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ABSTRACT
In ensemble systems, the predictions of base classifiers are aggre-
gated by a combining algorithm (meta-classifier) to achieve better 
classification accuracy than using a single classifier. Experiments 
show that the performance of ensembles significantly depends 
on the choice of meta-classifier. Normally, the classifier selection 
method applied to an ensemble usually removes all the predictions 
of a classifier if this classifier is not selected in the final ensemble. 
Here we present an idea to only remove a subset of each clas-
sifier’s prediction thereby introducing a simultaneous meta-data 
and meta-classifier selection method for ensemble systems. Our 
approach uses Cross Validation on the training set to generate 
meta-data as the predictions of base classifiers. We then use Ant 
Colony Optimization to search for the optimal subset of meta-data 
and meta-classifier for the data. By considering each column of 
meta-data, we construct the configuration including a  subset of 
these columns and a meta-classifier. Specifically, the columns are 
selected according to their corresponding pheromones, and the 
meta-classifier is chosen at random. The classification accuracy 
of each configuration is computed based on Cross Validation on 
meta-data. Experiments on UCI datasets show the advantage of pro-
posed method compared to several classifier and feature selection 
methods for ensemble systems.

CCS CONCEPTS

•Mathematics of computing→ Evolutionary algorithms; •Com-
puting methodologies → Ensemble methods;

KEYWORDS
Ensemble method, multiple classifiers, classifier fusion, combining 
classifiers, ensemble selection, classifier selection, feature selection, 
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1 INTRODUCTION
Learning from the Ensemble of Classifiers (EoC) to achieve higher 
classification accuracy than using a single classifier is one of the 
most popular topics in machine learning research. As each classifier 
is a hypothesis about the relationship between the features of an 
observation and its class label, by combining several base classi-
fiers in an ensemble, we can obtain better approximation for this 
relationship, thereby enhance the performance of the classification 
system [17, 19].

There are three phases to be considered in an ensemble design, 
namely generation, selection, and integration. In the generation 
phase, the learning algorithm(s) learn on the training set(s) to ob-
tain the base classifiers. In the selection phase, a single classifier or 
a subset of the best classifiers is selected to classify the test sample. 
In the last phase, the decisions made by the selected EoC are com-
bined to obtain the final prediction [3, 7]. Homogeneous ensemble 
methods like Bagging [2], and Random Subspace [1] focus on the 
generation phase in which they concentrate on the generation of 
new training schemes from the original training set. Meanwhile, 
heterogeneous ensemble methods focus on combining algorithms 
which operate on the outputs of the base classifiers (called meta-
data or Level1 data) [17–20]. The combining algorithm is also called 
a meta-classifier.

In this study, we focus on the selection phase in the ensemble 
design by proposing a simultaneous meta-data and meta-classifier



GECCO ’19, July 13–17, 2019, Prague, Czech Republic T.T. Nguyen et al.

selection method for heterogeneous ensemble systems. In an en-
semble system, there usually exists a subset of EoC that makes the
ensemble perform better than using the entire set of base classi-
fiers. However, as pruning a classifier’s output is more general then
pruning the classifier itself, we are motivated to expect meta-data
selection to result in better performance. Moreover, in a heteroge-
neous ensemble system, the performance of the ensemble system
depends on the performance of the meta-classifier [26]. Therefore,
by doing meta-data and meta-classifier selection simultaneously,
we could obtain a higher performance ensemble than other existing
selection-based ensemble systems.

This paper introduces a method to simultaneously select the sub-
set ofmeta-data and themeta-classifier to obtain a high-performance
ensemble system. We first generate the base classifiers and then the
meta-data from the training observations. Having the meta-data
and the given set of meta-classifiers, we then simultaneously search
for the optimal subset of meta-data and the meta-classifier for the
ensemble. To solve the optimization problem, we use Ant Colony
Optimization (ACO) [21]. Although we only use the original Ant
Colony Optimization, which is simple and not generally considered
state-of-the-art, our model still shows better performance in com-
parision with other algorithms on a wide range of datasets. The
contribution of our paper is in the following:
• We propose to simultaneously select the subset of meta-
data and the associated meta-classifier for a heterogeneous
ensemble system.
• We propose to use ACO to search for the optimal solution.
• Experiments on the 40 UCI datasets show that our approach
is better than the selected benchmark algorithms.

The paper is organized as follows. In section 2, we briefly review
heterogeneous ensemble systems and existing ensemble selection
approaches. Our proposed method is introduced in section 3 includ-
ing the model formulation and the algorithm. The experimental
studies including the datasets used, the experimental settings, and
the results and discussion are introduced in section 4. Finally, the
conclusion and suggestions for future development are given in
section 5.

2 RELATEDWORK
2.1 Heterogeneous ensemble systems
In a heterogeneous ensemble system, we apply several different
learning algorithms on a given training dataset to generate a set
of base classifiers. The outputs of the base classifiers, called the
meta-data, are then combined to obtain the final decision model.
LetD = {xi , ŷi }, i = 1, ...,N be the training set of N observations,
Y = {ym } be the set of M class labels, and K be the set of K
learning algorithms. The meta-data of the training set is given by
the N × KM matrix L:

L =



P1 (y1 |x1) . . . P1 (yM |x1) . . . PK (y1 |x1) . . . PK (yM |x1)
...

...
...

︸                            ︷︷                            ︸
predictions of 1st classifier

P1 (y1 |xN ) . . . P1 (yM |xN ) . . .︸                             ︷︷                             ︸
predictions of K th classifier

PK (y1 |xN ) . . . PK (yM |xN )



(1)

in which Pk (ym |xn ) is the prediction (posterior probability) of the
kth base classifier that observation xn belongs to the classym . Each

Table 1: Datasets used in the experimental studies

Datasets # of
observations

# of
classes

# of
dimension

Abalone 4174 3 8
Appendicitis 106 2 7
Artificial 700 2 10
Australian 690 2 14
Balance 625 3 4
Banana 5300 2 2
Biodeg 1055 2 41
Blood 748 2 4
Breast-cancer 683 2 9
Bupa 345 2 6
Cleveland 297 5 13
Contraceptive 1473 3 9
Fertility 100 2 9
Haberman 306 2 3
Heart 270 2 13
Hepatitis 80 2 19
Hill-valley 2424 2 100
Led7digit 500 10 7
Madelon 2000 2 500
Magic 19020 2 10
Mammographic 830 2 5
Musk1 476 2 166
Musk2 6598 2 166
Newthyroid 215 3 5
Page-blocks 5472 5 10
Phoneme 5404 2 5
Pima 768 2 8
Ring 7400 2 20
Sonar 208 2 60
Spambase 4601 2 57
Tae 151 3 5
Tic-tac-toe 958 2 9
Titanic 2201 2 3
Vehicle 846 4 18
Vertebral 310 3 6
Waveform-w-noise 5000 3 40
Waveform-wo-noise 5000 3 21
Wdbc 569 2 30
Wine-red 1599 6 11
Wine-white 4898 7 11

row of the matrix corresponds to an observation, and it is obtained
by concatenating all the predictions of K base classifiers.

There are two types of meta-classifiers introduced for the hetero-
geneous ensemble systems: fixed combining methods and trainable
combining methods. Fixed combining methods predict the label
based on only the meta-data of the test sample. Kitller et al. [10]
introduced six fixed combining rules (Sum, Product, Majority Vote,
Min, Max, and Median) for an ensemble and pointed out that the
Sum rule is the most reliable combining method for the prediction.
Trainable combining methods, on the other hand, exploit the label
information in the meta-data of the training set when constructing
the meta-classifier. By doing this, trainable combining methods
usually perform better than fixed combining methods.

In trainable combining methods, we can divide the combining
methods into two categories, namelyweight-based combiningmeth-
ods and representation-based combining methods. In the first cat-
egory, the meta-classifier is formed based on the M weighted lin-
ear combinations of posterior probabilities for the M classes. The
weights can be computed using, for example, the Multi-Response
Linear Regression (MLR) method [25], or the MLR plus hinge loss
function [22]. On the other hand, the representation-based combin-
ing methods generate a representation of the meta-data for each
class label. The class label is assigned to a test sample based on the
similarity between the set of representations and the meta-data of
the test sample. Some examples of methods in this category are
Decision Template [12], Bayesian-based combining method [19],
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Granular-based prototype (interval-based representation) [18], and
Fuzzy IF-THEN Rule-combining method [17].

2.2 Selection Methods in Ensemble System
In this section, we briefly introduce several selection methods ap-
plied to ensemble system in which not only the base classifiers but
also the features are selected to optimize the ensemble’s perfor-
mance. We start with the ensemble selection (ES) methods (known
by two different names: selective ensemble and ensemble prun-
ing which are methods that search for a subset of classifiers that
performs better than the whole ensemble. In ES, a single classifier
or an ensemble of classifiers can be obtained using a static or a
dynamic approach. The static approach selects a subset of base
classifiers during the training phase and uses the same subset of
base classifiers to predict all unseen samples. Nguyen et al. [15]
proposed a novel encoding method that encodes both the base clas-
sifiers and six fixed combining rules in a binary vector and used a
Genetic Algorithm to search for the optimal EoC and the optimal
fixed combining rule. Shunmugapriya and Kanmani [23] used the
Artificial Bee Colony (ABC) algorithm to find the optimal set of
base classifiers and the meta-classifier. Chen et al. [5] used the Ant
Colony Optimization (ACO) algorithm to find the optimal set of
base classifiers in the ensemble system with the Decision Tree as
the meta-classifier. Zhang et al. [27] formulated the ES problem as
a quadratic integer programming problem and used semi-definite
programming to obtain an approximate solution.

Meanwhile, the dynamic approach selects a classifier by dynamic
classifier selection (DCS) or an EoC by dynamic ensemble selection
(DES) with the most competences in a defined region associated
with each test sample. Some examples of DCS and DES methods are
MLA [24], KNOP [4], KNORA Union and KNORA Eliminate [11],
and Random Projection-based DES [7]. Comparison experiments in
[3] indicated that simple dynamic selection methods like KNORA
Union can sometimes perform better than the complex ones. A
detailed review of methods for DCS and DES can be found in [3, 6].

Finally, we introduce some feature selection methods that were
developed for ensemble systems. Kuncheva et al. [12] used a Venn
diagram to encode the input features used by the learning algo-
rithms and then search for the optimal set of input features and
learning algorithms using GA. Nguyen et al. [14] developed a GA-
based method to simultaneously learn the optimal EoC as well as
the associated input features for the learning algorithm. Themethod
introduced in [16] uses GA to find the optimal set of meta-data’s
columns from the matrix L for the Decision Tree meta-classifier.

3 PROPOSED METHOD
In this study, we introduce a method based on ACO to simultane-
ously select a subset of meta-data’s columns from L as well as the
meta-classifier for a heterogeneous ensemble system. The columns
of the meta-data are selected as paths by the ants. Each ant is also as-
signed a certain meta-classifier. The subset of meta-data’s columns
and the associated meta-classifier form a configuration of an ant.
In each iteration, an ant tries to select a path in its route to obtain
a better configuration. At the end of ACO, we select the best con-
figuration based on an evaluation criterion. This optimal solution
will be used to classify the test samples.
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Figure 1: Module to compute the local information

Some notations that will be used in our algorithm are given
below:

• Li : the meta-data associated with the column i of L
• Lij : the j

th part of Li

• L{u} : the meta-data associated with the set of columns u =
{u1,u2, ...,uk } of L

• L{u}j : the jth part of L{u}

• na: the number of artificial ants in the colony
• τi : the pheromone associated with the ith column of L
• ηi,q : the local information used to estimate the contribution
of the ith column of L to the qth meta-classifier
• Sj : the configuration constructed by the jth ant.
• αSj : the classification accuracy of configuration Sj
• ρ: the evaporation rate, ρ ∈ [0, 1]
• maxT : the maximum iteration number

In this framework, K learning algorithms, Q meta-classifiers, and
the training setD are given. We start with the meta-data generated
from the training setD using theT1-fold cross validation procedure.
Specifically, the training setD is partitioned to obtain T1 disjoint
partsD =D1 ∪ ... ∪DT1 ,Dl ∩Dr = ∅ (l , r ), and |D1 | ≈ ... ≈
|DT1 |. The meta-data of observations inDr is then formed by the
classifiers generated by learning theK algorithms on D̃r =D−Dr .
The meta-data of all training observations belonging toD is finally
obtained by concatenating all meta-data from each Dr into the
form of matrix L given by (1).

We then calculate the local information of each column of L and
the meta-classifier. This is the guide for an ant to search in the
local area to find the new path. To calculate ηi,q , a T2-fold cross
validation procedure is applied to the column Li of the meta-data.
We first obtain T2 disjoint parts Li = Li1 ∪ ... ∪ LiT2 , L

i
l ∩ Lir =

∅ (l , r ), and |Li1 | ≈ ... ≈ |L
i
T2
|. Predictions of observations in Lir

is then formed by the qth meta-classifier trained on L̃ir = Li − Lir .
Predictions of all training data belonging to Li is finally obtained by
gathering all predictions from each Lir . The average accuracy of the
qth meta-classifier over all observations in Li is used as the local
information ηi,q (see Figs 1). We also initialize the pheromone τi
of each column Li with a small positive number for the probability
selection process.
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Figure 2: Module to compute the evaluation criterion of a
configuration

In the first step of each iteration in the ACO algorithm, each ant
is randomly given a meta-classifier (uniform distribution). In the
following steps, when the jth ant begins its configuration search, it
tries to select a column Li from Lwhich does not exist in its current
configuration Sj using roulette wheel selection. The probability pi
of the column Li to be selected by the jth ant with the associated
qth meta-classifier is computed based on the pheromone of each
column and the local information as:

pi =



τi×ηi,q∑m
t=1,Lt <Sj

τt×ηt,q
if Li < Sj

0 otherwise
(2)

We define the evaluation criterion for configuration Sj as αSj . Dur-
ing the ACO main process, suppose that the current configura-
tion of an ant is Sj = {C,Lu1 ,Lu2 , ...,Luk−1 } and a column Li is
selected, a new configuration S ′j = {C,L

u1 ,Lu2 , ...,Luk−1 ,Luk =
Li } = {C,L{u} } of this ant is generated. Then S ′j is tested by usingT3-
fold cross validation on the corresponding subset of the meta-data
in its configuration to calculate αS ′j . Specifically, L

{u} is partitioned

intoT3 disjoint partsL{u} = L{u}1 ∪...∪L
{u}
T3

,L{u}l ∩L{u}r = ∅ (l , r ),

and |L{u}1 | ≈ ... ≈ |L{u}T3
|. Predictions of observations in L{u}r is

then formed by the meta-classifierC trained on L̃{u}r = L{u} −L{u}r .
Based on the predictions of observations in L{u}r , we compute the
loss function L0−1{L

{u}
r , S

′
j } by (3). The evaluation criterion αS ′j of

configuration S ′j is computed as the average classification accuracy

for all L{u}r r = 1, ...,T3 (Fig. 2)

L0−1{L
{u}
r , S

′
j } =

1

|L{u}r |

∑
x∈L{u}r

I[yx , predict(S ′j ,x)] (3)

L0−1 (S
′
j ) =
{ 1
T3

T3∑
r=1
L0−1{L

{u}
r , S

′
j }
}

(4)

αS ′j = 1 − L0−1 (S
′
j ) (5)

where predict(S ′j ,x) returns the predicted class label for observation
x by using the configuration S ′j and yx is the true label of x. If
the performance of S ′j is better than Sj , it will replace Sj and the
ant continues to find another column using the same strategy to

generate a new configuration. If S ′j cannot improve the accuracy of
Sj , this ant keeps its current configuration and stops its search in
the iteration. During the ants’ searching process, once a column Li

is chosen to be added to any Sj to form a better configuration S ′j , the
pheromone of Li will accumulate, thus enhancing the probability
of this column being selected by other ants. The improvement of
accuracy from Sj to S ′j is used to update the pheromone of Li . The
update rule for the improvement is given in (6).

τ
(new )
i = τ

(old )
i +CC × τ

(old )
i ×

αS ′j − αSj

αSj
(6)

where CC refers to a constant number. The pheromones of all
candidates will evaporate after each iteration. The evaporation rule
is given in (7).

τ
(new )
i ← τ

(old )
i × (1 − ρ) (7)

Therefore, the pheromone of the strong candidates will accumulate
and the pheromone of the poor ones will vanish by evaporation. The
evaporation rate ρ and CC are introduced to adjust the emphasis
of historical knowledge and the current knowledge. The greater ρ
is, the less historical information will be used. The greater CC is,
the more important current knowledge is considered.

When we finish looping through all iterations, the best config-
uration Sbest among all na ants will be chosen as the final con-
figuration. To speed up the training process, we mark and save
all the configurations which have already been explored by arti-
ficial ants in the past. So that we do not need to recalculate the
evaluation criterion for the visited configurations. Once we obtain
the final configuration for our ensemble using cross-validation, all
the base classifiers are trained on the entire training setD for the
predictions on the testing set later. The pseudo code of the training
process of the proposed method is presented in Algorithm 1, 2 and
3 in the Supplement Material.

The testing process uses the base classifiers and the best config-
uration Sbest . For each unlabeled sample xtest , we first obtain its
meta-data L(xtest ) by using the base classifers. Based on the best
configuration Sbest , we get the corresponding subset of columns
LI (xtest ) and the meta-classifier C associated with these columns.
By applyingC to LI (xtest ), we get the prediction for the class label
of xtest . The pseudo code of the testing process is presented in
Algorithm 4 in the Supplement Material.

4 EXPERIMENTAL STUDIES
4.1 Datasets and Experimental Settings
We conducted experiments on 40 datasets to evaluate the perfor-
mance of the proposed method. The datasets are selected to be
diverse in the number of class labels, the number of observations,
and the number of dimensions. Information about the datasets used
in the experiment is given in Table 1.

We compared the proposed method to some classifier selection
and feature selection methods developed for the heterogeneous
ensemble systems. The benchmark algorithms we selected includ-
ing: ACO-S1 [5], GA Meta-data [16], KNORA Union and KNORA
Eliminate [11]. In these benchmark algorithms, we used the same
learning algorithms as in the proposed method. For ACO-S1, the
Decision Tree works as the meta-classifier like in the original paper.
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Figure 3: Training process of the proposed method

The other parameters were set similar to the original paper. For
GA, the number of generations and the number of individuals in
each generation was set to 100 and 50, respectively. For KNORA
Union and KNORA Eliminate, the number of nearest neighbors
was set to 7 as it is the best value for the DES method [6]. For the
ACO algorithm to search for the optimal solution in the proposed
method, we set maxT = 100,na = 50, ρ = 0.1, and CC = 1. For
the cross validation procedures to generate the meta-data of the
training set, to calculate the local information, and the evaluation
criteria, we set T1 = 10,T2 = T3 = 2.

In this study, we performed 10-fold cross validation and ran
the test 3 times to obtain 30 test results of each method on each

dataset. Based on the experimental results, we used the Wilcoxon
signed rank test [8] to compare the classification results of the
proposed method and each benchmark algorithm on each dataset.
The null hypothesis is "there is no statistically significant difference
in the results produced by the two methods". The null hypothesis is
rejected if the p-value of the test is smaller than a given significance
level, which we set to 0.05.

4.2 Results and Discussions
We first used 3 learning algorithms, namely Linear Discriminant
Analysis (denoted by LDA), Naïve Bayes, and k Nearest Neighbor
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Table 2: The classification error of the proposed method and the benchmark algorithms (using 3 learning algorithms)

GA Meta-data ACO-S1 KNORA Eliminate KNORA Union Proposed Method
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Abalone 0.4736• 5.43E-04 0.4720• 7.98E-04 0.4678 4.90E-04 0.4707• 3.88E-04 0.4576 3.99E-04
Appendicitis 0.1600 1.04E-02 0.1827 1.51E-02 0.1291 1.14E-02 0.1133□ 8.38E-03 0.1415 9.27E-03
Artificial 0.2295 2.39E-03 0.2257 2.41E-03 0.2257 1.98E-03 0.2171 1.23E-03 0.2310 1.57E-03
Australian 0.1807• 1.30E-03 0.1816• 2.38E-03 0.1589• 1.52E-03 0.1357 1.06E-03 0.1333 1.01E-03
Balance 0.0852 1.10E-03 0.0960 8.14E-04 0.1184• 3.27E-04 0.1093• 3.92E-04 0.0912 8.87E-04
Banana 0.1116 1.23E-04 0.1129 2.32E-04 0.1157 1.62E-04 0.1079□ 1.51E-04 0.1131 1.12E-04
Biodeg 0.1836• 1.22E-03 0.1800• 1.21E-03 0.1479 6.67E-04 0.1479 7.16E-04 0.1393 9.21E-04
Blood 0.2344 6.75E-04 0.2820• 2.86E-03 0.2286 1.32E-03 0.2205 8.87E-04 0.2348 2.32E-03
Breast-cancer 0.0420• 8.14E-04 0.0405 6.97E-04 0.0410 7.67E-04 0.0444• 6.95E-04 0.0356 6.97E-04
Bupa 0.3804• 8.55E-03 0.3548 5.43E-03 0.3469• 2.47E-03 0.3373 3.13E-03 0.3197 4.80E-03
Cleveland 0.4433• 4.06E-03 0.4643• 6.10E-03 0.4162 3.06E-03 0.4038 3.37E-03 0.4027 6.28E-03
Contraceptive 0.5237• 1.30E-03 0.5028• 1.95E-03 0.4639 2.01E-03 0.4574 1.16E-03 0.4652 1.44E-03
Fertility 0.1900• 1.29E-02 0.1467 3.16E-03 0.1367 2.99E-03 0.1333 2.89E-03 0.1300 3.43E-03
Haberman 0.2964 2.26E-03 0.2984 1.72E-03 0.2778 1.82E-03 0.2767 1.80E-03 0.2823 2.26E-03
Heart 0.2395• 6.93E-03 0.2185• 8.26E-03 0.1938 5.18E-03 0.1753 3.65E-03 0.1716 3.52E-03
Hepatitis 0.1750 1.42E-02 0.2083 9.72E-03 0.1458 7.38E-03 0.1458 9.46E-03 0.1750 8.96E-03
Hill-valley 0.2745 2.47E-03 0.2785 3.54E-03 0.3228• 1.29E-03 0.4086• 1.60E-03 0.2629 3.48E-03
Led7digit 0.2973• 4.50E-03 0.3013• 6.05E-03 0.2680□ 4.82E-03 0.2653□ 3.86E-03 0.2860 4.22E-03
Madelon 0.2870 6.94E-04 0.2870 6.94E-04 0.3287• 8.82E-04 0.3787• 1.14E-03 0.2873 8.98E-04
Magic 0.1920• 1.37E-04 0.1902• 4.75E-05 0.1934• 5.56E-05 0.1933• 4.80E-05 0.1887 4.13E-04
Mammographic 0.2032• 1.97E-03 0.2169• 1.76E-03 0.1855 1.90E-03 0.1851 1.58E-03 0.1827 1.17E-03
Musk1 0.1344• 1.61E-03 0.1245• 1.77E-03 0.1708• 2.28E-03 0.1695• 3.87E-03 0.1001 1.30E-03
Musk2 0.0350 3.46E-05 0.0355 3.45E-05 0.0356 4.37E-05 0.0498• 7.44E-05 0.0368 5.94E-05
Newthyroid 0.0371 1.22E-03 0.0418• 1.36E-03 0.0947• 3.74E-03 0.0900• 2.60E-03 0.0576 2.64E-03
Page-blocks 0.0420 4.35E-05 0.0462 7.31E-05 0.0424 5.44E-05 0.0503• 5.14E-05 0.0437 5.54E-05
Phoneme 0.1149 2.11E-04 0.1149 2.11E-04 0.1337• 1.77E-04 0.1796• 3.30E-04 0.1208 1.25E-03
Pima 0.3056• 2.34E-03 0.3078• 2.35E-03 0.2366 2.31E-03 0.2427 2.84E-03 0.2318 2.47E-03
Ring 0.1232• 1.83E-04 0.1211• 1.30E-04 0.2590• 1.37E-04 0.2148• 8.96E-05 0.1162 1.55E-04
Sonar 0.2583• 8.89E-03 0.2368 5.91E-03 0.2375 8.11E-03 0.2437 5.70E-03 0.2162 8.55E-03
Spambase 0.1185• 1.95E-04 0.1224• 2.96E-04 0.1072• 1.23E-04 0.0977 9.32E-05 0.0960 2.15E-04
Tae 0.5453• 1.35E-02 0.5129 1.30E-02 0.4863 1.32E-02 0.4925 1.57E-02 0.4794 1.67E-02
Tic-tac-toe 0.1166 7.12E-04 0.1166 7.12E-04 0.1754• 7.50E-04 0.2220• 9.42E-04 0.1183 6.73E-04
Titanic 0.2160 3.81E-04 0.2178 4.08E-04 0.2282 9.77E-04 0.2260 6.16E-04 0.2425 5.19E-03
Vehicle 0.2627• 1.90E-03 0.2597• 1.44E-03 0.2651• 2.13E-03 0.2569• 1.11E-03 0.2203 1.09E-03
Vertebral 0.1893• 3.38E-03 0.1527 3.46E-03 0.1753 4.21E-03 0.1968• 4.39E-03 0.1581 2.87E-03
Waveform-w-noise 0.1787• 2.04E-04 0.1770• 2.22E-04 0.1647• 2.81E-04 0.1692• 1.79E-04 0.1479 1.71E-04
Waveform-wo-noise 0.1738• 4.45E-04 0.1705• 2.75E-04 0.1569• 2.79E-04 0.1653• 2.93E-04 0.1605 1.48E-02
Wdbc 0.0352 6.19E-04 0.0457• 8.53E-04 0.0475• 9.50E-04 0.0399• 3.09E-04 0.0293 3.97E-04
Wine-red 0.4653• 2.14E-03 0.4690• 1.05E-03 0.4180 8.78E-04 0.4234• 1.19E-03 0.4084 8.95E-04
Wine-white 0.4798• 4.58E-04 0.4947• 6.21E-04 0.4502 4.67E-04 0.4682• 3.06E-04 0.4524 5.60E-04
Average ranking 3.43 3.5 3.09 2.95 2.04

• and □ mean the proposed method is better or worse than the benchmark algorithm, respectively.

(k was set to 5, denoted by kNN5) [17, 19] to construct the het-
erogeneous ensemble system. The set of meta-classifiers was set
similarly to the set of learning algorithms. The experimental results
of the proposed method and 4 benchmark algorithms were shown
in Table 2.

Clearly, the proposed method is better than the benchmark algo-
rithms on the datasets. Compared to ACO-S1, the proposed method

wins on 21 datasets. Our method significantly outperforms GA
Meta-data, winning on 24 datasets and does not lose on any datasets.

The proposed method is also better than the two DES method, as
our method win KNORA Union and KNORA Eliminate on 16 and
20 datasets, respectively. We also computed the average ranking
of all methods based on their experimental results. It once again
shows the outstanding performance of the proposed method as our
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Table 3: The selected meta-data’s columns and meta-classifier for 20 experimental datasets (using 3 classifiers)

Dataset Selected meta-data’s columns Selected meta-classifier
Abalone P2 (y1 |.), P3 (y2 |.), P3 (y3 |.) LDA
Appendicitis P2 (y1 |.), P3 (y1 |.) kNN5
Artificial P3 (y1 |.), P3 (y2 |.) kNN5
Australian P2 (y2 |.) Naïve Bayes
Balance P1 (y1 |.), P3 (y3 |.) kNN5
Biodeg P1 (y2 |.), P2 (y2 |.), P3 (y2 |.) LDA
Blood P1 (y1 |.), P2 (y1 |.), P2 (y2 |.), P3 (y2 |.) kNN5
Cleveland P1 (y5 |.), P2 (y2 |.), P2 (y3 |.), P2 (y4 |.), P3 (y1 |.) Naïve Bayes
Contraceptive P1 (y1 |.), P1 (y2 |.), P1 (y3 |.), P2 (y1 |.), P2 (y3 |.), P3 (y1 |.), P3 (y2 |.), P3 (y3 |.) Naïve Bayes
Haberman P2 (y2 |.), P3 (y1 |.) Naïve Bayes
Magic P2 (y1 |.), P3 (y1 |.) LDA
Mammographic P1 (y2 |.), P2 (y2 |.), P3 (y2 |.) LDA
Page-blocks P1 (y2 |.), P1 (y5 |.), P2 (y1 |.), P2 (y2 |.), P3 (y1 |.), P3 (y3 |.), P3 (y4 |.), P3 (y5 |.) kNN5
Pima P1 (y2 |.), P2 (y1 |.), P3 (y2 |.) LDA
Tae P1 (y1 |.), P1 (y2 |.), P1 (y3 |.), P2 (y1 |.), P2 (y2 |.) kNN5
Tic-tac-toe P1 (y1 |.), P2 (y2 |.), P3 (y1 |.) kNN5
Waveform-w-noise P1 (y2 |.), P1 (y3 |.), P2 (y2 |.), P3 (y1 |.), P3 (y2 |.) LDA
Waveform-wo-noise P1 (y1 |.), P2 (y2 |.) LDA
Wine-red P1 (y4 |.), P2 (y3 |.) LDA
Wine-white P1 (y4 |.), P1 (y5 |.), P3 (y3 |.), P3 (y5 |.) LDA

Table 4: The classification error of the proposed method and the benchmark algorithms (using 7 learning algorithms)

GA Meta-data ACO-S1 KNORA Eliminate KNORA Union Proposed Method
Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

Abalone 0.4986• 6.84E-04 0.4888• 9.25E-04 0.4812• 6.90E-04 0.4652• 4.42E-04 0.4534 4.10E-04
Appendicitis 0.1767• 9.44E-03 0.1630 1.18E-02 0.1424 8.98E-03 0.1261 9.77E-03 0.1324 1.01E-02
Artificial 0.2667• 3.80E-03 0.2229 2.14E-03 0.2538 1.89E-03 0.2210 1.70E-03 0.2476 4.18E-03
Australian 0.1845• 1.97E-03 0.1908• 2.62E-03 0.1826• 2.30E-03 0.1541 1.63E-03 0.1401 1.32E-03
Balance 0.0491 1.08E-03 0.0581 1.13E-03 0.1157• 1.12E-03 0.1029• 4.99E-04 0.0597 1.00E-03
Banana 0.1331• 3.65E-04 0.1279• 3.51E-04 0.1184• 2.10E-04 0.1029• 8.77E-05 0.0991 9.84E-05
Biodeg 0.1773• 1.19E-03 0.1839• 1.16E-03 0.1823• 1.86E-03 0.1422• 8.31E-04 0.1273 6.66E-04
Blood 0.2861• 3.18E-03 0.2643• 1.46E-03 0.2664• 2.52E-03 0.2254 1.35E-03 0.2241 1.53E-03
Breast-cancer 0.0483• 7.88E-04 0.0449• 7.01E-04 0.0454• 7.62E-04 0.0434 8.81E-04 0.0371 5.23E-04
Bupa 0.3585• 5.38E-03 0.3606• 8.10E-03 0.3446 6.94E-03 0.2955 3.57E-03 0.3112 6.66E-03
Cleveland 0.4615• 5.21E-03 0.4631• 6.00E-03 0.4847• 7.82E-03 0.4251 3.20E-03 0.4051 5.19E-03
Contraceptive 0.5230• 1.59E-03 0.5130• 2.00E-03 0.4795• 1.69E-03 0.4415 1.64E-03 0.4410 1.34E-03
Fertility 0.1967• 1.50E-02 0.1833 1.54E-02 0.1733 9.29E-03 0.1267 3.96E-03 0.1433 5.79E-03
Haberman 0.3474• 4.33E-03 0.3312• 4.55E-03 0.2962 2.09E-03 0.2846 1.90E-03 0.2865 2.33E-03
Heart 0.2370• 6.46E-03 0.2185• 3.78E-03 0.2543• 7.02E-03 0.1889 4.60E-03 0.1778 2.78E-03
Hepatitis 0.2125 2.62E-02 0.1917 8.06E-03 0.1625 1.58E-02 0.1417 1.33E-02 0.1875 1.43E-02
Hill-valley 0.0868 1.39E-02 0.0823 1.58E-02 0.6179• 1.40E-01 0.3715• 4.97E-03 0.0679 5.59E-03
Led7digit 0.3293• 4.69E-03 0.3013• 5.20E-03 0.2947 5.09E-03 0.2673□ 4.65E-03 0.2820 4.70E-03
Madelon 0.2370• 1.82E-03 0.2222 9.83E-04 0.3028• 6.19E-04 0.3060• 1.67E-03 0.2172 7.03E-04
Magic 0.2042• 1.89E-04 0.1735• 4.94E-05 0.1805• 5.87E-05 0.1726• 5.77E-05 0.1487 3.94E-05
Mammographic 0.2237• 2.55E-03 0.2092• 2.35E-03 0.2149• 1.96E-03 0.1851 1.20E-03 0.1799 1.78E-03
Musk1 0.0889• 1.73E-03 0.1002• 2.69E-03 0.1274• 3.13E-03 0.1534• 3.23E-03 0.0588 1.31E-03
Musk2 0.0062 8.10E-06 0.0076 5.82E-05 0.0168• 2.38E-05 0.0342• 3.81E-05 0.0056 1.18E-05
Newthyroid 0.0354 1.51E-03 0.0374 1.70E-03 0.0760• 4.46E-03 0.0761• 2.72E-03 0.0374 1.09E-03
Page-blocks 0.0355 5.84E-05 0.0370• 4.09E-05 0.0416• 3.68E-05 0.0478• 4.81E-05 0.0337 5.73E-05
Phoneme 0.1271• 4.04E-04 0.1172• 2.39E-04 0.1297• 1.85E-04 0.1462• 3.54E-04 0.1075 1.67E-04
Pima 0.3047• 3.03E-03 0.3077• 2.45E-03 0.2891• 1.88E-03 0.2435 2.57E-03 0.2370 2.01E-03
Ring 0.0301• 3.19E-05 0.0305• 3.70E-05 0.0985• 1.35E-04 0.1019• 5.30E-04 0.0211 4.46E-05
Sonar 0.2114• 7.56E-03 0.2391• 6.54E-03 0.1949 1.30E-02 0.2160• 7.41E-03 0.1634 6.77E-03
Spambase 0.0805• 1.43E-04 0.0826• 1.41E-04 0.1222• 3.22E-03 0.0845• 3.01E-04 0.0823 1.55E-02
Tae 0.4989 1.42E-02 0.0826 1.41E-04 0.4614 1.10E-02 0.4881 1.93E-02 0.4682 1.52E-02
Tic-tac-toe 0.0327 4.42E-04 0.0394 4.81E-04 0.0553• 4.31E-04 0.1204• 1.00E-03 0.0317 2.87E-04
Titanic 0.2267 1.79E-03 0.2161 3.26E-04 0.2359• 2.31E-03 0.2255• 5.97E-04 0.2170 3.68E-04
Vehicle 0.2514• 2.27E-03 0.2692• 1.68E-03 0.2972• 1.50E-03 0.2872• 1.23E-03 0.2242 9.85E-04
Vertebral 0.2022• 3.88E-03 0.1828 4.81E-03 0.1785 4.84E-03 0.1742 3.44E-03 0.1570 2.69E-03
Waveform-w-noise 0.1755• 2.45E-04 0.1725• 1.94E-04 0.1979• 7.42E-04 0.1641• 1.51E-04 0.1392 2.12E-04
Waveform-wo-noise 0.1773• 3.82E-04 0.1739• 2.44E-04 0.1783• 5.67E-04 0.1597• 3.92E-04 0.1346 3.12E-04
Wdbc 0.0392 5.48E-04 0.0369 6.24E-04 0.0545• 8.89E-04 0.0393 4.87E-04 0.0322 4.15E-04
Wine-red 0.4534• 1.86E-03 0.4332• 2.49E-03 0.4263• 1.84E-03 0.3900• 8.16E-04 0.3700 1.07E-03
Wine-white 0.4879• 7.54E-04 0.4578• 7.22E-04 0.4610• 8.94E-04 0.4226• 5.52E-04 0.4027 5.59E-04
Average ranking 3.73 3.26 3.8 2.8 1.41

• and □ mean the proposed method is better or worse than the benchmark algorithm, respectively.

method rank first (with rank value of 2.04), followed by KNORA
Union and KNORA Eliminate (with rank value of 2.95 and 3.09,
respectively).

Compared to the benchmark algorithms, our approach has sev-
eral advantages that explain the superior performance. First, GA
Meta-data uses GA to select the meta-data’s columns while fixes

the meta-classifier, making it less flexible than our method. ACO-
S1, meanwhile, selects the base classifiers and also fixes the meta-
classifier.

Table 3 shows some examples of the selectedmeta-data’s columns
and meta-classifier of the proposed method. As mentioned before,
instead of using classifier selection that removes all predictions of
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a classifier if it is not selected, we selected a subset of its prediction
and a suitable meta-classifier. This makes our model more general
and better than ACO-S1. Finally, the two DES methods perform
poorer than our method because their performance depends on the
choice of techniques that define the region associated with each
test sample [6]. The average training time of proposed method com-
puted on 30 test rounds on Abalone dataset is 3 seconds compared
to 0.5 and 0.3 seconds of ACO-S1 and GA Meta-data, respectively.
Although proposed method generally has longer running time than
ACO-S1 and GA Meta-data, the differences are within practical
limit.

4.3 Different number of learning algorithms
To evaluate the influence of using different number of learning
algorithms on the ensemble performance, we added four learning
algorithms to the previous set of learning algorithms introduced
in Section 4.2. The newly added learning algorithms are Decision
Tree, LibLinear [9], Nearest Mean Classifier, and Discriminative
Restricted Boltzmann Machines [13]. The set of meta-classifiers
were selected to be the same as the set of learning algorithms. The
experimental results of the proposed method and the benchmark
algorithms with the new ensemble system are shown in Table 3.
The statistical test results in Fig. 5 once again show the superior
performance of the proposed method compared to the benchmark
algorithms: we win KNORA Eliminate and GA Meta-data on 30
datasets, wins ACO-S1 on 26 datasets and win KNORA Union on
22 datasets. The proposed method only loses KNORA Union on 1
dataset.

5 CONCLUSIONS
In summary, we have introduced a method to simultaneously select
a subset of meta-data and a meta-classifier for the heterogeneous
ensemble system to obtain higher classification accuracy than using
the entire meta-data with one fixed meta-classifier. Our method
first uses the cross validation procedure on the training dataset
with the given learning algorithms to obtain the base classifiers
and the meta-data. Having obtained the meta-data and the given
set of meta-classifiers, we applied ACO to search for the optimal
subset of meta-data and the associated meta-classifier. An ant will
search around the local area based on the local information. In this
study, we defined the local information as the classification accuracy
associated with each meta-data’s column and meta-classifier. Each
ant’s configuration including the candidate solution is evaluated by
using another cross validation procedure on the selected meta-data.
After ACO, we obtain the best configuration consisting of the subset
of meta-data’s columns and the associated meta-classifier for the
ensemble. The classification process works in a straightforward
manner by employing the best configuration on the test samples.
Experiments conducted on 40 UCI datasets show that the proposed
method is better than the benchmark algorithms we compared
concerning the classification accuracy.
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SUPPLEMENT MATERIAL 

 

Paper: Simultaneous Meta-Data and Meta-Classifier Selection in Multiple Classifier 

System 

 

 

Algorithm 1: Training process  

Input: � learning algorithms, � meta-classifiers, and the training set � 

Output: The best configuration ����� and the base classifers 

1.  Generate the base classifiers and meta-data 	 

2.  Initialize settings: 
�, 
, �, ��, ���� 

3.  Calculate local information � using Algorithm 2 

4.  While � <  ���� 

5.      (a) For � from 1 to 
�, the ��� ant begins its searching 

6.          Initialize the �� = {�, ∅} by selecting a meta-classifier � at random 

7.          Initialize ��� = −∞ 

8.          Set the flag "#�$%ℎ_
#�( =  ($)# 

9.          While "#�$%ℎ_
#�( =  ($)# 

10.                 Select a column 	* from 	 using roulette wheel selection with probabilities given in   

equation (2) 

11.               If no feature can be selected 

12.                   Set "#�$%ℎ_
#�( =  +�,"# 

13.               Else 

14.                   Add column 	* to generate new configuration ��
- = �� ∪ 	* 

15.                   Calculate ���
/  using Algorithm 3 

16.                   If ���
/ > ��� 

17.                       �� = ��
- 

18.                       Update the pheromone of 	* by the rule given in (6) 

19.                   Else 

20.                       Set "#�$%ℎ_
#�( =  +�,"# 

21.      (b) Evaporation works by the rule given in (7) after an iteration ends 



22.      (c) � =  � + 1 

23.  Get the best configuration ����� = �$3max
�

�� in the final iteration 

 

Algorithm 2: Calculate local information 

Input: Meta-data 	, Q Meta-classifiers {�7, �8, … , �:} 

Output: Local information ; 

1. For < from 1 to � 

2.     For = from 1 to � × ? 

3.         {	7
* , 	8

@ , … , 	AB
* } = crossvalid(	*) 

4.         ")�_#$$C$ = 0 

5.         For $ from 1 to �8 

6.             Train �E on 	F G* = 	* − 	G*  

7.             ")�_#$$C$ = ")�_#$$C$ + error when using �Eto predict on 	G*  

8.         �*,E = 1 − ")�_#$$C$/�8 

9.  Output local information ; = I �*,EJ 

 

Algorithm 3: Calculate the accuracy of a configuration 

Input: Configuration ��
- = I�, 	{K}J; 	{K} = [	NO  	NB … 	NP] 

Output: Evaluation criterion of ��
-: ���

/  

1. I	7
K, 	8

K , … , 	AR
K J = %$C""S�,=T(	K) 

2. ")�_#$$C$ = 0 

3. For $ from 1 to �W 

4.     Train � on 	F GK = {	7
K, 	8

K , … , 	AR
K } − 	GK 

5.     Compute XYZ7 [	G
{K}, ��

-\ by (3) 

6. End 

7. Compute ���
/  by (5) 

 

Algorithm 4: Testing process 

Input: � base classifiers, best configuration �����, test sample e���� 

Output: Predicted label for e���� 



1. Generate the 	(e����) using � base classifiers 

2. Using ����� to determine the corresponding subset 	f(e����) ⊂ 	(e����) and the meta-

classifier � 

3. Using the meta-classifier � to make predictions on 	f(e����) 
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