance 

Results show that the CO2 mass balance around the reservoir inlet and outlet 

was not consistent, as the CO2 input was by far greater than the amount 

released (output). At the beginning (year 2006) of the production, no CO2 was 

released as indicated by the mass flowrate of produced CO2. The calculated 

percentage of CO2 retention shows 100 % of CO2 being retained in the reservoir 

in the major part of the first year (2006). In the meantime, the heavy oil 

recovery was spontaneous following the injection of CO2. The beginning of heavy 
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oil recovery also implied a progressive decline in the percentage retention of CO2 

in the reservoir, reaching approximately 17 % at the end of the prediction period 

(2050). 

The heavy oil and gas production peaked twice as shown on the production 

profile, firstly at the same time in 2008; then the heavy oil peaked again in 2013 

and remained almost steady until the peak gas production occurred in 2017. 

Following that trend, the heavy oil production began to decline while the gas 

production remained steady until the end of production in 2050. The difference 

between the mass of injected CO2 and the mass of produced CO2 shows that 

during that period (peak production), the CO2 retention dropped sharply as the 

production peaked, perhaps justifying the momentum required to increase the 

mobility of the heavy crude. Between year 2020 and 2050, the variation in CO2 

retention was much lower than it was between year 2006 to 2020. 

From 2006 to 2008 where the production rose to the peak, the CO2 retention per 

barrel of produced heavy oil reduced from 2.4 lb/STB to about 0.4 lb/STB and 

remained almost constant around that value. The utilised mass of CO2 for every 

barrel of heavy oil produced dropped from 2.4 lb/STB to about 0.5 lb/STB, 

stabilised till 2018 and began to rise again progressively as the heavy oil 

production gradually was in decline. 

4.2.6.2 Analysis Based on Peak Production 

In this case, CO2 sequestration was investigated at various injection pressures. 

The injection pressure varied from 1000 psig to 7000 psig, in an increment of 

1000 psig. 

In Figure 4.32 Subplots (A, B, C, D) show the peak heavy oil production (A), 

the percentage retention of CO2 (B), the CO2 requirements for barrel of heavy oil 

(C) and the CO2 retention per barrel of heavy oil produced (D), at different CO2 

injection pressures. 
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Figure 4.32: CO2 Sequestration and the Relationship with Injection Pressure and 

Recovery Rates 

The peak production increases with injection pressure. The recovery was about 

1.3 % when there was no CO2 injection; however, the production trend shows 

appreciable recovery with increasing CO2 injection pressure. From 0 to 1000 psig 

injection pressure, there was an increase of 9.7 % recovery. The percentage 

increase in recovery factor for every increment of injection pressure above 1000 

psig was very tiny, although the recovery was significantly higher in the first 

increment (0 – 1000 psig). The difference between the injected volume of CO2 

and that produced gives an indication of how much CO2 was retained in the 

reservoir daily. Although the daily CO2 retention increased as the CO2 injection 

pressure increased, the percentage retention remarkably indicated that a high 

percentage of CO2 was retained at the low CO2 injection (2000 psi). Beyond 

3000 psig injection pressure, the percentage CO2 retention was almost stable. 

The analysis shows that when the injection pressure was 7000 psig, for every 

barrel of heavy oil produced, about 4290 SCF of CO2 was required and 

approximately 690 SCF of CO2 was trapped in the reservoir by various 

mechanisms. The CO2 requirement and retention per barrel of heavy oil reduced 

as the injection pressure reduced or as the peak heavy oil reduced. 

Nevertheless, further analysis using different data may well predict a diminutive 

variation or an improved ratio of the amount of CO2 stored and that required per 

barrel. Also, ways to improve CO2 storage during CO2-EOR have been discussed 

by Jessen et al [132]. One of the methods consisted of re-pressurizing the 

reservoir after the end of oil production with continuous injection. Meanwhile, 

well control process, where wells are shut according to a gas-to-oil production 

ratio limit to avoid excess gas circulation, was claimed as the best way to obtain 
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both maximizing oil recovery and CO2 storage at the same time [133], opinion 

that was however rejected by Jayasekera et al [134]. 

The summary of calculations shown in Table 4.2 below is based on maximum 

production, hence illustrate the CO2 sequestration occurring during a quasi-

steady state condition. 

Table 4.2: Results Summary for CO2 Sequestration Based on Evaluation of Production 
Profiles 

CO2 

Injection 

Pressure 

(psig) 

CO2 

Injection 

Rate 

(MMscf/D) 

Maximum 

Heavy Oil 

Production 

(STB/day) 

Max Gas 

Production 

(MMscf/D) 

Maximum 

Recovery 

Factor 

(%) 

Difference 

Between Inj 

& Prod CO2 

(MMscf/D) 

CO2 

Retention 

(SCF/STB) 

CO2 

Requirements 

(SCF/STB) 

CO2 

Retention 

(%) 

7000  733  170900  615  13.5  118.00  690.46  4289.06  16.32 

6000  685  166056  575  13.3  110.00  662.43  4125.11  16.29 

5000  629  160275  525  13.00  104.00  648.88  3924.50  16.79 

4000  570  154480  475  12.70  95.00  614.97  3689.80  16.95 

3000  505  143280  420  12.20  85.00  593.24  3524.57  17.15 

2000  425  134300  350  11.77  75.00  558.45  3164.56  18.03 

1000  345  115463  310  11.00  35.00  303.13  2987.97  10.61 

0  0  60000  3.9  1.30  ‐3.90  ‐65.00  0.00  0.00 

4.2.6.3 CO2 Sequestration During Miscible and Immiscible Process 

Immiscible displacement projects can store larger volumes of CO2 than Miscible 

Displacement projects [69]. This was attributed to the CO2 breakthrough which 

is unavoidable in Miscible Displacement operations and avoidable in Immiscible 

Displacement as the Immiscible projects may be designed to eliminate the 

breakthrough to enable permanent retention of CO2. 

In Figure 4.33 Subplots (A, B, C, D) show heavy oil production (A), percentage 

of CO2 sequestration (B), CO2 requirements (C) and retention (D) per barrel of 

heavy oil produced in subplots, and indicate that considerable amount of heavy 

oil was achieved at high reservoir pressure, i.e. Miscible conditions. Equally, as 

the reservoir pressure increases, the influence on the production profile is clearly 

noticeable. 

Despite the constant injection pressure, the volumetric flowrate of CO2 reaching 

the reservoir increases as the reservoir pressure reduces. High reservoir 

pressure enabled high recovery factor. However, in all cases, the mass flowrate 

of CO2 show significant delay (period of zero flow) before initial CO2 production 

at continuous CO2 injection. All simulation results were based on 20-30 years 
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production forecast and illustrate that during CO2-EOR application, the CO2 

requirements varied with time throughout the lifetime of the forecast, which 

corroborate with the claim reported by Balbinski et al [135] and Holt et al 

[136]. 
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Figure 4.33: CO2 Sequestration – Influence of Reservoir Pressure – Injection Pressure 
5000 psig 

While the percentage of CO2 sequestration was found to be high at high 

reservoir pressure in this case, the CO2 utilisation and CO2 retention per barrel of 

heavy oil produced was found to be significantly higher during Immiscible 

conditions compared to Miscible conditions. These findings are in agreement with 

the theory reported by Tzimas et al [69], that Immiscible Displacement projects 

would generally require a higher amount of injected CO2 per incremental barrel 

of oil produced, typically two to three times more. However, values may vary 

significantly from field to field. Considering that the “pressure” limit switch 

between Miscible and Immiscible process is known to be 1073 psig, the 

simulation results indicate that at low reservoir pressure (800 – 1000 psig) the 

CO2 retention and CO2 requirements per barrel of heavy oil produced was about 

two times higher than that required at a high reservoir pressure (2500 psig). 

This factor varies considerably as the reservoir pressure increases. 

The percentage of CO2 retention within the reservoir was influenced by the 

reservoir pressure, and in this case high sequestration occurred at high reservoir 

pressure. At start-up (production), the CO2 retention within the reservoir was 

maximal for all the reservoir pressures investigated, and for low reservoir 
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pressure (800 & 1000 psig), the sequestration remained high until production 

reached a quasi-steady state condition, at which stage the decline in CO2 

retention begun progressively as the production continued. At high reservoir 

pressure (above 1000 psig), the CO2 retention dropped from 100 % to 35%, 

rose again approximately to 42 % during transition from start-up and quasi-

steady state production; and at quasi-steady state condition, the CO2 retention 

within the reservoir continued to rise progressively as the production continued. 

Results based on peak production show that the minimum percentage of CO2 

retention within the reservoir increases with increasing reservoir pressure, 

starting with 17.7 % retention at 800 psig to 32.8 % at 5000 psig. The 

maximum CO2 retention of 100 % simply reflects that production or release of 

CO2 started approximately one year after CO2 injection commenced. At high 

reservoir pressure (above 4000 psig), the CO2 retention and CO2 requirements / 

utilisation per barrel remained within the range reported by many authors such 

as Clarke and Graves [137] as being between 6 to 8 Mscf/STB, but at reservoir 

pressure below 4000 psig the value was in agreement with that presented by 

Gozalpour et al [138] which is 13 Mscf/STB. 

4.2.7 Comparative Analysis – CO2 vs Water Injection for CHOP 

The purpose of this analysis is to provide a high level comparative illustration 

between CO2 and water injection for enhanced recovery of heavy oil.  

The comparison was carried out on similar reservoir conditions and scenario 

discussed in Section 4.2.1, (i.e. with no subsea separation scenario). In 

addition to 2 km depth from the seabed to the topside, the reservoir pressure is 

below the bubble point, production via primary recovery method could not be 

achieved (refer to Figure 4.8). The injected fluid is used to provide additional 

pressure or energy support in order to initiate production. 

Initially, the injection pressure was set to be identical in both cases, which 

resulted in different mass feed rates of injected fluid as shown in Figure 4.34 

below.  

The injection mass flowrate of water was between 58 lbm/sec to 60 lbm/sec, 

higher than the CO2 injection mass flowrate which was constant around 39 

lbm/sec up to year 2007 before gradual increase towards 58 lbm/sec. 
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Figure 4.34: Heavy Oil Recovery, Injection Mass Rates – CO2 vs Water Injection 

The corresponding heavy oil production rates without injection and with CO2 and 

water injection is shown in Figure 4.35 below.  

Results indicate that CO2 injeciton provides higher heavy oil recovery rate than 

water injection for about 13 years, although the water injection mass rate was 

40% to 50% higher than the CO2 injection mass rate. 

Towards year 2013 onwards where the CO2 injection pressure at well conditions 

was at minimum, the recovery rate with CO2 injection was in decline while 

production using water injection was almost stable and higher than that of CO2 

injection. While recovery rate appeared to decrease sharply with CO2 injection, 

the decline in production towards the end of forecast was rather slow with water 

injection. 

During early life production, delay in water production may be encountered 

despite continuous water injection.  

The predicted peak heavy oil production is 15122 STB/D and 10151 STB/D for 

CO2 and water injection respectively; implying 49% increase in capacity at peak 

flow with CO2 injection compared to water injection. 
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Figure 4.35: Heavy Oil Recovery – CO2 vs Water Injection 

However, in order to provide a representative basis for comparison, the heavy 

oil recovery using water injection was pro-rated at similar injection mass rate as 

that of CO2 shown in Figure 4.34 above.  

Figure 4.36 shows a similar injection mass flowrate for both CO2 and water 

injection and the heavy oil recovery rates for the 2 injection fluids. The 

production trends indicate that the heavy oil recovery rate using water injection 

is 40% to 55% less than the recovery rate using CO2 injection. This implies that 

the recovery factor using CO2 injection could be higher by the same factor, i.e. 

almost double compared to water injection, before the decline in recovery rate 

caused by the sharp reduction in CO2 injection pressure at reservoir conditions 

which changes over time.  

In this case, the peak heavy oil production is 15122 STB/D and 7154 STB/D for 

CO2 and water injection respectively; implying 100% increase in capacity at 

peak flow with CO2 injection compared to water injection. 

Overall, these findings confirm widespread remarks that water injection for 

enhanced recovery is associated with low recovery factor. 
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However, it is very apparent based on these results and worthwhile noting that 

water injection provides a sustained heavy oil production rates throughout the 

life of field, despite a lower recovery rate compared to CO2 injection.  
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Figure 4.36: Heavy Oil Recovery – CO2 vs Water Injection (Identical Injection Rates) 

4.2.8 Techno-Economic Evaluation of CHOP Using CO2-EOR 

For the purpose of the economic assessment of a typical CHOP using CO2-EOR, 

the following two main cases presented below were considered for the 

investigation: 

1 A difficult production start-up due to low reservoir pressure (kept constant 

at 1000 psig) with GOR 500 scf/STB. CO2 injection pressure varying 

between 1000 psig to 7000 psig; 

2 A high pressure reservoir (4000 psig) with constant injection pressure 

(5000 psig). 

Using cost data from various sources [139, 140, 138, 141, 142] as indicated 

in Table 4.3 which summarizes the cost parameters used in this analysis, the 

economics of a typical heavy oil development using CO2-EOR was evaluated 

taking into account the cost of CO2, the transportation, equipments, construction 

and operation costs. The profitability of such development was measured by the 
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net present value (NPV) and return on investment (ROI). The NPV and ROI were 

estimated by performing a discounted cash flow analysis using the oil production 

and CO2 consumption rates from the performance model.  

The CAPEX was estimated considering typical requirements for field production 

equipment, CO2 compression and transportation facilities, new injection and 

production wells including drilling and completion costs. 

Table 4.3: Key Economics Parameters 

Process/Operation Units Cost Source 

CAPEX 
CO2 Purchase Price 5 $/Mscf 1.05 [139] 
CO2 Pipeline cost,  $/ton 1600 
Produced Gas Processing (recycle) 1 $ 84613 [140] 
Injection Well Cost (new) 2 $/ft 100 [138] 
Production Well (new) 2 $/ft 100 [138] 
Compressor Cost $million 20 [141] 
Compressor Installation $million 6 [141] 
Pipeline Construction Cost (Onshore) $/inch.km 50000 [144] 
Pipeline Construction (Offshore) -  $/inch.km 100000 [145] 

OPEX 
Injection Well $/month 1500 [142] 
Production Well $/month 1500 [142]] 
CO2 Compression $/Mscf 0.3 [146] 
Safety & Monitoring $/injector/year 10000 
Discount Rates 3 % 12 

Heavy Oil Price  
Heavy Oil Price  $/STB 72.77 [147]  

Other 
Duration 4 Year 20 - 30 

Notes: 

1. This is the CAPEX of the recycle CO2 including treatment and compression facilities. 

2. Cost is for a vertical well and includes drilling, completion, production equipment and 

pipes. The cost of horizontal well is estimated to be 1.5 to 2.5 that of vertical wells [143]. 

3. The NPV of the projects is calculated at a discount rate of 12%, despite that the rates used 

in similar studies range from 7% to 11% [69]. 

4. The duration is typical and varies between 20 to 30 years, depending on simulation case. 

5. Detailed discussions on the economics of CO2 capture is provided by Holt et al [136]. 

In the estimated CAPEX shown in Table 4.4, the purchase price of CO2 makes 

the dominant portion of the amount. 

The NPV is estimated using the following expression: 
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Where: 

NPV = Net Present Value of a time series of cash flows, which is defined as the 

sum of the Present Values (PVs) minus the capital of expenditure (CAPEX). 

R = Cash flow estimated as: Net oil price multiply by the production rate. 

This represents the yearly cash inflow. 

OPEX = Operating cost, which represents the yearly cash outflow. 

N = Number of periods. 

t = Number of years (time of cash flow). 

i = Discount rate. 

The ROI is estimated as the Present Values (accumulated gross benefits less 

ongoing costs) divided by the CAPEX, and is given by the following expression: 
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(4.2) 

The payback time is estimated using the initial investment cost (CAPEX) and the 

minimum achieved annual revenue throughout the life cycle of the field, as 

represented in the following expression: 
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(4.3) 
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Table 4.4: High Level Cost Eavaluation of CHOP using CO2-EOR 

CAPEX    (1) 351,561,369 
OPEX     (2) 156,000 
Inj Pres 
(Psig)     (4) 

PV 
(US. Dollars) Million 

NPV 
(US. Dollars) Million 

ROI 
(%) 

Payback Time 
(Year) 

7000 800 448 227 8 

6000 622 270 177 8 

5000 487 135 139 9 

4000 535 183 152 9 

3000 433 81 123 10 

2000 301 -50 86 12 

1000 33 -318 9 23     (3) 

Reservoir Pres 
(Psig)   (5) 

PV 
(US. Dollars) Million 

NPV 
(US. Dollars) Million 

ROI 
(%) 

Payback Time 
(Year) 

800 429 77 122 6 

1000 503 152 143 5 

2500 1227 875 349 4 

3000 1315 964 374 3 

4000 2152 1800 612 3 

5000 4161 3810 1184 1 

Notes: 

1. This CAPEX is a high level estimate for illustration only. Cost includes single pipeline (6-

inch) and associated equipments cost, CO2 purchase and other costs as shown in Table 

4.3. 

2. Similar to the CAPEX, the OPEX is a high level estimate for illustration only. Cost does not 

include the supply cost of CO2 which was accounted separately considering the CO2 

requirements for individual cases. 

3. Takes into account period of no production beginning at the start-up. 

4. Variation of Injection Pressure at Constant Reservoir Pressure (1000 psig) & GOR (500 

scf/STB). 

5. Variation of Reservoir Pressure at Constant Injection Pressure (5000 psig) & GOR (500 

scf/STB). 

At low reservoir pressure, it appears as shown in Table 4.4 that the operation 

was profitable, when the injection pressure was above 2000 psig, due to the 

additional recovery that yielded significant revenue, with payback time reducing 

as the injection pressure increases, high NPV and ROI. Table 4.4 equally shows 

the “beneficial” effect of individual displacement process based on the CO2 

demands and the production profile. Miscible displacement was effectively the 

most profitable option, identifiable from revenue generated in the form of NPV, 
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while providing a high ROI and an expected smaller project payback time, and a 

substantial percentage of CO2 sequestration. The analysis assumed that the 

project owner / operator will dictate a limiting internal rate of return (IRR) that 

would decide the feasibility of the project. Similarly, the results also confirm as 

generally speculated that Immiscible Displacement process has very limited 

economic values due to significant amounts of CO2 injection required, the low 

additional production of heavy oil and consequently longer payback time, which 

in this case can extend up to 22 years. The results in Table 4.4 may look very 

optimistic, but even considering the production cost to be $13 to $16 per barrel 

of heavy oil [148], Miscible Displacement will still provide appreciable benefit as 

well as reasonable payback time. 

With the breakeven cost of CO2 being the CO2 purchase price at which the 

project net present value (NPV) equals zero, using the economic model as in 

Table 4.4, the analysis show that the breakeven cost of CO2 will vary 

approximately between $9.5 to $38.5 per Mscf when the heavy oil price varies 

between $40 to $150 per bbl. 

Re-injection of the produced CO2 will somehow help towards reducing the high 

investment costs. 

5.3 Summary 

The findings resulting from this chapter are summarized below: 

• Dry CO2 transportation offshore is possible at low pressure, but 

recompression will be required for an effective EOR application. Long 

distance CO2 transportation offshore can also be achieved at high pressure 

with CO2 remaining in dense phase throughout the entire system. 

• CO2-EOR is an effective technique for heavy oil production based on the 

conditions investigated and discussed in this chapter. The compressed CO2 

at the onshore facilities can be transported subsea at high pressure and 

injected straight into the reservoir for heavy oil recovery. Results may 

vary to some extent under certain conditions, depending on the reservoir 

characteristics and production history; and production could be delayed 

until mobility of the crude within the reservoir is possible in some cases. 
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• The performance of the CHOP using CO2-EOR is influenced by the 

production history, initial reservoir pressure, GOR, and fluid properties. 

• The integrated modelling systems have demonstrated that the CO2-EOR 

CHOP phenomenon can be well understood and appreciated when the 

injection and production systems are integrated together as a single 

module. Results indicate that during CO2-EOR application, the CO2 

requirements vary with time throughout the lifetime of the forecast, which 

corroborate with the claim reported by Balbinski et al [135] and Holt et al 

[136]. 

• Both Immiscible and Miscible conditions were evaluated and it was clear 

under the conditions investigated that Miscible process was more efficient 

and pragmatic than Immiscible process. 

• Low heavy oil reservoir pressure with low GOR can be very costly to 

optimise due to production ‘hold back’ and the momentous energy 

(injection pressure) required to initiate recovery. The higher the viscosity, 

the longer the mixing process within the reservoir, and the higher the 

required injection pressure to facilitate the movement of the heavy oil 

within the reservoir to the production platform. 

• The investigation of CO2 sequestration during CHOP using CO2-EOR 

technique have revealed that lower CO2 is released in the first few years 

of the operation, followed by a gradual decline of CO2 retention after the 

production peak. The CO2 retention per barrel was almost constant post 

peak production and the CO2 utilisation per barrel of heavy oil increased 

as the heavy oil in place reduced. The CO2 returning with the produced 

heavy oil could be re-injected into the reservoir to minimize the project 

CAPEX. The recovery factor varied between 8 % to 12 % of the original 

heavy oil in place, which was within the range reported by Clarke et al 

[137] who suggested a recovery factor using cold production to be 

between 6 % to 15% of original oil in place (OOIP). 

• A comparative analysis between CO2 and water injection indicates that the 

heavy oil recovery factor using CO2 injection could be as double as that of 
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water injection at peak flow. However, water injection provides a 

sustained heavy oil production rates throughout the life of field.  

• The techno-economic evaluation has shown that Immiscible Displacement 

during CO2-EOR may be considered as a high risk investment, particularly 

at low injection pressure. Miscible displacement is very pragmatic from an 

operation point of view and have a higher cash flow stream that extends 

throughout the lifetime of the asset due to continuous production while 

Immiscible Displacement have a longer payback period due to the time lag 

between the CO2 injection and the incremental heavy oil production. 
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5. IMPROVED MATHEMATICAL MODELLING FOR COLD HEAVY 

OIL PRODUCTION USING CO2-EOR TECHNIQUE 

Introduction: The use of CO2 injection to enhance recovery of heavy oil has 

been investigated and thorough understanding has been gathered based on the 

detailed simulation works carried out and discussed in the previous chapter. 

Having recognized the limitations of the existing models and the needs for 

developing fit for purpose predictive models for the CHOP using CO2-EOR 

technique, this chapter presents the development of an “improved” 

mathematical formulation for the heavy oil recovery using CO2 injection. 

The word “improved” in this context is used to emphasize the fact that the 

proposed models are derived from known and well established theories as 

outlined in relevant sections below, with importance placed on strengthening the 

areas of deficiency in the existing algorithms and suggesting the applicable 

operating envelope for which models are best suited. 

The modelling is broken down into two (2) parts: 

1- The injection system 

2- The production system 

The proposed models have proved to be consistent with existing theories and 

the simulation results discussed in previous chapter. The relevance and 

specificity of those predictions determine how potentially useful the proposed 

improved models could be. 
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5.1 Injection System Modelling 

Design of the long distance CO2 pipeline shall take into account the nature and 

volume of the CO2 to be transported, the length of the pipeline and the type of 

terrain. The size of the pipeline dictates the capacity that pipeline can transport 

from the source to the destination (sink). Complex equations, such as the 

Weymouth Equation, the Panhandle Equation, and the Modified Panhandle 

Equation, have been developed for sizing natural gas pipelines in various flow 

conditions. These equations were used for the hydraulic analysis of the CO2 

transportation covered in chapter 4. These equations relate the volume of the 

transported gas to various factors involved, hence helping to evaluate the 

optimum pressure requirements and pipe size for a given CO2 rate. 

5.1.1 Long Distance CO2 Transportation – Pressure Requirements 

Like natural gas, CO2 flowing in pipelines will also result in energy losses, i.e. 

Mechanical energy being converted into heat, resulting from friction losses: 

internal losses due to viscosity effects and losses due to the roughness of the 

inner wall of the pipeline. 

The Weymouth Equation is generally preferred for smaller-diameter lines (D < 

15 inch) while the Panhandle Equation and the Modified Panhandle Equation are 

reported to be better for larger-sized and long transmission lines. 

There are two distinct types of correlations for calculating friction pressure loss 

(∆Pf). 

1- The first type, adopted by the AGA (American Gas Association), includes 

Panhandle, Modified Panhandle and Weymouth. These correlations are for 

single phase gas only. They incorporate a simplified friction factor and 

flow efficiency. 

2- The second type of correlation is based on the friction factor known as the 

Moody or Fanning and is given by the Fanning Equation. 

The pressure gradient due to viscous shear or frictional losses, i.e. Mechanical 

energy, is presented by Ikoku [149] and Katz and Lee [150], in the following 

expression: 
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Where, 

p = Pressure 

ρ = Fluid Density 

lw = Mechanical energy (loss of work) converted to heat 

L = Pipe length 

 

The authors related the lost work per unit length of pipe and the flow variables 

as indicated below: 
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Where: 

u = Flow velocity 

D = Pipe diameter 

f = Moody friction factor 

g  = Gravitational acceleration (32.2 ft/s2) 

gc = Conversion factor (32.2 (lbm*ft)/(lbf*s2)) 

Substituting Equation 5.1 into 5.2, gives the following expression 
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Equation 5.3 is a differential equation governing frictional pressure drop in a 

pipe. Fluid density and velocity are functions of local pressure. 

For a long distance pipeline where the three thermal dynamic components could 

be represented, the pressure gradient expression becomes: 
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The first term is the elevation or potential energy losses, the second term is the 

frictional losses and the third term is the kinetic energy change. The elevation 

component is pipe angle dependent and is zero for horizontal flow. The friction 

loss component applies to any type of flow at any pipe angle and causes a 

pressure drop in the direction of flow. The acceleration term is generally 

considered negligible for incompressible flow, however for compressible flow, 

causes a pressure drop in any locations where there are velocity changes. 

The friction term can also be represented in the following expression: 
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(5.5) 

Gas is compressible; its density depends on pressure and temperature. Using 

the real gas law, in the following expression, the density can be calculated: 
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(5.6) 

 Where, m is mass of gas and ρ is gas density. MW is the molecular weight and 

other terms have their usual meanings. 

Considering the steady state flow of single phase CO2 in a constant-diameter, 

horizontal pipeline, and taking into account Equation 5.5, the mechanical 

energy Equation, Equation (5.1), becomes: 
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Integrating Equation 5.7 gives the following expression: 
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(5.8) 

If the temperature is assumed to be constant at an average value in a pipeline, 

T , and gas deviation factor, z  , is evaluated at average temperature and 
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average pressure, p , Equation 5.8 can be evaluated over a distance L between 

upstream pressure, p1 and downstream pressure, p2: 
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Where: 

2CO  = Specific gravity of CO2 

q = Flowrate 

T  = Average temperature or Tm 

z  = Gas deviation factor at T  (or Tm) and P  (or Pavg) and as shown below: 
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(5.10) 

 

C = Constant with a value depending on the units used in the pipeline 

Equation. If L is in miles and q is in scfd, C = 77.54. 

Equation 5.9 can be written in term of flowrate measured at a referenced 

condition ‘b’, as follow: 
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Where, C is a constant with value depending on the units used. If L is in miles 

and q is in scfd, C = 77.54. 

5.1.1.1 Weymouth Equation 

Equation 5.11 above takes the following form when the unit of gas rate is 

scf/h. 
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Where: 

f

1
 is termed the transmission factor. The Moody friction factor may be a 

function of flow rate and pipe roughness. If flow conditions are in the fully 

turbulent region, ‘f’ becomes: 

 2)log(214.1
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(5.13) 

Where ‘f’ depends only on the relative roughness, eD. When flow conditions are 

not completely turbulent, ‘f’ depends on the Reynolds number: 
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Weymouth proposed that ‘f’ vary as a function of diameter in inches as shown in 

Equation 5.15, in order to avoid the repeated, varied attempts in solving the 

equations above (i.e. trial and error): 
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Hence, the Weymouth Equation becomes: 
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Or in terms of pressure drop: 
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(5.17) 

The use of the Weymouth Equation involves the following assumptions: 

 No mechanical work; 

 Steady flow; 

 Isothermal flow (i.e. Constant temperature); 
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 Constant compressibility factor; 

 Horizontal flow; 

 No kinetic energy change. 

These assumptions can affect accuracy of the results. For example, Weymouth 

Equation is generally applied to short on-site (within production facility) lines, 

where the gas velocity and Reynolds number are generally low. These lines can 

be high pressures, high flow rates and medium sizes. 

Isothermal conditions in very long pipelines may overestimate pressure drop in 

such lines, or perhaps be over-conservative than actually needed. Large 

pressure loss especially for large-diameter and low-velocity pipelines, are often 

predicted with Weymouth Equation. Similarly, the inclusion of compressibility 

factor within the Equation is very important; unlike liquids where the density can 

be fairly assumed constant in the pipeline, the density of the gas varies along 

line with local temperature and pressure, and particularly for very long pipeline 

with undulated route bathymetry where large temperature drop can be 

encountered. 

5.1.1.2 Panhandle A Equation 

The Panhandle A pipeline flow Equation assumes the following Reynolds number 

dependent friction factor: 
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The resultant pipeline flow Equation is thus: 
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(5.19) 

Where, ‘q’ is the gas flow rate in cubic feet per day (cfd) measured at Tb and Pb, 

and other terms are the same as in the Weymouth Equation. 
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5.1.1.3 Panhandle B Equation - (Modified Panhandle) 

The Modified Panhandle correlation is a modified version of the original 

Panhandle Equation and is sometimes referred to as the Panhandle Eastern 

Correlation or the Panhandle B correlation. 

The Panhandle B equation takes into account the following friction factor: 
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The resultant pipeline flow Equation is thus: 
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(5.21) 

A general non-iterative pipeline flow Equation is written as: 
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(5.22) 

where the units are q in ‘cfd’ measured at Tb and Pb, T  in 0R, P in psia, L in 

miles, and D in inches. The values of the constants are given in Tables 5.1 and 

5.2 below for specific pipeline flow equations. 

Table 5.1: Empirical Flow Equation Constant 

Equation a1 a2 a3 a4 a5 

Weymouth 433.5 1 0.5 0.5 2.667 

Panhandle A 435.87 1.0788 0.5394 0.4604 2.618 

Panhandle B 737 1.02 0.51 0.49 2.53 

Table 5.2: Transmission Factor for Pipeline Flow Equation 

Equation Transmission Factor 

Weymouth 1.1 x 5.6 D0.167 

Panhandle A 0.92 X 3.44 Re0.073 

Panhandle B 0.90 x 8.25 Re0.0196 
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5.1.1.4 Proposed Modification to Panhandle B “Equation 5.21” and 

Calculation Procedure for CO2 Pipeline 

CO2, as dense phase, has considerable pressure / temperature influence on the 

physical properties such as the density, viscosity ...etc. Dense phase is a highly 

compressible fluid that exhibit properties of both liquid and gas. The dense 

phase has a viscosity similar to that of a gas, but a density closer to that of a 

liquid. The dense phase is a favorable condition for transporting CO2 for 

enhanced oil recovery. 

In this study, using the established theories discussed above, the procedures 

below have been developed for estimating the minimum amount of CO2 required 

to take into account the physical properties of CO2. The procedures are: 

1) Frictional pressure drop to be estimated using Equation 5.3, taking 

into account CO2 dense phase properties (i.e. Density of CO2 in dense 

phase). The density of CO2 in dense phase can be estimated using 

Equation 5.6, with ‘p’ be the pressure of CO2 at any point along the 

pipeline and should not be less than that of CO2 in dense phase, i.e. 

1073 psia;  

2) Assume a range of velocities; 

3) Calculate the Reynolds number using Equation 5.23 below, which 

takes into account all the physical quantities such as viscosity, velocity, 

density and surface tension of CO2. 

Where;  

Weber number We,: 

with Cd = 8/3 for Eotvos number less or equal to 16, or  

25.05.0 )/()( MEWR oee    

(5.23) 
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Eotvos number,  

Morton number,  

4) The friction factor is estimated using the proposed formulation,  

and C should be less than 20. A simple linear relationship is established 

in the form of Cf 003.0  

5) The CO2 gas rates calculated using Equation 5.22 above should not be 

less than that calculated using the Equation presented by Turner et al 

[151], in which case the following expression should result: 
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(5.29) 

Taking into account the elevation between the two ends, Equation 5.29 

becomes: 
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The equivalent length, Le, and the term es take into account the elevation 

difference between the upstream and downstream ends of the pipe segment. 

The parameter ‘s’ depends upon the gas gravity, gas compressibility factor, the 

flowing temperature, and the elevation difference. It is defined as follows in 

(System International) SI units: 

where 

H1 = Upstream elevation, m 

H2 = Downstream elevation, m 

s = Elevation adjustment parameter, dimensionless 

e = Base of natural logarithms (e = 2.718…) 

Tf = Average gas flowing temperature 

G = Gas gravity (e.g.: air = 1.00) 

Z = Gas compressibility factor 

6) Optimising the CO2 demand - As it was observed, as shown in 

Figure 5.1 below, that the gas rate estimated using Equation 5.22 

(orginal Panhandle B) was significantly overpredicted for EOR 

application, five dataset were generated using a comparative multiple 

linear statistical regression approach, in view to optimize the gas 

estimates using Equation 5.30. The dataset effectively denote the 

impact of each empirical flow constant in Equation 5.30, particularly 

parameter ‘a1’; and the trends are summarized in Table 5.3 and 

illustrated in Figure 5.1.  
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Table 5.3: Empirical Flow Equation Constant 

Data a1 a2 a3 a4 a5 Comment 

Panhandle B 

(Original) 
737 1.02 0.51 0.49 2.53 Original Equation 

1st Set 600 0.605 0.379 0.49 3.48 
a1, a2, a3, a5 
modified 

2nd Set 500 1.02 0.51 0.49 2.53 a1 modified 

3rd Set 400 1.02 0.51 0.49 2.53 a1 modified 

4th Set 400 1.02 0.51 0.49 2.53 a1 modified 

5th Set 330 1.02 0.51 0.49 2.53 
a1 modified 
(proposed) 

6th Set 300 1.02 0.51 0.49 2.53 a1 modified 

 

Reducing ‘a1’ in Equation 5.30 from 737 to 330 was found to provide identical 

results as modifying a1, a2, a3, and ‘a5
’ as shown in Table 5.3 above, and fit 

suitably with the CO2 requirement for EOR.  Hence, in addition to other proposed 

modifications already discussed above, it is recommended as part of 

optimization of CO2 requirements during CO2-EOR that parameter ‘a1
’ in 

Equation 5.30 should be 330. 

An illustration of the Panhandle B Equation is shown in Figure 5.1, in terms of 

CO2 injection requirements at different Bottom-hole pressure dictated by EOR, 

for the set of data evaluated as shown in Table 5.3. 
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Figure 5.1: CO2 Injection and the Pressures 

5.1.1.5 Minimum CO2 Rate to Lift Heavy Oil 

The minimum gas rate that will allow heavy crude to be lifted continuously and is 

calculated based on the correlation presented by Turner et al [151]. 

Considering a heavy oil reservoir in a non-production status as undergoing liquid 

loading issue, the accumulation of liquids (liquid loading) increases the bottom-

hole pressure that reduces the gas production rate. 

The pioneer investigators, who analyzed and predicted the minimum gas flow 

rate capable of removing liquids from the gas production wells, presented two 

mathematical models to describe the liquid loading problem: the film movement 

model and entrained drop movement model. Based on field data analysis, they 

concluded that the film movement model does not represent the controlling 

liquid transport mechanism [151]. 

The entrained drop movement model was derived from the terminal free settling 

velocity of liquid drops and the maximum drop diameter corresponding to the 

critical Weber number of 30. 

The terminal velocity Equation by Turner et al [151], is expressed as: 
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(5.33) 

Where: 

vsl = Terminal settling velocity 

kv = 1.3 as per Turner et al. (1969), however to account for the CO2 in 

dense phase, it was found as part of this research study that k value in the order 

of 8.4 was more suitable for EOR. 

σ = Interfacial tension 

ρg = Gas density 

ρL = Liquid density 

Cd = Drag coefficient, recommended by the authors [151] to be 0.44 

According to the authors, gas will continuously remove liquids from the well until 

its velocity drops below the terminal velocity. The minimum gas flow rate for 

continuous liquid removal was expressed as follow. 
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Q sl
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(5.34) 

Qgm = Minimum required gas flow for liquid removal 

p = Pressure at depth of interest 

A = Cross sectional area of the pipe 

T = Temperature 

z = Gas compressibility factor 

As part of this research study, Equation 5.34, was modified to take into 

account the pressure difference between the injection and the reservoir 

pressure, hence Equation 5.34 becomes: 
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Where: 

CE = This parameter is named in this study as the EOR constant, as the 

original value has been improved to suit the EOR application. 

PINJ = Injection Pressure 

PR = Reservoir Pressure 

The original Turner et al. constant of 3.06 was amended as it was established 

that the output from the original formulation demarcates widely from the zone of 

operability of EOR. A range of value was investigated as shown in Table 5.4 

below. 

Table 5.4: Proposed Model and the EOR Constant 

Equation / 
Data-set 

CE Value Comment 

Turner et al. 

(Original) 

3.06 Original Equation,  

underpredict the CO2 requirements for 
EOR 

1st Set 1 Not suitable with the proposed model 

2nd Set 2 Not suitable with the proposed model 

3rd Set 3 Not suitable with the proposed model 

4th Set 4.3 Proposed value 

5th Set 5 May underestimate the boundary of 
stability 

6th Set 6 May underestimate the boundary of 
stability 

An illustration of Turner et al. with the six dataset presented in Table 5.4 is 

shown below in Figure 5.2, in terms of the CO2 injection requirements at 

different Bottom-hole pressures. 
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Figure 5.2: Modified Turner et al. with Various CE Value  

Results from the original Panhandle B Equation are plotted against the original 

Turner et al. (1969); as shown in Figure 5.3 below, it is apparent that the 

operating envelope and optimum operating point for CHOP using CO2 injection 

cannot be established as the two models fall out of phase. 

Effectively, the original Panhandle B equation broadly over-predicts the CO2 

requirements for EOR, while the current Turner et al. model under-predicts the 

minimum CO2 required to lift the heavy crude at various bottom-hole pressure. 
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Figure 5.3: CHOP using CO2-EOR – Original Panhandle B & Turner et al. Models 

However, the output from the proposed models (modified Panhandle B and 

Turner et al.) is presented in Figure 5.4 below. 

Fundamentally, integrating the proposed trends from Figure 5.1 and Figure 

5.2 gives an operating envelope, with a range of bottom-hole pressure against 

various CO2 injection rates. 

The proposed correlation, modified from the formulation presented by Turner et 

al [151], is used to set the criteria for minimum CO2 requirements for heavy oil 

recovery and confirm findings from the simulation results discussed in chapter 4 

that Immiscible process, i.e. Pressure below 1073 psig is not suitable or 

advisable for heavy oil recovery using CO2-EOR. 
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Figure 5.4: CHOP using CO2-EOR – Operating Envelope of the Injection 
System 

 

Hence, the final expression taking into account the elevation/depth difference, 

becomes: 
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(5.36) 

5.2 Production System Modelling 

This section presents the mathematical modelling of the production system and 

guide through the theories use as a foundation in making feasible predictions. 

5.2.1 Pressure Drop Calculation 

Flow through a typical production system will be characterized by the following 

stages or components: 

1) Flow through porous medium 

2) Flow through vertical or directional wellbore 
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3) Flow through choke 

4) Flow through surface line 

A schematic of a simple production system is shown in Figure 5.5. 

 

Figure 5.5: Representation of Pressure Losses across a Production System 

The production system can be segmented into two main components: 

1) Surface component 

2) Sub-surface component. 

The surface component includes the choke and surface pipeline. The sub-surface 

component includes the reservoir and tubing. 

5.2.1.1 Sub-surface Component 

Bottom-hole Pressure 

The total pressure at the bottom of the tubing is a function of flowrate and the 

following pressure elements: 

1) Wellhead back pressure; 

2) Hydrostatic pressure (i.e. gravity and elevation change across the tubing); 

3) Friction losses (i.e. viscous drag and slippage) 

For a given production rate, the bottom-hole pressure can be calculated in two 

ways: 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	145	

 

1) Reservoir component - using inflow equations, represented by the 

following simple expression, 

rP  is the pressure loss across the reservoir which is function of flowrate 

(Q), hence a plot of Pwf vs. Q will be the Inflow Performance Curve or 

relationship (IPR) 

2) Tubing component - using multiphase flow correlations for pipes and 

chokes and surface lines.  

The pressure losses across tubing, choke and surface lines are all function 

of flowrate (Q), hence a plot of Pwf vs. Q will be the Outflow Performance 

Curve or relationship (OPR) 

These two different ways of calculating Pwf result in two curves known as the IPR 

and OPR. The crossed point of these two curves gives the production rate and 

the corresponding bottom-hole pressure for the production system. Production 

will be impossible when there is no crossed point between these two curves. This 

may reflect inadequate reservoir pressure to lift the fluid out of the well, and can 

be the result of declining reservoir pressure or too much energy loss in the 

tubing, choke, or surface line. In such conditions, a recompletion where possible 

or an artificial lift method is required. 

Wellhead Pressure 

Similarly, the wellhead pressure can be estimated in two different ways, i.e.  

surface and sub-surface components.  

Surface components – This is made of the choke and the surface pipeline. For 

any production rate, the wellhead pressure can be estimated by adding the 

rrwf PPP    

(5.37) 

Linesurfacechoketubingoutwf PPPPP    

(5.38) 
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pressure loss across the surface line and the choke to the reservoir outlet 

pressure (Pout), as shown in Equation 5.39 below: 

Linesurfacechokeoutwh PPPP     

(5.39) 

Pressure losses across choke and surface line are function of flowrate (Q). Pwh 

vs. Q using Equation 5.39 will provide the outflow performance curve or 

relationship. 

Sub-surface component - The wellhead pressure can be estimated by the 

following expression: 

tubingreservoirrwh PPPP    (5.40) 

Pressure losses across the reservoir and tubing are function of flowrate (Q). Pwh 

vs. Q using Equation 5.40 will provide the inflow performance curve / 

relationship. 

Reservoir Inflow Equation 

Single phase liquid flow may result when the bottom-hole pressure is higher 

than the bubble point pressure, due to gas dissolving in the oil. The production 

can be calculated using Darcy's Equation from a vertical well with closed outer 

boundary [152]. Equation 5.41 below is the simplest IPR equation that 

considers a direct linear relationship between the inflow into a well and the 

pressure differential between the reservoir and the wellbore, and is generally 

termed ‘drawdown, i.e. )( wfr PP   

)( wfrO PPPIq    (5.41) 

Where; 
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(5.42) 

PI  = Productivity index stb/d/psi 

ko  = Effective permeability (md) 

h = Effective feet of oil pay (ft) 
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Pr  = Average reservoir pressure (psia) 

Pwf  = Wellbore flowing pressure at centre of perforations (psia) 

qO = Oil flow rate (STB/D) 

re  = Radius of drainage (ft) 

rw  = Radius of wellbore (ft) 

S#  = Total skin 

a’q = Turbulent flow term (The a'q term is normally not significant for low 

permeability wells and low flow rates) 

o   = Viscosity (cp) at average pressure of (P, + Pwf) / 2 

Bo  = Formation volume factor at average pressure 

For a horizontal well, Joshi's Equation [153] below can be used. 

)( wfeO PPPIq    (5.43) 
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(5.44) 

And ; 

VH KK /    

(5.45) 

KV  = Vertical Permeability  (md) 

KH  = Horizontal Permeability  (md) 

L  = Horizontal Well Length  (ft) 

Vogel's Equation for Oil Reservoirs 

A simplified solution to the two phase flow problem was proposed by Vogel 
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[154], to account for two phase flow in the reservoir (i.e. saturation effects): 
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(5.46) 

Where: 

qo  = Oil production rate 

qmax  = Maximum liquid production rate 

The straight line IPR, described above, is not applicable for two phase flow (gas 

and liquid) in the reservoir. 

Generally, when the Bottom-hole Flowing Pressure (BHFP or BHP)) is above the 

bubble point, the normal straight line Equation 5.43 can be used: 

However, when BHP drops below the bubble point, the modified Vogel Equation 

can be used: 
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(5.47) 

 

Where ‘J’ is the same as ‘PI’ 

Equation 5.48 and 5.49 were provided to take into account water production, 

and assuming that oil is produced from a different zone to the water: 

)( wfrw PPPIq    (5.48) 
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(5.49) 

Fetkovich Method, [155] 

Fetkovich [155], proposed the following relationship and expressions: 

n
wfroO PPJq )( 22'    (5.50) 

Where: 
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n = Exponent of inflow performance curve 

For reservoir pressures above bubble point pressures, the inflow performance 

curves can be derived using the following Equation 5.51: 

)()( 22'
br

n
wfroO PPJPPJq    (5.51) 

The maximum flowrate of a well can be determined using the following 

Equation 5.52: 
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(5.52) 

Standing’s Method, [156] 

Standing’s Method [156], has been developed based on Vogel’s Equation, 

considering the definition of productivity index and the assumption that fluid 

saturation should be identical everywhere in the reservoir. 

The expressions involved in Standing’s Method [156], are presented below: 
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And 
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(5.54) 

where: 

J* = PI at minimal (zero) drawdown (i.e. where two phase flow effects are 

negligible) 

kro = Relative permeability to oil, 

µ0 = Oil viscosity 

Bo = Oil formation volume factor 
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Multiphase Correlations For Flow in Wellbore 

Nowadays, a large number of correlations are available for modelling the 

production system; however, none of them can provide satisfactory results 

across a wide range of conditions. 

A concise summary of some of the well known vertical wellbore correlations is 

provided below: 

Beggs and Brill Correlation [157] 

Developed using air-water two phase flow experiments, the Beggs and Brill 

correlation is applicable for a wide range of pipe inclination angles and the terms 

involved can be estimated using the following procedure:   

The mixture superficial velocity is expressed as: 

SGSLM UUU    (5.55) 

The no-slip holdup is estimated using the following expression: 

SGSL

SL
ns UU

U


  

(5.56) 

Froude number, NFR: 

dg

U
N M

FR

2

  
(5.57) 

Liquid velocity number: 

25.0}(
L

L
SLLv g

UN



  
(5.58) 

The following parameters are estimated to establish the corresponding flow 

regime, L1, L2, L3, and L4: 

 
738.6

4
4516.1

3
4684.2

2
302.0

1 5.0;10.0;0009252.0;316   nsnsnsns LLLL    (5.59) 

The flow pattern is then determined using the following limits: 

Segregated: 21 01.001.0 LNandorLNand FRnsFRns    

Transition:   2201.0 LNLand FRns   

Intermittent: 4313 4.04.001.0 LNLandorLNLand FRnsFRns    
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Distributed: 21 4.04.0 LNandorLNand FRnsFRns    

 

The horizontal liquid holdup parameter,  λ0, is expressed as: 

c
FR

b
ns

o
N

a
   

(5.60) 

where a, b, and c are empirical constant, with value expressed for each flow 

pattern as shown below in Table 5.5: 

Table 5.5: Beggs & Brill, a, b, c Constant 

Flow Pattern a b c 

Segregated  0.98 0.4846 0.0868 

Intermittent  0.845 0.5351 0.0173 

Distributed  1.065 0.5824 0.0609 

 

The inclination correction factor coefficient is presented as: 

)(ln)1( g
FR

f
Lv

e
nsns NNdC    (5.61) 

where d, e, f, and g are empirical constant, with value expressed for each flow 

condition as in Table 5.6 below: 

Table 5.6: Beggs & Brill, d, e, f, g Constant 

Flow Pattern d e f g 

Segregated uphill  0.011 -3.768 3.539 -1.614 

Intermittent 

uphill 

2.96 0.305 -0.4473 0.0978 

Distributed uphill No Correction C = O 

The liquid hold up inclination factor is estimated using the following expression: 

)8.1(sin333.0)8.1((sin1 3   c  (5.62) 

Where: 

 θ is the inclination angle, reflecting a deviation from the horizontal axis. 

The liquid holdup is estimated using Equation 5.63 below 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	152	

 

 o  (5.63) 

The Palmer correction factor is applicable in the following range: 

λ = 0.918 * λ   applicable for uphill flow regime 

λ = 0.541 . λ   applicable for downhill flow regime 

The following expression is used during transitional flow regime: 

23

3
21 ;)1(

LL

NL
aaa FR




   
 

(5.64) 

Where: 

 λ1 is the liquid holdup, applicable for segregated flow,  

λ2 is the liquid holdup, applicable for intermittent flow. 

(1) Frictional pressure gradient 

The frictional factor ratio is expressed in a following form:  

S

ns

tp e
f

f
  

(5.65) 

where: 

42 )]([ln01853.0)]([ln8725.0)(ln182.30523.0
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y
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
  

 

(5.66) 

Where, “y” is expressed as: 

2
nsy   

(5.67) 

The no-slip Reynolds number is expressed as follows: 

ns

Mns
ns

DU
N




)( Re  
 

(5.68) 

Equation 5.68 (no-slip Reynolds number) and the Moody's diagram are used to 

establish the no-slip friction factor, fns
’,.  
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The no-slip friction factor, fns
’, can be translated into Fanning friction factor by, 

fns = fns
’
 / 4.  

A general expression for the two phase friction factor is: 
ns

tp
nstp f

f
ff   

The friction pressure gradient is obtained using the following formula: 

D

Uf

dx

dp Mnstp

f

22 






 
 

(5.69) 

Hagedorn and Brown Correlation [158] 

The correlations are made of Hagedorn-Brown correlation for slug flow and 

Griffith correlation for bubble flow; and are applicable for vertical wells only. 

The switching criterion is the flow regime, and the parameters to guide 

proceeding with either Hagedorn-Brown correlation for slug flow or Griffith 

correlation for bubble flow are presented below: 

2

2

)3048.0(
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(5.70) 

If A < 0.13, then A = 0.13 
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U
B


  

 

(5.71) 

Hagedorn and Brown Correlation is used for positive B-A, and   Griffith 

correlation for negative B-A. 

Griffith correlation, [159] 

The key expressions involved in Griffith correlation are presented below: 
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(5.72) 

 

3048.0*8.0SU   (5.73) 
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Hagedorn-Brown correlation: 

The calculation steps are summarized in the following expressions below: 

The liquid viscosity number and coefficient can be obtained using the following 

terms: 

4/1

3 









LL
LL

g
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
  

(5.74) 
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  
(5.75) 

If NL < = 0.002, then CNL = 0.0019 

If NL > = 0.4, then, CNL = 0.0115 

The expressions for the liquid, gas velocity number, and pipe diameter 

dimensionless number are presented below: 
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(5.76) 
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(5.77) 
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(5.79) 

The secondary correction factor is expressed as:  

14.2.

380.0

d

LGV

N

NN
  

(5.80) 
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(5.81) 

The expression for the liquid holdup is: 



   

(5.82) 

The frictional pressure gradient is estimated using the following expression: 

s
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f D
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(5.83) 

Where: 

f = Fanning friction factor 

ρns = no-slip average of densities 

ρs = slip average of densities 

Grav Correlations [160] 

Vertical flow correlation for gas condensate wells developed by Gray is 

summarized within the following expressions below [160]. 
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(5.84) 

Where; 

  is the gas volume fraction and is estimated as follows: 
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(5.85) 
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(5.86) 
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The applicable correlations for estimating pressure drop across vertical wellbore 

are presented in Table 5.7 below, with their respective characteristics with 

respect to their relationship to slippage between phases and flow pattern. 

Table 5.7: Applicable Pressure Drop Correlations for Wellbore 

Correlation By: Reference 

General Considerations (Yes / No) 

Slippage between 
Phases 

Flow Pattern 

Poettmann and 
Carpenter (1952) 

[161] No No 

Baxendell and 
Thomas (1961) 

[162] No No 

Fancher and Brown 
(1963) 

[163] No No 

Hagedorn and Brown 
(1965) 

[158] Yes No 

Gray (1978) [160] Yes No 
Asheim (1986) [164] Yes No 
Duns and Ros 
(1963) 

[165] Yes Yes 

Orkiszewski (1967) [166] Yes Yes 
Aziz et al (1972) [167] Yes Yes 
Beggs and Brill 
(1973) 

[157] Yes Yes 

Mukherjee and Brill 
(1985) 

[168] Yes Yes 

5.2.1.2 Surface Component 

Multiphase Flow Through Choke 

Choke flow generally operate in "Critical" or "Sonic" flow conditions (i.e., the 

velocity of the fluids through the choke reaches a level identical to the velocity of 
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sound), with the aim to restrict flow to the desired rate. Flow then becomes 

independent of downstream disturbance of pressure, temperature, or density 

because the disturbance cannot travel in the upstream direction. 

The rate of multiphase flow through a choke and the upstream pressure are 

according to Gilbert [169], Baxendell [170], Achong [171] and Ros [172], 

correlated by the following relationship: 

C

B
PL

d

RqA
P 1  

(5.90) 

where: 

PI  = Upstream pressure which is also known as the Wellhead pressure 

qL  = Liquid production rate, 

Rp  = Producing gas/liquid ratio, 

d  = Choke diameter 

A,B,C = Empirical coefficients given in Table 5.8 below 

Table 5.8: Empirical Constant for Two Phase Critical Flow Correlations 

Correlation Reference A B C 

Gilbert (1954)  [169] 10.0 0.546 1.89 

Ros (1960) [172] 17.4 0.5 2.0 

Baxendell (1967] [170] 9.56 0.546 1.93 

Achong (1961) [171] 3.82 0.65 1.88 

D = ID of flow conduit 

ft = Two phase flow friction factor 

G = Mass velocity 

h = Depth 

P = Pressure 

q = Flow rate 

R = Superficial liquid / gas ratio 

S = Specific gravity 

SG = Gas gravity 
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t = Temperature 

V, U = Velocity 

Ρ = Density 

τ = Mixture surface tension 

Subscripts: 

f  = Friction effect 

G  = Gas phase 

i  = Inertia effect 

L  = Liquid phase 

M = Gas / liquid ratio 

o  =Hydrocarbon condensate 

s  = Superficial value 

w  = Free-water phase 

Multiphase Flow Surface Flowline 

The Bernoulli expression shown below is a representation of incompressible fluid 

in motion: 

C
g

P
h

g

U


2

2

 
 

(5.91) 

Where: 

g = Gravity acceleration constant  

U = Velocity of the fluid, and  

H = Height above an arbitrary datum  

C = Constant along any streamline in the flow, but varies from streamline to 

streamline. 

The pressure required to transport a specified volume of fluid from point A to 

point B will consist of the following components: 

1) Frictional component 

2) Elevation component 
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3) Pipe delivery pressure 

The pressure drop along the flowline is expressed as: 

accelf PPPP     

(5.92) 

where: 

∆Pf = Pressure drop due to friction 

∆Pel = Pressure drop due to elevation pressure (hydrostatic head loss) 

∆Pacc = Pressure drop due to acceleration of the fluids (generally insignificant, 

hence will be ignored) 

Pressure Drop due to Friction 

2

2
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mtp

U

D

L
fP   

 

(5.93) 

where: 

ftp = Two phase friction factor 

L = Pipeline length 

D = Diameter 

Um = mixture velocity 

ρ = Slip mixture density 

GGLLslip HH     

(5.94) 

Pressure Drop due to Elevation 

 

 sinLgP mel    

(5.95) 

where: 

L = segment length 

g = acceleration due to gravity 
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θ = angle of segment to horizontal 

ρm = in-situ mixture density 

The friction factor depends on the Reynolds number “Re”, and the relative 

roughness e/D of the pipe wall, 









D

e
ff Re,  

 

(5.96) 

Where Laminar flow regime exists, i.e. Re < 2000, ‘f’ can be estimated using the 

following expression: 

Re

64
f  

 

(5.97) 

Where Turbulent flow regime exists, i.e. Re > 3000, ‘f’ can be estimated using 

the popular Colebrook expression: 
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(5.98) 

The Moody diagram, which is known to be a relationship between the Colebrook 

Equation and the Reynolds number “Re”, is shown in Figure 5.6 below: 

 

 

Figure 5.6: Moody Diagram 
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Pressure Drop or Required Inlet Pressure - Calculation Procedure: 

1- Calculate the phase velocity, mixture velocity, mixture density (taken 

account of phase slippage); 

2- Calculate the Reynolds number; 

3- Determine the friction factor using the proposed model, Colebrook-White 

method or using the Moody Chart for single gas phase only; 

4- Evaluate the frictional pressure loss term; 

5- Evaluate the elevation pressure loss term; 

6- Add 4 and 5 above to establish the total pressure drop term per pipe 

length; 

7- For a given pipe length, evaluate the total pressure drop; 

8- Knowing the outlet pressure and the total pressure drop, calculate the 

required inlet pipeline pressure. 

Prediction of pressure drop in pipe dated back from 1952 when a predictive 

approach was published by Poettmann and Carpenter [161]. Thereafter, many 

attempts have been made, giving birth to more complex mathematical models. 

The existing pressure drop correlations are generally classified into three 

categories based on the adopted concept. 

1) Homogeneous Flow Model: In this case, the multiphase mixture is 

assumed to behave like a homogeneous single phase fluid, with no-slip or 

difference between phase in-situ velocities. The work of Poettmann and 

Carpenter [161], Baxendell and Thomas [162], Tek [173], Fancher and 

Brown [163] and Hagedorn and Brown [158] fall within this group. 

2) Separated Flow Model, also known as Slip Model: This model 

assumes the phase to be segregated with dissimilar velocities (slip). The 

slip velocity or the in-situ void fraction of each phase must be established. 

A large number of correlations based on slip model have been developed 

and a well known one is that by Lockhart and Martinelli [174]. 

3) Flow Pattern Approach: Previous pioneers have attempted to express  

pressure drop correlation for each flow regime, however, the difficulty of 

recognizing each flow regime has prompted different flow pattern maps 

and correlations. Flow pattern map developed by Ros [175] and Duns and 
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Ros [165] were based on dimensionless gas and liquid velocity numbers. 

Other flow pattern maps published in the early 1960s are those of Griffith 

and Wallis [176] and Govier et al [177]. A mechanistic model was 

proposed by Orkiszewski [166] in which bubbly to slug flow transition is 

according to the criteria developed by Griffith and Wallis [176], while the 

transition from slug to churn and churn to annular follows the criteria by 

Duns and Ros [165]. The correlation proposed by Beggs and Brill [157] 

is based on extensive laboratory data and the flow pattern map developed 

for horizontal flow, based largely on empirical data. A multiphase flow 

model was developed from first principles by Hasan and Kabir [178], to 

estimate gas void fraction factor, or mixture density leading to pressure 

gradient; each flow regime, and transition from one flow regime to 

another were thoroughly taken into account. 

5.3 Proposed Generalised Model Based on Asheim [179] Formulation 

Two stability criteria were developed by Asheim [179]. The first is related to the 

inflow response and indicates that the well will be stable if the responses of 

reservoir inflow and gas injection to a decrease of downhole tubing pressure can 

result in an increase in the average density of the fluid mixture. 

This criterion is given by the expression below, which also indicates that high 

PI’s and high injection rates promote stability. 
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(5.99) 

where: 

F,  = Stability criteria, F > 1 for stability 

ρG = Lift (Injection) gas density at standard surface conditions 

BG = FVF of gas at injection point 

QG  = Flow rate of gas-lift at standard conditions 

qL,  = Flow rate of liquids at standard conditions 

PI  = Productivity index 
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E  = Orifice efficiency factor 0.9 

AINJ  = Injection port/orifice size 

The second criterion is related to the pressure depletion response in both tubing 

and gas conduit. A decrease in the tubing pressure will cause the gas flow rate 

to increase more than the liquid flow rate. 

The second criterion is expressed as follows: 
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(5.100) 

 
where 

F2  = Asheim stability criterion 2 

Vt  = Tubing volume downstream of the gas injection point 

Vc  = Gas conduit volume 

g  = Acceleration of gravity 

D  = Vertical depth to injection point 

pt  = Tubing pressure 

ρft  = Reservoir fluid density at the injection point 

ρgi  = Lift gas density at the injection point 

qft  = Flow rate of reservoir fluids at injection point 

5.3.1 Proposed “Generalised” Injection-Production Relationship 

The proposed new injection-production relationship is based on the formulation 

by Asheim [179], to take into account the heavy oil reservoir characteristics as 

well as the injection system. 

Firstly, after modification of Asheim [179] formulation to include the simplified 

two phase flow model suggested by Vogel [154] and the heavy oil density, the 

criteria becomes: 
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(5.101) 

Where; 

1-  qo/qmax is calculated using the simplified two phase flow model suggested 

by Vogel [154], Equation 5.46. 

2- qG_INJ or qCO2 is calculated using the proposed methodology presented 

below in Equation 5.102. 
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(5.102) 

Assuming a pseudo-steady state production, the operating regime of a typical 

production system is established using Equation 5.46 and Equation 5.101. 

However, it was established that the original Asheim Equation does not fit 

into the current concept, and in order to align the output from Equation 

5.101 to the test data, the final expression was amended as presented below 

following a multiple linear regression analysis: 
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(5.103) 

Computing Equation 5.103 gives the relationship between CO2 injection and 

the potential heavy oil production rates. 

The output trends from the original Asheim Equation 5.99, and the final 

proposed expression (Equation 5.103) are illustrated in Figure 5.7 below. 

Figure 5.7 below is based on reservoir with sufficient pressure to ensure 

deliverability at a given CO2 rate; and it indicates reasonable match between 

the test data and results from the proposed model, while the original Asheim 

results fall widely out of the expected trend.  
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Figure 5.7: Relationship between the Injection and the Production rate based on the 
proposed generalised Model. 

5.3.2 Model Validation against Predicted Results 

Reservoir Pressure Requirements 

The model trends and predictions have been compared against the simulation 

results discussed in chapter 4 above and limited field data from the nearby field 

to Omega obtained from Reservoir Management Group (RMG). The proposed 

model shows good agreement with the test data, in general. 

At low production rates, i.e. from 4000 STB/D to 8000 STB/D, the percentage 

error is between 1 to 2.5%, and narrow between 0.2 to 1% as the flowrate 

increases above 10000 STB/D. 

The predicted pressure at various production rates with the corresponding 

percentage error is presented in Table 5.9 below. 
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Table 5.9: Proposed Model Prediction - Pressure vs. Heavy Oil Rate 

Test Data 
Proposed Model 

Results 
% Error Oil Rate Pressure Pressure 

(STB/D) (Psig) (Psig) 

4000 3072 3151 - 2.5 

6000 3486 3548 - 1.7 

8000 3900 3944 -1.1 

10000 4314 4341 - 0.6 

12000 4728 4737 - 0.2 

14000 5141 5133 0.2 

16700 5700 5669 0.6 

18000 5969 5926 0.7 

20000 6383 6323 1.0 

CO2 Injection Requirements 

Superimposing the gas requirements (simulation results) from Figure 4.22 with 

Figure 5.4, gives an optimum condition for CO2-EOR which is shown in Figure 

5.8 below.  

In order to achieve stable flow, a reservoir pressure or bottom-hole pressure of 

3000 psig and a minimum CO2 injection rate of 35 MMscf/d are required, 

although there may be some achievable recovery at lower pressure than 3000 

psig.  

The two curves (Figures 4.22 and 5.4) acknowledge that there is no added value 

operating at low injection or reservoir pressure (i.e. below 1000 psig), which 

validate the simulation results discussed in chapter 4. 

The results of the proposed model indicate that at higher reservoir pressure, 

lesser CO2 is required, although higher CO2 may still be injected for higher 

productivity as the simulation results illustrate. 

The upper boundary in Figure 5.8 sets the minimum requirement for low 

pressure operation, up to the point where it crosses the second line. The point 

where the two lines cross each other represents the optimum favourable 

condition for the stable flow regime. 

In Chaper 4, Figure 4.22, the simulation results showed that 2000 psig 

injection pressure was insufficient to enhance recovery, hence the simulation 

could not continue under such operating conditions, which justify the zero heavy 
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oil recovery and zero injection rate from a model point of view. However, the 

corresponding CO2 rate is estimated to be about 25 MMscf/d.  

As far as validating the proposed integrated Injection-Production model is 

concerned, Figure 5.8 clearly illustrates that the proposed model depict 

perfectly the simulation results.  

Figure 5.8 shows the range of operability, and indicates that at CO2 injection 

rate lower than 40 MMscf/d, with the reservoir pressure below 3000 psig, the 

system will remain within the unstable region, although some intermittent heavy 

oil recovery may be observed. This trend was also observed in the simulation 

results discussed in chapter 4, with Figure 4.22 showing that recovery was only 

achievable when the CO2 arrival pressure was 3000 psig.    

The simulation results predict stable flow from 3000 psig, which fit perfectly well 

within the stable flow region outline from the proposed model results shown in 

Figure 5.8.  

A comparative summary is presented in Table 5.10 below, and outlines broadly 

how results from the proposed models capture the predictions from the 

simulation results. 

At CO2 injection rate lower than 24 MMSCF/D, both simulation results and the 

proposed model predict an unstable operating condition; while at rates greater 

or equal to 35 MMSCF/D  , and provided that the Bottom-hole flowing pressure is 

at least 3000 psig, the results predict continuous deliverability (i.e. stable 

condition). 

The proposed model predicts lesser productivity at lower injection rates 

compared to the simulation results and slightly higher production rate at CO2 

injection rate above 50 MMSCF/D. 

The proposed model predicts significantly lower heavy oil production rate at 35.7 

MMSCF/D compared with the simulation results.  

At higher CO2 injection rate (above 40 MMSCF/D), the margin between the two 

results reduces from 10% to 3%. 
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Table 5.10: Comparison of Model Output against Simulation Results 
Operating 
Conditions 

Predictions 

Avg. CO2 
Rates 

Simulation Results Poposed Model Results 
Max Heavy Oil 

Production 
Operating  
Regime 

Max Heavy Oil 
Production 

Operating  
Regime 

(MMSCF/D) (STB/D) - (STB/D) - 

0 0  - 0.0  - 

24.2 - Unstable - Unstable 

35.7 11790 Stable 5440.8 Stable 

42.4 13702 Stable 11860.8 Stable 

47.3 15150 Stable 16718.5 Stable 

52 16335 Stable 16943.7 Stable 
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Figure 5.8: Comparison of the Proposed Model against Simulation Results 

Heavy Oil Production Trend 

The heavy oil forecast from the proposed model output have been compared 

against the simulation results discussed in chapter 4, and the comparative 

results indicate very close trend up to the optimum operating regime where 

stable production occurs. 
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The heavy oil forecast at various injection rates and reservoir pressure for both 

simulation results and prediction from the proposed model is presented in 

Figure 5.9 below. The proposed model is very conservative at low reservoir 

pressure (3000 psig) and predicts much lower heavy oil rate (5500 STBD 

compared to approx. 12000 STBD) at the same CO2 injection rate compared to 

the simulation results. However, at higher reservoir pressure, i.e. from 4000 

psig and above, the variation in heavy oil production between the two 

predictions is within reasonable difference, i.e. 5% to 10%. 

The simulation results under-predict the expected production rate of 16700 

STBD  by 9.3%, while  the proposed model over-predicts by only 0.1%. 
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Figure 5.9: Heavy Oil Production Forecast: Proposed Model against 
Simulation Results 

5.4 Summary 

Key findings are summarized below 

 An improved mathematical model, to estimate the CO2 requirement during 

heavy oil recovery using CO2-EOR, is proposed based on existing 

Panhandle B formulation. 
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 An improved mathematical model to establish the minimum CO2 rate, at 

sufficient / high bottom-hole pressure, that will allow heavy crude to be 

lifted continuously, is proposed based on existing correlation by Turner et 

al [151].  

 An operating envelope for the CHOP using CO2-EOR technique for a wide 

range of operating conditions was developed using the modified 

Panhandle B model and the modified Turner et al. equation. 

 An improved formulation to outline the relationship between the injection 

and the production systems is proposed using an existing concept by 

Asheim [179], to provide an estimated heavy oil production rate at a 

given CO2 injection rate. 

 The proposed mathematical models make sensible and consistent 

predictions across the limited range of data used in the investigation. 

 The theoretical models substantiate the fact that Miscible CO2-EOR for 

heavy oil recovery is more effective, with immediate impact on recovery 

than Immiscible process. With a low reservoir pressure, and at low CO2 

injection rate, particularly in deepwater where high pressure is required, 

CO2-EOR is inefficient, making the recovery miserable, with potentially 

significant impact on the project return. 

 Fine-tuning, scale-up and broader validation, will be required to make the 

proposed models more representative – Refer to Further Work in Chapter 

7. 
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6. CONCLUSIONS 

There are two main heavy oil recovery processes known as non thermal (Cold) 

recovery and thermal (Hot) recovery. The non thermal recovery process is 

known to be inexpensive, in which case, the trade-off is the early cash flow and 

minimal pre-investment. 

CO2-EOR technique, which is one of the non-thermal processes, has been 

successfully investigated for heavy oil recovery, as part of this research work.  

This chapter presents concluding remarks that form part of the contribution to 

knowledge. 
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6.1 Key Findings and Contributions to Knowledge 

The aim of the research was to investigate the use of CO2-EOR technique for 

heavy oil recovery, with the objectives to provide useful guidance as well as 

better understanding of the entire recovery process. In particular: 

 To investigate the hydraulic behaviour of CO2 transportation offshore. 

 To explore the feasibility of heavy oil recovery using CO2-EOR technique. 

 To assess the potential sequestration of CO2 during heavy oil recovery 

using CO2-EOR technique. 

 To carry out a techno-economic evaluation of a typical heavy oil recovery 

using CO2-EOR technique. 

 To develop fit for purpose generalised mathematical models to guide in 

the understanding of heavy oil recovery using CO2-EOR. 

The subsequent sections summarizes the key findings and contribution to 

knowledge. 

6.1.1 CO2 Transportation Offshore for EOR 

Results show that CO2 can be transported in dry or dense phase. However, 

dense phase is more preferable and suitable for the purposes of EOR, which by 

its nature is a high-pressure driven application. 

Dry CO2 transportation offshore is very possible at low pressure, but 

recompression will be required for an effective EOR application, however,  

recompression from an offshore topside rig may be problematic due to the space 

and weight constraints on most offshore platforms (new or existing). These 

limitations generally pose major challenge on most offshore platforms and 

enormous difficulties are always foreseen with regard to accommodating 

additional facilities. 

At high pressure, CO2 remains in dense phase, with the density equivalent to 

that of a liquid, and can be discharged at high pressure from an onshore plant 

directly into the reservoir for EOR, via (a tie-back) long distance pipeline 

transportation offshore. 
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6.1.2 Cold Heavy Oil Production Using CO2–EOR Technique 

Heavy oil recovery was previously investigated using some of the tertiary 

recovery techniques such as water alternating gas (WAG), chemical processes, 

gas injection and microbial EOR, and predominantly onshore. But, this research 

work have focused on the use of CO2-EOR for cold heavy oil recovery offshore. 

Results show that CO2-EOR is an effective technique for heavy oil production. 

The compressed CO2 at the onshore facilities can be transported subsea at high 

pressure for heavy oil recovery. The performance of the CO2-EOR for CHOP can 

be influenced by the production history, initial reservoir pressure, GOR, and fluid 

properties. 

Immiscible and Miscible processes can enhance recovery, but Miscible process 

was found to be more efficient due to the swift impact and high deliverability 

than Immiscible process. 

Low heavy oil reservoir pressure with low GOR can be very costly to optimize 

due to production ‘hold back’ and the required injection pressure to initiate 

recovery. The higher the viscosity, the longer the mixing process within the 

reservoir, and the higher the required injection pressure to enable recovery up 

to the surface platform. 

A comparative analysis between CO2 and water injection indicates that the heavy 

oil recovery rate using CO2 injection could be as double as that of water injection 

at peak flow. However, water injection provides a sustained heavy oil production 

rates throughout the life of field. 

6.1.3 CO2 Sequestration during Heavy Oil Recovery Using CO2-EOR 

The simulation results have demonstrated that there is a great opportunity for 

CO2 sequestration during CHOP using CO2-EOR technique. Although some 

amounts of CO2 are released with the produced heavy oil, it could be re-injected 

into the reservoir. 

The heavy oil recovery factor varied between 8% to 12% of the original heavy 

oil in place. 

During CO2-EOR application, the CO2 requirements vary with time throughout 

the life of field. At high reservoir pressure (above 4000 psig), the CO2 retention 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	174	

 

and CO2 requirements per barrel of heavy oil was between 6 to 8 Mscf/STB, and 

at reservoir pressure below 4000 psig the value was 13 Mscf/STB. 

Results indicate that Immiscible displacement can store larger volumes of CO2 

than Miscible Displacement. 

6.1.4 Techno-economic Evaluation of Typical CHOP Using CO2-EOR 

A good and thorough understanding of the technology as well as the costs 

involved are always essential and the pre-requisites to help in the decision 

process and to identify the viability of the project. 

It is important to highlight that the cost of CO2 may not be insignificant and 

could make a considerable portion of the total costs. 

The cost assessment confirms findings from simulation works that Immiscible 

Displacement during CO2-EOR may be considered as a high-risk investment, 

particularly at low injection pressure. Miscible displacement is very pragmatic 

from an operational point of view and have a higher cash flow stream that may 

extend throughout the lifetime of the project due to continuous production while 

Immiscible Displacement have the longer payback period due to the time lag 

between the CO2 injection and the incremental heavy oil production. 

6.1.5 Generalised Mathematical Model for CO2-EOR 

An improved mathematical model, to estimate the CO2 requirement during 

heavy oil recovery using CO2-EOR, is proposed based on existing “Panhandle B” 

formulation. 

An improved mathematical expression is also proposed to estimate the minimum 

CO2 rate, at sufficient / high bottom-hole pressure, that will allow heavy crude to 

be lifted continuously; and was derived from the Turner et al. (1969) correlation.  

An operating envelope for the CHOP using CO2-EOR technique for a wide range 

of operating conditions was developed using the modified “Panhandle B” model 

and the modified Turner et al. (1969) equation. 

A generalized expression outlining the relationship between the injection and the 

production systems was developed using an existing concept by Asheim [179], 

to provide an estimated heavy oil production rate at a given CO2 injection rate. 
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The proposed models were derived from existing theories to cover a wide range 

of operating envelope during CO2-EOR, while identifying the best operating 

regime. Comparative results indicate very close agreement with limited field 

data from the Omega field and other generated data, with 0.2% to 1% error, 

while Francher-Brown and Orkiszewski are the closest with 12% error. 

The proposed mathematical models make realistic predictions with consistent 

accuracy across the range of conditions investigated. 

The theoretical models are consistent with the simulation results with respect to 

the most suitable displacement process, and indicate that Miscible CO2-EOR for 

heavy oil recovery is preferable than Immiscible process. 
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7. FURTHER WORK 

Future works deemed necessary as a direct result of this research work 

are summarized below. 
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7.1 Cold heavy Oil using CO2-EOR Technique 

CO2-EOR as potential EOR technique for recovering heavy oil in the 

Omega field offshore West Africa has shown positive results, as far as 

productivity is concerned. A wide range of investigation, from reservoir 

parametric study to well completion, was carried out to assess the impact 

on the reservoir productivity. The performance of the CO2-EOR was 

influenced by the injection depth; with higher productivity observed with 

multiple injection wells. The horizontal wells are undeniably the ideal 

solution; with the closeness of the injection and production wells to each 

other increasing the reservoir productivity by several folds. However, 

there is an optimum closeness that can be allowed for efficiency and 

safety purposes. 

However, the impact of spacing between the producer and injector has 

not been given enough attention in this research work, but has been 

recognized that it could play an important part in the deliverability of the 

reservoir, and hence impacting on the project economics. It is anticipated 

from preliminary sensitivity cases that a closer spacing will result in faster 

heavy oil recovery, but could that offset the required investment costs? 

Therefore, there will be some added values exploring in details, via a 

techno-economic evaluation, the influence of spacing with different well 

types (vertical, deviated, horizontal) on the recovery trend.  

Similarly, horizontal well was found to be more effective than vertical well, 

although costly to drill, the impact of deviated well (which provide more 

access to the heavy oil bearing zone) could be explored for wider 

operating conditions. 

Subsea CO2 Separation – Results have shown that the CO2 injected for 

heavy oil recovery is partially released with the production fluids. As this 

probably has never been done before, the subsea CO2 separation and the 

potential challenges may be investigated in the future, whereby the 

produced CO2 is separated using dedicated subsea separation module and 

re-injected below ground. As large scale CO2 is required for EOR, CO2 

removal subsea will certainly only be appropriate for sequestration 
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purposes. Subsea heavy oil production is one of the most focused 

challenges at the present time within the subsea separation applications. 

Although pilot cases have being implemented in Brazil and Gulf of Mexico, 

the Pazflor field is proving more challenging due to the nature of the 

heavy oil, the water depth and other factors. CO2 separation within an 

offshore platform has been implemented previously, a typical example is 

the Sleipner Project (North sea) where offshore CO2 is separated and 

injected into a geological formation 1000 m below the seafloor for storage 

purposes. The challenge and the drawback of the Sleipner project was the 

cutback in production and highly cost impact. The challenge was to scale 

down the process plant sufficiently so that the 8200 tonnes miniaturized 

version of the CO2 separation unit could be accommodated on an offshore 

platform.  

Subsea separation will have the advantage of continuous recycle of CO2 

whereby the produced CO2 is separated from the production fluids and re-

injected back into the reservoir for EOR or for storage as part of the 

reduction in greenhouse gas emission. 

7.2 CO2 Sequestration during Cold Heavy Oil Production using CO2-EOR 

Technique 

Although there has been some evidence of CO2 sequestration during EOR, 

the analysis has overlooked the interaction between the reservoir geology 

and the injected CO2, and any potential phase change during 

transportation. 

A detailed analysis of the geochemical interaction between the reservoir 

rock and the injected CO2 with a close look into the dissolution and the 

mineralization process during CO2-EOR may provide improved prediction 

of CO2 sequestration. Whether CO2 will remain “safely stored” within the 

reservoir in the long term, depends on the interaction of CO2 with the 

heavy oil reservoir characteristics and the impact of the reservoir aquifer. 

CO2 dissolution into the formation water with the heavy oil reservoir will 

require a much detailed investigation taken into account aquifer 

characteristics. CO2 mineralization is possibly the result of chemical 
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reactions with the reservoir rocks, yielding new carbonate minerals which 

are known to rely on CO2 for their existence, hence creating a right 

condition for CO2 sequestration. Further assessment is needed to 

determine the interaction between the reservoir geologic and the 

operational factors that can lead to improved CO2 storage during heavy oil 

recovery.   

These investigations will require suitable computer program that can help 

tracing the movement and dissipation of CO2 within the reservoir.  

For example, Compositional tracking such as the module available in 

OLGA software by Schlumberger, may be used for tracking and quantify 

CO2 retained within the reservoir based on the released rate. 

7.3 Proposed Injection–Production Model 

The proposed mathematical expressions were derived from established 

theories, and make reliable predictions for the range of conditions and 

data investigated.   

Refining the proposed models across a broader range of operating 

conditions for optimum performance will undeniably be an important task. 

The proposed models have been tested successfully against limited data, 

and once extended to cover larger scale of operating conditions and 

specification; the models could be integrated into a tool that could be 

used for CO2 injection and heavy oil production analysis and evaluation. 

The proposed models may require further investigation and possible 

refinement (if necessary) at low pressure (around 3000 psig), as 

considerable difference from the simulation results, i.e. very low 

production compared to predictions from other correlations, was observed 

in some cases.  

The proposed injection-production relationship is based on the “lifting” 

stability criteria by Asheim [179], and has proved to be fit for the 

conditions investigated. However, Asheim correlation takes into account 

the slippage between phases but does not consider the flow pattern across 

the wellbore during production.  An extensive evaluation with a large 
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amount of data will be required to develop an optimized flow pattern 

based model for the heavy oil production using CO2-EOR.  
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ABSTRACT 

The prospect of unconventional oil development has so long been coming to 

offset the rapid decline of conventional crude. And looking ahead, the worry is 

already turning away from the onshore exploitation to the challenging offshore 

environment, with the question being whether the emerging technology can 

overcome the challenges of deepwater heavy oil production.  

In economics terms, the immiscible process shows a negative return, a longer 

payback time and a low NPV. With an increased revenue through increased 

production, there is a degree of strong, dynamic and appealing prospect to any 

future heavy oil development using miscible process. 

Keywords:  CO2-EOR, Cold Heavy Oil, CO2 Sequestration. CO2 Utilisation, 

CAPEX. 

INTRODUCTION 

Formation of heavy oil and bitumen is reported to be identical to that of 

conventional oil which is composed of hydrocarbons formed years ago under 

extreme pressure and high temperatures. This must to some extent justify why 

most scientists believe that crude oil is not heavy at the origin, and that almost 

all crude oils originate with API gravity between 30° and 40°. Oil becomes heavy 

only after substantial degradation during migration and after entrapment (Curtis 

et al, 2002). Conventional oil production goes through three distinct recovery 

stages as outlined in Figure 1, named: Primary, Secondary and Tertiary 

Recovery also known as Enhanced Oil Recovery (EOR), where various techniques 

are employed to maintain production of crude oil at maximum levels. However, 
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heavy oil recovery generally uses different techniques than those of conventional 

oil and one of the most exploratory techniques to date is CO2-EOR.The USA 

remains the pioneer and leader of CO2-EOR technique for conventional oil 

recovery, accounting for 94% of the worldwide CO2-EOR oil production, (Tzimas 

et al, 2005). 79 CO2-EOR operations were active in 2004 worldwide (Drilling 

Production, Special Report, 2005), amongst which 70 miscible CO2-EOR projects 

and 1 immiscible were implemented in the USA, 2 active miscible displacement 

CO2-EOR projects in Canada, 5 immiscible displacement pilot fields in Trinidad 

and 1 commercial immiscible displacement operation in Turkey. There has been 

a number of CO2-EOR projects in operation in Hungary between 1980’s the mid-

1990’s (IEA Report Number PH3/22, February 2000). CO2-EOR technique has 

also been applied for heavy oil recovery. The Bati Raman oilfield  (southeast 

Turkey), close to the Turkish-Iraqi border, containing heavy oil with very low 

gravity, 9° to 15° API, CO2-EOR has been used since 1986 to boost up 

production to 6000 bbl/D, (IEA Report Number PH3/22, February 2000). The 

addition of CO2 in poor quality heavy oil may reduce its viscosity by a factor of 

10 (ECL Technology, 2001). 

There are two types of CO2-EOR processes known as miscible and immiscible 

displacements, which are predominantly dependent on the reservoir conditions. 

The immiscible displacement process has seen very limited applications to date 

due to efficiency issues and thus unattractive economics. The miscibility of CO2 

in crude oil or heavy crude oil is strongly influenced by pressure and a minimum 

miscibility pressure (MMP), which is typically above the critical pressure of the 

CO2, is required for CO2 to become fully miscible with oil. At that pressure, CO2 

exists in supercritical state with its density varying between that of light crude to 

that of raw water. 

Most CO2 transportation (pipelines) for EOR has been predominantly onshore, 

with limited experience reported offshore. Most of these pipelines operate in the 

‘dense phase’ regime, and the flow is driven by compressors at the pipeline inlet, 

although some pipelines have intermediate compressor stations where necessary 

to boost the flow as required. Similarly, the difficulty in implementing CO2-EOR 

offshore, where space and weight are major limitations, is reflected in the higher 

costs of implementation, compared with onshore deployment. Higher costs will 
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incur for offshore pipelines and for the provision of new topside processing 

structures, (Tzimas et al, 2005).  

While taking account the economics and the CO2 sequestration, this paper 

discusses the prospect of CO2-EOR application for deepwater heavy oil 

exploitation.  

MODELLING APPROACH 

Investigation was focus on the following points: 

1. CO2 sequestration during miscible and immiscible conditions 

2. CO2 sequestration using integrated surface and sub-surface modelling 

3. Economics of typical project 

CO2 sequestration was investigated during miscible and immiscible 

displacements. The reservoir was modelled alone without integration with the 

surface facilities. Using REVEAL, the reservoir was modelled in 3D with a grid 

block of 500ft x 500ft x 200 ft, with horizontal injection and production wells 

both placed within grids 5, 5, and 15, 15 respectively. The CO2 injection 

pressure used in this analysis was 5000 psig. The reservoir temperature was 200 
oF. CO2 was injected into the reservoir through a horizontal well, 8 km long and 

completed over a length of approximately 150 m. Six different reservoir 

pressures were investigated: 800, 1000, 2500, 3000, 4000 and 5000 psig. 

Following successful reservoir modelling, GAP/RESOLVE/REVEAL by Petroleum 

Experts, was used to integrate the injection and production systems. The surface 

facilities were modelled using GAP, the subsurface facilities including reservoir 

using REVEAL, and the surface and sub-surface facilities were integrated 

together using RESOLVE. The total pipeline length was 250 km covering both 

onshore (10 km) and offshore sections (240 km). The 2km water depth was 

taken into account during steady state simulation to establish the process 

requirements at the onshore and the behaviour of CO2 along the long distance 

pipeline. In estimating the percentage CO2 sequestration, a conservative 

approach was used by considering all produced gas as CO2 which gave a small 

difference between input and output. 
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As far as the economics assessment was concerned, two main cases were 

considered. A difficult production start-up due to low reservoir pressure (kept 

constant at 1000 psig) with GOR 100 scf/STB was considered with CO2 injection 

pressure varying between 1000 psig to 7000 psig; and a high pressure reservoir 

(4000 psig) with constant injection pressure (5000 psig). Using cost data from 

various sources such as (McCoy and Rubin, 2008), (Damen et al , 2004), 

(Gozalpour et al, 2005), (Hernandez 2006, Reeves et al 2005), (www.epa.gov) 

as indicated in Table 1 which summarise the cost parameters used in this 

analysis, the economics of a typical heavy oil development using CO2-EOR was 

evaluated taking into account the cost of CO2, the transportation, equipments, 

construction and operation costs. The profitability of such development was 

measured by the net present value (NPV) and return on investment (ROI). The 

NPV and ROI were estimated by performing a discounted cash flow analysis 

using the oil production rates and CO2 consumption rates from the performance 

model. The CAPEX was estimated considering typical requirements for field 

production equipment, CO2 compression and transportation facilities, new 

injection and production wells including drilling and completion costs. The CAPEX 

was amortized over the project lifetime (in this case, duration of simulation) 

using a specified discount rate. 

RESULTS & DISCUSSION 

Reservoir Modelling – CO2 Sequestration (Miscible Process vs. Immiscible Process) 

The emphasis was all around the influence of reservoir pressure, i.e. miscible 

and immiscible conditions, with regards to the CO2 retention and utilisation per 

barrel of heavy oil produced. It is reported in (Tzimas et al, 2005) that 

immiscible displacement projects can store larger volumes of CO2 than miscible 

displacement projects. And this was attributed to the CO2 breakthrough which is 

unavoidable in miscible displacement operations and avoidable in immiscible 

displacement as the immiscible projects may be designed to eliminate the 

breakthrough to enable permanent retention of CO2. 

In subplot format, the modelling results (heavy oil production, percentage of CO2 

sequestration, CO2 requirements and retention per barrel of heavy oil produced) 

shown in Figure 2 indicate that considerable amount of heavy oil was achieved at 
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high reservoir pressure, i.e. miscible conditions. Equally, as the reservoir 

pressure increased, the influence on the production profile was clearly 

noticeable.  

The recovery factor varied between 8 % to 12 % of the original heavy oil in 

place, which was within the range reported by (Clarke et al, 2007) who 

suggested a recovery factor using cold production to be between 6 % to 15% of 

OOIP. Despite the constant injection pressure, the volumetric flowrate of CO2 

reaching the reservoir increased as the reservoir pressure was reduced. High 

reservoir pressure enabled high recovery factor. However, in all cases, the 

production traces of mass flowrate of CO2 produced showed significant delay 

(period of zero flow) before initial CO2 production at continuous CO2 injection. In 

another hand, all simulation results were based on 20-30 years production 

forecast and illustrate that during CO2-EOR application, the CO2 requirements 

varied with time throughout the lifetime of the forecast, which corroborate with 

the claim reported in (Balbinski, 2003) & (Holt, 2004). 

While the percentage of CO2 sequestration was found to be high at high 

reservoir pressure in this case, the CO2 utilisation and CO2 retention per barrel of 

heavy oil produced was found to be significantly higher during immiscible 

conditions compared to miscible conditions. These finding are in agreement with 

the theory reported in (Tzimas et al, 2005), that immiscible displacement 

projects would generally require a higher amount of injected CO2 per 

incremental barrel of oil produced, typically two to three times more. However, 

values may vary significantly from field to field. Considering that the “pressure” 

limit switch between miscible and immiscible process is known to be 1073 psig, 

the simulation results indicate that at low reservoir pressure (800 – 1000 psig) 

the CO2 retention and CO2 requirements per barrel of heavy oil produced was 

about two (2) times higher than that required at high reservoir pressure (2500 

psig). This factor varies considerably as the reservoir pressure increases. 

The percentage of CO2 retention within the reservoir was influenced by the 

reservoir pressure, and in this case high sequestration occurred at high reservoir 

pressure. At the production start-up, the CO2 retention within the reservoir was 

maximal for all the reservoir pressures investigated, and for low reservoir 

pressure (800 & 1000 psig), the sequestration remained high until production 
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reached a quasi steady state condition, at which stage the decline in CO2 

retention begun progressively as the production continued. At high reservoir 

pressure (above 1000 psig), the CO2 retention dropped from 100 % to 35%, 

rose again approximately to 42 % during transition from start-up and quasi-

steady state production; and at quasi-steady state condition, the CO2 retention 

within the reservoir continued to rise progressive as the production continued. 

Results based on peak production show that the minimum percentage of CO2 

retention within the reservoir increased with increasing reservoir pressure, 

starting with 17.7 % retention at 800 psig to 32.8 % at 5000 psig. The 

maximum CO2 retention of 100 % simply reflects that production or release of 

CO2 started approximately one year after CO2 injection commenced. At high 

reservoir pressure (above 4000 psig), the CO2 retention and CO2 requirements / 

utilisation per barrel remained within the range reported by many authors such 

as (Clarke et al, 2007) as being between 6 to 8 Mscf/STB, but at reservoir 

pressure below 4000 psig the value was in agreement with that presented by 

(Gozalpour et al, 2005) which is 13 Mscf/STB. 

Integrated Surface & Sub-surface Facilities (Injection-Production 

System) 

The process conditions along the pipeline were established based on the CO2 

phase diagram and steady state simulation (where outlet pressure (reservoir) 

and maximum velocity was used as criteria). The transported CO2 was 

predominantly in dense phase, with possible liquid drop depending on 

temperature variation. In this case, the same reservoir models built for various 

reservoir pressures ranging from 800 psig to 5000 psig were linked to the “GAP” 

pipeline model using RESOLVE to assess the CO2 sequestration. 

Remote CO2 injection required significant amount of CO2 capacity, as shown in 

Figure 3. And in such cases, the higher the reservoir pressure, the lower the 

volume of CO2 required to make significant impact on the production trend. 

Heavy oil production and the CO2 requirements were significantly influenced by 

the reservoir pressure. With the reservoir pressure at 800 psig and 1000 psig, 

the heavy oil production was less than 8000 bbl/d, and the production was 

increased beyond 10000 bbl/d when the reservoir pressure was above 1000 
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psig. The total gas production was significantly below the amounts of CO2 

injection for all the reservoir pressures investigated, and particularly when the 

reservoir pressure was 800 psig, the total gas produced was almost half the 

volume of CO2 injected. Despite continuous CO2 injection, in all cases, the gas 

production started about a couple of year post start-up and the lower the 

reservoir pressure, the longer the period of no production. An estimate of 

percentage of CO2 retention, CO2 retention and CO2 utilisation / requirements 

per barrel of heavy oil is shown in Figure 4 (subplot format). And remarkably, 

the high percentage of CO2 retention in the reservoir was found to occur during 

immiscible displacement (reservoir pressure lower than critical pressure of CO2, 

1073 psig) as reported in (Tzimas et al, 2005). The minimum percentage of CO2 

sequestration varied from 55 % at low reservoir pressure (800 psig) to 47 % at 

high reservoir pressure (5000 psig). The CO2 retention and CO2 requirements 

per barrel of heavy oil produced were significantly high at low reservoir pressure 

and progressively reduced as the reservoir pressure increased.  

The high CO2 retention experienced in this case and particularly during 

immiscible displacement may well be attributed to the significant variation 

between the amount of injected CO2 and the marginal difference in the total gas 

produced in the two modelling approaches used. High volume of CO2 injection 

was required for immiscible displacement, and was almost double the amount 

that was injected in the previous cases where only the reservoir 3D model was 

considered (no integration with GAP). With the remote injection (integrated 

modelling), the amount of CO2 injection rate reaching the reservoir was much 

smaller at high reservoir pressure (5000 psig) compared to that when the 

reservoir pressure was 800 psig or 1000 psig. A slim tube displacement 

experiment test conducted by (Chung, 1988) has indicated that at pressure as 

high as 3800 psig, CO2 might reach miscibility with viscous oil, and the findings 

discussed in this paper have shown that the amount of CO2 sequestration 

increased with increasing CO2 injection flowrate (i.e. high pressure), particularly 

during immiscible displacement since the amounts of CO2 released with the 

produced heavy oil was minimal. 
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Economics of the Project 

This economic evaluation is purely illustrative, carried out using simplified cost 

assumptions to reflect typical heavy oil development using CO2-EOR technology. 

The economics do not take into account detailed pre-tax cash flows (e.g. Royalty 

& severance taxes ... etc) or other costs (e.g. “upgrade” of heavy oil), but 

assumed 12% discount rate.  

In the estimated CAPEX shown in Table 2, the purchase price of CO2 makes the 

dominant portion of the amount. At low reservoir pressure, it appears as shown 

in Table 2 that the operation was highly profitable, when the injection pressure 

was above 2000 psig, due to the additional recovery that yielded significant 

revenue, with smaller payback time, high NPV and ROI. Table 2 equally show the 

“beneficial” effect of individual displacement process based on the CO2 demands 

and the production profile. Miscible displacement was effectively the most 

profitable option, identifiable from revenue generated in form of NPV, while 

providing a high ROI and an expected smaller project payback time, and 

substantial percentage of CO2 sequestration. The analysis assumed that the 

project owner / operator will dictate a limiting internal rate of return (IRR) that 

would decide the feasibility of the project. Similarly, the results also confirmed 

as generally speculated that immiscible displacement process has very limited 

economics values due to significant amounts of CO2 injection required, the low 

additional production of heavy oil and consequently the long payback time, 

which in this case can extent up to 19 years. The payback time will be project 

specific and will vary significantly according to production performance which will 

depend on the reservoir and injection characteristics. The results in Table 2 may 

look very optimistic, but even considering the production cost to be $13 to $16 

per barrel of heavy oil (www.cera.com), miscible displacement will still provide 

appreciable benefit as well as reasonable payback time.  

With the breakeven cost of CO2 being the CO2 purchase price at which the 

project net present value (NPV) equals zero, using the economics model as in 

Table 2, the analysis show that breakeven cost of CO2 will vary approximately 

between $9.5 to $38.5 per Mscf when the heavy oil price varies between $40 to 

$150 per bbl.  



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	210	

 

As it costs much less to recycle CO2 than to buy it at market value (Todd and 

Grand, 1993), re-injection of the produced CO2 with production maximisation will 

somehow help towards reducing the high investment costs. 

CONCLUSIONS 

This techno-economic evaluation carried out has made known that CO2 

sequestration was very likely during heavy oil recovery using CO2-EOR 

technique. Nevertheless, the percentage of CO2 sequestration, the CO2 retention 

and CO2 utilisation per barrel of heavy oil produced were very depending on 

process conditions at the pipeline inlet and at the reservoir, as well as the 

injection-production systems configuration. Consequently, in real project the 

results may vary from one field to another. Moreover, there were substantial 

grounds on which immiscible displacement during CO2-EOR may be considered 

as a high risky investment, particularly at low injection pressure. However, 

immiscible displacement may be very desirable in some context mainly for CO2 

sequestration or as a mean to maintain reservoir pressure. Although not cost-

effective, immiscible displacement at high CO2 injection pressure may be as 

operational as miscible displacement, but less imperative. Miscible displacement 

is very pragmatic from an operation point of view and have a higher cash flow 

stream that extends throughout the lifetime of the asset due to continuous 

production while immiscible displacement have the longer payback period due to 

the time lag between the CO2 injection and the incremental heavy oil production.  
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Process/Operation  Units  Cost  Source 

CAPEX 

CO2 Purchase Price    5  $/Mscf  1.05  (McCoy & Rubin 2008) 

CO2 Pipeline cost,   $/ton  1600 

Produced Gas Processing (recycle)  1  $  84613  (Damen et al, 2005) 

Injection Well Cost (new)  2  $/ft  100  (Reeves et al, 2004) 

Production Well (new)  2  $/ft  100  (Reeves et al, 2004) 

Compressor Cost  $million  20  (Gozalpour, 2005) 

Compressor Installation  $million  6  (Gozalpour, 2005) 

Pipeline Construction Cost (Onshore)  $/m  500  Assumed 

Pipeline  (Offshore) ‐ Vessel Day Rate  $/day  87500  Assumed 

OPEX 

Injection Well  $/month  1500  ( Hernandez,et al 2006) 

Production Well  $/month  1500  ( Hernandez,et al 2006) 

CO2 Compression  $/Mscf  0.3  (Joshi, 2003) 

Safety & Monitoring  $/injector/year  10000 

Discount Rates    3  %  12 

Heavy Oil Price   

Heavy Oil Price  $/STB  50  Assumed 

Other 

Duration    4  Year  20 ‐ 30 

  Table 1 – Key Economics Parameters  
 

Notes: 

1. This is the CAPEX of the recycle CO2 including treatment and 
compression facilities.  

2. Cost is for vertical well and includes drilling, completion, production 
equipment and pipes. The cost of horizontal well is estimated to be 
1.5 to 2.5 that of vertical wells (http://www.npd.no/). 

3. The NPV of the projects is calculated at a discount rate of 12%, 
despite that the rates used in similar studies range from 7% to 11% 
( Tzimas, and Peteves, 2005). 

4. The duration varies between 20 to 30 years, depending on 
simulation case. 

5. Refer to (Holt et al, 2004)] for detailed discussions on the 
economics of CO2 capture. 
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  CAPEX ($)   (1)  217,250,000 

OPEX ($)     (2)  156,000 

Injection Pressure (Psig)     (4)  PV ($)  NPV ($)  ROI (%)  Payback Time (Year) 

7000  536873287.7  319,649,419  247.2  7.2 

6000  415473950.1  106,821,227  191.3  8.0 

5000  324045095.3  106,821,227  164.9  8.9 

4000  358261159.5  141,037,291  165  8.9 

3000  289964448.6  72,740,580  133.5  9.8 

2000  201928146.2  ‐15,295,722  93.0  11.7 

1000  20647780.7  ‐196,576,088  9.5  22.1   (3) 

Reservoir Pressure (Psig)  PV ($)  NPV ($)  ROI (%)  Payback Time (Year) 

4000  1354180605  1,136,956,736  623.4  3 

Table 2: Economics of CHOP using CO2-EOR  

 

Notes: 

1. Cost includes single pipeline (6-inch) and associated equipments cost, CO2 
purchase and other costs as shown in Table 1.   

2. Does not include the supply cost of CO2 which was accounted separately 
considering the CO2 requirements for individual case.  

3. Takes into account period of no production beginning at the start-up. 

4. Variation of Injection Pressure at Constant Reservoir Pressure (1000 psig) 
& GOR (100 scf/STB) 
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Figure 1: Conventional Oil Recovery Techniques 
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Figure 2: CO2 Sequestration – Influence of Reservoir Pressure – Injection 
Pressure 5000 psig 
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Figure 3: Production Profiles based on GAP / RESOLVE / REVEAL Modelling 
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Figure 4: CO2 Sequestration based on GAP / RESOLVE / REVEAL Modelling 
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ABSTRACT 
 
Owing to substantial improvement in enhanced oil recovery (EOR) technologies 

and significant decline in discovery of light and medium crude oil fields, the 

heavy oil development is progressively receiving considerable attention to fill the 

supply gap. Cold heavy oil production (CHOP) using captured carbon dioxide 

(CO2)-EOR technique was investigated using the state-of-the-art Integrated 

Product Modelling packages of Petroleum Experts as part of the Well Engineering 

Research Group unconventional oil reservoir management studies being 

undertaken at Robert Gordon University. Beyond ascertaining the feasibility of 

the CHOP using CO2-EOR, the objectives of the investigation were to establish 

the process requirements at the onshore facilities based on series of parametric 

studies and to enhance the understanding of the subsea integrated injection and 

production systems during the injection process. The injection system consisted 

of an injection well connected to a 240 km subsea pipeline transporting CO2 from 

an onshore compression station. The production system included a topside 

separator connected to the production well via a 2km riser. A broad range of 

reservoir production history was used and the simulation results indicate that 

heavy oil displacement was easily achievable under miscible conditions (i.e. high 

reservoir pressure), but the production trend was strongly influenced by the 

reservoir characteristics (i.e. GOR, WC, Pressure). 
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INTRODUCTION 
 
Large volume of recoverable heavy oil resources remains undeveloped worldwide 

due to lack of adequate, safe and reliable Enhanced Oil Recovery (EOR) 

technique. EOR has been practiced since the 1950s in various conventional oil 

reservoirs, particularly in the USA. One of the EOR processes that likely have the 

largest worldwide potential is miscible flooding wherein carbon dioxide (CO2), 

nitrogen (N2) or light hydrocarbons are injected into oil reservoirs where they act 

as solvents to move remaining oil. Amongst the three options, CO2 flooding is 

proving to be the most useful technique given the potential environmental 

benefit. But, can CO2-EOR technique be seen as potential heavy oil recovery 

method, and consequently urge on more deployment into heavy oil exploitation? 

About 79 CO2-EOR operations were active in 2004 worldwide [1, 2]. However, 

these were mainly implemented in onshore environment. And one of the 

unanswered questions to date has been to know whether CO2-EOR technique can 

be adapted offshore. Although, there are several proposed and implemented 

hydrocarbon gas injection (WAG) projects in the North Sea [3, 4], there are yet 

no published literatures on long distance CO2 transportation offshore. 

Heavy oil recovery in most cases necessitates dissimilar production techniques to 

conventional oil. Two main production processes known as Cold Process or non-

thermal which include cold flow with sand production, cyclic solvent process, 

VAPEX; and Hot Process or thermal which include steam floods, cyclic steam 

stimulation, SAGD are generally employed. In either case, the fraction of OOIP 

that can be recovered depends on the oil properties, artificial lift method used 

and the reservoir characteristics. 

MODEL DESCRIPTION 
 
This research was carried out to investigate the use of CO2-EOR technology as a 

mean to facilitate heavy oil recovery in a typical deepwater environment, despite 

the literature suggesting that heavy oil was mainly found in shallow water [5]. 

The concept was based on a 240km subsea pipeline transporting CO2 from an 

onshore compression station. The total pipeline length was 250 km (on and off 
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shore sections), the water depth was 2 km and the depth below the sea-bed was 

2 km. The transported CO2 was injected into the heavy oil reservoir via a vertical 

injection well. With regard to the production system, the heavy oil reservoir was 

producing to the topside separator via a subsea wellhead having 6” tubing size 

and 8” casing diameter. Data available on the public domain was used to model 

and characterise the reservoir. Single injection and production wells were used. 

However, more than one well was also possible depending on the capacity 

requirements. The schematic representation of the integrated injection and 

production system is shown in Figure 1. 

The reservoir thickness and radius were 300 ft and 2500 ft respectively, the 

reservoir temperature was 120 oF and the original oil in place (OOIP) was 500 

MMSTB. As from the production history, the initial reservoir pressure was 4000 

psig. The black oil PVT and Influx Performance data used for the simulation are 

presented in Tables 1 and 2. 

The steady state simulator “Pipesim” by Schlumberger was used to carry out a 

steady state analysis on the 250 km CO2 pipeline and the integrated system 

modelling was performed using the Petroleum Experts package 

“GAP/PROSPER/MBAL”. Regarding the integrated modelling cases, different 

production history was used with varying reservoir pressure, GOR and viscosity. 

The main cases of interest were: 

1. Reservoir pressure 4000 psig, GOR 500 scf/STB, specific gravity 20 API, 
Injection pressure 3000 psig;  

2. Reservoir pressure 1000 psig, GOR 100 scf/STB, specific gravity 20 API, 
Injection pressure 3000 psig; 

3. Reservoir pressure 4000 psig, GOR 500 scf/STB, specific gravity 10 API, 
Injection pressure 5000 psig. 

4. Effect of multiple injection wells on the productivity. 

 

RESULTS AND DISCUSSION 
 

Long Distance CO2 Transportation Offshore 

The goal of this investigation was to assess the behaviour of the CO2 along the 

subsea pipeline, to determine the pressure requirement for various pipeline 
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capacity, pipeline sizes and flow conditions. This exercise was helpful to establish 

the process and design requirements necessary for the integrated modelling. 

The simulated pipeline was 250 km long transporting CO2 from the onshore 

facilities to the subsea manifold.  

The operating conditions for dry and dense CO2 phase required to perform the 

steady state simulations were identified on the CO2 phase diagram which is 

available on the public domain,  such as in [6]. Two separate conditions were 

evaluated based on the pressure dictated at the pipeline inlet: Dry gas phase 

and dense phase, in order to assess the flow condition along the pipeline and to 

establish the exact nature of CO2 as it reaches the reservoir. The pipeline sizes 

used for the investigation varied from 6 inch to 14 inch diameter. The inlet 

pipeline and the sea-bed temperatures were 70 oF and 41 oF respectively. The 

pipeline was assumed coated with 3LPE (3 layer polyethylene coatings) for 

corrosion protection and 100 mm concrete coating for buoyancy control offshore. 

Dry Gas (CO2) Phase 

The pressure requirement for different CO2 flowrate is shown on Figure 2. The 

results show that long distance dry CO2 (gas phase) transportation offshore is 

possible, but may not be an effective technique or solution for heavy oil recovery 

which require high injection pressure just as any EOR. This argument is 

supported by [7] that stipulate typical CO2 injection pressure in the North sea to 

be between 200-300 bar. Recompression will be inevitable in such circumstances 

to meet the EOR objectives.  

CO2 Dense / Liquid Phase 

The lowest allowable pressure at the pipeline outlet must be 1073 psig, which is 

the pressure below which CO2 may change to gas phase, hence resulting in low 

density and high flow velocities. The backpressure was set to be that of reservoir 

pressure with 4000 psig and the process conditions along the pipeline and at the 

onshore were determined. The pressure requirement for different CO2 flow rate 

and pipe sizes is shown on Figure 3. 

Contrary to some public literatures, no differences were experienced between 

the results obtained using PR and SRK EOS. As opposed to the dry CO2 pipeline 

simulation results, intermediate recompression for pipeline transporting CO2 
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dense phase prior to injection into the reservoir via the well was not deemed 

necessary provided that the pressure remained significantly high to make 

immediate impact into the reservoir. With the high injection pressure required to 

facilitate mobility of the heavy oil from the reservoir to the topside facilities, it is 

beyond question to state based on the steady state results that CO2 during EOR 

application for CHOP will behave as supercritical fluid, expanding to fill the heavy 

oil reservoir as a gas, but with the density identical or greater than that of raw 

water. 

The density variation along the pipeline between 967 kg/m3 to 1028 kg/m3 was 

an essential indication that for the most part of the pipeline CO2 was in dense 

phase. Keeping a long distance CO2 pipeline principally in dense phase without 

liquid formation in cold environment (i.e. 41 oF as in this case) is a notorious 

challenge. The temperature along the subsea pipeline dropped rapidly to the 

ambient sea-bed temperature, signalling there could be possible corrosion issue 

in the long prospect. Alternatives to heating CO2 at the source in such 

circumstances are preferable, as the heated CO2 would scarcely mitigate against 

the harsh cooling effect by the sea water.  

Integrated Injection and Production Systems 

Simulating the Integrated Injection and Production Systems using black oil 

models indicated that CO2 EOR was a practical solution and effectual technique 

for cold heavy oil recovery. The composition of heavy oil was randomly selected 

and was used together with the CO2 PVT properties to build a 

GAP/PROSPER/MBAL compositional model using “PR EOS”. Successful results 

were obtained as those of black oil models, except that high injection pressure 

was required for the compositional model.  

Case 1: Reservoir pressure 4000 psig, GOR 500 scf/STB, specific gravity 20 API, 
Injection pressure 3000 psig. 

Under the above condition, two sub-conditions were investigated, one under 

which the production was possible and CO2 injection was used to boost the 

recovery; and another case where the separator was located at the topside 

platform, 2km above the sea-bed making a total depth of 4km (water depth + 

depth below sea-bed) and production was primarily not possible under these 
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circumstances due to insufficient reservoir pressure to initiate natural recovery 

of the resources. The production forecast was performed from year 2000 to 

2020 and the results with and without CO2 injection for both cases are shown in 

Figures 3 and 4.  

It was noticeable from the production traces (Figure 3b) that the heavy oil 

recovery doubled in year 2002, from 7960 STB/D (without CO2 injection) to 

16890 STB/D (with CO2 injection). Remarkably, heavy oil recovery at year 2018 

was not possible when the reservoir pressure reached 1000 psig (Figure 3b, 

without injection), however, the production forecast projected steady production 

at about 2000 STB/D, with continuous CO2 injection. The 20 years forecast 

showed that the heavy oil recovery and gas production (for the case where 

production was not initially possible due to low energy) was boosted from zero 

production (without CO2 injection) to a rapid production as the result of CO2 

injection. This production trend clearly indicates the positive impact of CO2 

injection for this particular reservoir condition and production system. 

Before the gas breakthrough the averaged gas production was minimal and 

almost stable while the heavy oil production was increasing sharply. As the 

averaged gas production rate began to rise sharply which possibly corresponded 

at the period of reservoir “gas breakthrough”, the gas recovery was boosted 

causing the peak heavy oil production. Following this phenomenon (peak heavy 

oil production), the averaged gas production continued to rise while the heavy oil 

production was in decline. 

Case 2: Reservoir pressure 1000 psig, GOR 100 scf/STB, specific gravity 20 API, 
Injection pressure 3000 psig. 

Under this condition where the initial reservoir pressure was 1000 psig, the GOR 

100 scf/STB, the behaviour along the integrated system was completely different 

and production was only possible after several years of continuous CO2 injection 

(Figure 5). This probably suggests that low pressure reservoir with low GOR is 

most likely not very practical for CO2-EOR CHOP due to the inefficiency of the 

process and the long payback time caused by many years of zero production 

even at significant high injection pressure.  
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Case 3: Reservoir pressure 4000 psig, GOR 500 scf/STB, specific gravity 10 API, 
Injection pressure 5000 psig. 

Despite the high injection pressure used in this case compared to other cases 

discussed above, it was apparent that the production rate was hampered by the 

non-Newtonian behaviour of the reservoir fluid which exhibited both high viscous 

and elastic characteristics under the injection phenomenon. The heavy oil 

viscosity varied from 2010 cp to 1820 cp during the injection process. The 

production forecasts indicated continuous and smooth production from year 

2000 to 2020     (Figure 6).  

Case 4: Effect of multiple injection wells on the productivity 

Multiple vertical injection wells were found to impact on the productivity in 

accordance with the production system characteristics. Injection wells departing 

from the distribution manifold created identical effects due to the unique 

dependence of the same injection source. The performance of the CO2-EOR for 

CHOP was influenced by the injection depth. The efficiency of the injection 

process increased at deeper injection depth.  

CONCLUSIONS 
 
The findings of the investigation can be summarised as follow:  

 Dry CO2 transportation offshore is possible at low pressure, but re-

compression will be required for an effective EOR application. Long 

distance CO2 transportation offshore can also be achieved at high pressure 

with CO2 remaining in dense phase throughout the entire system.  

 CO2-EOR is an effective technique for heavy oil production based on the 

conditions investigated and discussed in this paper. The compressed CO2 

at the onshore facilities can be transported subsea at high pressure and 

injected straight into the reservoir for heavy oil recovery. Results may 

vary to some extent under certain conditions, depending on the reservoir 

characteristics and production history; and production could be delayed 

until mobility of the crude within the reservoir is possible in some cases.    

 The performance of the CO2-EOR CHOP was influenced by the production 

history, initial reservoir pressure, GOR, and fluid properties.  
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 Although valuable remarks were drawn by analysing each component 

individually, the integrated modelling systems have demonstrated that the 

production optimisation was well understood and appreciated when the 

injection and production systems were integrated together as a single 

module.  
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EOS  Equation of State 
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Table 1: Black Oil PVT Data    Table 2: Inflow Performance Data 

 

 

 

 

 

           

             

 

 

Figure 1: Schematic Representation of the Integrated Injection and Production 
Systems 

 

 

 Data 
Separator Single Stage 
Heavy oil 
Viscosity 

100 & 2000 cP 

Oil Gravity 10 & 20 API 
Gas Gravity 0.7 
Water Salinity 10000 ppm 

 Data 
Reservoir Pressure 1000 & 4000 psig 
Reservoir 
Temperature 

120 oF 

Water Cut 0 
Total Gas Oil Ratio 100 & 500 

scf/STB 
Productivity Index 20 STB/day/psi 
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Figure 2: Dry CO2 Pipeline – Pressure 
Requirement for Various Pipe Sizes  

 Figure 3: CO2 Dense Phase Pipeline – 
Pressure Requirement for Various Pipe 
Sizes 
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Figure 3a: Case 1 – Reservoir 
Pressure Forecast – With / Without 
CO2 Injection 

 Figure 3b: Case 1 – Heavy Oil 
Production Forecast – With / Without 
CO2 Injection 
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Figure 3c: Case 1 – Total Gas 
Production Forecast – With / Without 
CO2 Injection 

 Figure 3d: Case 1 – Injection Pressure 
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Figure 4a: Case 1 – Reservoir 
Pressure Forecast – With / Without 
CO2 Injection 

 Figure 4b: Case 1 – Heavy Oil 
Production Forecast – With / Without 
CO2 Injection 

 

 

 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	228	

 

2000 2005 2010 2015 2020
-20

0

20

40

60

80

100

120

140

160

180

Time (Year)

A
ve

ra
ge

d 
G

as
 P

ro
du

ct
io

n 
(M

M
S

C
F

D
)

Without CO2 Injection
With CO2 Injection

2000 2005 2010 2015 2020
-500

0

500

1000

1500

2000

2500

3000

Time (Year)

C
O

2 
In

je
ct

io
n 

P
re

ss
ur

e 
(W

el
l C

on
di

tio
n)

 (
P

si
g)

Without CO2 Injection
With CO2 Injection

 

Figure 4c: Case 1 – Total Gas 
Production Forecast – With / Without 
CO2 Injection 

 Figure 4d: Case 1 – Injection Pressure 
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Figure 5a: Case 2 – Reservoir 
Pressure Forecast – With / Without 
CO2 Injection 

 Figure 5b: Case 2 – Heavy Oil 
Production Forecast – With / Without 
CO2 Injection 
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Figure 5c: Case 2 – Total Gas 
Production Forecast – With / Without 
CO2 Injection 

 Figure 5d: Case 2 – Injection Pressure 
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Figure 6a: Case 3 – Reservoir 
Pressure Forecast – With / Without 
CO2 Injection 

 Figure 6b: Case 3 – Heavy Oil 
Production Forecast – With / Without 
CO2 Injection 
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Figure 6c: Case 3 – Total Gas 
Production Forecast – With / Without 
CO2 Injection 

 Figure 6d: Case 3 – Injection Pressure 
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CO2 Injection Studied In Deepwater Heavy Oil 
Reservoir 
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ABSTRACT 

A comprehensive simulation work on cold heavy oil production (CHOP) using 

captured carbon dioxide (CO2-EOR) technique was investigated using the state-

of-the-art Integrated Product Modelling packages of Petroleum Experts as part of 

the Well Engineering Research Group unconventional oil reservoir management 

studies being undertaken at The Robert Gordon University (RGU).  

This study enhances the Global interests to explore the beneficial uses of the 

captured CO2, with particular application in deepwater development which is 

seen as emerging solutions from a safety, costs balance and long term 

perspectives. The modelling work discussed in this paper considered 

transportation of CO2 from an onshore compression station using a 240 km 

subsea pipeline and injected into a heavy oil reservoir (2 km below sea-bed) via 

a vertical injection well. A production system designed to facilitate the recovery 

of the heavy crude to the topside separator (2 km water depth) was connected 

to the reservoir. 

The Integrated Injection and Production Systems modelled to operate as a single 

module have demonstrated interesting results, the realism as well as the 

challenges of CO2-EOR for CHOP. Sensitivity analysis showed that the 

productivity of the reservoir and performance of the CO2-EOR was significantly 

influenced by the reservoir characteristics, production history and the injection 

pressure. Both miscible and immiscible displacements were evaluated based on 

the reservoir pressure criteria available on the public domain. Despite the 

supercritical state of the transported CO2 at high injection pressure, the 

integrated modelling results showed no specific requirement for intermediate 

compression or booster pump along the system, particularly for miscible 

conditions with minimum injection pressure of 3000 psig.  
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Overall, the results indicated that CO2-EOR for CHOP will initiate (for unloading 

reservoir) or boost (loading reservoir) production in miscible conditions. 

However, at low reservoir pressure, although recovery of the resources was 

achievable, a severe delay in the production forecast (i.e. years of zero 

recovery) at continuous CO2 injection revealed that immiscible condition was 

perhaps not as viable as miscible process for the conditions investigated. 

Keywords: CO2-EOR, Heavy Oil Recovery, Cold Process, Miscible process, 

Immiscible Process        Integrated System Modelling. 

 

INTRODUCTION 

Heavy oil development is progressively becoming a way forward to mitigate the 

decline in the worldwide conventional crude. Despite the literatures claiming that 

heavy oil is only found in shallow water [1], recent publication [2]  indicates that 

Petrobras has approved the first offshore heavy oil development project for its 

Siri field in the Campos Basin. The Siri field is known to have recoverable 

reserves of 270 million barrels of heavy oil, at around 12.3 API and Petrobras 

recognizes that the exploitation of the resources will rely on special and 

emerging technology. This paper focuses on deepwater heavy oil recovery using 

captured carbon dioxide (CO2-EOR).  

Heavy oil recovery was previously investigated using some of the tertiary 

recovery techniques such as water alternating gas (WAG) chemical processes, 

gas injection and microbial EOR. About thirteen (13) methods were theoretically 

evaluated by [3] on two (2) heavy oil (18-24 API) fields consisting of four (4) 

reservoirs in total in Africa. Pure CO2 was reported to be the best recovery agent 

by [4] following core-flood laboratory investigation using three injection gases 

(flue gas containing 15 mol% CO2 in N2, a produced gas containing 15 mol% 

CO2 in CH4, and pure CO2) for heavy oil recovery (~14° API collected from 

Senlac reservoir located in the Lloydminster area, Saskatchewan, Canada). 

Similar to [4], but with sensitivity of Water alternating CO2 carried out, [5] 

reported that a reduction in either waterflood or CO2 injection rate resulted in an 

increased in oil recovery and showed the interference of viscous, capillary and 

diffusive forces. [6] concluded that the simultaneous injection of CO2 and steam 
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increased recovery, reduced injection temperatures, and reduced the heat input 

required, following a high pressure displacement on the recovery of West Sak 

heavy crude oil (19.2 API,) using Steam / CO2 in a 1D laboratory experimental 

test conducted in an unconsolidated sand-pack (2” diameter and 4ft long).  

In another hand, space and weight constraint on most offshore platforms (new 

or existing) is generally a major challenge and enormous difficulties are foreseen 

with regard to accommodating additional facilities such as those required for 

CO2-EOR. Consequently, direct injection from an onshore source could be a good 

way forward and this study looked into an integrated injection and production 

system interaction with CO2 injected from a remote onshore source. 

MODEL DESCRIPTION 

Deepwater heavy oil recovery using CO2-EOR technique was investigated using 

the Petroleum Experts suite of software GAP/PROSPER/MBAL. The investigation 

was entirely simulation based and the surface and subsurface facilities were 

integrated together to properly assess the effect of injecting CO2 from a remote 

location. The total pipeline length was 250 km covering both onshore (10 km) 

and offshore sections (240 km). The water depth was 2 km as well as the depth 

below the sea-bed. The transported CO2 was injected into the heavy oil reservoir 

via a vertical injection well. The Injection system comprised the subsea pipeline 

transporting CO2 from the surface facility and connected to the subsea structure 

ready for injection, while the production system was connected to the topside 

separator via a subsea wellhead having 6” tubing size and 8” casing diameter. 

The schematic representation of the integrated configuration system is shown in 

Figure 1. 

The reservoir was modelled using typical data. The reservoir thickness and 

radius were 300 ft and 2500 ft respectively, the reservoir temperature was 120 
oF and the original oil in place (OOIP) was 500 MMSTB. Different production 

history with initial pressure varying from 1000 psig to 4000 psig was used. A 

comprehensive sensitivity analysis was carried out for a wide range of reservoir 

production history to appreciate the importance of the integrated injection and 

production systems. Production forecast was performed for different reservoir 
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conditions under both miscible and immiscible conditions using the following 

criteria presented in [7] which are shown Table 1. 

Temperature  Pressure  Condition  Comments 

Tres  <  86 oF  Pres  < 1000 psia  Immiscible    

86 oF  <  Tres  <  90 oF  1000 psia  <  Pres  <  1200 psia 

  

Miscible / Immiscible   Either Possible PCO2 = 1073 psia, 

TCO2 = 87.8 oF 

Tres  >  90 oF  Pres  >  1200 psia  Miscible Possible    

Table 1: Miscibility and Immiscibility Criteria Based on CO2 Critical Temperature 
& Pressure 

Results of the following cases are discussed in the next section: 

1. Miscible Process and the influence on the reservoir production trend;  

2. Immiscible Process and the influence on the reservoir productivity;  

3. Varying Reservoir Pressure at Constant GOR for different CO2 Injection 
Pressure; 

4. Constant reservoir pressure at various GOR for different CO2 injection 
pressure; 

5. Sensitivity of GOR, viscosity, heavy oil API and injection pressure.  

RESULTS AND DISCUSSION 

High pressure reservoir (> 1000 psig) is known to be suitable for CO2 miscible 

process by enhancing the flow performance. However, this study has 

demonstrated that under certain conditions such as that of non Newtonian heavy 

crude with high viscosity, the reservoir pressure will probably need to be as high 

as 4000 psig to create an instantaneous impact on the productivity. Meanwhile, 

with CO2 immiscible process occurring at reservoir pressure below 1000 psig, the 

production forecast has demonstrated that heavy oil recovery was achieved by 

compensating the low reservoir pressure using high injection pressure to force 

the heavy oil towards the production well. Table 1 shows the key findings and 

differences between the two techniques. 

 Miscible Process Immiscible Process 
Recovery Start Time 0 – 1 Year  (Immediate Impact) > 15 Years   
Recovery Volume / Factor High  Low 
Cost Implication Low  High 
General Remarks Pipeline integrity could be an issue Could be used to maintain production 

Table 1: Key Features of the Miscible and Immiscible Processes 
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Miscible Process 
The reservoir pressure was kept constant at 4000 psig and the injection pressure 

at the pipeline inlet (onshore) ranged from 2000 psig to 7000 psig. Other 

parameters remained as follow: heavy oil 20o API specific gravity, GOR (500 

scf/STB). The integrated system results showed that heavy crude extraction was 

easily enhanced at injection pressure as high as 3000 psig, provided that the 

reservoir pressure was around 4000 psig. The production forecast (year 2000 to 

2020) presented in Figure 2 showed the variation in maximum heavy oil 

production and the averaged CO2 injection rates at different injection pressure.   

Immiscible Process 

Immiscible process was investigated using lower reservoir pressure (1000 psig) 

with the injection pressure at the pipeline inlet varying from 800 psig to 7000 

psig. The heavy oil specific gravity was 20o API. Different production trends 

compared to the results obtained with high initial reservoir pressure (4000 psig) 

were experienced. Even at injection pressure as high as 7000 psig, the 

production forecast showed no recovery until 01/05/2003. The recovery was 

initiated by a rapid production leading to the peak, followed by a curvy decline 

which gradually lead to a steady state production. 

Figures 3a & 3b illustrates the gas injection and the total gas production trend as 

well as the heavy oil production when the injection pressure was 3000 psig. The 

reservoir pressure was 1000 psig and the GOR 100 scf/STB. The variation in 

heavy oil peak production was between 800 to 1000 STB/D as the injection 

pressure reduced from 7000 psig to 4000 psig in increment of 1000 psig. The 

difference in maximum production was approximately 2000 STB/D as the 

injection reduced from 3000 psig to 2000 psig, and much more lower (3000 

STB/D) when the injection pressure reduced from 2000 psig to 1000 psig. This 

indicates that the production was significantly influenced by the injection 

pressure and that under immiscible condition significant injection pressure will 

be required to compensate the low reservoir pressure. Although production was 

possible at 1000 psig and 900 psig injection pressure, production could only 

start from year 2016 and 2023 respectively, leading to about 16 and 23 years of 

continuous CO2 injection with zero recovery.  



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	236	

 

Heavy crude displacement by CO2 injection is known to rely on the phase 

behaviour of CO2 and the interaction within the reservoir. The reservoir 

temperature and pressure can significantly affect the miscibility of the two 

components (CO2 and heavy oil). At low reservoir pressure, recovery of the 

heavy oil to the surface was significantly delayed until mobility of the heavy 

crude was possible. Due to low pressures hindering the fluids immiscible or 

delaying the mobility of fluids, swelling and the heavy oil viscosity reduction was 

the pre-requisites prior to the fluids displacement mechanism to be possible. The 

long period of no production at continuous CO2 injection was either caused by 

the lack of sufficient energy (low reservoir and injection pressures) to push the 

fluids out of the reservoir or the inefficient fluids interaction to create the 

required swelling and viscosity reduction, or a combination of the two effects.  

In another hand, at 900 psig injection pressure which was below the CO2 critical 

pressure, the heavy oil displacement was possible despite more than two (2) 

decades of zero gas or heavy oil production. A much smaller ROI (Return on 

Investment) and longer payback time as it appears seem to prove that the 

immiscible process for heavy oil reservoir in some conditions may not be a viable 

option. 

Sensitivity Analysis 

Sensitivity analysis was carried out to assess the influence of the reservoir 

pressure, GOR, heavy oil viscosity and specific gravity, on the reservoir 

productivity. The results are show in sub-plot format in Figure 4.  

Varying Reservoir Pressure at Constant GOR for different CO2 Injection 
Pressure; 

The productivity of the reservoir was further investigated by varying the 

reservoir pressure and the injection pressure while keeping the GOR constant at 

100 scf/STB. With the injection pressure below 4000 psig, the production 

forecast indicated that the recovery was unlikely when the reservoir pressure 

varied between 2000 psig and 4000 psig.  

However, at 1000 psig (reservoir pressure), the heavy oil recover was 

achievable when the injection pressure was below 3000 psig. The period of zero 
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production was shortened as the reservoir pressure increased; however, no 

heavy crude displacement occurred before the reservoir pressure was sufficient 

to push the heavy crude toward the production well up to the surface facilities 

located 4km above the reservoir. 

Sensitivity of GOR, Viscosity, heavy oil API and injection pressure.  

In this case, the production forecast is shown in Figure 4 for a constant reservoir 

pressure (4000 psig) and various GOR. The maximum heavy oil production 

occurred at the lowest GOR (100 scf/STB), and the peak production decreased 

as the GOR reduced. At 3000 psig injection pressure, the heavy oil recovery 

(although very unstable) was also possible, but only when the GOR was 400 and 

500 scf/STB. 

By considering different heavy oil specific gravity varying from 10o API to 18o 

API, a reasonably good range of most common types of heavy oil were taken 

into account. Heavy oil viscosity is known to vary between 100 cP and 10000 cP. 

The viscosity effect has been assessed covering from 10-10000 cP. The results 

are also shown in Figure 4, and reveals that the production was spontaneous as 

soon as the injection was initiated for 10 cP. Production started two (2) months 

after the injection was initiated when the viscosity was 100 cP and 

approximately one year later when the viscosity was 1000 cP and 10000 cP. This 

suggests that the heavy oil recovery is appreciably influenced by the reservoir 

properties, the fluids interaction and mixing process, and other thermodynamic 

effects that effectively enable the dynamic of the fluids within the reservoir up to 

the surface. 

CONCLUSIONS 

On the basis of the results of this investigation, cold heavy oil recovery is 

certainly achievable using CO2-EOR technique, with CO2 injected from a remote 

onshore source. Under such conditions, CO2 is transported in dense phase as 

high injection pressure is required to account for the frictional losses along the 

transmission line and to create the enhancement required that will move the 

heavy crude from the reservoir to the topside surface facilities. Both Immiscible 

and Miscible conditions were evaluated and it was clear under the conditions 
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investigated that Miscible process was more efficient and pragmatic than 

Immiscible process. 

Low heavy oil reservoir pressure with low GOR can be very costly to optimise 

due to production ‘hold back’ and the momentous energy (injection pressure) 

required to initiate recovery. The higher the viscosity, the longer the mixing 

process within the reservoir, and the higher the required injection pressure to 

facilitate the movement of the heavy oil within the reservoir to the production 

platform. When the initial reservoir pressure was as high as 4000 psig with 500 

scf/STB (GOR), heavy oil production was instantaneous as soon as CO2 injection 

was initiated.  

It is believed that during CHOP using CO2-EOR technique, part of the injected 

CO2 must be trapped in the heavy oil reservoir by various means, while 

considerable volume of the injected CO2 must undoubtedly return with the 

produced heavy oil to the topside production facilities. This subject (CO2 

sequestration) is currently being investigated as part of the research interests of 

the Well Engineering Research Group at the RGU. 
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ABBREVIATIONS 

API  American Petroleum Institute 
CHOP  Cold Heavy Oil Production 
CO2  Carbon Dioxide 
EOR  Enhanced Oil Recovery 
IOR  Improved Oil Recovery 
MMP  Minimum Miscibility Pressure 
OOIP  Original Oil In Place 
STB  Stock Tank Barrel 
 

Figure 1: Diagrammatic Representation of the Integrated System 
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Figure 2: Production Rates (Prediction) at various Injection Pressure – Reservoir 
Pressure 4000 psig, GOR 500 scf/STB 
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Figure 3a: Effect of CO2 Injection 
Pressure –Reservoir Pressure: 1000 
psig – Heavy Oil Production 

 Figure 3b: Effect of CO2 Injection 
Pressure – Reservoir Pressure: 1000 
psig – Gas Rates 
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ABSTRACT 

CO2 sequestration during cold heavy oil production (CHOP) using captured 

carbon dioxide (CO2-EOR) was investigated using REVEAL of Petroleum Experts. 

The results indicated that the CO2 release was influenced by the production 

phases. The prediction showed high CO2 retention in the first few years post 

start-up, followed by gradual decline towards 16.5 % post peak production. The 

recovery rate was strongly influenced by the reservoir characteristics such as 

fluid properties, permeability, aquifer and well completion. Horizontal wells 

provided better performance than vertical wells. The CO2 utilisation and 

retention per barrel of heavy oil increased as the CO2 injection pressure 

increased. 

Keywords:  CO2-EOR, Cold Heavy Oil Production, CO2 Sequestration. CO2 
Utilisation, Well Completion. 

INTRODUCTION 

Carbon dioxide capture for enhanced oil recovery (CO2-EOR) is one of the 

preferred enhanced recovery techniques to date and offers potential economic 

benefit through additional oil recovery as well as CO2 storage. There are four (4) 

main techniques used to capture CO2 from large-scale industrial facilities or 

power plants known as: 1) Post-combustion capture, 2) Pre-combustion capture, 

3) Oxy-fuel combustion capture, 4) Industrial processes. Description of each 
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process can be found in the IPCC report (IPCC Report, 2005). There are two (2) 

main storage options known as Ocean Storage and Geological Storage. Due to 

substantial uncertainties, Legal and HSE issues, the ocean storage lack behind 

and face enormous hurdles to be attractive. As for geological storage, three (3) 

main types of geological environments are being considered for carbon 

sequestration: 1) Oil and gas reservoirs; 2) Deep saline reservoirs / aquifers; 3) 

Un-mineable coal seams. Under high pressure, CO2 turns to liquid and can move 

through a formation as a fluid. Once injected, the liquid CO2 tends to be buoyant 

and will flow upward until it encounters a barrier of non-porous rock, which can 

trap the CO2 and prevent further upward migration, (www.netl.doe.gov). Saline 

and other types of reservoirs also have two additional trapping mechanisms that 

help trapping / storage of the CO2 known as Solubility and Mineral trapping.  

During CO2-EOR, a small amount of the injected CO2 dissolves in the oil. 

Laboratory results have demonstrated that the injection of CO2 would result in 

swelling of the oil by over 20%, a significant reduction in oil viscosity, and a 

95% reduction in interfacial tension (Hycal, 2004), and making the oil flow more 

easily in response to pressure gradients (Nummedal et al, 2003). CO2-EOR is 

known to allow recovery up to 20 % of the OOIP (Original Oil in Place) (Meyer, 

2008). Approximately 53 to 82 % more oil could be produced by the CO2 flood 

than is produced by water in the best areas of the waterflood, according to the 

test conducted by (Holm and O’Brien, 1971) and (Holm, 1987). 

There are variety of speculation with respect to CO2 storage during EOR, some 

believe that CO2-EOR in conventional oil reservoir will result in increased carbon 

emissions from incremental oil production (IEA GHG, 2007), other believe that 

40% (Shaw and Bachu, 2002)  & (Hadlow, 1992)  or up to two-thirds 

(wikipedia.org) of the injected CO2 is being produced and can be re-injected. In 

the Bati Raman heavy oilfield (9° to 15° API), in southeast Turkey, close to the 

Turkish-Iraqi border, where immiscible displacement using CO2-EOR is in 

operation, approximately 1700 tonnes of CO2 are injected daily, 16% to 60% of 

which is recycled, (IEA GHG, 2000). Despite most scientists believing that crude 

oil is not heavy at the origin (Curtis, 2002), CO2 storage during heavy oil 

recovery or in heavy oil reservoir has not been investigated widely and the 
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question is whether the existing theories for conventional oil are by default 

applicable for heavy oil reservoir.  

CO2-EOR enables chemical and physical interaction of the injected CO2 with the 

reservoir rock and fluids, creating favourable conditions that improve oil 

recovery. These conditions are discussed in detail by (Tzimas et al, 2005). 

MODELLING APPROACH 

The reservoir was modelled using REVEAL, the reservoir simulator by Petroleum 

Experts. The grid block was of dimension 25, 25, 15 in I, J and Z directions 

respectively. A block size of 500 ft x 500 ft x 200 ft, grid depth of 10000 ft and a 

single porosity.  Two wells, one   producer and an injector, and both horizontal. 

The model was homogenous as shown in Figure 1. The simulation was 

performed over 25 years starting from 1 January 2006. Tables 1 and 2 present 

the reservoir and fluid properties used in the simulation and the aquifer 

properties are given in Table 3. 

The initial pressure used in this analysis was 2500 psig, with the temperature of 

200 oF. The CO2 was injected into the reservoir through a horizontal well, 8 km 

long and completed over a length of approximately 150 m. The reservoir gas 

was modelled as CO2. With a critical pressure of 1073 psi and critical 

temperature of 87.8 °F, CO2 will be in a supercritical state at bottom-hole 

injection and reservoir conditions; hence CO2 was defined in the model as gas 

with the corresponding dense phase density. 

In a subplot format, Figure 2a shows the variation at different temperature and 

pressure of the reservoir heavy oil and gas viscosity, density, formation volume 

factor (FVF) and condensate gas ratio (CGR). The temperature ranged between 

50 oF to 200 oF while the pressure varied from 100 psig to 5000 psig. Mobility of 

heavy oil is known to be much easier at high temperature.  At 200 oF, the 

reservoir heavy oil viscosity was approximately 25 cP, as the temperature 

reduced the heavy oil viscosity increased. During the injection, as the reservoir 

heavy oil comes in contact with the injected CO2 at lower temperature (50 oF - 

70 oF), the heavy oil viscosity will significantly vary as the reservoir temperature 

will reduce. Hence, the heavy oil viscosity profile purposely illustrated the heavy 

oil viscosity variation at different temperatures, and indicated that the heavy oil 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	245	

 

viscosity could rise up to 7730 cP at 50 oF if the reservoir pressure was to reach 

5000 psig. The heavy oil density was very close to that of water and varied 

between 57.5 lb/ft3 to 60.2 lb/ft3 at the temperatures and pressures 

investigated. The heavy oil FVF was almost constant.   

As shown in Figure 2a, the reservoir gas thermodynamic properties were 

deliberately modelled to reflect those of CO2. The reservoir gas was modelled as 

retrograde condensate to take into account the phase change at various 

temperature and pressure. CO2 is expected to reach the reservoir in supercritical 

state due to the high pressure within the transported line as well as the 

reservoir. This phenomenon is effectively represented in the modelling by the 

retrograded condensate process which take into account the condensate CO2 

being lost in the gas stream. The phase behaviour of the reservoir gas is 

adequately illustrated in the density and CGR profiles at various pressures. With 

regards to the density profile, the gas density sharply rose from 15 lb/ft3 (dry 

gas phase) to 52.5 lb/ft3 (dense phase) when the pressure reached 1073 psig. 

Above 1073 psig, the variation in density was very slow and only changed from 

52.5 lb/ft3 to 57.8 lb/ft3 (3000 psig). The high reservoir gas density at 1073 psig 

was in agreement with conventional knowledge and also ascertained that the 

properties of the fluid were appropriately modelled.  In another hand, the CGR 

reflected the phase variation of CO2 within the reservoir at different pressure as 

shown in Figure 2a. REVEAL was also used to calculate the reservoir CGR and 

gas FVF with the dense phase CO2 density and viscosity for pressure varying 

from 100 psig to 3000 psig. The CGR increased with increasing pressure, from 

28 STB/MMSCF at 100 psig to 123 STB/MMSCF at 3000 psig. There was 

negligible variation in the reservoir gas (CO2) viscosity and FVF at different 

pressures and temperatures. The reservoir FVF was about 0.004 ft3/scf and the 

viscosity ranged approximately from 0.023 cP to 0.048 cP. 

Figure 2b shows the variation at different temperature and pressure of the 

reservoir water viscosity, density and formation volume factor (FVF) in a sub-

plot format. The temperature ranged between 50 oF to 200 oF and the pressure 

varied from 100 psig to 5000 psig. Once again, the profiles were in accordance 

with prediction published in the public domain. The viscosity was about 0.34 cP 

at 200 oF and progressively increased with reducing temperature. The maximum 
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viscosity was 1.4 cP at 50 oF. The density varied between 60.5 lb/ft3 to 63.5 

lb/ft3, and the variation was very minimal. The formation volume factor was 

approximately 1 RB/STB and the compressibility factor was extremely low. 

The variation of the reservoir fluids (heavy oil, gas and water) properties with 

temperature when the reservoir gas is modelled as natural gas as opposed to 

CO2 is presented in Figure 3. And it is comprehensible that the maximum gas 

density is 0.0595 lb/ft3 and the maximum viscosity is 1.3 cP. The heavy oil 

viscosity increased as the temperature dropped and other fluids behaviours with 

respect to temperature rise / drop were as previously reported. 

METHODOLOGY 

Both Black Oil and Compositional Models were used. The PR EOS was selected to 

generate the VLP files for the injection and production system using PROSPER. 

The production system was modelled as black oil model while the injection 

system remained compositional, with the properties of CO2 clearly inputted. 

However, although the models take into account the fluid composition through 

the VLP file created using PROSPER, the output from REVEAL provides no 

information regarding the reservoir fluid composition. 

Two methods, mass conservation of CO2 around the reservoir loop and the 

production profiles evaluation, were used to interpret the REVEAL results in 

order to estimate the CO2 sequestration during CO2-EOR.   

Mass Conservation 

This approach considered the mass of CO2 entering ( injCOm 2 ) and leaving 

( outCOm 2 ) the reservoir and the mass of CO2 retention ( SeqCOm 2 ) within the 

reservoir, which is conveyed in the following expression: 

 
SeqCOoutCOinjCO mmm 222     (1) 

The density of CO2 changes in a significant way as its pressure (P) changes and 

using the ideal gas Equation of State (EOS), the CO2 density (CO2) can be 

calculated at the appropriate pressure, and hence the volumetric flowrate of CO2 

( SeqCOQ 2 ) can be established using the expression below. “T” stands for 

temperature and “Mw” for molecular weight of CO2. 
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Production Evaluation  

Likewise, the formulation is consistent with the ones described in the mass 

conservation. The CO2 sequestration ( SeqCOQ 2 ) is estimated as the difference 

between the injected and the produced CO2 ( injCOQ 2 ), taking into account the 

rates of CO2 production during steady or quasi-steady state since the reservoir 

gas was modelled as CO2. WIoutCOQ 2 , produced CO2 when there is no CO2 

injection.   

 

   WIoutCOoutCOinjCOSeqCO QQQQ 2222    (3) 

In case where the reservoir gas is modelled differently other than CO2, the 

WIoutCOQ 2  term in the equation shall be omitted. WIoutCOQ 2 was found to be less 

than 1% of that produced during CO2 injection, hindering negligible any 

influence on the overall results, as far the simulations are concerned. 

The CO2 retention as function of barrel of heavy oil produced (Seqco2) was 

calculated using the volumetric flowrate of heavy oil produced (Qoil prod) and the 

CO2 sequestration by the following expression: 

 

 

prodoil

SeqCO
CO Q

Q
Seq 2

2    (4) 

 

The CO2 requirement / utilisation per barrel of heavy oil produced (CO2Req) was 

obtained using the required CO2 injection as follow:  

 

 

prodoil

injCO
q Q

Q
CO 2

Re2    (5) 

 



COLD HEAVY OIL PRODUCTION USING CO2-EOR TECHNIQUE	

Tchambak	2014	 	248	

 

RESULTS AND DISCUSSIONS 

The residual in place estimated by the solver based on the information provided 

is given below:   

Water in place  : 3.31093e+009 STB 

Heavy Oil in place    : 1.27529e+010 STB 

Gas in place     : 1.27529e+006 MMSCF 

Figure 4 shows the heavy oil production rates when the injection pressure was 

5000 psig, the calculated CO2 sequestration per barrel of heavy oil produced, the 

percentage retention and the CO2 requirements per barrel of heavy oil produced. 

The results reveal that the percentage of CO2 sequestration was 100% for 

months post start-up. This may be justified by the theory that the injected CO2 

which is in dense phase expand as it reaches the reservoir. As the CO2 expands, 

it reduces the reservoir fluid (heavy oil) viscosity by dissolving into the heavy 

crude. This process facilitates the mobility of heavy oil within the reservoir and 

toward the production system. Results also show that the CO2 sequestration 

reduced sharply from 100% to 47% when the heavy oil production reached the 

first peak and reduced further to approximately 22% when the second peak 

production occurred. A sharp decline in production was also noticed, which was 

almost reflected by a continuous decline in the percentage of CO2 retention. In 

year 2020, a rather slow reduction in the heavy oil production was noticed, at 

which stage the CO2 sequestration remained almost stable around 22%. The CO2 

sequestration per barrel of heavy oil produced remained extremely high at the 

start-up as no CO2 was released. But as soon as CO2 production started, the CO2 

retention per barrel varied between approximately 1500 SCF/STB to 2000 

SCF/STB. In another hand, the volume of CO2 utilised per barred of heavy oil 

produced was significantly high (11.2 MSCF/STB) at the beginning of the 

production when there was no CO2 being produced, sharply reducing to 

approximately 4 MSCF/STB as the production rose to the peak, stabilised for a 

couple of years before progressively increasing as the heavy oil production 

reduced. 
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Analysis Based on CO2 Mass Balance  

Figure 5 shows the mass of CO2 sequestrated, the CO2 retention per barrel of 

heavy oil, the CO2 requirements and the percentage retention for the 25 years 

prediction. The CO2 injection pressure was 5000 psig. 

During the 25 years prediction, the results show that the CO2 mass balance 

around the reservoir inlet and outlet was not consistent, as the CO2 input was by 

far greater than the amount released (output).  At the beginning (year 2006) of 

the production, no CO2 was released as indicated by the mass flowrate of 

produced CO2. The calculated percentage of CO2 retention shows 100 % of CO2 

being retained in the reservoir in the major part of the first year (2006). In the 

meantime, the heavy oil recovery was spontaneous following the injection of 

CO2. The beginning of heavy oil recovery also implied a progressive decline in 

the percentage retention of CO2 in the reservoir, reaching approximately 17 % 

at the end of the prediction period (2050). 

The heavy oil and gas production peaked twice as shown on the production 

profile, firstly at the same time in 2008; then the heavy oil peaked again in 2013 

and remained almost steady until the peak gas production occurred in 2017. 

Following that trend, the heavy oil production began to decline while the gas 

production remained steady till the end of production in 2050. The difference 

between the mass of injected CO2 and the mass of produced CO2 show that 

during that period (peak production), the CO2 retention dropped sharply as the 

production peaked, perhaps justifying the momentum required to increase the 

mobility of the heavy crude. Between year 2020 and 2050, the variation in CO2 

retention was much lower than it was between year 2006 to 2020.  

From 2006 to 2008 where the production rose to the peak, the CO2 retention per 

barrel of produced heavy oil reduced from 2.4 lb/STB to about 0.4 lb/STB and 

remained almost constant around that value. The utilised mass of CO2 for every 

barrel of heavy oil produced dropped from 2.4 lb/STB to about 0.5 lb/STB, 

stabilised till 2018 and began to rise again progressively as the heavy oil 

production gradually was in decline.  
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Analysis Based on Peak Production 

In this case, CO2 sequestration was investigated at various injection pressures. 

The injection pressure was varied from 1000 psig to 7000 psig, in an increment 

of 1000 psig.  

Figure 6 shows in a sub-plot format the peak heavy oil production, the 

percentage retention of CO2, the CO2 requirements for barrel of heavy oil and 

the CO2 retention per barrel of heavy oil produced, at different CO2 injection 

pressure. The peak production increases with injection pressure. The recovery 

was about 1.3 % when there was no CO2 injection, however, showed appreciable 

growth as the CO2 injection pressure was increased. From 0 to 1000 psig 

injection pressure, there was an increase of 9.7 % recovery. The percentage 

increase in recovery factor for every increment of injection pressure above 1000 

psig was very tiny, although the recovery was significant high in the first 

increment (0 – 1000 psig). The difference between the injected volume of CO2 

and that produced gives an indication of how much CO2 was retained in the 

reservoir daily. Although the daily CO2 retention increased as the CO2 injection 

pressure increased, the percentage retention remarkably indicated that high 

percentage of CO2 was retained at low CO2 injection (2000 psi). Beyond 3000 

psig injection pressure, the percentage CO2 retention was almost stable.  

The analysis shows that when the injection pressure was 7000 psig, for every 

barrel of heavy oil produced, about 4290 SCF of CO2 was required and 

approximately 690 SCF of CO2 was trapped in the reservoir by various 

mechanisms. The CO2 requirement and retention per barrel of heavy oil reduced 

as the injection pressure reduced or as the peak heavy oil reduced. 

Nevertheless, further analysis using different data may well predict a diminutive 

variation or an improved ratio on the amount of CO2 stored and that required 

per barrel. Also, ways to improve CO2 storage during CO2-EOR have been 

discussed in (Jessen et al, 2005), one of the methods consisted of re-

pressurising the reservoir after the end of oil production with continuous 

injection. In another hand, (Kovscek and Cakici, 2005) claims that a well control 

process, where wells are shut in according to a gas-to-oil production ratio limit 

to avoid excess gas circulation, is the best way to obtain both maximum oil 
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recovery and CO2 storage at the same time, opinion that was however rejected 

by (Jayasekera, 2005). 

The calculations summary show in Table 4 is based on maximum production, 

hence illustrate the CO2 sequestration occurring during a quasi steady state 

condition.  

CONCLUSIONS 

On the basis of this investigation, heavy oil recovery was achievable using CO2-

EOR technique, and the volume of CO2 produced together with heavy oil was 

appreciably lower than the volume of CO2 injected. The results revealed lower 

CO2 release in the first few years of the operation, followed by a gradual decline 

of CO2 retention after the production peaked. The CO2 retention per barrel was 

almost constant post peak production and the CO2 utilisation per barrel of heavy 

oil increased as the heavy oil in place reduced.  

The injected CO2 was partly trapped in the heavy oil reservoir by various means 

and the volume of the trapped CO2 was very much dependent of the production 

phase / cycle. Despite the low percentage of CO2 sequestration at quasi-steady 

state production, the CO2 returning with the produced heavy oil will have to be 

re-injected into the reservoir to minimize the project CAPEX. Moreover, a 

detailed analysis of the geochemical interaction between the reservoir rock and 

the injected CO2 with a close look into the dissolution and mineralisation process 

during CO2-EOR may provide improved prediction of CO2 sequestration. 
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Table 1: Fluids Properties & Rock Properties 

 Data Units 
Rock Compressibility  3 x 10-5 1/psi 
Permeability 100 md 
Reservoir Porosity 0.2 Fraction 
Well Control: Constant Injection Pressure 3000  psig 
Water Compressibility 2.9 x 10-6 1/psi 
Heavy Oil Specific Gravity 15 API 
Heavy Oil Viscosity 523 - 2188  cP 
Heavy Oil FVF 1.19  RB/STB 
Water FVF 0.99 RB/STB 
Gas FVF 0.0034 RB/STB 
Gas Oil Ratio, GOR 500 scf/STB 
Reservoir Temperature 122 - 200 C 
Water gravity 1.068 Sp. gravity 
Gas Gravity 0.7 Sp. gravity 

 
Table 2: Residual Saturation used for the Simulation  

  Data   

Critical Oil / Gas Residual Saturation, Sogc 0.05 Fraction 
Critical Oil / Water Residual Saturation, Sowc 0.2 Fraction 
Critical Water Residual Saturation, Swc 0.2 Fraction 
Critical Gas Residual Saturation, Sgc 0.2 Fraction 
End Point Oil / Water Relative Permeability, Krow 1 Fraction 
End Point Oil / Gas Relative Permeability, Krog 1 Fraction 
End Point Water Relative Permeability, Krw 1 Fraction 
End Point Gas Relative Permeability, Krg 1 Fraction 
Corey Exponent for Oil-Water 2  
Corey Exponent for Oil-Gas 2  

Table 3: Aquifer Properties 

  Units  Values 

Aquifer Model    Infinite Linear 

Aquifer Porosity  Fraction  0.2 

Aquifer Permeability  md  1000 

Aquifer Compressibility  1/psi  3 x 10‐6 

Thickness  feet  300 

Encroachment Angle    90 

Width  feet  300 

Region 1    X_West, From (1, 1, 1) to (1, 25, 15) 

Region 2    X_West, From (25, 1, 1) to (25, 25, 15) 
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Table 4: Results Summary for CO2 Sequestration Based on Evaluation of Production Profiles 

CO2 

Injection 

Pressure 

(psig) 

CO2 

Injection 

(MMscf/D) 

Maximum  

Heavy  Oil 

Production 

(STB/day) 

Max Gas 

Production 

(MMscf/D) 

Maximum 

Recovery 

Factor 

(%) 

Difference 

Between Inj 

& Prod CO2 

(MMscf/D) 

CO2 

Retention 

(SCF/STB) 

CO2 

Requirements 

(SCF/STB) 

CO2 

Retention 

(%) 

7000  733  170900  615  13.5  118.00  690.46  4289.06  16.32 

6000  685  166056  575  13.3  110.00  662.43  4125.11  16.29 

5000  629  160275  525  13.00  104.00  648.88  3924.50  16.79 

4000  570  154480  475  12.70  95.00  614.97  3689.80  16.95 

3000  505  143280  420  12.20  85.00  593.24  3524.57  17.15 

2000  425  134300  350  11.77  75.00  558.45  3164.56  18.03 

1000  345  115463  310  11.00  35.00  303.13  2987.97  10.61 

0  0  60000  3.9  1.30  ‐3.90  ‐65.00  0.00  0.00 

 

 

 
 

Figure 1: Block Grid and Horizontal Wells 
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Figure 2a: Variation of Reservoir Heavy oil and Gas (CO2) Properties with Temperature and Pressure 
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Figure 2b: Variation of Reservoir Water Properties with Temperature and Pressure 
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Figure 3: Reservoir Fluids Properties and Influence of Temperature and Pressure 
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Figure 4: CO2 Sequestration – Reservoir Pressure: 2500 psig, Injection Pres: 5000 psig 
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Figure 5: CO2 Sequestration at 5000 psig Injection Pressure – Analysis by Mass Balance 
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Figure 6: CO2 Sequestration and the Relationship with Injection Pressure and Recovery Rates 
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Appendix 1 – World Oil Reserves by Country 

Rank Country Barrels of Oil Millions Barrels of Oil 

1 Venezuela 297,600,000,000 297,600 

2 Saudi Arabia 267,900,000,000 267,900 

3 Canada 173,100,000,000 173,100 

4 Iran 154,600,000,000 154,600 

5 Iraq 141,400,000,000 141,400 

6 Kuwait 104,000,000,000 104,000 

7 United Arab Emirates 97,800,000,000 97,800 

8 Russia 80,000,000,000 80,000 

9 Libya 48,010,000,000 48,010 

10 Nigeria 37,200,000,000 37,200 

11 Kazakhstan 30,000,000,000 30,000 

12 Qatar 25,380,000,000 25,380 

13 United States 20,680,000,000 20,680 

14 China 17,300,000,000 17,300 

15 Brazil 13,150,000,000 13,150 

16 Algeria 12,200,000,000 12,200 

17 Angola 10,470,000,000 10,470 

18 Mexico 10,260,000,000 10,260 

19 Ecuador 8,240,000,000 8,240 

20 Azerbaijan 7,000,000,000 7,000 

21 European Union 5,675,000,000 5,675 

22 Oman 5,500,000,000 5,500 

23 India 5,476,000,000 5,476 

24 Norway 5,366,000,000 5,366 

25 Egypt 4,400,000,000 4,400 

26 Vietnam 4,400,000,000 4,400 

27 Indonesia 4,030,000,000 4,030 
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Rank Country Barrels of Oil Millions Barrels of Oil 

28 Malaysia 4,000,000,000 4,000 

29 South Sudan 3,750,000,000 3,750 

30 United Kingdom 3,122,000,000 3,122 

31 Yemen 3,000,000,000 3,000 

32 Argentina 2,805,000,000 2,805 

33 Syria 2,500,000,000 2,500 

34 Uganda 2,500,000,000 2,500 

35 Colombia 2,200,000,000 2,200 

36 Gabon 2,000,000,000 2,000 

37 Congo, Republic of the 1,600,000,000 1,600 

38 Chad 1,500,000,000 1,500 

39 Australia 1,433,000,000 1,433 

40 Sudan 1,250,000,000 1,250 

41 Brunei 1,100,000,000 1,100 

42 Equatorial Guinea 1,100,000,000 1,100 

43 Denmark 805,000,000 805 

44 Trinidad and Tobago 728,300,000 728 

45 Ghana 660,000,000 660 

46 Turkmenistan 600,000,000 600 

47 Romania 600,000,000 600 

48 Uzbekistan 594,000,000 594 

49 Peru 579,200,000 579 

50 Italy 521,300,000 521 

51 Thailand 453,300,000 453 

52 Tunisia 425,000,000 425 

53 Ukraine 395,000,000 395 

54 Netherlands 352,000,000 352 

55 Turkey 270,400,000 270 
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Rank Country Barrels of Oil Millions Barrels of Oil 

56 Germany 254,200,000 254 

57 Pakistan 247,500,000 248 

58 Bolivia 209,800,000 210 

59 Cameroon 200,000,000 200 

60 Belarus 198,000,000 198 

61 Congo, Democratic 
Republic of the 

180,000,000 180 

62 Albania 172,400,000 172 

63 Poland 156,500,000 157 

64 Papua New Guinea 154,300,000 154 

65 Spain 150,000,000 150 

66 Chile 150,000,000 150 

67 Philippines 138,500,000 139 

68 Bahrain 124,600,000 125 

69 Cuba 124,000,000 124 

70 Cote d'Ivoire 100,000,000 100 

71 France 85,180,000 85 

72 Austria 85,000,000 85 

73 Guatemala 83,070,000 83 

74 New Zealand 81,400,000 81 

75 Serbia 77,500,000 78 

76 Suriname 76,800,000 77 

77 Croatia 71,000,000 71 

78 Burma 50,000,000 50 

79 Japan 44,120,000 44 

80 Kyrgyzstan 40,000,000 40 

81 Georgia 35,000,000 35 

82 Bangladesh 28,000,000 28 
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Rank Country Barrels of Oil Millions Barrels of Oil 

83 Hungary 27,320,000 27 

84 Mauritania 20,000,000 20 

85 Bulgaria 15,000,000 15 

86 South Africa 15,000,000 15 

87 Czech Republic 15,000,000 15 

88 Tajikistan 12,000,000 12 

89 Lithuania 12,000,000 12 

90 Israel 11,500,000 12 

91 Greece 10,000,000 10 

92 Slovakia 9,000,000 9 

93 Benin 8,000,000 8 

94 Belize 6,700,000 7 

95 Taiwan 2,380,000 2 

96 Barbados 2,260,000 2 

97 Jordan 1,000,000 1 

98 Morocco 680,000 1 

99 Ethiopia 430,000 0.4 

100 Moldova 7,330 0.01 

 Total  1,635,466 
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Appendix 2 – Predicted Reservoir Production Trend 
Duns and Ros Modified 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 21.091         

50 50 246.33 93.98 23.044 46.06 921.935 72.6754 19.3757 6487745 5502590 985155.56 16700 

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3869.9 115.55 5.668 6.248 837.197 8.0755 0.53349 6487745 5977440 510305.63 16700 

8037.6 7924.8 4265.83 117.31 5.61 6.242 838.341 8.1491 0.42318 6487745 5977440 510305.63 16700 

9022 8834 4663.73 118.82 5.563 6.243 839.321 8.2429 0.34141 6487745 5977440 510305.66 16700 

10006.3 9743.3 5063.4 120.05 5.523 6.248 840.192 8.3612 0.27903 6487745 5977439 510305.63 16700 

11236.8 10879.8 5565.25 121.19 5.481 6.258 841.19 8.5514 0.21974 6487745 5977439 510305.63 16700 

12195.9 11770.4 5959.67 121.74 5.451 6.268 841.942 8.7421 0.20607 6487745 5977439 510305.59 16700 

13079.1 12605 6328.99 121.98 5.426 6.277 842.629 8.9553 0.20607 6487745 5977439 510305.56 16700 

13403 12911 6455.46 122 1.271 2.462 842.934 9.0618 0.20607 6487745 5977440 510305.63 16700 
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Hagedorn Brown 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3860.82 115.55 5.782 5.782 837.162 8.0701 0.53591 6487745 5977440 510305.63 16700 

8037.6 7924.8 4238.81 117.31 5.732 5.732 838.236 8.1304 0.42959 6487745 5977440 510305.66 16700 

9022 8834 4619.01 118.82 5.69 5.69 839.169 8.2117 0.34964 6487745 5977440 510305.63 16700 

10006.3 9743.3 5001.14 120.05 5.655 5.655 840.008 8.3184 0.28792 6487745 5977439 510305.59 16700 

11236.8 10879.8 5481.24 121.19 5.618 5.618 840.979 8.4945 0.22864 6487745 5977440 510305.66 16700 

12195.9 11770.4 5858.75 121.74 5.592 5.592 841.719 8.6741 0.20607 6487745 5977440 510305.63 16700 

13079.1 12605 6212.43 121.98 5.57 5.57 842.399 8.8771 0.20607 6487745 5977440 510305.66 16700 

13403 12911 6333.26 122 1.39 1.39 842.701 8.9788 0.20607 6487745 5977440 510305.66 16700 
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Fancher Brown 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3860.78 115.55 5.782 5.782 837.162 8.0701 0.53593 6487745 5977440 510305.56 16700 

8037.6 7924.8 4238.71 117.31 5.732 5.732 838.236 8.1303 0.42962 6487745 5977440 510305.63 16700 

9022 8834 4618.85 118.82 5.69 5.69 839.168 8.2116 0.34967 6487745 5977440 510305.63 16700 

10006.3 9743.3 5000.93 120.05 5.655 5.655 840.007 8.3182 0.28795 6487745 5977439 510305.53 16700 

11236.8 10879.8 5480.98 121.19 5.618 5.618 840.978 8.4943 0.22867 6487745 5977440 510305.63 16700 

12195.9 11770.4 5858.44 121.74 5.592 5.592 841.718 8.6739 0.20607 6487745 5977440 510305.59 16700 

13079.1 12605 6212.09 121.98 5.57 5.57 842.398 8.8769 0.20607 6487745 5977440 510305.59 16700 

13403 12911 6332.9 122 1.39 1.39 842.7 8.9785 0.20607 6487745 5977439 510305.66 16700 
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Beggs and Brill 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3891.89 115.55 5.778 5.778 837.279 8.0885 0.52768 6487745 5977440 510305.63 16700 

8037.6 7924.8 4331.72 117.31 5.72 5.72 838.589 8.1949 0.40809 6487745 5977439 510305.63 16700 

9022 8834 4773.44 118.82 5.674 5.674 839.682 8.3193 0.32232 6487745 5977439 510305.59 16700 

10006.3 9743.3 5216.88 120.05 5.636 5.636 840.629 8.4668 0.2586 6487745 5977440 510305.63 16700 

11236.8 10879.8 5773.47 121.19 5.596 5.596 841.686 8.6924 0.20607 6487745 5977440 510305.69 16700 

12195.9 11770.4 6210.6 121.74 5.569 5.569 842.467 8.9109 0.20607 6487745 5977439 510305.59 16700 

13079.1 12605 6619.31 121.98 5.547 5.547 843.168 9.1501 0.20607 6487745 5977440 510305.66 16700 

13403 12911 6754.32 122 1.384 1.384 843.47 9.2658 0.20607 6487745 5977440 510305.66 16700 
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Orkiszewski 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3860.68 115.55 6.035 4.952 837.162 8.07 0.53595 6487745 5977440 510305.63 16700 

8037.6 7924.8 4238.01 117.31 5.986 4.872 838.233 8.1298 0.42977 6487745 5977440 510305.63 16700 

9022 8834 4617.15 118.82 5.945 4.806 839.163 8.2104 0.34998 6487745 5977440 510305.56 16700 

10006.3 9743.3 4997.92 120.05 5.911 4.75 839.998 8.3162 0.28838 6487745 5977440 510305.63 16700 

11236.8 10879.8 5476.04 121.19 5.873 4.692 840.966 8.491 0.22919 6487745 5977439 510305.66 16700 

12195.9 11770.4 5851.84 121.74 5.846 4.653 841.703 8.6695 0.20607 6487745 5977440 510305.63 16700 

13079.1 12605 6203.79 121.98 5.825 4.615 842.382 8.8713 0.20607 6487745 5977440 510305.59 16700 

13403 12911 6319.42 122 1.908 0.60638 842.676 8.9701 0.20607 6487745 5977440 510305.59 16700 
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Duns and Ros Original 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3879.44 115.55 5.278 9.336 837.232 8.0811 0.53095 6487745 5977440 510305.63 16700 

8037.6 7924.8 4293.41 117.31 5.255 9.142 838.446 8.1684 0.41674 6487745 5977439 510305.66 16700 

9022 8834 4707.82 118.82 5.236 8.977 839.469 8.2737 0.33352 6487745 5977439 510305.66 16700 

10006.3 9743.3 5122.52 120.05 5.221 8.827 840.365 8.4021 0.27088 6487745 5977440 510305.59 16700 

11236.8 10879.8 5641.25 121.19 5.203 8.7 841.376 8.6031 0.21204 6487745 5977440 510305.63 16700 

12195.9 11770.4 6048.03 121.74 5.185 8.678 842.132 8.8017 0.20607 6487745 5977439 510305.66 16700 

13079.1 12605 6428.66 121.98 5.169 8.66 842.82 9.0224 0.20607 6487745 5977440 510305.63 16700 

13403 12911 6557.66 122 1.289 2.194 843.123 9.1315 0.20607 6487745 5977440 510305.59 16700 
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GRE (modified by Petroleum Expert) 

Bottom 
Measured 

Depth (feet) 

True 
Vertical 

Depth (feet) 

Pressure 
(psig) 

Temperature 
(Deg F) 

Slip Liquid 
Velocity 

(m/s) 

Slip Gas 
Velocity 

(m/s) 

Oil Density 
(kg/m3) 

Oil 
Viscosity 

(cP) 

Gas-Oil 
Interfacial 
Tension   

(dyne/cm) 

Total Mass 
Rate 

(lbm/day) 

Oil Mass 
rate 

(lbm/day) 

Gas Mass 
Rate 

(lbm/day) 

Tubing rate 
(STB/day) 

0 0 0 93.85       90.2989 0.20607         

100 100 312.15 94.11 19.517 36.704 921.393 68.898 18.6582 6487745 5510328 977417.56 16700 

200 200 415.18 94.37 16.064 28.12 920.439 63.604 17.5399 6487745 5522080 965665.19 16700 

212.5 212.5 426.59 94.4 15.773 27.423 920.326 63.0539 17.4157 6487745 5523370 964374.81 16700 

312.4 312.4 510.87 94.67 13.977 23.225 919.435 59.1792 16.4953 6487745 5532877 954868.38 16700 

412.4 412.4 586.45 94.93 12.755 20.466 918.563 55.9589 15.6659 6487745 5541400 946344.63 16700 

512.4 512.4 656.37 95.2 11.847 18.467 917.694 53.1703 14.8965 6487745 5549309 938435.81 16700 

612.4 612.4 722.25 95.46 11.134 16.928 916.821 50.6949 14.1708 6487745 5556797 930948.06 16700 

712.3 712.3 785.3 95.73 9.971 16.256 915.939 48.4553 13.4777 6487745 5564002 923743.38 16700 

812.3 812.3 846.09 96 9.601 15.143 915.046 46.4068 12.8119 6487745 5570992 916753.31 16700 

912.3 912.3 905 96.27 9.283 14.2 914.139 44.5186 12.1709 6487745 5577811 909933.75 16700 

1012.3 1012.3 962.38 96.55 9.007 13.387 913.22 42.7661 11.5525 6487745 5584498 903246.81 16700 

2012 2012 1489.53 99.38 7.327 8.978 903.152 29.9466 6.5128 6487745 5648345 839399.75 16700 

3011.8 3011.8 1983.67 102.37 6.596 7.271 891.334 21.8446 3.5302 6487745 5712710 775035.25 16700 

4011.6 4011.6 2465.89 105.56 6.296 6.331 877.905 16.2872 2.0046 6487745 5780189 707556.88 16700 

5011.3 5011.4 2941.84 108.93 6.028 6.028 863.111 12.3324 1.2075 6487745 5851611 636134.06 16700 

6011.1 6011.1 3414.37 112.51 5.866 5.866 847.193 9.4505 0.75794 6487745 5927541 560203.69 16700 

7053.2 7015.6 3873.4 115.55 5.761 5.86 837.21 8.0775 0.53255 6487745 5977439 510305.63 16700 

8037.6 7924.8 4276.02 117.31 5.709 5.804 838.38 8.1563 0.42079 6487745 5977440 510305.59 16700 

9022 8834 4680.24 118.82 5.666 5.759 839.376 8.2544 0.33844 6487745 5977439 510305.66 16700 

10006.3 9743.3 5085.9 120.05 5.631 5.721 840.258 8.3767 0.27589 6487745 5977440 510305.66 16700 

11236.8 10879.8 5594.89 121.19 5.594 5.681 841.263 8.5715 0.2167 6487745 5977439 510305.63 16700 

12195.9 11770.4 5994.65 121.74 5.57 5.642 842.018 8.7656 0.20607 6487745 5977440 510305.63 16700 

13079.1 12605 6368.8 121.98 5.548 5.62 842.706 8.9821 0.20607 6487745 5977440 510305.66 16700 

13403 12911 6495.36 122 1.38 1.425 843.009 9.0892 0.20607 6487745 5977439 510305.59 16700 
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