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Abstract 

This work investigates the use of evolved Bayesian networks learning algorithms based on 

computational intelligence meta-heuristic algorithms. These algorithms are applied to a new 

domain provided by the exclusive data, available to this project from an industry partnership with 

ODS-Petrodata, a business intelligence company in Aberdeen, Scotland. This research proposes 

statistical models that serve as a foundation for building a novel operational tool for forecasting the 

performance of rig drilling operations. A prototype for a tool able to forecast the future 

performance of a drilling operation is created using the obtained data, the statistical model and the 

experts� domain knowledge. This work made the following contributions: applied K2GA and 

Bayesian networks to a real-world industry problem; developed a well-performing and adaptive 

solution to forecast oil drilling rig performance; used the knowledge from industry experts to guide 

the creation of competitive models; created models able to forecast oil drilling rig performance 

consistently with nearly 80% forecast accuracy using either Logistic regression or Bayesian 

network learning using genetic algorithms; introduced the node juxtaposition analysis graph which 

allows the visualisation of the frequency of nodes links appearing in a set of orderings, providing 

new insights when analysing node ordering landscapes; explored the correlation factors between 

model score and model predictive accuracy and showed that the model score does not correlate 

with the predictive accuracy of the model; explored a method for feature selection using multiple 

algorithms and drastically reduced the modelling time by multiple factors; proposed new fixed 

structure Bayesian network learning algorithms for node ordering search-space exploration. Finally, 

this work proposed real-world applications for the models, based on current industry needs, such as 

recommender systems, an oil drilling rig selection tool, a user-ready rig performance forecasting 

software and rig scheduling tools. 

Keywords 

Bayesian Networks; Industry application; Oil and Gas; Metaheuristic; Business Intelligence; 

Computational Intelligence; Weka; Recommender Systems; Scheduling; Forecasting 
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Chapter 1:  Introduction 

Effective use of resources in today's industry is crucial to the competitiveness of any company. 

Business decision support is primarily data and model-driven. In this thesis, I am investigating 

methods and applications of data models to offshore oil drilling rigs data collected by market 

intelligence company ODS-Petrodata1. The operation of oil drilling rigs is highly expensive. Their 

effective selection is crucial to the running of offshore exploration and exploitation projects. The 

aim of the project is to use appropriate computational intelligence techniques to gain added value 

from the data ODS-Petrodata have collected by virtue of providing their services. Ultimately, the 

intention is to improve the decision making support made available by ODS-Petrodata with their 

data analytics. 

The following aims are part of the overall research target: 

• Investigate the use of statistical tools and Bayesian networks learning algorithms. Apply 

algorithms to the new domain provided by the exclusive data, available to this project. 

• Research and develop a novel operational tool for forecasting success of rig operations. 

Using the data obtained, the statistical model and experts� domain knowledge, create a tool 

to predict the future success of a drilling operation.  

This project provides an opportunity to consider a real-world industry problem. The combination of 

automatic structure learning and experts� knowledge provides the project with an invaluable 

opportunity to develop new data models in order to forecast oil drilling rig performance and create 

or improve various applications for corporate decision support. Moreover, the approach 

demonstrated in this project has a wider scope. It provides a stepping stone for the study of the 

application of computational intelligence in a real-world environment. The methodologies and 

findings are most likely applicable to many real-world problems and bring the potential to 

accelerate the rate at which new theoretical computing research is applied commercially.  

This project was undertaken as a Knowledge Transfer Partnership (KTP). Knowledge Transfer 

Partnership is a UK-wide government-sponsored programme to encourage collaboration between 

businesses and universities. The aim is to enable businesses to improve their competitiveness, 

productivity and performance through the transfer of cutting edge technology. [1] ODS-Petrodata is 

a market intelligence company specialised in the upstream offshore oil and gas industry [2]. By 

                                                     

1 Acquired by IHS Inc. in April 2011.  
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developing their offer using automated analysis tools, the company can demonstrate objectivity and 

scientific rationale in their analysis. The use of these tools, in addition to extending the scope of 

their services, may provide the statistical backing to the experts� analyses, embedded in their 

various market reports. 

The problem at hand is challenging due to the number of variables and the number of states each of 

these variables can assume. That issue is tackled with various techniques discussed in this thesis, 

such as clusters, discretisation, machine learning, data analytics and expert manual selection. One 

important limitation of human analysis is that it is always restricted by what the analyst can 

remember at any given time. The cross-influence of multiple variables might often be replaced by a 

�gut-feeling� the analyst develops over time with experience. This leads to a lack of explainability 

of the forecasts. Incidentally, explainability is one of the major strengths of the technique used in 

this project: Bayesian networks. It is deemed possible to interpret and explain the results more 

easily using the model probabilities, than with other artificial intelligence methods such as neural 

networks [3], [4], [5], [6]. This novel application of Bayesian networks helps to fill in the gap in the 

current industry practice and to contribute to quantifying some of the uncertainty in decision 

making.  

Figure 1: An oil drilling rig (semi-submersible): J.W.Mclean, stacked (parked) in Invergordon, 

Scotland
2

                                                     

2 © Copyright 2010 Graeme Nesham, reproduced with permission�
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In this research, I am investigating the suitability of Bayesian networks learning algorithms using 

evolutionary algorithms to model oil drilling rig data as well as some possible ways to involve 

human expertise in the model building of a real-world problem. My main contributions are to the 

application of model learning techniques and approaches to the real-world data model building 

exercise. Within the context of my research, I am also facilitating the development of model-based 

decision support for Rigs and Wells exploitation in the oil and gas industry. Finally, in the light of 

the results provided by this research I am suggesting novel applications of Bayesian models in 

other research fields (forecasting, recommender systems, scheduling, etc.) and in the real world (oil 

and gas industry).

1.1 Objective and Motivation 

This research is realised in partnership with market intelligence company ODS-Petrodata Ltd. and 

the Robert Gordon University, Aberdeen. This setting provides the project with an access to experts 

in the domain of the data used. In addition to creating a learned data model, a second potential gain 

from this project consists in taking advantage of the expert guidance in learning the data structure. 

The overall project was initially drafted to answer a specific problem identified in today�s market 

intelligence industry. The initial aim of the project was defined over the year preceding the start of 

the project and sought to investigate the possibility of automatically and efficiently scheduling oil 

drilling rigs using modern modelling techniques. That objective was then updated to match the 

real-world needs from the industry more closely. In the current industry practice, a company 

needing an oil drilling rig for a drilling operation will publish a demand into a broking system or 

send �invitations to tender� to various rig owners or contractors. After identifying a suitable rig in 

the responses, the price is set using rig valuation and day rate indications as a negotiation tool. 

During the negotiation a date suitable both for the rig and within the client�s requirements is also 

agreed on. One of the sub-optimal operations is the selection of a suitable rig. A company will 

often manage its global operations on a regional level, ignoring neighbouring regions in most of the 

cases. Regional schedulers cooperate only to a limited degree and often rely on a local pool of oil 

drilling rigs. Exchanging rigs between regions is a rare practice. This research aims to help improve 

the use of rig fleets. With the help of the company experts, I identified that the common part to all 

of the rig decision making is the rig performance. The entire decision making, from tendering to 

scheduling, is based on that information. 
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The literature review and the domain of application encouraged me to investigate in greater detail 

how some part of the process could be performed more efficiently. By conducting research on that 

project, I intend to investigate the following questions: 

• What are suitable tools to determine the correlated factors of large datasets (such as the 

Wells, Rigs and Demands data, issued from the oil and gas market intelligence industry)?  

• Which factors are necessary or desirable to be able to forecast with an acceptable accuracy 

the oil drilling rig performance?  

1.2 Ethical Considerations of Technological Developments 

The three year joint research project was partly funded by the company in which the results of the 

research will be applied. I have, however, made every effort possible for the project�s results to 

remain completely impartial and re-producible. This research has a potential impact on real world 

activities and, as such, its impact should be considered carefully. For that, I reviewed some of the 

literature in order to understand better the ethical dilemma the project�s development might be 

exposed to. In [7], Cummings explores the bias in decision making, induced by task automation. I 

am expecting limited issues during the research phase but ethical issues may arise in the future, 

depending on how the final product issued from this research is used and its commercialisation. 

Considering one example of application � the use of the models developed as the base for a 

recommender system � Bergemann helps understand the impact of recommender systems on the 

sales environment in [8]. This supports the thinking process of figuring out what is ahead, when 

developing applications for the real-world inspired from research. More generally, technology has 

the potential to impact lives. A relevant source of information, highlighting the potential issues that 

can be encountered by any technology development, is found in the talk by Horowitz [9]. In this 

same presentation, he highlights the power that is derived from data. He exposes the following 

questions: �if we can do something, should we?� and �What's the right thing to do?� He �reviews 

the [...] new powers that technology gives [...]: to know more -and more about each other- than 

ever before. [...]� In that same talk, Horowitz says "There's not a formula. There's not a simple 

answer." He mentions Hannah Arendt, who voiced the idea that: �most evil done in this world is 

not done by people who choose to be evil. It arises from not thinking" [9]. Against this background, 

Horowitz proposes the following steps to review the ethical considerations when making decisions: 

take responsibility, explain how you made that decision, get a point of view from someone in a 

different field, think about problems differently than technologists, list human considerations, make 

ethical decisions, care about what happens with the technologies developed. In my work, I have 

clearly highlighted the basis of each of my decisions to ensure a reproducibility of the results. I 
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have consulted business and technological experts who believe the technology developed can 

deliver value to the industry without creating abnormal risks. Further review will then be done at 

the time of productising the result of this industry-oriented research. 

1.3 Publications and Presentations 

Some parts of my research have been published and publicly presented in the following 

publications, reports and public presentations of the project:  

• Fournier, F. A., McCall, Y., Wu, J., Petrovski, A., Barclay, P. J., Application of 

evolutionary algorithms to learning evolved Bayesian network models of rig operations in 

the Gulf of Mexico, IEEE UKCI 2010.  

• Fournier, F. A., McCall, J., Petrovski, A., Barclay, P. J., evolved Bayesian network models 

of rig operations in the Gulf of Mexico: preliminary experiments, poster for 

SICSA/SEABIS workshop. 

• Fournier, F. A., McCall, J., Petrovski, A., Barclay, P. J., Evolved Bayesian network models 

of rig operations in the Gulf of Mexico, IEEE CEC 2010 / WCCI 2010. 

• Fournier, François. Recommender Systems: Technical report and literature review 

[Internet]. Version 13. Knol. 2010 Feb 18. Available from: 

http://knol.google.com/k/françois-fournier/recommender-systems/ (retrieved November 

2011). 

• Fournier, F. A., Rig operations data modelling for decision support, KTP associate 

seminar, presentation at Culloden visitor centre, Inverness, introduction by Barclay, P. J., 

18 March 2010. 

• Fournier, F. A., On the building of a model: The work of the KTP project on building a 

probabilistic model based on Rigs and Wells data, ODS-Petrodata corporate talk, 17 

November 2010. 

1.4 Thesis Organisation 

This thesis is organised into the following parts: 

• Chapter 1 introduces the background and motivation to this research and exposes the 

ethical framework used. 

• Chapter 2 investigates the literature of the field of application, including an exploration of 

the real-world context to this research. The second part of that chapter is focused around 
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developing a detailed overview of the Wells and Rigs data used in this project, the 

methodologies and assumptions for their selection, manipulations, combinations and 

exploitation. 

• Chapter 3 reviews the literature for the algorithms and techniques used in this research, 

their origin, design and implementation. 

• Chapter 4 reviews the benchmarks used to compare the results as well as the performances 

of the various algorithms.  

• Chapter 5 provides an analysis of the evolved Bayesian network models in the context of 

rig operations in the Gulf of Mexico. 

• Chapter 6 explores the performance of the algorithms and benchmarks the results. It also 

presents additional work done on the analysis of the data. 

• Chapter 7 reviews a real world technology application and exhibits additional possible 

novel and tangible applications that could be derived from this research in future work such 

as oil drilling rig selection and drilling duration forecast. 

• Finally, Chapter 8 summarises proposed future work and overall conclusions. 

Chapter Summary: The first chapter introduces the overall research target for this work: 

investigating the use of statistical tools and Bayesian networks learning algorithms and 

developing a novel operational tool for forecasting success of rig operations. The chapter 

exposes the objective and motivation for this work, exposes the research questions and 

approaches ethical considerations of technological developments. Finally, the chapter lists 

earlier publications produced as part of this research and provides an overview of the thesis 

organisation. 
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Chapter 2:  Offshore Oil Drilling Rig: Commercial Background 

Oil drilling rigs are operated by contractors who hire out their services to oil companies for both 

exploration and exploitation. Typically, a rig operating offshore in the Gulf of Mexico can cost 

from $400K to $600K per day [10]. With rig operations lasting weeks or even months at a time, 

variations in the efficiency with which rigs are operating can affect profitability by millions of 

dollars. It is, therefore, important to be able to identify and analyse factors affecting efficiency. 

There are many ways of defining efficiency. Oil drilling rig efficiency is usually assessed by 

industry experts on the basis of practical experience [11] but there is currently no industry-wide 

standardised approach for the objective measurement and prediction of efficiency. Efficiency on its 

own cannot be directly compared between rigs without considering many external and influencing 

factors such as weather, the specific nature of the geological layers being drilled through, and other 

environmental or managerial factors. Determining which factors are relevant and how they are 

related is largely left to the judgment of managers and other experts in the field. Their approach is 

based mainly on empirical observations and experience. In some cases, the rig selected for a job 

will be over-specified or under-specified, leading either to unnecessary expenses or poor outcomes, 

such as significant delay. It is this uncertainty surrounding the rig selection process that identifies 

rig operations management as an application area for data modelling. 

This chapter explores the background to this research (section 2.1 and section 2.2). Then I elaborate 

on the problem at hand (section 2.3). Finally, I explore the data used in this research (section 2.4).

2.1 Background - Offshore Drilling 

The offshore drilling process is split into two main steps: exploration and exploitation (or 

production). Various offshore drilling platform types exist within those two categories. Table 1, 

drawn from Nergaard [12], summarises the main different types of offshore drilling platforms 

available. More detailed information on those principal rig types is presented in Table 2. 

Table 1: Offshore drilling platform types in the Gulf of Mexico 

Exploration Floaters Semis-Submersible

Ships

Bottom Support Jack-ups

Production / 
Exploitation

Surface platforms Permanent

Tenders

Subsea Semi-Submersible

Ships

Jack-ups
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Rig owners contract rigs to drilling companies for specific pre-established needs in both 

exploration and production. The offshore drilling market is dynamic, highly competitive, and 

regionally specific [13]. Key differences across regions are legislative and geological variations as 

well as sea conditions; however, cultural differences and practices across regions and across 

companies also often impact results. To better understand the subject matter at hand, it will prove 

useful to consider Freudenrich�s presentation of a simplified path to oil and gas production in [14]. 

More details on how oil is extracted offshore are provided in the documents [15], [16], delivered to 

the US congress following the BP Deepwater Horizon oil spill. Oil is located using various survey 

methods and tools, including geological analysis, gravity meters, magnetometers and seismology 

technologies. Once a site is selected, it is surveyed to find its boundaries. Then an oil drilling rig is 

brought on site and starts drilling. As drilling progresses, a specialist fluid called �mud� circulates 

through the pipe and out of the drill bit to float the rock cuttings out of the hole. When a pre-set 

depth is reached, the drill bits are removed from the hole and a steel-and-cement casing is installed. 

When reaching the final depth, various logs and tests are performed and samples are taken for 

analysis. The well is then secured and installed in order to let the oil flow in a controlled manner. 

Once the oil is flowing, the oil drilling rig is removed from the site and production equipment is set 

up to extract the oil from the well.  

Table 2: Main offshore oil drilling rigs type definition
3

Type Description 

Semi-Submersible Semi-submersible rigs are floating platforms that obtain their buoyancy 
from ballasted watertight pontoons located below the ocean surface and, 
thus, below the wave movements. The operating decks are kept high above 
the surface. They need assistance to move between locations and are used 
for water depth greater than 120 meters. 

Ships (Drillships) Drillships are ships fitted with drilling apparatus and equipped with 
dynamic positioning systems to maintain relative positions. They can drill 
in deep water and can independently move between locations. They can be 
used in depth of more than 2500 meters. 

Jack-ups Jack-ups are self-elevating mobile platforms with 3 or 4 legs, capable of 
raising themselves over the surface of the sea. They are used in shallow 
waters generally up to 120 meters deep and require assistance to move 
between locations. 

Permanent (Fixed) Fixed platforms are anchored directly into the sea bed. They are used to 
extract long-term oil deposits and cannot be moved without being fully 
dismantled. They can be used in depth of up to about 520 meters. 

                                                     

3 More information on oil drilling rigs types can be found in �Types of offshore oil rigs� by McLendon [214]. 
Information in this table has also been provided by the partner company experts. Other platform types exist 
but are not described here. 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

18 

Regarding performance, Harris [11] explains that no two rigs perform the same but that 

�consistently good results are a good indication of a rig�s capability� [11]. He highlights three main 

criteria, used to select rigs: technical suitability, price, and availability. Osmundsen et al. [17] 

highlight more evaluation criteria for selection. In no particular order, they state that typical 

evaluation criteria can be: expertise, financial strength, day rates, ability to complete on time, 

compliance with regulations, operational efficiency and achievements, Health and Safety Executive

(HSE) system and culture, High Pressure High Temperature (HPHT) capability, crew expertise 

and experience [17]. The data detailed by Osmundsen are the starting point to select and prepare 

the data described in section 2.4. 

2.2 Background - The Rig Tendering Process 

Rig tendering is the process by which a company contracts a rig for a given operation. According to 

Harris [11], a successful operation depends on many factors which are difficult to measure. The 

tendering process for selecting a rig has remained largely unchanged since his publication in 1989. 

The variability in the drilling process and the fact that the tendering process takes place in advance

generates uncertainty. This creates the need to find ways to quantify and reduce uncertainty in 

predicting the performance of potentially available rigs so that an informed selection can be made. 

When selecting a rig for a drilling programme, an operator typically has three main criteria: 

technical suitability, price, and availability. Some technical parameters are absolute and determine 

the type of rig and equipment. Examples are water depth, pressure and temperature ratings, etc. 

However, alternatives can sometimes be suitable; for example, semi-submersibles have been 

known to operate in jack-up water depth [11]. Many of the other technical requirements included in 

an invitation to tender are often preferences rather than necessities. It is commonly recognised that, 

if the well is drilled efficiently, a higher priced bid can lead to a lower overall cost. Likewise, a low 

priced bid can become expensive if accidents extend the drilling time [11]. Considering 

availability, requirements will tend to be stricter in a low-demand rig market compared to the 

situation when rigs are in short supply. However, the market maintains a system of �extension 

options� which is one of the main sources of uncertainty on rig availability [11]. These extension 

options are pre-negotiated exclusive rights in a contract to extend the contract of the rig to perform 

additional work. This work is usually dependent on the outcome of the main contract. Another 

potential measure, according to Harris, is the rig�s safety ratings as �there is a correlation between a 

good operation and a good safety record� [11]. 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

19 

The usual process starts with a company in search of a contractor sending out an invitation to 

tender. The contractor will then respond to the invitation, presenting various options available, 

depending on the nature of the potential non-compliance (the rig responding to the tender does not 

match all of the specifications). With all the responses considered, there will appear some variation 

in potential and decisional tradeoffs [11]. In recent years, a move toward the search for quality has 

been made and bidders in Europe are often asked to provide percentage downtime and indicators of 

drilling efficiency for the past six wells including water depth, mooring time, loss of time, repair 

time [17]. However this information is not often available in most regions across the globe. 

2.3 The Problems at Hand 

In order to properly focus this work, I obtained a range of utilisation scenarios from one of ODS-

Petrodata Rigs expert, Robert Steven. I worked with Robert Steven and John Hartley, ODS-

Petrodata�s experts, within the Rigs and the Wells departments respectively. Each of them has over 

20 years experience working and analysing the data I am using in this work. They are also 

responsible for the collection and aggregation of most of the data available to this research.  

Performance being defined as the drilling speed for the purpose of this work, performance and 

duration are intrinsically linked: the performance of a rig on a given well is the drilled distance 

divided by its duration (in days). All the scenarios provided to the project by Robert Steven (VP 

Rigs, ODS-Petrodata, 2010) rely on rig performance or well duration:  

• Comparing well duration outcomes with different oil drilling rigs: Oil companies can 

enter known location, well depth, water depth and other technical parameters for a planned 

well and then compare forecast well duration outcome for different oil drilling rigs.  This 

can be used to contribute to the rig selection process in a tender exercise. 

• Preliminary well cost budgeting: User could enter location, well depth, water depth and 

other technical parameters but probably leave rig null. This will show likely well duration

that can then be used to provide rough cost estimates prior to the completion of detailed 

well planning. 

• Choosing rig specification/category prior to tender: Prior to going to the market with a 

tender, an oil company can review impact of different rig specifications on the well 

duration outcome to enable the optimum rig specification to be identified. 

• Benchmarking contractor performance: Operator could view the outcome of wells for 

various rig managers/contractors to identify the company most likely to achieve the best 
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drilling performance. Rig manager/contractor could do the same to benchmark their 

performance against their competitors. 

• Benchmarking operator performance: Operator could view the outcome for wells 

according to different operators as a way of benchmarking their own performance versus 

other operators.  Oil companies in license partnerships could also use the same approach to 

establish if the operator of their license was achieving the drilling performance standard 

that other operators would achieve. 

• Regulatory authorities: There may be opportunities for regulatory authorities to check 

submitted operator well plans versus the outcome suggested most likely by the forecast.  

This, for example, could identify plans that were out of the norm for one reason or another. 

These scenarios have been used as the basis for this investigation in order to create a suitable tool 

to assist business decision making for the oil and gas industry in regards to oil drilling rig 

performance. 

2.4 Gulf of Mexico Dataset 

The datasets used in this thesis are based on Rigs and Wells data sourced by ODS-Petrodata Ltd. 

within its market intelligence commercial databases. ODS-Petrodata's RigPoint [10] database 

covers worldwide offshore oil drilling rig contracts and activities. Currently, it covers over 25 years 

of historical rig activity. Since 2007, they added to their databases the coverage of Wells data. This 

extension covers both historical and current drilling activities within the offshore industry for the 

Gulf of Mexico. Historical and current data are collected in several tables. More generally, there 

are multiple levels of data included in Rigs and Wells databases, including operational data (water

depth, footage drilled, operation dates and durations, etc.), technical data (cantilever capacity
4, 

water depth rating, age of the rig, etc.) and time data (start date, spud date, total depth date, 

termination date, time on site). Using the techniques detailed in this part, these complex real-world 

data were extracted into useable datasets.  

The data selection procedure comprises the following steps: 

• The first step was to list the data available in ODS-Petrodata�s databases (section 2.4.1). 

• From this list, the variables were selected with a limited amount of incomplete data (20-

25% maximum missing data, based on the expert�s recommendations) and with a potential 

relevance to the performance prediction problem as suggested by the scenarios drafted by 

                                                     

4 More details on the technical terms can be found in the Glossary (page 161). 
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the domain expert in section 2.3. These fields have been discussed with the domain experts 

and selected, based on their relevance to the domain of rig performance (section 2.4.2). 

• Finally, a method was used to increase the data available by devising an algorithm to 

automatically link data from separate databases (section 2.4.3). 

2.4.1 Review of Available Data  

The data available from ODS-Petrodata is split into two databases. The Rigs21s database and the 

Well extension databases contain 348 data tables (including types and lookup tables) and over ten 

thousand fields.  The main tables considered are Rig, Deployment and Contracts from the Rig21s

database as well as the Well table from the Well extension database. Those are accompanied by 

additional tables providing more details on each object (for example: dates, tonnage, on-board 

tools specifications, depths, well casing sizes and installation depths, etc.). 

The databases are heavily tied to the company history. Initially, there were 2 separate databases 

within two separate companies with different markets. Offshore Data Services (ODS) was 

collecting the Gulf of Mexico data and Petrodata was collecting North West Europe data. To 

develop their markets, the companies merged and the databases were integrated. This explains 

some inconsistencies and the large amount of data missing in some fields. For example, the field 

named �ShoreBase� collects the name of the city a rig is attached to. It was maintained from 2002 

to 2004 for the Gulf of Mexico data only but was then retired, owing to a lack of commercial value. 

The data remain in the database and little documentation on the motivation for the data collection is 

available other than the knowledge of some of the senior company employees. There are similar 

occurrences of data fields through the tables of the database, adding a level of complexity to the 

data selection process. 

The current organisation of the data collection teams still reflects this legacy. The main changes 

and improvements in the company procedures and organisation are that the different teams share 

sources, procedures and exchange data related to each other�s specialities. At the time of writing, 

the data teams concerned by the collection of relevant data are split in two collaborating 

departments: Rigs and Wells, both of which maintain their own separate data-based products. The 

teams are also geographically separated between Houston (Texas, USA), Aberdeen (Scotland, UK) 

and Singapore. Each local team tends to prioritize the coverage of its own geographical location. 

The creation of the Wells Extension database, along with the Wells department is a recent addition 

to the company assets (2007).  The collaboration between the teams being recent, the historical data 

is found to be naturally segregated in the database and links are often missing between Rig, 
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Deployments and Well Activities
5. Recent data is profiting from some new communication 

procedures between departments and is becoming more comprehensive. When inputting a new 

Well or a new Deployment, the data entry teams now systematically consult each other to match the 

information. This has led to 221 links in the database between Wells and Deployments being 

established. Those links are used as a basis to the work on automated linking later in this chapter.  

Figure 2: Rig21sWE database extract with the four main tables used for data selection and the link 

between Well and Deployment 

The data quality is mostly maintained by manual cross-checking across teams and by reviewing the 

current and historical records every time new data is added. The teams are mostly checking for 

inconsistencies in the data and improbable sequences of actions. Since 2009, there is also an 

automated Data Quality Query (DQQ) tool which allows querying the database, using simple rules, 

in order to detect illogical data. For example, the tool will return an alert when a rig is recorded as 

contracted at different locations in the world at the same time or when drilling beyond the possible 

physical depths. This data is then handled by a human operator to correct data coherence. 

                                                     

5 Deployment and Well activities are defined as such by ODS-Petrodata: A Contract can contain one or more 
Deployments. A Deployment is an action performed by the oil drilling rig such as �moving to/from location�, 
�undertaking maintenance� or �drilling on location�. A Well activity is a detailed action taken on a specific 
well when in a �drilling� deployment. This includes drilling a main well or a sidetrack, re-entering a well to 
drill further, etc. There can be none, one or many well activities per deployment. 
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2.4.2 Expert Guided Selection 

An overview of the data distribution with 127 columns selected from the most important6 fields 

within the main tables in the database was created and their relationship to a rig and a well was 

represented. This has been verified by the project�s experts, together with details on the data 

distributions. The discussion was focused on the relevance of the fields as an indicator or influencer 

of rig performance. The expert defined that one of the best measures of rig performance is the 

average performance footage drilled by a rig per day over the length of a deployment 

(AveragePerformanceFootagePerDay). This field has 25% of data missing in the dataset. Although 

those additional rows with missing values can be ignored when testing the validity of the model, 

the additional data provides more information to the learning process of the model. There is no row 

in the dataset with all of the values present. Each row has at least one of its values missing. 

Following discussions with the experts, the fields deemed unrelated to performance or containing 

insufficient data were removed from the list. This is discussed in section 5.1. Some fields were 

related to the performance measure but had insufficient data or required complex manipulations to 

extract (i.e. spread across multiple data tables and databases) and to use (large numbers of values 

without possible categorisations, for example).  

Overall, the data selection was designed to have data coverage of the following categories in the 

datasets: financial data, rig availability measure, compliance with regulations, operational 

efficiency, rig expertise, rig specifications, well information, and environment. 

2.4.3 Data Linking 

The dataset for the project contained rare occurrences of matching data from each database as the 

ODS-Petrodata just started manually linking the data from the two domains (Rigs and Wells). 

Originally, the Rigs database contains details of rigs drilling operations whereas the Wells database 

contains details of drilled wells. The linking process matches a historic set of operations data from 

the Rigs database with the data relating to a specific well from the Wells database. There were 221 

links for over 20000 potential data points extracted from the databases. In order to have a sufficient 

amount of data from this dataset, it was necessary to link the Wells data and the Rigs contracts data. 

The first step in drawing the linking procedure detailed in Figure 3 was to consult with data experts 

to obtain a sample of already linked data. I obtained 312 records and systematically mapped the 

                                                     

6 The measure of importance here was defined to be the relative use of the data field within the commercial 
products of ODS-Petrodata.  
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data which matched for each record according to a time sequence based on start and end date of 

contract and drilling operations. This provided the insights and understanding of the data necessary 

to devise the algorithm in Figure 3. An example of data used to devise the algorithm is presented in 

Table 3. The algorithm in Figure 3 has been created to perform an automatic linkage of the data 

and was implemented in SQL. It assigns a rate to each Rig � Well potential match sequentially and 

then selects the Well matching the Rig with the highest score based on the rate of the matching. 

When the algorithm cannot differentiate within multiple potential matches, the data is left 

unmatched. 

Figure 3: Data Linking Algorithm 

The result from applying this linking algorithm to the entire database is an additional 8358 links 

created out of 11348 unmatched rig deployment records and 35815 wells records for 482 rigs 

operating or having operated in the Gulf of Mexico. Added with the existing matched records, this 

allowed the model learning to obtain 12998 useable data points. 

This linking method has been reviewed by the data experts and a significant sample of the links has 

been manually checked by them. The final matching covered the entirety of the few known 

examples accurately. This method has been validated as accurate enough on unknown data as well 

to use the data links generated directly in ODS-Petrodata production environment. The cases found 

where more than one match is possible are discarded. In a future iteration and for production 

purpose, a manual check of the data might be possible by a trained data expert as the number of 

• For each Rig, when rig is known 

• Sort the deployments by date; Sort the wells by date 

• Sequentially rate the deployment matching level to the well, by creating a rate: 

Deployment start date = Well Spud Date 

& Deployment end date = Well Completion Date at +/- n Days 

SE(30) 

Deployment start date = Well Spud Date at +/- n Days S(20) 

Deployment end date = Well Completion Date at +/- n Days E(10) 

Well Spud Date >= Deployment Start Date  

& Well Completion Date <= Deployment End Date 

I(10) 

Well Spud Date <= Deployment Start Date  

& Well Completion Date >= Deployment End Date 

W(10) 

Well Spud Date >= Deployment Start Date  

& Well Spud Date <= Deployment End Date 

       OR  

Well Completion Date >= Deployment Start Date AND Well Completion Date <= 

Deployment End Date 

O(10) 

Well Operator = Deployment Operator  

       OR 

Well Operator = Deployment “DrillFor” Organisation 

+1 

Deployment Block = Well Block +1 

Deployment SubNationalRegion Code = Well SubNationalRegion Code  

(S= Start, U = End, I = Well within deployment Dates, W = Deployment within Well Dates, 

O = There is some Overlap in the dates) The scores next to the letters define the 

priorities for matching (SE>S>E=I=W=O) 

• Rank the match in order and pick the best score for each match (when there is a 

clear best). This algorithm leaves some matching with multiple candidates but no 

systematic automatic differentiation could be identified which could guarantee 
the quality of the data. 
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data rows remaining to match is limited (634 data rows with matching conflict remaining at the 

time of writing). From these new links, it might be possible over time to learn additional rules and 

to refine the algorithm. 

Table 3: Well-Deployment � Rig record matching example 

Chapter Summary: This second chapter introduced the commercial background of offshore 

oil drilling rigs. It reviewed the basics of the offshore drilling background and the rig 

tendering process used by the industry to select oil drilling rigs. The problems at hand are 

exposed by reviewing a list of scenarios provided by industry experts in order to guide the 

progress of this research. The chapter then provided a review of the Gulf of Mexico dataset 

including the available data, the data selection and the work done to prepare the data.  
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Chapter 3:  Data Modelling: Technology Review 

Many approaches exist to data modelling such as stochastic modelling [18], knowledge discovery

[19] or Bayesian networks [20,21]. This research focuses on Bayesian network modelling as a 

starting point to this investigation. This choice has been made because of the capacity of Bayesian 

networks to model knowledge under uncertainty. This is due to the fact that the probability theory 

on which Bayesian networks are based provides the framework for reasoning under uncertainty 

[22], [23]. As Kjærulff and Madsen mention in [23], �Bayesian networks [...] are ideally suited 

knowledge representations for use in many situations involving reasoning and decision making 

under uncertainty. These models are often characterized as normative expert systems as they 

provide model-based domain descriptions, where the model is re!ecting properties of the problem 

domain (rather than the domain expert) and probability calculus is used as the calculus for 

uncertainty�. This suggests that these tools might be ideally suited as the incomplete nature of the 

data used creates uncertainty. I used various tested and proven modelling algorithms [24�26], 

mostly based on evolutionary computation. In [27], Kordon mentions that evolutionary

computation is a key method of computational intelligence to use for the problem of forecasting.  

In recent years, various approaches have been tried to induce Bayesian networks from data [21,28�

32]. There are examples for the use of expert knowledge in order to improve models [33�35]. One 

example uses evolutionary algorithms in the process [36].  

This chapter exposes the Bayesian networks data modelling technology I am using in my research 

(section 3.1). Next part (section 3.2) surveys one of the techniques for Bayesian network learning 

using a search and score approach, evolutionary computation (section 3.3). This is followed by a 

review of the nature-inspired meta-heuristic, genetic algorithm (section 3.4). Then, one of the base 

methods for modelling, logistic regression is examined (section 3.5). Logistic regression is used 

here as a comparison to benchmark the results obtained with Bayesian networks. Finally, I review 

the metrics of quality that are used in this modelling exercise (section 3.6). 

3.1 Bayesian Networks 

Bayesian networks are probabilistic models based on Bayesian inference [37] which is a method to 

apply the Bayesian theorem to update probability estimates. They are useful for representing 

knowledge under uncertainty. They can be represented using a directed acyclic graph associated 

with a joint probability distribution [24]. Jensen explains that "a Bayesian network is a compact 

representation of the joint probability table over its universe" [38]. Bayesian networks assume that 
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�each variable is conditionally independent of all its non-descendants in the graph, given the values 

of all its parents� [39].  Each node of the graph represents a random variable �� related to a 

problem domain. Each variable has a �nite set of mutually exclusive states. Conditional 

dependencies between variables are represented by edges in the graph and the joint probability 

distribution can be factorised according to these conditional dependencies. Formally, the joint 

probability distribution ���� over the set of random variables���� 	 � �
, given ������ as the set of 

parent nodes for node���, is represented by: 

Equation 1: Application of the Bayesian theorem to Bayesian networks 

����� ��� 	 � �
� 
�������������



���

To make use of the power of Bayesian networks in knowledge representation and inference, the 

network has to be constructed for the given problem. The underlying directed acyclic graph

structure representing the network has to be learned and then the conditional probabilities 

calculated. Learning the underlying structure is a hard problem [25] because the number of possible 

structures grows super-exponentially with the number of variables [40]. One widely used approach 

to this problem is search and score. A metaheuristic is used to search a space representing possible 

networks. Each solution is scored according to how well it represents the observed distribution of 

the data. Various authors have presented metaheuristic approaches to this task, including genetic

programming [41] and genetic algorithm [42], [43], [44], [45]. Other approaches in the literature 

include hill-climbing methods [46] and simulated annealing [47], [48]. 

Figure 4 is an example of a simple Bayesian network illustrating the likelihood of the state �Grass 

wet� (�) occurring, given the events �Sprinkler� (�) and �Rain� (�). Both event � and � can cause 

the grass to be wet (�� 
 �����) and the rain usually has an impact on the use of the sprinklers. The 

directed acyclic graph details those relationships. One way to use this network, using the Bayes

theorem, would be to forecast the probability (�) that the grass is wet knowing the status of the 

events � and��. Such probability would then be����� �� �� 
 ������ ������������. Other 

probability propagations can be done to forecast the state of parent nodes given the state of a child 

node. There are other version of this problem involving other variables, such as the one in [49]. In 

this work, I am using the same modelling technique (a network of probabilities) to model the 

probability of a specific rig performance when provided with information on the various events 

surrounding the rig. This allows the model to provide a reasonable expectation of the likelihood of 
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a performance even when some of the variables are not informed. The variable�s values will still be 

partially informed to a certain degree of certainty using the network of probabilities. 

Figure 4: An example of Bayesian Network [50]

3.1.1 Other Applications of Bayesian Networks 

Various standard data sets are available for empirical testing of Bayesian network structure 

discovery algorithms. For example, those are issued from domains such as medical diagnosis, car 

diagnosis [24], intensive care patient alarm monitoring [24], interplanetary probe raw data 

interpretation [37], search heuristic for problem solving [37], virtual office assistant [37],

automatic context detection [37], waste water treatment diagnosis [51], knowledge assessment

[52], smart phone mobile application usage [53], microbial risk assessment [54] and assessment of 

debris flow hazards [55]. Within the oil and gas industry, various attempts to use Bayesian 

networks have been made over the years, in other domains. Some examples are petro-physical 

decision support [56], safety instrumentation and risk reduction [57], prospect analysis in the 

North Sea [58], reservoir uncertainty quantification [59] and oil wells productive zones 

determination [60]. Those applications of Bayesian networks have common features with the 

problem at hand such as the interconnections of variables, the number of variables or the size of the 

dataset.  

The use of Bayesian networks is made through a process called inference. This is the calculation of 

������ for some variables or sets of variables � and�� [39]. The exact probabilistic inference 

process in Bayesian networks is NP-hard [61] but in the case of a limited number of parents (trees, 

forest or polytree graphs, for example), this is still tractable [39]. 
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3.1.2 Limitations of Bayesian Networks 

Bayesian networks have a remarkable power to address inferential processes but suffer some 

limitations. Their operation is based on prior distribution of knowledge. A new request from an 

unforeseen situation will provide no good results to the end user. However, techniques exist to 

update models to incorporate new data. 

Another issue, as highlighted earlier, is the computational difficulty of discovering a new network. 

This process is an NP-hard task which is extremely costly and often impossible to perform, 

considering the number and combination of variables.  

Finally, [37] defines another limitation from the prior beliefs used in the Bayesian inference 

processing. "A Bayesian network is only as useful as this prior knowledge is reliable" [37]. The 

quality of the network is heavily based on the quality of the data. "An excessively optimistic or 

pessimistic expectation of the quality of these prior beliefs will distort the entire network and 

invalidate the results." In the case of my problem, I have separated the dataset into two parts. This 

allowed me to test the model against over-fitting the data used for creating the model on the one 

hand and to test the reliability of my model on the other. Those issues are also explored by 

Duespohl et al. [62].  

3.2 Search and Score, Learning Bayesian Networks Using K2 

To be used in knowledge representation and inference, Bayesian networks have to be constructed 

for the specific problem. Indeed, �To fully specify a Bayesian network, one has to first define the 

underlying directed acyclic graph structure representing the network and then the Bayesian

network's probability distribution" [24]. Finding the underlying graph is a non-deterministic 

polynomial-time hard (NP-hard) problem [63] because the number of structures grows super-

exponentially, given the number of variables in that problem [40]. Evaluating all possible structures 

is infeasible in most domains. Finding cheaper approaches to learning the structure of Bayesian 

networks from data is an area of research that has gained in momentum in recent years and is now 

widely practiced and investigated [26]. The algorithms typically used to perform that task can be 

grouped into two main approaches:  

• conditional independence tests methods, 

• search and score metrics methods.  
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The conditional independence approach estimates from the data if there is any conditional 

dependence between the variables. This is usually measured with the standard statistical or 

information theoretical tests such as Pearson�s product moment correlation coefficient, mutual 

information or the Chi-Squared test [50,64,65].  

The search and score approach searches for the best structure in the space of possible structures 

[26]. This approach uses a scoring function measuring the fitness of each structure for the data. The 

structure found to have the best score is then returned [28]. Algorithms of this type may also 

require node ordering, in which a parent node precedes a child node so as to narrow the search 

space [28].  

An approach to this problem is to approximate networks using heuristics, such as K2 [66], [64]. 

The K2 algorithm was proposed by Cooper and Herskovitz [21], [28]. K2 assumes that a priori all 

structures are equally likely and that cases in the data occur independently and are complete. 

Moreover, it assumes the presence of a node ordering and imposes a maximum number of parents 

(inbound edges) for each node. When these conditions are satisfied, K2 starts with an empty 

ancestor set for each node and incrementally adds links that maximize a score (CH-score, for 

example) of the resulting structure. The algorithm stops when no more ancestor node additions 

improve the score. In [11], I observe that although widely used, K2 is prone to local optima and 

may not find the globally best structure. Also, it relies on prior knowledge of the node ordering and 

so may return non-equivalent structures given different orderings.  

One strategy to find optimal orderings is to use meta-heuristics to search the space of orderings. A 

range of heuristic search techniques have been used to solve this problem such as: hill climbing

[46], [67], [68], genetic algorithms [42�45,69], [70], [71,72], genetic programming [41], simulated

annealing [47], [48], [73], Tabu search [74], ant colony optimization (ACO) [75], [76] and particle

swarm optimisation (PSO) algorithms [77], [78], [79], [80].  

A variation of the genetic algorithm approach is proposed in [81] and explored in more depth in 

[24] and [25]. In [24], Kabli proposes to "search the space of node orderings rather than the full 

space of structures". Using the node ordering as an input, the work described in [81] uses the 

existing well-performing greedy search algorithm K2. In [24] and [25], Kabli investigates the 

replacement of a full K2 search by fixed chain structures to evaluate orderings.  
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3.3 Evolutionary Computation for Bayesian Network Learning 

As illustrated above and in [21], [24,25,30,31], learning Bayesian networks is an NP-hard [63] task 

and the widely used K2 algorithm can be very expensive to run. Alterations to the K2 algorithm as 

well as various different algorithms have been tried over time. Alternative algorithms often heavily 

rely on evolutionary computation [82].  

A first approach, illustrated in ChainGA [24] is to use a different scoring function on the search 

space of nodes ordering to find a solution and then reconstruct the Bayesian network using K2

(deterministic greedy search).  Other approaches are making use of ant colony optimisation [83] or 

particle swarm optimisation [77] in order to learn the Bayesian networks structure [84], [85]. 

In this work, I applied approaches of genetic algorithms and ant colony optimisation, associated 

with a K2 learning algorithm to the problem at hand. Other evolutionary algorithms can be used 

with K2 and are referenced in the literature. Some of them are: evolutionary programming [41], 

evolutionary algorithms [86], [87] (steady state, hybrid steady state, elitist, hybrid elitist [43,72]) 

and estimation of distribution algorithm [88,89]. 

3.4 Nature-inspired Metaheuristic Algorithms 

Metaheuristic is a computational method whose aim is to optimise a problem using iterations in 

order to improve solutions towards a near-optimal solution, when provided by a measure of quality 

[90]. Modern metaheuristic algorithms often take their inspiration from nature; genetic algorithm

and ant colony optimisation are such algorithms that I tried on my problems. This section exposes 

the basics and origins of these algorithms. One of the early traces of this concept can be found in 

Robbins and Monro�s work on stochastic optimisation methods [91] as well as in Fermi and 

Metropolis�s work [92] on pattern search [93] in 1952. The first evolution process was carried out 

by Barricelli in 1954 [94]. It is in 1986 that Glover first mentioned the term metaheuristic [74]. 

Those algorithms are also part of the family of algorithms called stochastic optimization algorithms

[90], [95].

3.4.1 Genetic Algorithms 

In [96], Holland proposed the concept of genetic algorithm, which was then further developed in 

Goldberg�s book [97]. This search metaheuristic is an evolutionary algorithm that mimics the 

process of natural evolution.  
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A genetic algorithm assumes a population of individuals (also called candidate solutions) which 

are encoded by a genome (also called chromosomes).  These individuals are the solutions to an 

optimisation problem. Solutions can be represented in binary as strings of 0s and 1s, integers or 

orderings [98].  A genetic algorithm usually consists of 4 parts: 

• Initialisation: 

Usually, the initial population is generated at random. The number of individuals in the 

population depends on the problem and the cost of the evaluation. Then, the steps from 

selection, reproduction, crossover and mutation are repeated a number of times in order to 

create generations that evolve until the termination condition is satisfied.  

• Selection: 

For each generation, a portion of the population is selected and bred in order to create a 

new generation. The selection is fitness-based and measured by a fitness function, as 

dictated by the problem. The fitter solutions are more likely to be selected but are not 

selected by default in order to maintain better population diversity. It is possible here to 

rate the fitness of the entire population or to only rate a sample of the population. 

• Reproduction: 

The purpose of this step is to create the next generation of individuals. This is usually done 

by using two operators on the genome of selected individuals. 

Crossover: In this step, two or more parents are selected to create a child

individual (also called offspring). This is done by merging the genetic material 

from the parents using various means selected, depending on the problem and the 

previously chosen representation. Larrañaga et al. provide more information on 

crossover operators in [43].  

Mutation: This operator intends to maintain a genetic diversity in between 

generations. The mutation potentially alters one or more gene values in one 

individual�s chromosome. The probability of this change happening is set as a 

parameter to the algorithm. It is usually set low in order to maintain the effects of 

the evolution. A high probability of mutation would equate to a random search. 

Larrañaga and Kuijpers [98], as well as Eberhart and Shi [99], provide information 

on mutation operators. 

Alternative operators, such as regrouping, colonization-extinction, or migration

operators, are exposed by Akbari and Ziarati [100].
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• Termination: 

When a set criterion is attained, the evolution stops and the best candidate solution is 

returned as a result. The set criterion can be either, or a combination of: 

o a solution is found that reaches a minimum set fitness, 

o a fixed number of generations is reached, 

o a set time has expired, 

o the set of best solutions is not improving anymore,

o in some rare cases, a manual inspection (especially in the case of human-in-the-

loop algorithms [101], [102]). 

3.4.2 Ant Colony Optimisation 

In 1992, Dorigo proposed the ant colony optimisation algorithm [103], from his 1991 collaboration 

with Colorni and Maniezzo [104]. The algorithm is based on the real life ant behaviours. Initially, 

ants wander randomly and when they find food, they lay down a trail of pheromones marking the 

return path. When other ants find that trail, they will probably follow the path instead of travelling 

at random as there is likely to be food at the destination. They will then repeat the behaviour. As 

time goes, the trail evaporates and the ants are less likely to follow it. The longer it takes for an ant 

to travel a given trail or part of the trail, the more the pheromones evaporate. Over time, the 

pheromone density becomes more important on shorter trails. The evaporation system also avoids 

that all ants follow the same path and do not explore, which would lead to a premature 

convergence. The communication mechanism used between the ants is called stigmergy [105], 

[106]. It is a mechanism of indirect coordination between agents or actions as a form of self-

organization. It allows for simpler agents and decreases the need for direct communication. In the 

case of ants, communication between the agents (ants) is done using the map, by depositing the 

pheromones trails. In summary, the algorithm is based on the colony progressing through different 

states of the problem with each ant incrementally contributing to the solution.  

The ant colony optimisation algorithm typically repeats those 3 steps until the termination 

conditions are satisfied (plus one step for the initialisation prior to start the loop) [107]: 

1. Ant solutions construction:  

Each ant incrementally builds a solution by applying a state transition rule. The ant k

moves from the state i to state j, where ��� is the amount of pheromone deposited on the arc 

between the states i and j,���� is the weighting function that represents the heuristic 

information. The transitional probability � is as in Equation 2. 
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Equation 2: An example of Ant Colony Optimisation state transition rule [107]

���� 

���� �� ����
 ��!� �� ��!��!

" # $%�&' and ( # $%�&' are parameters to control respectively the influences of the 

pheromone trails and from the heuristics. Both ) and ! are positions not yet visited by ant 

*.  �!  being the sum of the expression with all ! not yet visited by ant *. The same 

algorithm parameters as those used on benchmark problems by Wu et al. [26] have been 

used in this work. 

2. Local search:  

This optional step allows for activities which are not possible with a single ant. For 

example, some usage performs a local search whose result can be used in the next step 

[107]. 

3. Pheromones update:  

This step is designed to increase the pheromone values for good or promising solutions as 

well as to decrease the pheromone values for bad solutions. All of the pheromones in the 

map are usually decreased by a phenomenon of virtual pheromone evaporation. This 

system avoids a premature convergence of the ants. Then the pheromone levels from the 

chosen set of good solutions are updated as in Equation 3 where +� # $%�&' is the 

evaporation rate and ,�� is the fitness function. 

Equation 3: An example of Ant Colony Optimisation pheromone updating rule [107]

-./ 0 �1 2 3��-./ 4 3�,./
This is a simplified depiction of the inner workings of ant colony optimisation meta-heuristic. As 

mentioned in [107], multiple variations exist depending on the problem at hand. 

3.5 Logistic Regression 

Logistic regression is a �widely used and accepted� method [108] that I am using here to 

benchmark the models obtained from this research. �The logistic function was invented in the 19th

century for the description of the growth of populations and the course of autocatalytic chemical 

reactions� [109]. It is supposed that the origin of logistic regression comes from the suggestion of 

Verhulst between 1838 and 1847 [110], [111], [112]. One was published in Correspondance 

Mathématique et Physique, edited by Quetelet in 1838 [110], [113]. 
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Logistic regression is used for prediction of the probability of occurrence of a value by fitting data 

to a logistic curve. It uses predictor variables that may be numerical or categorical. For my 

experiments, I am using multinomial logistic regression with a ridge estimator [114], based on 

Cessie and Houwelingen�s work [115], and the Weka�s implementation by Hall et al. [116]. Prior 

to using the algorithm, the missing values are replaced using a ReplaceMissingValuesFilter [117] 

which replaces all missing values with the modes and means from the training data. Moreover, the 

algorithm uses a NominalToBinaryFilter in order to transform the nominal attributes (variables 

with categories) into numeric attributes, as required by the logistic regression. 

Figure 5: An example of data points with a standard Logistic function fitted to them 

The logistic curve is a sigmoid curve as illustrated in Figure 5. 

In the course of this research, various data mining algorithms were tried as proposed in the data 

mining platform Weka. Logistic regression is used as a benchmark measure of what is possible

with regard to the forecasting accuracy because of its good success rate on the problem at hand, 

which allowed a comparison with the novel application of Bayesian networks presented in this 

work.  

3.6 Metrics of Quality 

Across this research multiple metrics of quality were used. In the first phase of the research, I 

wanted to evaluate the complexity associated with learning the model. (section 3.6.1). In the second 

phase of this research, I focused on evaluating the predicting power of the models built (section 

3.6.2). 
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3.6.1 Building the Models 

During the initial phase of this research, the aim was to verify the ability of the available 

computational resources to compute the models. Two measures were used to estimate the cost of 

the calculations performed: model learning time and number of evaluations made by the scoring 

function. The two are inter-dependent but the model learning time is easier to conceptualise for a 

human. In addition, the model learning time measure is accurate only when the entire test system is 

a controlled environment7. 

3.6.2 Models Evaluation 

I am using model evaluations for two purposes throughout this research: scoring the Bayesian 

network in order to determine its suitability and measuring the performance of the final models on 

new data as an estimation of the models� ability to forecast accurately. 

a) Bayesian Network Model Scoring 

There are many metrics available [118] such as Cooper-Herskovits (CH) [28], Bayesian Dirichlet

(BD), BDe, BDeu [119], Minimum Description Length (MDL) [31], entropy, Log-Likelihood (LL), 

Akaike Information Criterion (AIC), Normalized Minimum Likelihood (NML) and Mutual

Information Tests (MIT). As is recommended in [118], I am using the CH-score in this research. 

This scoring mechanism is defined as part of K2 but can potentially be replaced within the 

algorithm by other metrics of quality. One of the advantages provided by the CH-score is that it 

allows the scoring of both learned structures such as the ones learned by K2 and fixed structures 

such and Chain or Pyramid which are explored later in this work.  

The CH-score (Equation 4) captures the probability of a candidate network structure�56 given a set 

of data�7. Formally, the discrete probability ��56� 7� is given by:  

Equation 4: CH-Score [28]

��58� 7� 
 ��58��� ��� 2 &�9
:;�� 4 �� 2 &<9

�;���9
=>

���

?>

���




���

                                                     

7 For example, it requires the same computer configuration and the same background processor load. 
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Here @� denotes the number of possible different instances the parent of variable �� can take. �� is 

the number of values �� has, ;��� denotes the number of cases in the dataset D in which �� takes 

value k of its A� instance, when its parent ��� has its jth value. ;�� is the sum of all ;��� for all 

values A� can take.  

b) Forecast Accuracy 

There are many methods to measure the forecast accuracy of a classifier model. For example, 

Weka [116] proposes: percentage of correctly classified instances, Kappa statistic, Mean absolute 

error, Root mean squared error, Relative absolute error and Root relative squared error. For this 

work, I chose to use the percentage of correctly classified instances as the measure of accuracy as it 

is the simplest measure and allows the ability to present that measure of accuracy to the users of the 

forecasting model. 

There are three main techniques for testing a model: using the training data set, using a separate 

testing set or a split from the testing set or using a cross-validation technique. Using the training 

set, i.e. the same data used to create the model, is an easy solution but does not allow detecting if 

the model is over-fitting the data. If the model over-fits the data, its performance will be reduced 

when new occurrences, which were not in the initial dataset, are presented to the forecasting model. 

Using a separate testing set is a better solution if enough data is available as it tests the model for 

new occurrences that were not in the training dataset. The main drawback when the amount of 

available data is limited is that this method limits the amount of data available for the algorithm to 

build the model.  

For this research, I choose to use cross-validation. This is one of the most common methods [120]. 

Cross-validation is a technique which allows assessing how the results of a forecasting model are 

generalised to an independent dataset. Here, I used a 10-fold cross-validation. In essence, the 

dataset is split in 10 parts, 9 are used as training data and 1 is used as testing. This is repeated 10 

times total so that all data is used as training and testing an equal number of times. 

c) Concordance Index (C-Index) 

�The concordance index [...] quantifies the quality of rankings� [121], [122].  The index is the 

probability of concordance between the predicted and the real value.  

Assuming that the predicted variable has values such as B� C B� C D C B
. Considering each pair 

of example e1 and e2 with their value E� and E�, where E� and E� are different, Equation 5 
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expresses the probability���E� C E�� that the value�E� of the predicted variable for e1 is less than 

the value E� of the predicted variable for e2 with the corresponding probability���E� C E��. 

Equation 5: Probabilities for Concordance Index 

F�G1 C GH� 
 F�G1 
 I1 �J GH K I1� 4 F�G1 
 IH J GH K IH� 4 D4 F�G1 
 ILM1 �J GH 
 IL�����
F�GH C G1� 
 F�GH 
 IH �J G1 K IH� 4 F�GH 
 I1 J G1 K I1� 4 D4 F�GH 
 ILM1 �J G1 
 IL��

The Concordance Index NO is then calculated such that for each pair ��&� �P� where the real 

values��E� C EP�: 

Equation 6: Concordance Index calculation 

QR 
 LSTUVW�XY�Z[.W\�]^VWV��F�G1 C GH� K F�GH C G1���_X_[`�LSTUVW�XY�Z[.W\

The higher the concordance index (close to 1), the better is the forecast capability. 

Chapter Summary: This third chapter provided a review of the state-of-the art techniques 

for data modelling using Bayesian networks. The focus of this work is centred on search and 

score methods using the K2 scoring algorithm. Nature inspired and evolutionary algorithms 

are explored, with a specific focus on genetic algorithms and ant colony optimisation. In 

order to provide a benchmark, the standard Logistic regression algorithm is also approached 

in this chapter as well as the metrics of quality used to assess the results.  
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Chapter 4:  Evolved Bayesian Network Models of Rig Drilling 

Operations in the Gulf of Mexico 

I investigate the use of genetic algorithms and ant colony optimisation to induce a Bayesian 

network model for the real world problem of rig operations management. I sample from a new 

dataset that I name WRD1 (section 4.1), then use K2 with genetic algorithms (section 4.2) and ant 

colony optimisation algorithms (section 4.3) in order to learn Bayesian networks models (section 

4.4). 

4.1 Dataset - WRD1 

I assembled the WRD1 dataset in order to provide real-world typical data, relevant to the problem 

at hand, and to develop and test the algorithms selected for this research. I initially published this 

dataset in [123]. The name WRD comes from 3 sources of data assembled: Wells � Rigs

(specifications) � Deployments.  

Table 4 shows the variables that have been selected for the initial experiments. The data selected is 

based on: 

• data availability: the data is covered sufficiently within the available database,  

• relevance: suggested by their use in ODS-Petrodata�s tools and products and by the 

information categories published in [17],  

• readiness: need for transformation, discretisation, filtering or cross-referencing to reach a 

useable state.  

I believe the data in WRD1 to be a minimum representation of the problem at hand. However, I 

selected the data to represent what I believe are the best indicative elements of performance in the 

timeframe available.   

Overall I selected 17 key fields with sufficient data coverage as well as a reasonable number of 

distinct values. I maintained the number of fields selected low in order to have a tractable 

computation load during the model learning process.  When available, the fields selected inform the 

criteria considered by Osmundsen et al. in [17] and [124]. The computational load was, however, 

still significant as some of the variables have a large number of values. The fields selected were 

either taken directly from the database fields or derived from them when not directly usable in a 
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meaningful way8.  All the numerical fields9 are discretised in industry-meaningful categories, 

established using industry expertise, such as rig operating categories or usual operating ranges of 

particular equipment. Other fields have been left unprocessed and directly copied over to the 

dataset. The Wells-Rigs-Deployments dataset (version 1) � WRD1 � produced from this extraction 

contains 6670 rows containing related values of 17 factors. 

Table 4: WRD1 selected fields and variable value count for preliminary experiments 

Field Name Number of distinct values 

Well Phase 6 

Well Deviated 4 

Well Type 6 

Well Status 7 

Well Result 17 

Days On Location10 11 

Number Of Days To Total Depth10 10 

Total Vertical Depth10 18 

Total Footage Drilled10 18 

Average Feet Drilled Per Day10 16 

Shore Base 54 

Region 59 

Water Depth10 10 

Rig Type 6 

Harsh Environment Capability 2 

Rig Owner 72 

Rig Contractor 70 

4.2 K2 and Genetic Algorithms

In [43], Larrañaga et al. proposed a genetic algorithm to search the space of node orderings rather 

than the full space of structures. The initial individuals in the population are randomly created node 

orderings which are then evolved until a good ordering is found. In each generation, a pair of 

individuals is selected for crossover and mutation. They are selected according to their calculated 

fitness score within the population. Only one individual offspring is created and scored at a time 

and, if it is a better performer, it replaces the worst individual in the current population. If it is not 

better, it is simply dropped. The fitness of each ordering is calculated by running the greedy search 

algorithm K2 on that ordering and returning the score of the network structure found. For the 

purpose of this paper, I denote Larrañaga�s algorithm by K2GA. Figure 6 illustrates the K2GA

algorithm. The algorithm starts by generating a random population. It then evaluates each 

individual by running a K2 search through the ordering (genome of the individual). It then performs 

                                                     

8 For example, start and end dates are transformed into durations. 
9 For example, water depth or footage drilled. 
10 Discretised numerical field. 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

42 

a selection of two individuals and produces two offspring. If the new individual is fitter than the 

worst individual, this individual is inserted within the population instead of the worst individual. 

This is repeated until one of the termination conditions is satisfied (maximum number of generation 

or target fitness). 

Figure 6: K2GA [43]

In [24], Kabli et al. propose ChainGA, an alternative way of reducing the computational cost 

related to this by using chain structures to evaluate orderings, replacing the K2 expensive 

evaluation in K2GA. ChainGA follows a similar approach to K2GA: it searches the space of node 

orderings and assigns a value to each ordering based on the CH-score [28]. However, rather than 

using K2 to construct a network on each ordering, ChainGA evaluates a fixed chain structure. This 

low resolution evaluation phase terminates in a set of orderings that have the highest evaluated CH-

score found with this structure. Figure 7 illustrates the ChainGA algorithm. The algorithm starts by 

generating a random population. It then evaluates each individual by calculating a CH-score on the 

ordering (genome of the individual). It then performs a selection of two individuals and produces 

two offspring. If the new individual is fitter than the worst individual, this individual is inserted 

within the population instead of the worst individual. This is repeated until one of the termination 

conditions is satisfied (maximum number of generation or target fitness). After the evolution has 

ended, a selection of the best individuals is selected (typically 5 individuals, as recommended by 

Kabli et al.) and a K2 search is run with the orderings of those individuals to find the best 

performing ordering.  

In the Gulf of Mexico datasets (WRD1), several variables have large value sets, leading to 

significant computational cost using this approach. This is a cost incurred by all approaches that 
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use CH-score and is not specific to the K2GA and ChainGA algorithms. In ChainGA each variable 

has at most one parent, whereas in K2GA nodes have multiple parents. The fact that in this 

application parents can have many values means that the savings of ChainGA are greater than when 

a dataset has a limited number of parents, as is usual in standard datasets. For example, WRD1 has 

multiple variables with over 50 possible values when other standard datasets from [11] such as 

ALARM has 4 values, ASIA has 2 values and CAR has also up to 2 values only. Overall, ChainGA

generally results in a reduced computation time since the number of links to evaluate is fixed and 

is, in general, much smaller than that required by K2GA. In [24], Kabli et al. compared K2GA and 

ChainGA on a set of benchmark problems with known networks; trade-offs were observed between 

computation cost and the quality of the structure found. In the following section, I describe 

experiments with these algorithms run on the rig operations dataset.  

Figure 7: ChainGA [24]

In this research, I used the same algorithms parameters as used by Kabli et al. on benchmark 

problems. At this point in the research, I decided not to optimise the algorithm parameters to the 

dataset as I will use the algorithms with other datasets. 

4.3 K2 and Ant Colony Optimisation

There are a many published descriptions of ant colony optimisation (ACO) algorithms to learn 

Bayesian networks [75], [125], [126], [127], [85]. Typically, these approaches integrate with other 

greedy construction heuristic algorithms [128], [119], [68]. In this research, two algorithms were 

used, based on ant colony optimisation for Bayesian network structure learning, developed by Wu 
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et al. [26].  Those algorithms are based on two existing approaches: ChainGA and K2GA. They are 

named in [26] as ChainACO and K2ACO. I am using this ant colony optimisation approach to find 

the node ordering for learning an optimal structure. The main idea of the ChainACO approach 

comes from ChainGA. ChainACO uses the same two phases, depicted in Figure 8. In the first phase 

of ChainACO, the algorithm constructs chains using an ant colony optimisation approach instead of 

genetic algorithms. Then, the second phase applies K2 to the best orderings found and returns the 

best structure. Figure 8 and Figure 9 illustrate the details of ChainACO.  

Figure 8: ChainACO [26]  

Figure 9: ChainACO pseudo-code [26]

ChainACO: 

1. Initialise pheromone  

    Initialise heuristic information, select the starting nodes. 

2. Loop  

        Each ant is positioned on a starting node 

        Loop  

            Each ant applies a state transition rule to incrementally build a  

solution and a local pheromone updating rule 

        Until all ants have built a complete solution 

    A global pheromone updating rule is applied 

    Until termination criterion is met 
3. Implement K2 Algorithm on best solution to learn the best structure.  
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In K2ACO, the genetic algorithm from K2GA is similarly replaced by an ant colony optimisation 

search. The initial individuals in the population are the randomly created node orderings, which are 

then optimized by a colony of ants in this space until a good ordering is found. During the ant 

colony optimisation process, the fitness of each ordering is calculated by running the K2 search 

algorithm. On completion, the model is learned using the best ordering and K2. Figure 10 and 

Figure 11 illustrate the details of K2ACO. 

Figure 10: K2ACO [26]  

Figure 11: K2ACO pseudo-code [26]

ChainACO: 

1. Initialise pheromone  

    Initialise heuristic information 

2. Loop  

        Each ant is positioned on a starting node 

        Loop  

           Each ant applies a state transition rule to incrementally build a    

           solution and a local pheromone updating rule 

        Until all ants have built a complete solution 

    A global pheromone updating rule is applied 

    Until termination criterion is met 
3. Implement K2 Algorithm on best solution to learn the best structure.  
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4.4 Experimental Results 

Following the steps of the K2GA, ChainGA, K2ACO and ChainACO algorithms described above, I 

built the Bayesian network model that represents the data I have selected. 

The K2GA and ChainGA algorithm implementations were run 45 times each with 200 generations 

with a population size of 30 node orderings. Displacement mutation and cycle crossover rates were 

0.05 and 0.9 respectively. The selection used was a tournament selection of size 4. Those values 

were optimised empirically using test runs with 100 cases randomly selected from the dataset. The 

best scored resulting network was then chosen as the optimal model for the problem at hand. I ran 

each algorithm 45 times over the WRD1 dataset and compared the results using a two-tailed T-test 

to validate their significance.  

In this part, I start by reviewing the performance of each of the algorithms, as measured by the CH-

score. I assess the structure produced, looking at the variability between algorithms as they are 

assessed from an industry standpoint. I then review the edges frequencies using node juxtaposition 

analysis and explain observed differences between the algorithms.  

4.4.1 Structures Performances 

Figure 12 illustrates the Bayesian network models learned from data using the algorithms. In this 

figure, it is possible to see some matching relationships formed in the models created by K2GA, 

ChainGA, K2ACO and ChainACO. 

The mean structure scores for each algorithm are presented in Table 5. Significance tests were 

carried out on all pairs of means and the results are shown in Table 6. All differences are 

significant at or beyond a 99.95% confidence level. K2GA produces on average significantly better 

scoring structures than all of the other algorithms on the dataset. The best-ever individual for K2GA

scored -55534 compared to -60203 for ChainGA, -55781 for K2ACO and -55976 for ChainACO on 

the relative score scale (log of CH-score). Although significantly different, the results from K2ACO

and ChainACO are much closer to K2GA than ChainGA, and they also benefit from a smaller 

standard deviation, showing their stability compared to ChainGA�s.  
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Figure 12: Network representations for K2GA, ChainGA, K2ACO and ChainACO [129]
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Table 6 confirms that K2GA, K2ACO and ChainACO are much closer to each other, in terms of 

scoring, than ChainGA.  The difference in the mean score of all pairs formed from K2GA, K2ACO

and ChainACO is less than 1000, when all pairs involving ChainGA have a difference in mean 

score around 7000. It is to be noted that, as discussed in [24], the performance of ChainGA relating 

to K2GA appears to be highly problem-dependent. As confirmed by [26], I expect that the 

performance of K2ACO and ChainACO will also be problem-dependent. 

Table 5: Means and standard deviations of best individuals K2 scores 

N Mean Score Standard Deviation 

K2GA 45 -56197.44 205.2 

ChainGA 45 -66434.34 1237.7 

K2ACO 41 -56265.43 297.8 

ChainACO 40 -56556.41 254.7 

Table 6: Paired t-test of best individuals K2 score across all runs 

Pair N Paired Mean Score Paired Standard Deviation P 

K2GA-ChainGA 43 7721.67 954.36 < 0.0005 

K2ACO-ChainACO 40 308.39 109.75 < 0.0005 

K2GA-K2ACO 41 410.36 298.73 < 0.0005 

ChainGA-ChainACO 40 -6885.66 653.74 < 0.0005 

K2GA-ChainACO 40 694.27 234.91 < 0.0005 

ChainGA-K2ACO 41 -7220.71 658.14 < 0.0005 

Mean runtimes for each algorithm are presented in Table 7. The ChainGA runtime is about a 

quarter of the K2GA runtime. K2ACO requires a significantly different but closer time to ChainGA. 

However, ChainACO completes with runtimes divided by a factor of 10, when compared to 

K2ACO or ChainGA and a by a factor of 40, when compared to K2GA. There is, therefore, 

observed trade-offs between quality and computation time.  

Table 7: Time statistics per run over all runs 

 Average Standard Deviation 

K2GA 42h 28min 5h 9min 

ChainGA 11h 1min 1h 11min 

K2ACO 11h 50min 0h 41min 

ChainACO 1h 39min 0h 5min 

The score of the algorithms based on ant colony optimisation being much closer to K2GA than 

ChainGA, the loss of quality compared to the gain of time is statistically significant, but smaller 

than the loss of gain obtained by ChainGA. The long computation times required on this problem 

are in a large part due to the number of distinct values taken by many of the variables.  
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4.4.2 Expert Evaluation of the Model 

The best network structures produced by both K2GA and ChainGA have been presented to Rig and 

Wells data experts. All the algorithms discovered interactions between Rig Capabilities, Rig Types

and Water Depth nodes. The project�s experts highlighted that those are linked because specific rig 

types typically operate at a specific range of water depth. Another group of interactions is 

identifiable between Well Result, Well Status and Well Type. Only ChainACO omitted that link; 

however, as the search is non-deterministic, another run of ChainACO might find it. The Total 

Footage Drilled node also interacts with the node representing the Drilling Phase and the one 

representing the Footage Drilled per Day. In addition, there is a strong link between the Water 

Depth and the Rig Type nodes. Those will be logically related because of the technical abilities of 

specific rigs to allow them to work at specified depths. The relationships between the Rig Type, the 

Rig Owner and the Rig Contractor are justified by the propensity of rig owners and contractors to 

work together repetitively and to be specialized in specific type of rigs built on the same plans. 

These specific interactions have consistently been identified by all algorithms. The networks learnt 

also identify a relationship between the Shore Base and the Region where the oil drilling rig is 

operating. This is another logical geographical association showing the abilities of the algorithms to 

learn valid information and build Bayesian networks from data. None of the links uncovered may 

be novel to data experts but they provide me with a definite specific link that is supported by 

unbiased data analysis. 

The partial separation between Well-related and Rig-related variables (with the exception of 

geographical and water depth variables) suggests a potential difficulty in using the model as a 

predictor for Rig variables using Well data or for Well variables using Rig data. However, adding 

some key variables might solve that problem. Water Depth, originating from the Well database, has 

emerged as a key variable that correlates with the rig capabilities and, hence, confirms its position 

as a significant variable in the choice of a rig. In the Gulf of Mexico, that typically has a uniform 

geological profile, this may be a reasonable assumption; however, this will have to be explored 

further and confirmed on worldwide data where a range of geological profiles and water depths 

will exist. Alternatively, there may be additional variables in the Wells and Rigs database that do 

correlate more closely. Furthermore, I would expect geological and other variables to be relevant in 

more heterogeneous regions but they are usually scarcely available.   
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4.4.3 Node Juxtaposition Analysis 

Figure 13: Grayscale representation of node juxtapositions for Genetic Algorithms/Ant Colony 

Optimisation and K2/Chain algorithms on WRD1 

Figure 13 represents the occurrences of node juxtapositions as a greyscale grid. The vertical axis 

represents the first node; the horizontal axis represents the second node. The shade is darker 

proportionally to the number of occurrences of links across the graph. The greyscale levels are 

balanced across the four quadrants of Figure 13. 

The precedence of a node in an ordering means its eligibility for being within the parent set of 

nodes of Bayesian network structure. The Chain-based algorithms insert a directed edge between 

each ordered node and its immediate successor, i.e. from node juxtaposition in the ordering. The 

K2-based algorithms, when considering a particular ordered node, will first try inserting an edge 

from its immediate predecessor and so have a bias in favour of such edges. Therefore, 

consideration of which of these edges would result from the best orderings found in each run of 

each algorithm provides statistics which describe the distribution of search outcomes for this 

problem. Figure 13 shows that K2GA explores the search space more broadly, without focusing on 
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any specific link. This explains why it finds better solutions, but this is an expensive behaviour. 

ChainGA seems to focus the exploration on the most likely chains. However, its score is lower than 

that of other algorithms. K2ACO reduces even further the thoroughness of the search but performs 

better than ChainGA. The algorithms based on ant colony optimisation, on this problem, seem to be 

more stable than ChainGA, and also focus more quickly onto the most important part of the 

ordering, compared to genetic algorithm-based algorithms. ChainACO clearly focuses on some 

important nodes, converging quickly and consistently towards a good solution. I am observing here 

the effects of two choices: K2/Chain and genetic algorithm/ant colony optimisation.  

Given an ordering, K2 is free to add any parent-child link in its process of constructing a full 

Bayesian network for the purposes of evaluating the ordering. Chain, on the other hand, constructs 

precisely those parent-child links corresponding to nodes immediately juxtaposed in the ordering. 

Therefore, for Chain, the distribution of fitness (in phase 1) will be on those orderings that 

juxtapose strongly related variables, thus, focusing the search on this restricted set of orderings. 

The K2 approach will distribute fitness across a wider set of orderings and so a wider set of 

variable juxtapositions will still allow variables to be related in the structures K2 builds. Genetic 

algorithms tends to be a noisier metaheuristic than ant colony optimisation. Thus, as expected, 

genetic algorithms have a higher variance than the ant colony optimisation and one can observe a 

wider search distribution as well.  

4.4.4 Algorithm Analysis 

I applied both genetic algorithm and ant colony optimisation algorithm based on K2 and the Chain

model. This approach provides multiple orderings that the algorithms found when searching for the 

best networks using K2. These orderings are used to study the stability of edges found by the 

algorithms by counting them out of the best orderings listed for each algorithm at their final stage. 

The K2GA model is the original algorithm and still the best performing when observing the K2-CH

scores. Its results and performances are, therefore, used as a benchmark for the other algorithms. It 

appears that ant colony optimisation algorithms explore fewer variations of edges than the genetic 

algorithms and converge faster to a good solution. The solutions are significantly less well-

performing but the difference between K2ACO or ChainACO and K2GA is much less than the 

difference between ChainGA and K2GA. The best improvement brought by ant colony optimisation

when compared with genetic algorithms is the time of execution. Ant colony optimisation uses a 

fraction of the time genetic algorithms take to find a plausible network. This is due to ant colony 

optimisation algorithms reducing the number of factor evaluations by converging faster to a good 

solution. 
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Chapter Summary: This fourth chapter introduced the WRD1 dataset as well as the K2-based 

genetic and ant colony optimisation algorithms. The experimental results are analysed by 

reviewing the performances of each algorithms and then by considering expert�s evaluation 

of the model�s structures. This chapter also introduces the node juxtaposition analysis for 

viewing the frequency of nodes selected from the search and score approach. For the 

following parts of this research, even though ant colony optimisation-based algorithms 

performed faster than genetic algorithm-based algorithms, K2GA was chosen for the further 

experiments as it provides a higher quality of models and, hence, has a better chance at 

forecasting oil drilling rig performance accurately.  
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Chapter 5:  Drilling Performance Models of Rig Operations in the Gulf 

of Mexico 

In this chapter, I investigate the development of a larger model to enable the forecast of the average 

footage drilled per day of an oil drilling rig as a measure of its performance11.  I start by exposing 

in detail the assumptions made as well as the work done on the data available to build a more 

advanced data set that I name WRD2 (section 5.1). Then I review the forecast abilities of the 

models in order to support oil drilling rig performance forecast (section 5.2). 

5.1 Selection of Data for Model Building � WRD2 

For the creation of the second dataset, I consulted more extensively with the project experts from 

the Rigs and Wells department in ODS-Petrodata as well as with additional data analysts and 

reporters. A large number of available fields have been identified. I initially selected 138 fields12. 

Then, the data teams studied the selection in order to identify a number of key fields capable of 

indicating the performance of an oil drilling rig. Overall, the data selection was designed to have 

data coverage of the following categories in the datasets: financial data, rig availability measure, 

compliance with regulations, operational efficiency, rig expertise, rig specifications, well

information, and environment. 

Overall, the data selection was designed to have data coverage of the following categories in the 

datasets: financial data, rig availability measure, compliance with regulations, operational 

efficiency, rig expertise, rig specifications, well information, and environment. 

Table 8 presents a summary of the data selected for the creation of the WRD2 datasets. It shows the 

number of missing data points for a given field and how it relates in percentage to the overall 

dataset size and the number of distinct values in the field. The number of distinct values should be 

reasonable for categorical data (about 2 to 15) to keep the problem tractable. In the case of 

numerical data, the number of distinct values will be high. The four right-most columns of the table 

are only relevant for numerical data and provide the min, max, mean and standard deviation of the 

data over the given data field. These measures show the amplitude and key characteristics of the 

data.  

                                                     

11 This is only one measure within multiple possible metrics applicable to an oil drilling rig and it is not 
expected to depict in its entirety the performance of an oil drilling rig.  
12 Some of those are exposed in Table 8 and Figure 15. 
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Table 8: Data fields selected for WRD2 

Data Field # 

Missing 

% 

Missing 

# 

Distinct 

values 

Initial 

type of 

Data 

Min Max Mean Standard 

Deviation 

PreviousWellsPerYear 394 6% 11 Numerical 0 13 1.198 1.392 

PreviousWellsSince 
Upgrade  0  0% 82 Numerical 0 151 2.771 12.47 

PreviousWellsInRegion  0  0% 92 Numerical 0 201 26.569 26.535 

PreviousWellsInBlock  0  0% 50 Numerical 0 99 6.826 10.193 

PreviousWellsInField  0  0% 15 Numerical 0 24 0.416 2.222 

AverageUtilisation 854 14% 80 Numerical 0 98 63.055 17.245 

AveragePerformance 
FootagePerDay 1595 25% 3551 Numerical 10.2 5803 515.717 497.921 

DaysToTotalDepth 377 6% 162 Numerical 0 390 27.599 26.127 

ContractLength  0  0% 711 Numerical 3 6604 351.342 547.333 

RigAgeAtTimeOf 
Drilling 84 1% 47 Numerical 0 56 29.512 7.696 

WaterDepthMax  0  0% 115 Numerical 0 10000 1051.781 2148.835 

DrillingDepthMax 233 4% 22 Numerical 6500 40000 23642.81 4772.893 

RigType  0  0% 11 Categories         

MatOrInd  0  0%  2 Categories         

SlotOrCant  0  0%  2 Categories         

ZeroDischarge 3827 61% 
13

2 Categories         

VariableDeckload 
Operating 434 7% 212 Numerical 192 28660 9040.393 3318.133 

DualActivity 103 2% 2 Categories         

DerrickCapacity 388 6% 44 Numerical 200K 2500K 1254K 309K 

DrawworksHP 344 5% 23 Numerical 350 7000 2419.904 854.838 

MudPumpNumber 379 6% 4 Numerical 2 5 2.419 0.607 

MudPumpHP 155 2% 20 Numerical 310 3000 1613.037 237.098 

TopDriveTorque  0  0% 14  Categories         

WellType  0  0% 7 Categories         

WellPhase  0  0% 7 Categories         

WellDeviated 1565 25% 3 Categories         

WellHPHT 2  0% 2 Categories         

WellDaysActive 154 2% 183 Numerical 2 450 42.811 30.874 

TotalFootageDrilled 1544 25% 3961 Numerical 11 29519 10564.92 4007.37 

TotalMeasuredDepth 464 7% 4052 Numerical 515 33815 11469.09 4250.294 

TotalVerticalDepth 1592 25% 3689 Numerical 650 32060 10716.18 4032.1 

WaterDepth 1317 21% 929 Numerical 0 9727 552.43 1382.512 

HuricaneRisk  0  0% 2 Categories         

WellLocationType  0  0% 2 Categories         

Table 9 lists the data fields that the experts thought could inform the forecasting model but had 

insufficient data or were complex to populate. Those data are usually spread across multiple data 

tables and databases or have a large number of distinct values without possible categorisations. For 

example, this is the case of RigDesign that has 335 distinct values without any meaningful 

categories at that time. In some cases, the data required to populate the information was partially or 

fully missing. As most cases with those data show, the manipulations would have been too 

complex to extract meaningful data. For example, the Market category is dependent on the depth 

                                                     

13 In order to improve coverage, the company data experts  suggested that this field�s missing values are 
completed based on the rig building year such as �WHEN NULL If(rig>2005) Y else N�. 
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ratings and on the type of rig to be significant. One approach would be to collate those variables 

into one but the multiplication of the number of values would then generate too many distinct 

values for the technology used in this project to handle. It is assumed that the more data are 

available the better a forecast can be done. By reducing the amount of data used, the accuracy of 

the models produced is naturally reduced but their generation becomes tractable with the 

computing power available to this project. I do not think the modelling exercise presented here is 

invalidated by this manual selection as it provides an easy access to new information on oil drilling 

rig performance, which was difficultly available but to a few experts before the modelling exercise.  

The final assembled dataset contains 12998 data points and covers rigs and drillings from 1983 to 

2010. The dataset contains 9528 data points, informing the AveragePerformanceFootagePerDay

column that I am using in the experiments. 

Table 9: Fields not selected and data not available but of potential interest for WRD datasets
14

Name Missing data Complex data 

Average Day Rate X ��

Average Price Per Foot Drilled X ��

Market Category �� X 

Utilisation of Fleet at Time of Contract �� X 

Utilisation of Fleet for Rig Type at Time of Contract �� X 

Average Feet Drilled Per Non-(idle/WOW) Day X ��

% Days Waiting on Weather (WOW) for Rig over Period of Time X ��

% Days Waiting on Weather (WOW) in the Region the Well is 
Operating at the Season the Well is Operating X ��

Design Company �� Too many un-
groupable 

distinct 
categories 

Rig Design ��

Operator ��

Recent Management Change X ��

Time Since Last Well �� X 

Top Drive Model �� X 

Bulk Mud X ��

Storage Mud Liquid X ��

Bulk Cement X ��

Last Upgrade Year �� X 

Overrun Rates X ��

Location (Latitude, Longitude) �� X 

                                                     

14 More details in the Glossary. 
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5.1.1 The AveragePerformanceFootagePerDay Field: dataset variations and 

category optimisation of the forecasted performance

Based on a range of utilisation scenarios defined by ODS-Petrodata offshore oil drilling rigs expert 

Robert Steven (section 2.3), I defined the aim of this work to be the forecast of the average 

performance of oil drilling rigs (AveragePerformanceFootagePerDay). The scenarios are all 

relying on rig performance or well duration. Performance and duration are intrinsically linked such 

that the performance of a rig on a given well is the drilled distance divided by its duration (in days). 

Using AveragePerformanceFootagePerDay as the targeted variable to forecast helps maximising 

the business use of the models. This is also comparable to the measure of drilling efficiency, 

according to the Norwegian industry standard (drilling meters per day) described in [124]. The data 

is based on the Gulf of Mexico market so the equivalent measure is in �drilling feet per day� 

instead.  

AveragePerformanceFootagePerDay being the most important field of the dataset, � as it is the one 

I want to forecast � I empirically explored a few choices of categories before to select the set of 

performance to use in the dataset. Some variation of this dataset has been produced for 

experimental purpose. I call them WRD2.0, WRD2.1, WRD2.2 and WRD2.5. Each sub-version 

number in the name of the dataset represents a variation of the categories. The datasets are mostly 

the same, with the only exception of the AveragePerformanceFootagePerDay field that has 

different categories. Those categories were empirically determined in order to find a �natural� 

categorisation of the data. Various categories for AveragePerformanceFootagePerDay have been 

experimented with in order to improve the prediction accuracy by identifying categories which 

would closely match the unknown natural performance categories.  

Ultimately, the following categories have been tested: 

• WRD2.0 uses 0-300; 300-700; 700-1000; 1000+. 

• WRD2.1 uses 0-300; 300-600; 600-800; 800+. 

• WRD2.2 uses 0-400; 400-600; 600-900; 900+. 

• WRD2.5 uses 0-200; 200-300; 300-400; 400-500; 500-600; 600-700; 700-800; 800-900; 

900-1000; 1000+. 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

58 

Those variations are the unique difference between WRD2.0, WRD2.1, WRD2.2 and WRD2.5. 

Table 10, built using Weka�s BayesNet
15 algorithm�s results, shows that WRD2.0 promises better 

results regarding the forecast accuracy abilities of the models. BayesNet is Weka�s implementation 

of the K2 algorithm. 

Table 10: WRD2.x Bayesian and Logistic testing 

dataset 
% classified correctly

K2 Bayesian16  Logistic 

WRD2.0 77.97 % 79.60 % 

WRD2.1 73.46 % 74.85 % 

WRD2.2 73.05 % 75.40 % 

WRD2.5 49.57 % 49.46 % 

The WRD2.5 dataset has a different number of categories (10 categories) and, hence, cannot be 

directly compared in its prediction accuracy for the purpose of this empirical study of the 

categories of performance. The accuracy of models built with WRD2.5 in predicting the exact rig 

performance category is lower than with WRD 2.x but I found it provides more useful information 

to the user by providing more specific categories. Table 11 is an example of how the categories 

could be combined when presenting the forecast results to the user in order to maintain a higher 

level of accuracy than presented for WRD2.5 in Table 10. This is an improvement open for future 

experimentation. 

Table 11: An example of WRD2.5 categories possible presentation 
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15
BayesNet was run with the following parameters: 4 parents, no NaiveBayes initialisation, no Markov 

blanket correction, same random ordering for all 4 datasets. 
16 We note that the ordering was not optimised but chosen at random. We could obtain better accuracy from 
optimising the ordering but this is not the aim of that specific test. 
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5.1.2 Categorising the Data 

The Bayesian network technologies used in this work require discrete categories and do not support 

continuous data. In this section the ways to create meaningful categories for the algorithms to use 

are reviewed. In addition to the expert advice, two methods (discretisation and clustering) have 

been used to inform the creation of meaningful categories for the data. The output of these 

categories has then been manually interpreted in order to obtain categories that are as meaningful 

as possible for the industry, data-wise and for humans. All the continuous fields have been run 

independently through a clustering algorithm and through a standard discretisation algorithm. 

Categories have then been hand-picked based on the 3 sources of information17. There are multiple 

techniques available for discretisation and automated learning of categories. Some are explored by 

Garcia [130]. �Discretisation is an essential pre-processing technique used in many knowledge 

discovery and data mining tasks� [130]. 

a) Expert Guided Data Categorisation 

Following the data selection, some suggestions of data categories have been provided by the data 

experts (Table 12). Those categories are broadly based on the categories used within the company 

tools. The categories provide a starting point in transforming the continuous data into discrete 

categories through the process of discretisation. The categories provided are, however, subjective 

and no clear rationale could be provided by the expert. This is why it was decided to use 

discretisation and clustering techniques to complement that information.  

                                                     

17 Those are listed in Table 13 and Table 14 (pages 82 & 83). 
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Table 12: Expert suggested categories for WRD2 selected data 

Name Categories 

PreviousWells 

 0-5 / 5-10 / >10 per Wells/per Year  

PreviousWellsSinceUpgrade 

PreviousWellsInRegion 

PreviousWellsInBlock 

PreviousWellsInField 

AverageUtilisation + / = / - 

AveragePerformanceFootagePerDay + / = / - 

ContractLength 0-3 / 3-6 / 6-12 / 1y+ 

RigAge NEW / AVG / OLD (depending on market category) 
  LastUpgradeYear 

WaterDepthMax 
(WaterDepthMaxAsOutfittedNow) 

Standard = water depth <3000 Deepwater = water depth >3000<7500 
Ultradeepwater = water depth >7500 

DrillingDepthMax 20K-,20K-25K, 25K-30K, 30K+  

MatOrInd Y/N/NULL 

SlotOrCant Y/N/NULL 

RecentManagementChange Y/N/NULL 

ZeroDischarge Y/N 

DualActivity Y/N 

DerrickCapacity Low,[?], high 

MudPumpNumber 2,3,4-5 

MudPumpHP + / = / - 

WellDaysActive 30-,30-60,60-90,90+ 

TotalFootageDrilled 10K-,10-15K,15-20K,20+ 

TotalMeasuredDepth 10K-,10-15K,15-20K,20+ 

OperatorID - / = / + 

WaterDepth 
Standard = water depth <3000 Deepwater = water depth >3000<7500 
Ultradeepwater = water depth >7500 shallow water categories: 0-400 or 
0-300,300-400 

HuricaneRisk Y/N 

b) Discretisation 

Discretisation is the process of converting continuous data into nominal data, categories or 

intervals. For this project, I approached the discretisation problem using Weka�s [116] 

discretisation feature. This is an instance filter that discretises a range of numeric attributes in the 

dataset into nominal attributes using a simple binning algorithm. The range of continuous values is 

partitioned into segments of the same size. Each segment represents a bin, and numerical values are 

assigned to the bin representing the segment covering the numerical value. This is similar to the 

equal-width discretisation from [131]. The �findNumBins� [132], [133] option was used in order to 

let the algorithm select an optimal number of categories. This is done by the algorithm using a 

leave-one-out cross-validation. It searches for the best entropy given the data distribution [134].  

Table 13�s middle section shows the boundaries of categories as found by the Weka discretisation 

algorithm (page 66). Figure 15 and Figure 16 (pages 62-65) show the pre- and post-discretisation 

distribution of some of the data. 
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c) Clustering 

A cluster is a �group of similar things [...] occurring closely together� [135]. In this work, I am 

using a clustering algorithm in order to gain insights of natural occurrences of groups of attribute 

values in the data. This provides a possibility of discovering natural categories within the data. For 

example, TopDriveTorque in Figure 15 (b) seems to shows 3 natural categories all the data seems 

to fall into. The clustering algorithm automatically identifies those categories whether they can 

currently be explained by data experts or not. 

I used the Expectation-Maximisation (EM) [136] clustering algorithm in Weka to cluster values of 

the dataset variables one by one, independently. The algorithm is detailed in Figure 14.  

Expectation-Maximisation is a method used to find maximum likelihood of parameters in statistical 

models. It is used to compute the maximum likelihood estimate in the presence of missing or 

hidden data. It computes a probability distribution for each instance which indicates the probability 

of the instance belonging to each of the clusters [137]. Expectation-Maximisation can decide how 

many clusters to create by cross validation, or the user may specify how many clusters to generate. 

In this case, I choose to let the algorithm find the number of clusters to create. 

Figure 14: Expectation-Maximisation clustering algorithm [136]

Table 14�s top section shows the seeds found by the Expectation-Maximisation algorithm and the 

bottom part of the table shows the cluster boundaries that have been associated with each seed. The 

boundaries have been calculated by finding the middle value at an equal distance from each seed 

found by the algorithm. Table 13�s top section shows the same category boundaries calculated from 

the seeds found by the Expectation-Maximisation clustering algorithm from Weka [116]. 

The cross validation performed to determine the number of clusters is 

done in the following steps: 

1. the number of clusters is set to 1; 

2. the training set is split randomly into 10 folds; 

3. EM is performed 10 times using 10 folds cross-validation; 

4. the loglikelihood is averaged over all 10 results; 

5. if loglikelihood has increased the number of clusters is increased 

by 1 and the program continues at step 2. 

The number of folds is fixed to 10, as long as the number of instances 

in the training set is not smaller 10. If this is the case the number 
of folds is set equal to the number of instances. 
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discretisation data distribution graph as visualised in Weka 

François A. Fournier



Probabilistic Modelling of Oil Rig Drilling Operatio

Figure 15:  (b) Pre-discretisation data distribution 
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discretisation data distribution graph as visualised in Weka

François A. Fournier

raph as visualised in Weka
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Figure 16: (a) Post-discretisation data distribution 
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discretisation data distribution graph as visualised in Weka 

François A. Fournier
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Figure 16: (b) Post-discretisation data distribution 
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discretisation data distribution graph as visualised in Weka

François A. Fournier

raph as visualised in Weka



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

66 

Table 13: Discretisation and cluster values to manual category selection 
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Table 14: Clustering seeds and boundary values identified for data categorisation 
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5.2 Experimental Exploration 

In order to build the models, the new Bayesian models need to be learned from the WRD2.0

dataset. As shown in chapter 4, K2GA is the algorithm that gives the best chance of obtaining a 

good result. The drawback is the computational cost associated with running the full score for each 

individual. The computational cost of learning a bigger model has been greatly reduced by 

carefully reducing the number of categories for each variable (section 5.1.2). The computational 

capacity has been greatly reduced by swapping the proprietary K2 implementation used previously 

with the one implemented in Weka [138]. Both of these implementations are based on the same 

publications [28], [139]. There are multiple advantages to use the Weka implementation: it is much 

more efficient at calculating the CH-score (even if it uses much more memory) and, hence, allowed 

performing more runs in the allocated time. It�s diffusion by the University of Waikato makes it 

more widely accessible to the community and, thus, would allow the reproduction of this project�s 

results more easily. It has been tried and tested for many years now and, hence, supports a high 

confidence of the results generated. Finally, it provides more parameters and additional features to 

experiment with. In this research, I have used Weka programmatically to ensure a full control over 

the workings of the algorithms at any time and in order to have the ability to add the solution space 

exploration algorithms (genetic algorithms and ant colony optimisation algorithms) around the 

Weka implementation of Bayesian networks score calculation. In this section, I explore the set of 

parameters (section 5.2.1) and then run K2GA over the dataset with the same genetic algorithm

parameters as with WRD1 but with an increased number of individuals and generations (section 

5.2.2). This chapter is finished by reflecting on the results obtained (section 0) and comparing the 

results with a node juxtaposition graph (section 5.2.3). 

5.2.1 K2 Parameter Search 

The 4 main parameters for Weka�s K2 implementation are:  

• the scoring method to be used,  

• the initialisation method (no link or NaiveBayes initial structure18),  

• the option for a Markov blanket correction, 

• the maximum number of parents allowed.  

                                                     

18 NaiveBayes is a simple Bayesian network with a link from the classifier node to every other node. 
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Bouchaert [140] specifies about the Markov blanket correction that �after a network structure is 

learned a Markov blanket correction is applied to the network structure. This ensures that all nodes 

in the network are part of the Markov blanket of the classifier node.�  

The maximum number of parents allowed for each node in the network is an important parameter 

as the more parents a node has, the more complex the calculations are. I tested with 1, 2, 4, 6 and 8 

parents. Using 8 parents proved to be not tractable19 on the systems and was then removed from the 

list of parameters.  

As with the previous implementation of K2, the algorithm performance is dependent on a good 

ordering being provided to the algorithm. The ordering is a description of the order of the variables 

available to the algorithm that should be considered. As K2 attempts to build links between nodes, 

taking them one at a time and linking only forward in the list in order to prevent cyclic graphs, the 

algorithm is, then, constrained by that ordering and some of the links are impossible with some of 

the orderings. In this experiment, I picked one random ordering that was kept for the length of the 

empirical parameter search.  The available scoring algorithms are the CH
20 (Cooper-Herskovitz), 

BDeu (Bayesian-Dirichlet uniform likelihood-equivalence), MDL (minimum description length), 

entropy and AIC (Akaike information criterion).  

Table 15 shows the 80 combinations of parameters that were tested on K2. The best combination of 

parameters for the dataset used in this research seems to be the CH-score with neither a NaiveBayes

initialisation nor a Markov blanket correction. On the given ordering (randomly generated), the 

CH-score co-varies with the forecast accuracy from the learned model. Two main factors seem to 

improve the results of K2 on the dataset: the choice of measure and the maximum number of 

parents the algorithm can add. Some parameters seem to have a strong impact on the ability of K2

to learn the network adequately. The Bayesian network initialisation is active in most of the poorly 

performing combinations. Moreover, the number of parents, when set low21, prevents a good 

performance in learning the network.  

                                                     

19 It was requiring over 10 GB RAM and brought the entire operating system close to collapse. 
20

CH-score is named �BAYES� in Weka. 
21 It is to be noted that when set to 1, the resulting search is similar to Chain from ChainGA. 
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Table 15: Weka K2 parameter search for WRD2.0 
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5.2.2 K2GA Runs 

The Bayesian network models that represent the data from WRD2.0 were built following the steps 

of K2GA, integrating Weka�s K2 implementation (BayesNet). As with WRD1 in chapter 4, the 

K2GA algorithm was run with 200 generations with a population size of 30 node orderings. 

Displacement mutation and cycle crossover rates were 0.05 and 0.9 respectively. The selection 

used was a tournament selection of size 4. The K2 parameters were to use the CH-score, no 

NaiveBayes initialisation, no Markov blanket correction and to limit the maximum number of 

parents for a node to 6. This experiment (experiment 1) was run 100 times. In the second 

experiment, I then ran the same algorithm with 1000 generation and a population size of 100 node 

orderings. This experiment (experiment 2) was run 100 times.  

Table 16: WRD2.0 experimental run score results 

  Worst Fitness Average Fitness Best Fitness Min / Max 

WRD2.0 (30/200) 
Experiment 1 

Mean -186869 -186499 -186069 
 -187770/-185019 

St. Deviation 386.23 375.16 389.21 

WRD2.0 (100/1000) 
Experiment 2 

Mean -185448 -185273 -185064 
-186098/-184385 

St. Deviation 295.33 285.65 295.69 

Table 17: t-Test 2-sample assuming unequal variances for WRD2.0 

experiment 1 experiment 2 

Mean -186068.90 -185063.74 
Variance 151488.03 87434.93 
Observations 100 100 
df 185 
t Stat -20.56 
P(T<=t) one-tail 5.68e-50 
t Critical one-tail 1.65 
P(T<=t) two-tail 1.13e-49 
t Critical two-tail 1.97 

Table 18: WRD2.0 experiments, measures of model quality 

CH Bdeu MDL Entropy AIC 

correctly 

classified C-Index Correlation 

experiment 1 -185019.0306 -3940840.935 -2132204.403 -549433.2745 -895460.2745 78.1124 % 0.5424772 0.7720156 

experiment 2 -184384.5946 -3396656.382 -1879578.172 -503301.3919 -804184.3919 78.6231 % 0.5424772 0.7775245 

The structure was assessed, looking at the variability between the best ordering for each experiment 

from the industry�s standpoint. Then, the edges frequency charts were reviewed and the observed 

differences between the algorithms were explained. The mean structure scores for each algorithm 

are presented in Table 16. Significance tests were carried out on the pair of means and the results 

are shown in Table 17. The differences between the two experiments are significant, beyond a 

99.95% confidence level. According to the CH-score results, experiment 2 produced on average 

significantly better scoring structures than experiment 1. The best-ever individual for experiment 1
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scored -185019 compared to -184384 for experiment 2 on the relative score scale (log of CH-

score). Table 18 shows the other scores for both experiments as well as the ratio of correctly 

classified instances. This confirms that the improvements provided from the genetic algorithm

evolutions continue to improve with additional generations and more individuals. As observed in 

the preliminary experiments, even though I am using only one algorithm in this set of experiments, 

there is a trade-off between model quality and computation time. Table 18 also shows the C-index

and the correlation measure of the forecast with the real value for the best ordering of each 

experiment. The C-index remains exactly the same, indicating that the forecast power is stable for 

each model. For those results, as with the rate of correctly classified instances, the correlation of 

forecast and real value improves when the CH-score improves. Analysis of Data Relationships as 

Revealed by Bayesian Network Models  

One of the advantages Bayesian networks models provide, as opposed to Logistic models, is the 

possibility to analyse the strength of links. The best networks from experiment 1 and experiment 2 

using K2GA are displayed in Figure 17, Figure 18, Figure 19 and Figure 20. Both algorithms 

discovered interactions between specific nodes. AverageUtilisation�MudPumpNumber,

AverageUtilisation�TopDriveTorque, are expected to be linked because the difference in the rig 

specification leads to a higher desirability on the market and to a higher utilisation. 

DrawworksHP� MudPumpNumber, DerrickCapacity�MatOrInd, RigType�SlotOrCant, 

MatOrInd�ZeroDischarge and DerrickCapacity�MudPumpNumber are all related to the specific 

range of equipment outfitted on certain models of rigs. Similar models of rigs have similar 

specifications. DrillingDepthMax�MudPumpNumber are related to the capacity of a rig relative to 

its specification. WaterDepth�WaterDepthMax are linked because a rig will often be used based 

on its technical capacity. The link between ContractLength and PreviousWellsInBlock is due to the 

availability of a rig. It is typical for a rig performing longer contracts to have less availability and, 

thereby, less previous experience in a given location as it navigates in between blocks less often. 

WellDeviated�WellType and WaterDepth�WellLocationType are related owing to the nature of 

oil drilling rig operations. Specific well types such as bypass wells, for example, have more 

tendencies to be deviated than others. Well location relates to a surface well or a kickoff well22. 

Furthermore, the water depth will impact the feasibility of drilling a kickoff well. 

PreviousWellsInBlock�WellType are linked because of the nature of the well drilled. Exploration 

wells tend to be drilled where nobody has drilled before, hence, PreviousWellsInBlock will be low 

for that WellType. Finally, DaysToTotalDepth�TotalFootageDrilled is a logical link provided that 

in most cases the deeper a rig needs to drill, the more time it will take.   

                                                     

22 Surface well is drilled from the ocean floor, kickoff is drilled from the side or bottom of an existing well. 
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Figure 17: Overview of WRD2.0 experiment 1 best network score results
23
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Figure 18: Link details of WRD2.0 experiment 1 best network score results 

                                                     

23 Ordering is 11,18,7,15,14,16,21,13,17,33,5,8,24,2,19,29,9,4,3,23,20,6,34,12,28,26,10,22,32,30,1,27,31,25 
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Figure 19: Overview of WRD2.0 experiment 2 best network score results
24
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Figure 20: Link details of WRD2.0 experiment 2 best network score results 

                                                     

24 Ordering is 33,11,13,18,15,16,14,6,20,24,4,7,12,26,32,29,21,19,30,5,23,8,25,17,9,10,1,27,34,31,22,28,3,2 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

75 

5.2.3 Node Juxtaposition 

Figure 21 represents the occurrences of node juxtapositions as a greyscale grid. The vertical axis 

represents the first node; the horizontal axis represents the second node. The shade is darker 

proportionally to the number of occurrences of node juxtapositions within the best ordering of each 

run for all four algorithms. As expected, experiment 1 and experiment 2 are exploring the search 

space in a similar way, consistent with K2GA in Figure 13. On the right hand side of Figure 21, 

experiment 2 shows more signs of convergence (more contrasts) of the best individuals to specific 

node associations. This is explained by the fact that experiment 2 has a bigger population and 

evolves for longer. I estimate that this is the start of a convergence and that the best orderings from 

experiment 2 are closer to the search space optimal solution than the best orderings from 

experiment 1. 

Figure 21: WRD2.0, experiment 1 & 2 best ordering node juxtaposition graphs

Chapter Summary: This fifth chapter introduced the second dataset used in this research as 

well as its variations: WRD2.x. The building of the dataset was a big part of the work done 

for this section of the research and was described in details, including descriptions of the 

target field to forecast � average performance footage per day � and the methods used for 

categorising the data. After optimising for algorithms parameters, the chapter then reviewed 

the results for the K2GA runs and analysed the relationships identified by the Bayesian 

networks models in the data.   

Experiment 1 Experiment 2
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Chapter 6:  Result Validation, Scoring Variations and Feature Selection 

In this chapter, I explore the validation of the models obtained and then perform additional 

experiments in view of improving the project�s results. I first look at the results from lower scored 

orderings in order to compare the score results with the forecasting abilities of the models, based on 

a standard 10-fold cross-validation test (section 6.1). I proceed to compare the forecasting abilities

provided by alternative modelling techniques (section 6.2). Then, I compare the forecast results 

with an alternative simplified forecasting technique (section 6.3.1) and with average and majority 

values from the model (section 6.3.2). Subsequently, the additional experiments performed are 

reviewed. The first one is a study of the covariance of the landscape of random orderings� CH-

scores calculated with 5 different structures: K2, Chain, Pyramid, BlockH and BlockV (section 6.4). 

The Pyramid and Block algorithms are novel fixed structure Bayesian network scoring algorithms 

elaborated during this research. The second experiment performs a search for a reduced set of 

variables to forecast the AveragePerformanceFootagePerDay measure of oil drilling rig 

performance. This is known as feature selection (section 6.5). 

6.1 Lower Scored Ordering Cross-validation Forecast Ability  

I run a comparative analysis of the accuracy of the models generated using a 10-fold cross-

validation and the CH-scores from K2. Figure 22 shows the scores and the accuracy from each of 

the best node orderings from experiment 1 and experiment 2 from chapter 5. The correlation 

coefficient between the two curves is -0.0228. I propose the hypothesis that CH-score might not be 

the best measure of adequacy for determining the worth of a network when considering the dataset. 

However, no better alternative has been identified at this time.   

I extracted the most accurate network from the best node from the list of node orderings found in 

experiment 1 and experiment 2. Its score is -185276 but its accuracy is 79.18%. 

From this selection of best scores, I extract the model with the best cross-validation results. This 

network is shown in Figure 23 and Figure 24. One can first observe that the shape is slightly 

different to the other networks while the shapes from the networks issued from experiments 1 and 2 

are relatively similar. However, all of the links that both experiment 1 and experiment 2 best scored 

networks found were also found by the best accuracy network shown here. All three networks have 

a similar number of links with 98 and 104 respectively for experiments 1 and 2 best scored 

networks and 102 for this most accurate network. 
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Figure 22: CH-Score and model accuracy correlation analysis (matching instances sorted by 

descending CH-score) 

Figure 23: Shape of best network based on % correctly classified instances from a 10-fold cross-

validation
25

                                                     

25 Ordering is 32,29,34,11,4,28,15,26,18,13,16,19,14,25,23,24,7,17,21,27,30,8,20,12,31,22,10,9,33,1,6,2,5,3 
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Figure 24: Link details of best network based on % correctly classified instances from a 10-fold cross-

validation 

6.2 Alternative Modelling Techniques 

Using Weka data mining tool, I tested other algorithms on the WRD2.0 dataset. The results of the 

testing for all the algorithms are displayed in Table 19 for WRD2.0 and in Table 20 for WRD2.5. 

The Logistic regression algorithm and the Bayesian network learning algorithm are consistently 

performing better than most other algorithms listed in Table 19 and Table 20. The better accuracy 

of the forecasts on WRD2.0, when compared to WRD2.5, can be explained by the complexity of the 

attributes to predict. WRD2.5 has 10 categories but WRD2.0 has only 4 categories making it an 

easier set of values to work with. The other algorithms are performing well on the datasets: J48
26

and DecisionTable. They could be investigated in future work. All four algorithms (Logistic, 

BayesNet, J48 and DecisionTable) are more complex algorithms than the others in the list with the 

                                                     

26 J48 is an open source Java implementation of the C4.5 algorithm in Weka. C4.5 is a decision-tree building 
algorithm described in [215]. 
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exception of LBR. However, LBR was unable to complete a run in the time available to run this 

experiment (7 days) when used on the WRD2.5 dataset.  

Table 19: Accuracy on predicting AveragePerformanceFootagePerDay from WRD2.0 with various 

Weka algorithms and 10-folds cross-validation 

Algorithm Cross validation, predictive accuracy on 

WRD2.0 

weka.classifiers.functions.Logistic 79.60% 

weka.classifiers.trees.J4826 79.26% 

weka.classifiers.bayes.BayesNet27 79.18% 

weka.classifiers.rules.DecisionTable 78.80% 

weka.classifiers.lazy.LBR 77.42% 

weka.classifiers.rules.OneR 71.37% 

weka.classifiers.lazy.IBk (k=1) 66.95% 

weka.classifiers.trees.DecisionStump 64.70% 

weka.classifiers.bayes.NaiveBayes 60.70% 

weka.classifiers.rules.ZeroR 54.79% 

Table 20: Accuracy on predicting AveragePerformanceFootagePerDay from WRD2.5 with various 

Weka algorithms 

Algorithm Cross validation, predictive accuracy on 

WRD2.5 

weka.classifiers.functions.Logistic 49.46% 

weka.classifiers.rules.DecisionTable 49.70% 

weka.classifiers.bayes.BayesNet27 49.62% 

weka.classifiers.trees.J48 49.02 % 

weka.classifiers.bayes.NaiveBayes 33.24% 

weka.classifiers.lazy.IBk (k=1) 36.54% 

weka.classifiers.rules.OneR 39.72% 

weka.classifiers.rules.ZeroR 17.08% 

weka.classifiers.trees.DecisionStump 22.96% 

6.3 Comparing Results with a Simulated �Manual� Approach 

When interviewing the experts, I obtained a list of the most important data items they would use to 

forecast oil drilling rig performance and compared the results of using only those data items with 

the results from the models. This reduced collection of fields is presented in Figure 25 and is 

referred to as �base fields� below. 

In this part I review a simple forecast method based on the base fields (section 6.3.1). Then I 

compare the results of the model-based forecast from this research to those simple forecasts 

(section 6.3.2). 

                                                     

27 With the best ordering found in part 6.1 pre-set. 
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Figure 25: Base fields used by experts to evaluate oil drilling rig performance 

6.3.1 NoModel Classification 

In order to evaluate the approach taken in this research against the current practice of what experts 

do when performing an examination of the data, I created a �NoModel� classification algorithm. 

This algorithm is designed to simulate the thought-process data experts are using to produce 

estimates of rig performance for a given situation. This algorithm, first, compares each data row 

with the average (mean) category of all other rows with same base fields� values, then performs the 

same calculations but using a �majority vote�. The �majority vote� method uses the category the 

most represented in the subset of data rows as the value forecasted.  

Figure 26 presents the results from both the average and the �majority vote� methods. One can 

observe that using a �majority vote� method performs better as a predictor than using the average of 

the values observed. However, the �majority vote� still has a lower result than the models generated 

by this project as there are 296 cases in the dataset that do not have any additional data matching 

the �base fields�. The models, thus, lack the data to provide any forecast for their performance. 

categories right wrong no data accuracy

0-300 1679 649 136

300-700 2982 2040 128

700-1000 10 1324 17

1000+ 2 416 15

0-300 856 1472 136

300-700 4358 664 128

700-1000 23 1311 17

1000+ 7 411 15

49.72%
Average 

NoModel

Majority 

NoModel
55.80%

Figure 26: NoModel forecast results 

6.3.2 Average and Majority Vote Forecast Validation 

This analysis is comparing the forecast from the Bayesian model and the �NoModel� forecasted 

solution. As with the previous analysis, one can see that a �majority vote� system performs better 

• MudPumpHP 

• TotalMeasuredDepth 

• TopDriveTorque 

• WellPhase 

• WellLocationType 

• PreviousWellsSinceUpgrade 

• RigType 

• VariableDeckloadOperating 

• DerrickCapacity 

• MudPumpNumber 
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than the averaging system. Figure 27 shows that the Bayesian model and the �NoModel� approach 

forecast 58 to 66 % of cases similarly. This is a substantially lower success rate than using the 10-

fold cross-validation. This suggests that the forecast loses a lot in quality when the data is restricted 

to these �base fields�. In addition, it suggests that the data-model approach can provide better 

results than the current approach, as devised by the industry experts.  

categories right wrong unique data match

0-300 1932 532 136

300-700 2961 2189 128

700-1000 516 835 17

1000+ 56 377 15

0-300 1329 1135 136

300-700 4265 885 128

700-1000 566 785 17

1000+ 72 361 15

Average 

Bayesian 

Inference

Majority 

Bayesian 

Inference

58.15%

66.31%

Figure 27: Average and Majority vote forecast validation 

6.3.3 Model Validation Conclusion 

Looking at the results of 200 orderings, the score results can be compared with the forecasting 

abilities of the models, based on a standard 10-fold cross-validation test. I found that there was no 

correlation between the two measures. Then I compared the forecasting abilities of the models 

generated by this project to the forecasting abilities of other models from standard modelling 

algorithms. Logistic is overall the best predictor, but it is more expensive to learn from the data. 

J48 and DecisionTable might be good competitors but appear to be less stable than the preferred 

algorithm used in this work (K2GA using Weka�s BayesNet implementation) as they perform 

unequally on the different versions of WRD2. Finally, the results were compared with an alternative 

forecasting method simulating the decisions that an expert might make. I conclude that the models 

developed in this research are providing a clear advantage over the current state of decision-support 

methods when forecasting oil drilling rig performance. 

6.4 Study of Fitness Landscape Covariance from Random Orderings 

Using Fixed Structures and CH-Score 

Fitness landscape is a metaphor used to develop an insight about the workings of processes, 

originating from Wright [141] and Haldane [142]. Jones mentions that "the landscape metaphor 

originated with the work of Sewall Wright [141]. The idea has received wide attention within 

biology but has also been adopted by researchers in other fields" [143]. In this experiment, I am 
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analysing the correlation of the fitness landscapes representing the space of CH-score node 

orderings, given a fixed structure learning algorithm. For each structure, I am comparing the fitness 

landscape from the fixed structure CH-score to the K2 learned CH-score. The aim of this 

experiment is to identify if any structure is a natural alternative landscape, capable of providing 

scores easier to calculate than when using a full CH-score. The fixed structures used are Chain and 

K2, existing from previous experiments and the new pyramid structure as well as the two versions 

of Block structures. The pyramid structure is shown in Figure 28. Given an ordering, the chain is 

shown above the pyramid. The pyramid takes the last node as the ultimate child of the network and 

builds a succession of layers with 2 parents for each node.  Figure 29 and Figure 31 show a vertical 

and a horizontal block structure. In a block structure, each layer contains the same number of nodes 

until there are no more nodes available for the last layer. Each node of each layer is the parent of 

the upper layer, as illustrated in Figure 29 and Figure 31.  For this experiment, I chose to set the 

width of the vertical block structure to 3 and the width of the horizontal bloc structure to 7. Those 

parameters could be tuned to fit the specificities of each dataset but for the preliminary experiment 

those arbitrary values have been chosen. 

Table 21, Table 23 and Table 25 show the correlation between the scores of each of the algorithms 

tested. Table 22, Table 24 and Table 26 show the statistical analyses of the scores for datasets of 

random orderings. Mainly, I observe that none of the scores are highly correlated with each other, 

meaning that they might not be good predictors of each other. However, I cannot infer that they 

would be a bad predictor of the final model�s performance as the CH-score itself is a mechanism to 

approximate the value of a structure in regard to the modelling exercise, yet it is not designed to 

predict the model�s performance when in use.    

Figure 28:  An example of pyramid fixed structure 
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Figure 29: An example of vertical block fixed structure 

Figure 30: An example of horizontal block fixed structure 
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Table 21: ASIA10000 random ordering score correlations (40320 random orderings) 

Chain -0.12097 

Pyramid 0.04398 -0.14572 

BlockH -0.01776 0.22733 0.19337 

BlockV 0.00140 0.00158 -0.01143 -0.00557 

K2 Chain Pyramid BlockH 

Table 22: ASIA random ordering scores statistic description 

K2 Chain Pyramid BlockH BlockV 

Min -22734.4 -30037.0 -30147.6 -29837.4 -29717.3 

Max -22621.2 -23251.0 -23173.5 -22736.0 -22699.5 

Average -22656.0 -27570.3 -27816.8 -26235.9 -25649.5 

Stdev 25.19274 1616.155 1361.268 1701.787 1602.567 

Table 23: ALARM random ordering score correlations (100 000 random orderings) 

Chain 0.00622 

Pyramid -0.00505 -0.08098 

BlockH -0.00530 -0.16655 0.07090 

BlockV 0.00153 -0.00245 -0.00294 0.009543 

K2 Chain Pyramid BlockH 

Table 24: ALARM random ordering scores statistic description 

K2 Chain Pyramid BlockH BlockV 

Min -31430.6 -64848.9 -65030.4 -62250.2 -62985.0 

Max -29366.4 -50262.5 -50232.6 -39239.7 -41573.0 

Average -30235.4 -59891.2 -60376.0 -49291.9 -53065.2 

Stdev 284.6189 1805.003 1735.753 2573.769 2466.428 

Table 25: CAR random ordering score correlations (100 000 random orderings) 

Chain 0.00224 

Pyramid -0.00109 -0.06673 

BlockH -0.00039 -0.00818 0.045068 

BlockV -0.00275 0.000416 0.001769 -0.0026 

K2 Chain Pyramid BlockH 

Table 26: CAR random ordering scores statistic description 

K2 Chain Pyramid BlockH BlockV 

Min -23672.5 -40353.3 -40379.1 -40147.3 -40147.3 

Max -23106.9 -26555.4 -27154.1 -23801.4 -23801.4 

Average -23214.4 -37049.2 -37370.3 -32630.8 -32630.8 

Stdev 95.26407 2262.88 2199.071 3217.075 3217.075 
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6.5 Feature Selection 

In machine learning and statistics, feature selection (variable selection) is the technique of selecting 

a subset of relevant variables in order to improve the model building. Two techniques have been 

applied to the WRD2.0 and WRD2.5 datasets in order to reduce their size and, hence, the 

computation requirement necessary to learn a model from the data. 

6.5.1 Weka Feature Selection 

The feature selection, as performed in Weka [116], is composed of two algorithms: an evaluation 

algorithm and a search algorithm. Various implementations of these algorithms are available in the 

Weka framework for performing a feature selection. For this exercise, the following search 

algorithms were used: 

• BestFirst [144], [145] searches a space of attributes by greedy hill climbing augmented 

with a backtracking facility.  

• GreedyStepwise [146] performs a greedy forward or backward search within the space of 

attributes. 

• GeneticSearch [147] performs a search using the simple genetic algorithm described in 

[97]. 

• LinearForwardSelection [148] is an extension of BestFirst. It performs a ranking and 

takes a fixed number of k attributes into account. This wrapper algorithm is described in 

[144]. 

• ScatterSearchV1 [149] performs a Scatter search [150] through the space of attributes. It 

is based on [151]. 

• SubsetSizeForwardSelection [152] is an extension of the LinearForwardSelection. In 

addition, the search performs an internal cross-validation. A LinearForwardSelection is 

performed on each fold to determine the optimal subset size. And another 

LinearForwardSelection is performed on the whole data, up to the determined optimal 

subset size [153]. 
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The following evaluation algorithms were used: 

• CfsSubsetEval is a Correlation based Feature Selection (CFS) [120]. It is based on the 

hypothesis that good feature sets contain features that are highly correlated with the class 

but that may be uncorrelated with each other. It evaluates the worth of a subset of attributes 

by looking at the individual predictive ability of each attribute along with the degree of 

redundancy between the attributes. 

• ClassifierSubsetEval [154] uses a classifier to estimate the value of a set of attributes. By 

default ZeroR is the classifier used by this evaluation [154]. 

• WrapperSubsetEval [155] evaluates attribute sets by using a learning algorithm. Cross-

validation is used to estimate the accuracy of the learning scheme for a set of attributes. 

Kohavi and John provide more information in [156]. 

• ZeroR [157] is a rule-based classifier. It predicts the results of any case as the mean (when 

numeric) or the mode (when nominal). 

• NaiveBayes [158]  is a simple probabilistic classifier based on the Bayes' theorem. It 

assumes the independence of all the attributes [159]. 

• ConsistencySubsetEval [160] evaluates a subset of attributes by the level of consistency 

in the class values when the training instances are projected onto the subset of attributes. 

Liu and Setiono provide more information in [161]. 

The results for the 16 feature selection runs are presented in Table 27. The black square indicates 

that the feature (data field) was selected, when a white square indicates that the feature was 

dropped. There are other techniques for features selection, as explored by Guyon [162] and Saeys 

[163]. The ones used in this work have the advantage to be readily and publicly available in Weka. 
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Table 27: Weka Feature Selection, variable selected by each algorithm and overall selection counts 
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The most selected features seem to be DayToTotalDepth, PreviousWells, WaterDepth and 

ContractLength, followed by RigType. This seems to suggest that the CfsSubsetEval-based 

algorithms would be more discriminating (3 fields selected for most) for the problem at hand than 

the ConsistencySubsetEval-based evaluation algorithms. ClassifierSubsetEval and 

WrapperSubsetEval-ZeroR, by their nature, were more discriminating and selected only one data 

field. For the problem at hand, those are the least informative of all feature selection algorithms as 

they are not providing enough features to learn a classifier. 

6.5.2 Pearson Correlation 

Pearson product-moment correlation is one of the most used [164] measures of dependence 

between two quantities. The correlation coefficient is obtained by dividing the covariance of the 

two variables by the product of their standard deviation. The correlation coefficient r is calculated 

by Equation 7. The correlation coefficient may take any value between -1.0 and +1.0. It is assumed 

that there is a linear relationship between x and y that are both continuous random variables. Both 

variables must be normally distributed and x and y must be independent of each other. Equation 7 

expresses the Pearson product moment correlation, where r represents the correlation coefficient. 

Equation 7: Pearson product moment correlation 

� 
  �A� 2 Aa��b� 2 bc�
���
d �A� 2 Aa��
��� � �b� 2 bc��
���

In this part of the research, I calculated the general covariance of each continuous data when 

related to each other continuous data in WRD2.0, WRD2.5 and, as a control, a version of WRD2.0 

pre-discretisation (WRD2.0-preD). This provides a matrix (Figure 30 to Figure 35, in appendix) 

that allows a comparison of similar data fields. In the chosen representation, I use different levels 

of greys to allow a visualisation of the correlation. The darker the shade, the higher is the 

correlation between two variables. I produced two sets of visualisations for each of the datasets. 

The first one (Figure 30, Figure 32 and Figure 34) shows the data fields in the order they came in 

the dataset. The second one (Figure 31, Figure 33 and Figure 35) is ordered horizontally to display 

the most correlated column to the rig performance measure on top of the tables and the least 

correlated column at the bottom of the table. This provides a ranking of the most correlated to the 

least correlated data fields, in relation to the measure of rig performance 

(AveragePerformanceFootagePerDay). 
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Table 28: Summary of feature selection methods and assembly of ranks into one value 

I performed a Pearson correlation analysis of all orderable variables (the values of each variable 

were ordered and their rank used as a continuous feature; for example 0-100,100-300,300-

500,500+ becomes 0,1,2,3) on WRD2.0 (Figure 30, Figure 31) and WRD2.5 (Figure 32, Figure 33). 

These correlations have also been calculated on the WRD2-preD dataset (pre-discretisation, see 

section 5.1 for the discretisation details) and are shown in Figure 34 and Figure 35. This shows a 

similarity in the ordering of most-correlated variables to AveragePerformanceFootagePerDay, 

regardless of whether the correlation coefficients are calculated from WRD2.0, WRD2.5 and 

WRD2.0-preD. The experiment with WRD2.0-preD (Figure 34 and Figure 35) was performed as a 
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control. WRD2.0-preD contains the data before they were categorized. As shown in Table 28, the 

categorization did not impact drastically on the rank of the data fields. 

One thing to note is that a correlation measure is not a measure of the causation [50]. These 

measures only allow to draw a parallel in the occurrence of the variables. This distinction is one of 

the points that have to be emphasised when explaining or presenting the results of the model. For 

example, if a user notices that the DualActivity attribute of an oil drilling rig is correlated with its 

performance, the user might be tempted to artificially change the variable to impact on the 

performance of the rig. As causation cannot be demonstrated using the data models, this cannot be 

guaranteed to have the desired effect.  This ranking provides an indication of the level of 

information each of the data fields might carry towards the forecast of, among others, oil drilling 

rig performance. 

6.5.3 Feature Selection Methods Combination 

Table 28 shows 3 WRD2.x columns which correspond to the ranks of each variable from Figure 30, 

Figure 32 and Figure 34 (0 ranks corresponds to non-continuous variables, which have been 

selected by default). A sum of those ranks is presented in the 4th column. I define �#FSA� to be the 

number of times a variable has been selected using the Feature Selection Algorithms (FSA) in 

Table 27 (15 is the maximum possible #FSA value for each variable). By grouping all this 

information together, I obtain the �SUM+(15-FSA)� column in Table 28 that shows a combined 

rank from all the other columns. The variable names are ordered according to that rank. The 

variables that could not be ranked according to the co-variance are listed first.  

Table 29 shows the cross-validation accuracy results. One can see that the logistic regression

algorithm consistently performs better than the NaiveBayes algorithm on the WRD2.0 dataset. The 

performance of NaiveBayes consistently reduces as the dataset number of variables is reduced. 

However, the performance of logistic regression improves by 0.0525% when the number of 

variables is reduced. The performance then drops as expected when further reducing the number of 

variables to 5. 

6.5.4 Accuracy and Model Learning Time 

NaiveBayes is one of the least well performing algorithms. Logistic and BayesNet
28

perform similarly to less than 0.5% accuracy difference. Logistic prediction accuracy is 

                                                     

28 BayesNet is used here with a pre-optimised ordering. 
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slightly higher; however, the model learning time is more than 400 times longer, making it 

more expensive to use at the computational level. There is a slight (0.02-0.08%)29 increase in 

the prediction accuracy of both Logistic and BayesNet when removing variables. This is 

similar to observations by Devaney et al. [165] and Janecek et al. [166]. This suggests that 

the models could be simplified and that it might improve their accuracy slightly but, as the 

change is small, more experiments should be conducted to validate that assumption. 

Reducing the number of variables used in building the model reduces its complexity and 

allows for faster calculations. Reducing the number of variables from 34 to 14, the model 

calculation is divided by a factor superior to 110, when using Logistic regression, and by a 

factor superior to 23, when using BayesNet. However, BayesNet is still the best-performing 

algorithm when comparing the model calculation times. When the number of nodes is 

reduced further there is the expected drastic reduction in the predictive accuracy of the 

algorithms.  

Table 29: Test of reduced WRD2.0 dataset (using the feature selected) with the main Weka algorithms 

used previously 

Algorithm Number of variables Prediction accuracy Model learning time

NaiveBayes 34 60.70 % 0.03 seconds

Logistic 34 79.63 % 776.6 seconds

BayesNet 34 79.18 % 1.87 seconds

NaiveBayes 14 59.94 % < 0.01 seconds

Logistic 14 79.75 % 6.94 seconds

BayesNet 14 79.20 % 0.08 seconds

NaiveBayes 5 56.40  % < 0.01 seconds

Logistic 5 56.41 % 1.53 seconds

BayesNet 5 55.37 % 0.02 seconds

  

                                                     

29 Equivalent to 2 to 8 forecast instances on our 10-fold cross-validations across the entire data available. 
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Figure 31: Accuracy for the tests of reduced WRD2.0 dataset 
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Chapter Summary: The sixth chapter focused on the validation of the results and the 

comparison to the benchmark algorithm. Comparing the results from lower scored orderings 

with the forecasting abilities of the models, based on a standard 10-fold cross-validation test, 

I hypothesise that CH-score might not be the best measure of adequacy for determining the 

worth of a network when considering the dataset. Comparing the forecasting abilities 

provided by alternative modelling techniques showed that other standard algorithms such as 

Logistic, J48 and DecisionTable have the ability to perform similarly well to Bayesian

networks on the dataset. Comparing the forecast results to the alternative simplified 

forecasting technique mimicking an expert�s forecast showed that a data-modelling approach 

can provide better results than the approach devised by the industry experts. The study of 

the covariance of the landscape of random orderings� CH-scores calculated with K2, Chain, 

Pyramid, BlockH and BlockV showed that none of the scores for each algorithm are highly 

correlated with each other, meaning that they might not be good predictors of each other but 

that more work is necessary to show if those new scoring mechanisms would be a good 

predictor of the CH-score. The feature selection experiment showed that Logistic and 

Bayesian networks perform similarly to less than 0.5% accuracy difference but that Bayesian 

networks� learning time is more than 400 times less expensive to process and that the models 

could potentially be simplified and that it might improve their accuracy slightly.  
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Chapter 7:  Value Creation and Commercial Applications 

In this chapter, I review the application of computational intelligence as a competitive tool for 

commercial development in view of some recent literature (section 7.1). I then present the user 

interface that was developed to demonstrate the models in the case of developing a rig performance 

forecasting tool (section 7.2). Subsequently, I introduce a review of recommender systems as they 

have been investigated as a potential application of the models to benefit the oil and gas industry 

(section 7.3) and a review of scheduling technologies as an additional potential application (section 

7.4). 

7.1 Creating Value from Computational Intelligence 

One of the main issues encountered while working on this research was the barriers raised in the 

course of interaction between different disciplines: abstract computing research and the real world 

of engineering and stakeholders. In his book �Applying computational intelligence� [27], Kordon 

explores the problems and issues associated with technology transfer between the world of 

advanced theory of computational intelligence and the world of practical applications of 

engineering methodologies to the industry. He explores the specificities of various computational 

intelligence techniques, their typical applications and the creation of value, and reviews application 

strategies. Throughout the book, Kordon�s focus on �competitive advantage� helps expanding the 

industrial side of this research. In addition to this short summary, some more materials from 

Kordon�s work have been reviewed in the appendix. 

The adoption of the technology I develop in this research relies on the credibility associated with it 

at the end of the project. Kordon highlights that �one of the differences between computational 

intelligence and the other high-tech alternatives is that it has already demonstrated its potential for 

value creation in many application areas� [27] (page 221). This confirms observations in the energy 

sector regarding the use of computational intelligence for wind power systems [167], electric 

power systems [168], thermal plants [169], and the oil industry (including reservoir 

characterization, gas storage, seismic inversion, engine oil development, oil field development,  

production scheduling) [170] as well as for biology [171]. Kordon explains that a variety of 

technology such as �search engines, word-processor, spell checkers and [...] rice cooker� are also 

everyday examples of the application of the technology [27]. One highly publicised event, 
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demonstrating further avenue of value creation of computational intelligence, was the �chess battle 

between Kasparov and Big Blue� [27]. 

In order to ensure the credibility of the approach taken in this project, the results are tested against 

historical data. I am using the multiple standard validation techniques of the model to ensure the 

quality of the results. This is the measure used to determine the reliability of the model produced. 

In view of the work presented here, these theories suggest that when introducing the technology 

developed, it should not be forced onto the users but added as a benefit over the existing systems. 

The user should be able to opt out and still use the other tools and facilities previously available 

with no change if such is the user�s need. The �recommender system� approach here is ideal as it 

provides the user with suggestions and insights without forcing an automated decision onto the 

user. This approach provides the benefits of reducing the �pain of adoption� as well as providing 

insights in a complex and uncertain environment.  

Kordon [27] (page 316) proposes a �methodology for applying computational intelligence in a 

business�. The key steps are: 

• Introducing computational intelligence� Proof of concept projects. 

• Applying computational intelligence� Several successful business projects. 

• Leveraging computational intelligence� Growing value creation. 

Within this methodology, the project stands in phase 1, with its purpose consisting in validating the 

technology potential based on pilot projects. In order to summarise the �factors that may influence 

the decision-making process of initiating a computational intelligence application�, [27] provides a 

checklist which I am reviewing in view of this project: 

• Define appropriate application: I developed models in order to forecast oil drilling rig 

performance.  

• Define competitive advantage: 

o I created a measure and ability to measure the performance of oil drilling rigs.  

o I create the possibility to forecast that measure based on tangible decision 

elements. 

• Get management support: From the start of the project, I secured management and field 

expert�s support for the project. The results encouraged multiple product proposals which 

are now being considered for development at medium and long terms. 

• Allocate available stakeholders: I secured the support of data engineers, field experts and 

modelling consultants in order to secure the success of the project. They regularly advised 

me along the project. This ensured an adequate support all along my research. 
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• Check data quality: I performed a study on the validation of the results which is presented 

in this document. I obtained good results and I am encouraged to continue developing 

better, more complete models to improve even more the quality of the forecasts. 

• Identify infrastructure needs: I developed some demonstration software independently of 

any productisation. This step may be done within ODS-Petrodata�s product portfolio as an 

option on some of the current products. 

• Estimate user attitudes: The user acceptance will depend on the productisation phase. 

The suggested approach as it stands is to add a forecasting function without taking 

anything away from the current system. At worst, the system might encounter indifference, 

but no negative reactions and no loss of business. The productisation plan should aim to 

present the user with sufficient and clear proofs of the forecast provided and should 

highlight the benefits gained by having access to additional information to support decision 

making. 

• Estimate training needs: A basic training to adopt the new technology related to 

computational intelligence will be required for software developers in order to perform 

regular maintenance. The user should not need any formal training if the user interface is 

correctly designed and explained as well as intuitively supportive of the user�s needs. 

• Propose incentives for all stakeholders: Some of the incentives identified are: 

management support can be maintained with regular updates, data experts can be provided 

with additional insight gained from the model analysis and users can be incentivised to use 

the new forecasting abilities with a free trial. This provides the additional advantage to 

obtain additional feedback in return for the free trial. 

7.2 Rig Performance Forecasting: Demonstration Interface 

The baseline of this research and development project was to extract knowledge from ODS-

Petrodata�s databases by identifying the inter-relationships implicit in the data. This knowledge 

about inter-relationships can then be used for forecasting. I developed various models in order to 

forecast oil drilling rig performance (average feet per day) and offshore well plan outcomes (days 

to total depth). I obtained an accuracy approaching 80% on a standard cross-validation test for 

some of the models from the Gulf of Mexico data. 

Rig performance forecasting is a particularly interesting application of modelling technology. This 

application would support businesses in their decision to hire a specific oil drilling rig for a specific 

job by using performance expectation forecast. The prototype tool, showing the prediction of 
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AveragePerformanceFootagePerDay from a set of user-defined parameters is presented in the 

figures below.  

1. A start screen allows the user to select one type of forecasting between two performance 

models and the number of days to total depth (Figure 32). This latter one is calculated 

using a model created by the data modelling algorithm as well.  

2. The software then displays the main display screen with the first step of the wizard 

allowing selection of a rig name and some geographical data (Figure 33). The data on the 

main display is recalculated dynamically (Figure 34). The remaining wizard steps allow 

selecting some geographical information. The data selected are not the ones directly used 

in the models but they allow the retrieval of the data. For example, setting the rig name 

allows the software to retrieve the specification data from the company database and then 

to set them in the model to help the forecast. 

3. The second step of the wizard allows selecting well information (Figure 35). 

4. Finally, the software displays the performance forecast of the oil drilling rig (Figure 36). 

The screen then allows the user to adapt some of the specifications that the rig could 

hypothetically acquire. 

This tool is designed to be easy to use as a demonstration tool. It is not designed to be a production 

tool as it is not integrated in the current company product suite and it is not designed to learn and 

update the underlying data and models to follow the market evolutions. 

Figure 32: Starting screen for the demonstration allowing the user to select one type of forecasting. 
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Figure 33: First step of the demonstration wizard allowing to select a rig and some geographical data 

Figure 34: One selected rig when using the demo 
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Figure 35: Step two of the demonstration wizard, selecting well information 

Figure 36: A display of the performance forecast of an oil drilling rig in the demonstration software 
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7.3 Recommender System for Oil Drilling Rig Selection 

An application of a reliable model would be to recommend specific items to a user based on 

previous choices within the system and on the information content within the item [33,34,172]. A 

recommender system is a system performing information filtering to bring information items to a 

user; this information is filtered in a way that it is likely to interest the user [25]. This technology 

aims at providing users with relevant advice on the selection of items and could be applied to oil 

drilling rigs. The models obtained can constitute the basis for robust and flexible tools for assisting 

businesses in finding the best rig for a particular job. Consulting the model for optimal match, it 

enables the identification of rigs suitable for a specific operational demand. Adding variables 

related to the intended drilling task and user preferences in the model allows filtering relevant rig 

recommendations, using the Bayesian network-based model to provide an expectation of 

performance on a given task. 

7.3.1 Recommender Systems: Technology Review 

A recommender system is a system performing information filtering to bring information items 

such as movies, music, books, news, images, web pages or, in general, any item to a user. This 

information is filtered so that it is likely to interest the user.  The aim of a recommender system is 

often to "help consumers learn about new products and desirable ones among myriad of choices" 

[173], [174]. 

Information filtering systems, more broadly, aim at removing redundant or unwanted information 

from a large information base. They aim at presenting relevant information and reducing the 

information overload, while improving the signal-to-noise ratio at the semantic level. This feature 

is relevant to the domain of application because the selection of a rig needs to fit the requirements 

of a demand (request for tender). In the world, there are over 1000 mobile offshore rigs available 

and not all of them are available or suitable for all demands. In addition, different companies 

(users) will have different preferences in regard to which parameters should influence their 

selection process for rigs. Those preferences could be, for example, cost-effectiveness, time of 

execution or health and safety ratings. Filtering the information to recommend rigs to users based 

on their preferences will help users to focus on the most relevant rigs for their needs.  

According to Ujjin [175], "it seems that the definition of 'recommender system' varies depending on 

the author. Some researchers use the concepts 'recommender system', 'collaborative filtering' and 

'social filtering' interchangeably" [175], [176], [177]. He also adds that others regard  
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'recommender system' as a generic descriptor that represent various recommendation and prediction 

techniques including collaborative, social and content based filtering, Bayesian networks and 

association rules [178]. Ujjin concludes his discussion by stating that he will assume the second 

definition in the rest of his publication. This seems to be the current assumption in the field and it is 

also the definition chosen by Herlocker et al. [179]. Therefore, that is the definition I will be using 

in this research. 

Information of many types can be collected. "A simplified taxonomy separates recommender 

[systems] into content-based versus collaborative-filtering-based systems� [173]: 

• Content based approach: the characteristics originate from the information item. 

• Collaborative filtering approach: the characteristics originate from the user environment 

(social, user preferences, patterns, etc.). 

One of the main issues for both approaches is the cold-start problem. New users have to interact 

with the system before a profile can be built up and the system becomes efficient for their needs 

[34]. Hybrid approach is often considered, by combining features from collaborative and content-

filtering methods, to prevent such limitations. By asking a few targeted questions to the user, both 

systems are able to reinforce each other and learn the user preferences faster by comparing the 

responses to other user�s responses and to items content to infer a potential profile. In this case, the 

cold-start problem is not a major issue as there is historical data available on most of the user�s 

choices. The system would then be able to pre-establish their priorities and create their profile. One 

powerful feature of this approach is that any new choice from the user keeps improving their 

profile and allows following their preference variations over time. 

The content based approach consists in analysing the content of the items being recommended. 

Each user is treated individually. There is no assumption of group or community [175]. The system 

works mainly by analysing items and the proximity of the selected items to others, selected by the 

user. Then, these items are selected to be recommended as they might interest the user. This 

approach is heavily based on which items are being considered by a user and their environment. 

The assumption is that a user interested in one item will be interested in a similar item. This effect 

happens in the rig selection problem. Users used to a successful work practice with a company will 

favour the same provider for similar projects. In item based filtering, items are rated and used as 

parameters for the matching instead of users. The items are grouped together and proposed to users. 

Users can then compare and rate them. User preferences are collected explicitly. Those preferences 

allow to group users by interest. The items are then selected using the ratings of a similar user. 
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Collaborative filtering "mimics word-of-mouth recommendations" [173]. Herlocker et al. [179] 

states that "one of the most successful technologies for recommender systems [is] called 

collaborative filtering". Collaborative filtering systems come from the earlier information filtering 

systems. Those systems were developed in order to bring only relevant information to the user by 

observing previous behaviours and, thus, build a user profile. This system is based on the collection 

of taste information from many users [175]. It assumes that a group of users will have a similar 

appreciation of items, then aims to "predict the unobserved preferences of an active user based on a 

linear weighted combination of other people's preference" [173]. 

7.3.2 Recommender Systems and Bayesian Networks 

Various models are used to represent the underlying data within recommender systems. For 

example, Shani [180] uses a Markov Decision Process (MDP) and Zukerman [181] explores 

various predictive statistical models such as linear models, TF-IDF-based models (Term Frequency 

- Inverse Document Frequency), Markov models, Neural networks, various n-dimensional 

classification models, Rule-based models and Bayesian networks. Condliff [182] also chooses 

Bayesian network-based models.  

One possibility is to use inference on Bayesian networks to generate predictions. Those predictions 

can be recommended to the user, ordered by the most probable to the least probable. Usually, just a 

few choices are sufficient, but the system can offer the possibility to the user to obtain more 

recommendations. Based on the variables used during the inference, the recommendation can be 

accompanied by a justification or explanation of the recommendation. 

Bayesian networks and various derivations are still increasingly popular in the artificial intelligence

community [183]. They have been used for a variety of modelling tasks relative to user preferences 

[184]. Bayesian networks are more flexible than most models [181]. They provide a compact 

representation of any probability distribution and explicitly represent causal relations. They allow 

predictions to be made about a number of variables. Also, Bayesian networks can be extended to 

include temporal information as is shown by Dean and Wellman [185], who are using dynamic 

Bayesian networks. Howard and Matheson add influence diagrams to the model to reinforce it 

[186], [187]. 

Zuckerman [181] reviews Bayesian network-based models that have been used to perform a variety 

of predictive tasks. For example, Horvitz et al. [188] used a Bayesian network to predict the type of 

assistance required by users performing spreadsheet tasks, Lau and Horvitz [189] built a Bayesian 

network that models search queries and predicts the type of query-related action a user will perform 
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next (generalise or specify a query). Albrecht et al. [190] used dynamic Bayesian networks to 

predict a user's next action, next location and current quest in a multi-user adventure game. Horvitz 

et al. [191] also used a dynamic Bayesian network to predict a user's attention and the interval 

between inspections of their email. These predictions allowed the design of a system able to decide 

whether to alert the user about incoming email and through which means. Gmytrasiewicz et al.�s 

system [192] considered various models that predict an agent's actions in an air defence scenario, 

and incrementally updated the probability assigned to each model according to its predictive 

accuracy. The system built by Jameson et al. [193] predicted the error rates of users when 

following instructions given in various styles. Some of those examples are not considered 

recommender systems but provide a similar service to a meta-system instead of a user: the 

modelling task is thought to be a similar challenge. 

7.4 Rig Scheduling 

Another example of an application for the models is oil drilling rig scheduling. To assist a user or 

software in scheduling rigs, the application would need to estimate a range of expected completion 

times for a coordinated set of rig operations parameters. Using the Bayesian network to provide the 

expectations of the various task times would enable such an application. Bayesian network for 

Scheduling has been partially investigated in [194], using multi-agent systems.  

7.4.1 Automatic Scheduling in the Industry  

The availability of literature relating to the topic of automatic scheduling applied in the oil and gas 

industry is sparse. However, two mentions have been encountered and used as initial enlightenment 

of the subject. The first publication is an MBA dissertation by Kenny MacLeod [195]. This paper 

provides a literature review of the management side of scheduling. The second is a commercial 

paper about the advantages of Actenum scheduling tool [196], [197]. This publication is interesting 

for the analysis and insight it provides of the application of novel scheduling technology into a field 

that has a long history of manual scheduling and difficult constraints such as timing constraints, 

sequencing constraints and environmental constraints (weather, geology). Actenum [196] states 

that �production division of an oil company might need to prepare a schedule that satisfies the 

following requirements: Rig A (a resource) is assigned to drill at Well 31 (a task) for a three month 

period (a timing constraint), but must be moved to drill at Well 68 by November 7 (a sequencing 

constraint)�. This is a good definition of the problem I am trying to solve. MacLeod [195] refers to 

Proud (1994) [198] when stating that �resources with limited capacity are the controlling variable 

requiring schedulers to focus on process bottlenecks to maximise efficiency and minimise 
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backlog.� Actenum confirms that planned and unplanned changes in production operations are a 

cause of concern to scheduling staff. They add that �linking schedules to key production metrics� 

enables schedulers to �make informed decisions�. 

MacLeod [195] identifies 5 major processes of time management: activity definition, activity 

sequencing, activity duration estimation, schedule development, schedule control. He suggests that 

the method of capacity planning from Wallace [199] �allows to manage priorities in capacity 

restricted organisation�. Other methods, as the critical path analysis proposed by Kerzner [200] 

allow to prevent bottlenecks before clashes or over-lapping requirements occur during periods of 

change. MacLeod [195] explains some requirements and result from these scheduling theories. 

Actenum adds additional information about the consequences of improved scheduling and how it 

could apply to an organisation. Most requirements revolve around enhancing communication, 

training personnel, trust and engagement in accepting the change. Actenum lists a number of 

advantages. Some of them are enhanced reactivity to change, improved production output (�more 

reliable and predictable� [196]) and enhanced level of information included in the decision process. 

7.4.2 Scheduling Technologies 

The study of scheduling dates back to the 1950s when researchers and industrial managers were to 

schedule activities in workshops. Scheduling is defined as the "problem of the allocation of 

resources over time to perform a set of tasks" [201]. In the late 1960s, computer scientists 

encountered scheduling problems when developing operating systems. The scarcity of the 

resources provided an economic argument to realise research in scheduling. Many different 

approaches have been tried. Most of them were based on branch-and-bound methods and created 

exponential time consuming algorithms when the complexity of the problem increased. Later, 

stochastic scheduling has been considered. "The field of stochastic scheduling is motivated by the 

design and operational problems arising in systems where scarce service resources must be 

allocated over time" (Niño-Mora) [202]. Scheduling is a combinatorial optimisation problem. Its 

complexity makes genetic algorithms suitable for the scheduling problem resolution, unlike 

deterministic approaches. However, some studies show that genetic algorithms are not well suited 

to the fine tuning of sub-optimal solutions [203,204]. More information on scheduling with genetic 

algorithms can be found in research on the �Jobshop scheduling problem� by Mesghouni and 

Hammadi [205], Hindi et al. [206], Garrido et al. [207] and Kim [208]. In addition, Zhang and Gen 

[209] consider the resource allocation problem in more details. 
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Chapter Summary: In this seventh chapter, I reviewed the application of computational 

intelligence as a competitive tool for commercial development. Following that, I introduced a 

user interface that was developed to demonstrate the models in the case of developing a rig 

performance forecasting tool. Finally, the chapter provided a review of recommender systems, 

investigated as a potential application of the models and a review of scheduling technologies. 
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Chapter 8:  Conclusions 

In this final chapter, I review the work outlined in this thesis (section 8.1).  I then list the items 

proposed for future work (section 8.2). Finally, I conclude and list main contributions made by this 

thesis (section 8.3). 

8.1 Summary of Chapter Conclusions 

The first chapter introduces the overall research target for this work: investigating the use of 

statistical tools and Bayesian networks learning algorithms and developing a novel operational tool 

for forecasting success of rig operations. The chapter exposes the objective and motivation for this 

work, exposes the research questions and approaches ethical considerations of technological 

developments. Finally, the chapter lists earlier publications produced as part of this research and 

provides an overview of the thesis organisation. 

The second chapter introduced the commercial background of offshore oil drilling rigs. It reviewed 

the basics of the offshore drilling background and the rig tendering process used by the industry to 

select oil drilling rigs. The problems at hand are exposed by reviewing a list of scenarios provided 

by industry experts in order to guide the progress of this research. The chapter then provided a 

review of the Gulf of Mexico dataset including the available data, the data selection and the work 

done to prepare the data. 

The third chapter provided a review of the state-of-the art techniques for data modelling using 

Bayesian networks. The focus of this work is centred on search and score methods using the K2

scoring algorithm. Nature inspired and evolutionary algorithms are explored, with a specific focus 

on genetic algorithms and ant colony optimisation. In order to provide a benchmark, the standard 

Logistic regression algorithm is also approached in this chapter as well as the metrics of quality 

used to assess the results. 

The fourth chapter introduced the WRD1 dataset as well as the K2-based genetic and ant colony

optimisation algorithms. The experimental results are analysed by reviewing the performances of 

each algorithms and then by considering expert�s evaluation of the model�s structures. This chapter 

also introduces the node juxtaposition analysis for viewing the frequency of nodes selected from 

the search and score approach. For the following parts of this research, even though ant colony 

optimisation-based algorithms performed faster than genetic algorithm-based algorithms, K2GA

was chosen for the further experiments as it provides a higher quality of models and, hence, has a 

better chance at forecasting oil drilling rig performance accurately. 
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The fifth chapter introduced the second dataset used in this research as well as its variations: 

WRD2.x. The building of the dataset was a big part of the work done for this section of the research 

and was described in details, including descriptions of the target field to forecast � average 

performance footage per day � and the methods used for categorising the data. After optimising for 

algorithms parameters, the chapter then reviewed the results for the K2GA runs and analysed the 

relationships identified by the Bayesian networks models in the data. 

The sixth chapter focused on the validation of the results and the comparison to the benchmark 

algorithm. Comparing the results from lower scored orderings with the forecasting abilities of the 

models, based on a standard 10-fold cross-validation test, I hypothesise that CH-score might not be 

the best measure of adequacy for determining the worth of a network when considering the dataset. 

Comparing the forecasting abilities provided by alternative modelling techniques showed that other 

standard algorithms such as Logistic, J48 and DecisionTable have the ability to perform similarly 

well to Bayesian networks on the dataset. Comparing the forecast results to the alternative 

simplified forecasting technique mimicking an expert�s forecast showed that a data-modelling 

approach can provide better results than the approach devised by the industry experts. The study of 

the covariance of the landscape of random orderings� CH-scores calculated with K2, Chain, 

Pyramid, BlockH and BlockV showed that none of the scores for each algorithm are highly 

correlated with each other, meaning that they might not be good predictors of each other but that 

more work is necessary to show if those new scoring mechanisms would be a good predictor of the 

CH-score. The feature selection experiment showed that Logistic and Bayesian networks perform 

similarly to less than 0.5% accuracy difference but that Bayesian networks� learning time is more 

than 400 times less expensive to process and that the models could potentially be simplified and 

that it might improve their accuracy slightly. 

In the seventh chapter, I reviewed the application of computational intelligence as a competitive 

tool for commercial development. Following that, I introduced a user interface that was developed 

to demonstrate the models in the case of developing a rig performance forecasting tool. Finally, the 

chapter provided a review of recommender systems, investigated as a potential application of the 

models and a review of scheduling technologies. 
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8.2 Future Work 

This section lists the opportunities for further work which have been identified during this research.  

a) Data Linking 

Section 2.4.3 emphasised that, when linking data, some cases were found where more than one 

match was possible. In a future iteration and for production purpose, a manual check of the data 

might be possible by a trained data expert as the number of data rows remaining to match is limited 

(634 data rows with matching conflict remaining at the time of writing). However, this remains a 

tedious task and it might be possible to develop the heuristic to find more links.  

b) Problem-dependent Algorithm Performance  

Regarding the performance of the algorithms in section 4.4.1, Table 6 confirmed that K2GA, 

K2ACO and ChainACO were much closer to each other, in terms of scoring, than ChainGA. As 

discussed by Kabli et al. in [24], the performance of ChainGA relating to K2GA appears to be 

highly problem-dependent. As confirmed by [26], I expect that the performance of K2ACO and 

ChainACO will also be problem-dependent, however, this is to be explored in more detail. 

c) WRD2.5: Overlapping Categories 

Section 5.1.2 highlighted the possibility of defining overlapping categories. The WRD2.5 dataset 

has a different number of categories (10 categories) and, hence, cannot be directly compared in its 

prediction accuracy for the purpose of this empirical study of the categories of performance. The 

accuracy of models built with WRD2.5 in predicting the exact rig performance category is lower 

than with other WRD 2.x but as the granularity of the information is smaller, I found it provides 

more useful information to the user. Table 11 is an example of how the categories could be 

combined when presenting the forecast results to the user in order to maintain a higher level of 

accuracy than currently presented for WRD2.5 in Table 10. More experiments should be conducted 

on this in order to measure the accuracy of the information provided to the user satisfactorily.  

d) CH-score as a Measure of Bayesian Network Predictive Accuracy 

In section 6.1, I ran a comparative analysis of the accuracy of the models generated using a 10-fold 

cross-validation and the CH-scores from K2. Figure 22 shows the scores and the accuracy from 

each of the best node orderings from experiment 1 & experiment 2 from chapter 5. The correlation 

coefficient between the two curves is -0.0228. I propose the hypothesis that CH-score might not be 
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the best measure of adequacy for determining the worth of a network when considering the dataset. 

However, no better alternative has been identified at this time and this remains a problem open for 

further research.  

e) Alternative Modelling Techniques 

In section 6.2, using Weka data mining tool, I tested widespread algorithms on the WRD2.0 dataset. 

The results of the testing for all the algorithms are displayed in Table 19 and in Table 20. As 

shown, the Logistic regression algorithm and the Bayesian network learning algorithm are 

consistently performing better than most other algorithms. Two other algorithms are performing 

well on the datasets: J48 and DecisionTable. They could be investigated in further work. 

f) Study of Fitness Landscape Covariance from Random Orderings Using 

Fixed Structures and CH-Score 

In section 6.4, when studying the fitness landscapes representing the space of CH-score node 

orderings, I am comparing the fitness landscape from the fixed structure CH-score to the K2

learned CH-score. The aim of this experiment is to identify if any structure is a natural alternative 

landscape, capable of providing scores easier to calculate than when using a full CH-score which 

requires learning the entire network each time it is used. Table 22, Table 24 and Table 26 show the 

statistical analyses of the scores for datasets of random orderings. I observe that none of the scores 

are highly correlated with each other, meaning that they might not be good predictors of each other. 

However, I cannot infer that they would be a bad predictor of the final model�s performance as the 

CH-score itself is a mechanism to approximate the value of a structure in regard to the modelling 

exercise but it is not designed to predict the model�s performance when in use. This should be 

determined in a future study.   

g) Accuracy, Complexity and Model Learning Time 

In section 6.5.4, regarding the feature selection and the exclusion of variables from the model-

building, there is a slight increase in the prediction accuracy of both Logistic and BayesNet when 

removing variables. This is similar to observations by Devaney et al. [165] and Janecek et al. [166]. 

This suggests that the models could be simplified and that it might improve their accuracy slightly. 

More experiments should be conducted to validate that assumption. Reducing the number of 

variables used in building the model reduces its complexity and allows for faster calculations but, 

in the case of the Bayesian networks, reducing the number of variables might also reduce its 

versatility and its ability to cope with uncertainty and unknown values. 
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8.3 Conclusion and Summary of Contributions  

Overall, in this work I explored the use of statistical tools and especially Bayesian networks

learning algorithms applied to a new domain of application (oil drilling rig operational data) in 

order to forecast performance (average feet drilled per day). I demonstrated a basic tool based on 

the developed models to industry experts who approved of the forecast delivered. The insights into 

the data inter-dependencies provided by my research have provided new heuristics to improve the 

quality of the data in the commercial databases of the project�s partners.  

One of the main strengths of this research is its application to a real-world problem. I have, in my 

work, highlighted all the steps taken to process the data clearly and I have explained the reasoning 

behind each decision. This creates the possibility to apply the technology to other problems in the 

industry. A similar approach can be used on multiple subjects with a wide range of data. This use 

of theoretical research to improve techniques and methods applied in the real world contributes to 

the global and continuous optimisation the industry needs on a wide range of issues and limitations 

in order to maintain a rate of progress, improvement and development. 

In addition to this approach to the real-world problem that I investigated, I also contributed to the 

body of knowledge on the application of computational intelligence algorithms and, more 

particularly, to the developments of Bayesian networks classifiers using genetic algorithms. 

The following is a summary of the contributions made over the course of this research. 

• Applied K2GA and Bayesian networks to a large industry problem: All through this 

thesis, I explored how to learn Bayesian networks using K2GA and to apply this technology 

to the real-world industry problem at hand. I developed a well-performing and adaptive 

solution to forecast oil drilling rig performance [13,123,129]. 

• Used the knowledge from industry experts to guide the creation of competitive 

models: In chapter 5 and with further analysis in chapter 6, I created models able to 

forecast oil drilling rig performance consistently with close to 80% forecast accuracy, 

using either Logistic regression or Bayesian network learning using genetic algorithms

(K2GA). This also allowed identifying some of the desirable factors necessary to forecast 

the oil drilling rig performance such as water depth, total footage drilled, the number of 

days to total depth and the number of previous wells in the same block. 
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• Introduced node juxtaposition analysis for ordering frequency visualisation: Based on 

my publication [129], I introduced the node juxtaposition analysis graph that allows the 

visualisation of the frequency of nodes links appearing in a set of orderings. This 

visualisation method provides new insights when analysing node ordering landscapes and 

is used in chapter 4 and chapter 5. 

• CH-score provides limited information on accuracy: In chapter 6, I explored the 

correlation factors between model score and model predictive accuracy and showed that 

the model score does not correlate with the predictive accuracy of the model, when using 

the Pearson product-moment correlation coefficient measure. 

• Explored a method for feature selection using multiple algorithms: In chapter 6, I used 

feature selection algorithms to attempt reducing the number of nodes and simplify the 

model. I showed that within limits and with specific algorithms, the model can be 

simplified with no loss of predictive accuracy. As expected, the reduction of the number of 

input variables reduces drastically the modelling time by multiple factors. 

• New fixed structure Bayesian network learning algorithms: In chapter 6, I introduced 

new fixed structure network learning algorithms (Pyramid, BlockV and BlockH) following 

the idea behind ChainGA. The initial tests show that the new structures provide results 

which do not correlate with K2GA; however, ChainGA scores do not correlate with K2GA

scores either. I conclude that additional experiments involving evolutionary algorithms

should be performed to further the idea. 

• Proposed real-world applications of the models developed, based on current industry 

needs: In chapter 8, I reviewed and proposed real-world applications for the models such 

as recommender systems, an oil drilling rig selection tool, a user-ready rig performance 

forecasting software and rig scheduling tools [129]. 

Relating to my original objectives, I have investigated the use of Bayesian networks learning 

algorithms and compared it to other statistical and machine learning methods. I approached the 

model building exercise from real-world data from oil drilling rigs, wells, deployments and 

specifications and created well-performing models. Furthermore, I investigated various model 

usages for the oil and gas industry and I reviewed the techniques for applications of Bayesian

models in commercial and research fields such as forecasting, scheduling and recommender 

systems.  
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In general, this research project has developed the use of Bayesian networks in the real-world for 

application to commercial objectives and reduced the uncertainty around oil drilling rig 

performance for the oil and gas industry. This research was carried out using an empirical approach 

with real-world data from the industry. The data sourcing and preparation was one of the most 

expensive and time-consuming activity of this research. Using state-of-the-art probabilistic model-

building algorithms, we have created an approach to developing models forecasting the 

performance of industry operations.  

I am convinced that these results present a great potential for a better understanding of the 

variables, influencing oil drilling rig performance, ultimately offering a solution to the industry for 

improving the selection and operation of oil drilling rigs. Additionally, I am persuaded that the 

wider range of data analysis and the analytics it supports will play an important part and provide a 

solid foundation for the development of most technological landscapes in the next five to ten years. 

  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

113 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

114 

References 

1.  Knowledge Transfer Partnerships. Knowledge Transfer Partnerships (KTP) - Accelerating 
Business Innovation [Internet]. 2008 [cited 2012 Aug 28]. Available from: 
http://www.ktponline.org.uk/ 

2.  Society of Naval Architects and Marine Engineers Singapore, The Joint Branch of the 
RINA, the IMarEST (Singapore) C for OR& E (CORE). Evening Lecture Invitation. 2008.  

3.  Wittig F, Jameson A. Exploiting qualitative knowledge in the learning of conditional 
probabilities of Bayesian networks. Uncertainty in Arti!cial Intelligence: Proceedings of the 

Sixteenth Conference. 2000.  

4.  Markham IS, Mathieu RG, Wray BA. Setting through artificial intelligence: a comparative 

study of artificial neural networks and decision trees. Integrated Manufacturing Systems. 

2000;11(4):239�46.  

5.  Feelders A, Daniels H, Holsheimer M. Methodological and practical aspects of data mining. 

Information & Management. 2000;37(5):271�81.  

6.  Sterritt R, Liu W. Constructing bayesian belief networks for fault management in 

telecommunications systems. 1st Europen Symposium on Intelligent Technologies, Hybrid 

Systems and their implementation on Smart Adaptive Systems. 2001;149�54.  

7.  Cummings M. Automation bias in intelligent time critical decision support systems. AIAA 

1st Intelligent Systems Technical Conference. Citeseer; 2004. p. 33�40.  

8.  Bergemann D, Ozmen D. Efficient recommender systems. papers.ssrn.com. 2007;(1196).  

9.  Horowitz D. Damon Horowitz calls for a �moral operating system� TED talk [Internet]. 

TED talk. 2011 [cited 2012 Aug 2]. Available from: 

http://www.ted.com/talks/damon_horowitz.html 

10.  ODS-Petrodata Ltd. http://rigpoint.ods-petrodata.com/ [Internet]. 2010. Available from: 

http://rigpoint2.ods-petrodata.com/ 

11.  Harris J. Selection an offshore drilling rig - The competitive tendering process. Offshore 

Europe. 1989;  

12.  Nergaard A. Offshore drilling technology. Offshore (Conroe, TX). Carita, Banten, 

Indonesia: University of Stavanger and Smedvig offshore; 2005. p. 1�17.  

13.  Fournier FA, Mccall J, Petrovski A, Barclay PJ. Evolved Bayesian network models of rig 

operations in the Gulf of Mexico. Proceedings of the IEEE Congress on Evolutionary 

Computation (CEC 2010). 2010.  

14.  Freudenrich C. How oil drilling works [Internet]. howstuffworks.com. 2001 [cited 2011 

Mar 22]. p. 1�7. Available from: http://www.howstuffworks.com/oil-drilling.htm 



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

115 

15.  National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling. A brief 
history of offshore oil drilling. National Commission on the BP Deepwater Horizon Oil 
Spill and Offshore Drilling; 2010. p. 18.  

16.  National Commission on the Deepwater Horizon Oil Spill and Offshore Drilling. National 
commission on the Deepwater Horizon oil spill and offshore drilling. 2010.  

17.  Osmundsen P, Sørenes T, Toft A. Drilling contracts and incentives. Energy Policy. Elsevier; 
2008;36(8):3128�34.  

18.  Hoffmann GA, Salfner F, Malek M. Advanced failure prediction in complex software 
systems. Proc. of SRDS. Citeseer; 2004. p. 1�19.  

19.  Fayyad U, Piatetsky-shapiro G, Smyth P. The KDD process for extracting useful knowledge 
from volumes of data. Communications of the ACM. ACM New York, NY, USA; 
1996;39(11):27�34.  

20.  Fayyad U, Piatetsky-shapiro G, Smyth P. The KDD process for extracting useful knowledge 
from volumes of data. Proceeding of the AAAI 96 conference. ACM New York, NY, USA; 
1996;1277�84.  

21.  Neapolitan RE. Learning bayesian networks. Prentice Hall, Upper Saddle River, NJ. 
Prentice Hall Upper Saddle River, NJ; 2003.  

22.  Department of Computer Science Iowa State University. ComS 472/572 Principles of 
artificial intelligence: Bayesian networks (syntax, semantics, and modeling). 2011.  

23.  Kjærulff UB, Madsen AL. Probabilistic networks-an introduction to bayesian networks and 
influence diagrams. Aalborg University. 2005;(May).  

24.  Kabli R, Herrmann F, Mccall J. A chain-model genetic algorithm for Bayesian network. 
Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM; 
2007. p. 1264�71.  

25.  Kabli R, McCall J, Herrmann F, Ong E. Evolved bayesian networks as a versatile 
alternative to partin tables for prostate cancer management. Proceedings of the 10th annual 
conference on Genetic and evolutionary computation. ACM; 2008. p. 1547�54.  

26.  Wu Y, Mccall J, Corne D. Two novel ant colony optimization approaches for Bayesian 
network structure learning. Proceedings of the IEEE Congress on Evolutionary 
Computation (CEC 2010). 2010.  

27.  Kordon A. Applying computational intelligence: how to create value. Springer; First Edition 
edition; 2009.  

28.  Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks 
from data. Machine Learning. 1992 Oct;9(4):309�47. 

29.  Burgard W, Raedt L De, Kersting K, Nebel B. Bayesian networks, intro. Graphical Models. 
Freiburg, Germany: Albert-Ludwigs University; 2001.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

116 

30.  Doguc O, Ramirezmarquez J. A generic method for estimating system reliability using 
Bayesian networks. Reliability Engineering & System Safety. 2009;94(2):542�50.  

31.  Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: The combination of 
knowledge and statistical data. Machine learning. Redmond; 1995;20(3):197�243.  

32.  Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine learning. 
Springer; 1997;29(2):131�63.  

33.  Adomavicius G, Tuzhilin A. Recommendation technologies: Survey of current methods and 
possible extensions. Stern School of Business, New York University; 2004. p. 1�39.  

34.  Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey 
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data 
Engineering. 2005 Jun;17(6):734�49.  

35.  Adomavicius G, Tuzhilin A. Expert-driven validation of rule-based user models in 
personalization applications. Data Mining and Knowledge Discovery. Springer; 
2001;5(1):33�58.  

36.  Thiele L, Miettinen K, Korhonen PJ, Molina J. A preference-based evolutionary algorithm 
for multi-objective optimization. Evolutionary computation. 2009 Jan;17(3):411�36.  

37.  Niedermayer D. An introduction to bayesian networks and their contemporary applications. 
http://www.niedermayer.ca/papers/bayesian/index.html. 1998;  

38.  Jensen F V., Nielsen TD. Bayesian networks and decision graphs. 2nd editio. Springer; 
2007. p. 447.  

39.  Davies S, Moore AW. Bayesian networks�: independencies and inference [Internet]. 
Carnegie Mellon tutorials. Pittsburgh: Carnegie Mellon; 2008 [cited 2012 Sep 15]. p. 1�21. 
Available from: http://www.autonlab.org/tutorials/bayesinf.html 

40.  Robinson RW. Counting unlabeled acyclic digraphs. Combinatorial mathematics V: 
proceedings of the Fifth Australian Conference. Melbourne; 1977. p. 28.  

41.  Wong ML, Lee SY, Leung KS. A hybrid data mining approach to discover Bayesian 
networks using evolutionary programming. Proceedings of the Genetic and Evolutionary 
Computation Conference. 2002. p. 214�22.  

42.  Habrant J. Structure learning of Bayesian networks from databases by genetic algorithms-
application to time series prediction in finance. Proceedings of the 1st International 
Conference on Enterprise Information Systems. 1999. p. 225�31.  

43.  Larrañaga P, Kuijpers CMH, Murga RH, Yurramendi Y. Learning Bayesian network 
structures by searching for the bestordering with genetic algorithms. IEEE Transactions on 
Systems, Man and Cybernetics, Part A. 1996;26(4):487�93.  

44.  Novobilski AJ. The random selection and manipulation of legally encoded Bayesian 
networks in genetic algorithms. The 2003 International Conference on Artificial Intelligence 
(ICAI). 2003.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

117 

45.  Van Dijk S, Thierens D, Van Der Gaag L. Building a GA from design principles for 
learning Bayesian networks. Genetic and Evolutionary Computation � GECCO 2003. 
Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p. 198.  

46.  Buntine WL. Operations for learning with graphical models. Journal of Artificial 
intelligence Research 2. 1994 Nov;2:159�225.  

47.  Chickering DM, Geiger D, Heckerman D. Learning Bayesian networks: search methods and 
experimental results. Preliminary Papers of the Fifth International Workshop on Artificial 
Intelligence and Statistics. 1995. p. 112�28.  

48.  Bouckaert RR. Bayesian belief networks: from construction to inference. PhDthesis, 
University Utrecht. 1995;  

49.  Murphy K. A brief introduction to graphical models and Bayesian networks [Internet]. 1998 
[cited 2012 Aug 2]. Available from: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 

50.  Judea Pearl. Causality: models, reasoning, and inference. Causality: Models, Reasoning, 
and Inference. Cambridge University Press; 2000. p. 400.  

51.  DanLi, Yang H, Liang X. Application of Bayesian networks for diagnosis analysis of 
modified sequencing batch reactor. Advanced Materials Research. 2012;Progress i(610-
613):1139�45.  

52.  Millán E, Descalço L, Castillo G, Oliveira P, Diogo S. Using Bayesian networks to improve 
knowledge assessment. Computers & Education. 2013;60(1):436�47.  

53.  Shin C, Hong J-H, Dey AK. Understanding and prediction of mobile application usage for 
smart phones. Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012. 
p. 173�82.  

54.  Rigaux C, Ancelet S, Carlin F, Nguyen-thé C, Albert I. Inferring an augmented Bayesian 
network to confront a complex quantitative microbial risk assessment model with durability 
studies: application to Bacillus Cereus on a courgette purée production chain. Risk 
Analysis. 2012;  

55.  Liang W, Zhuang D, Jiang D, Pan J, Ren H. Assessment of debris flow hazards using a 
Bayesian Network. Geomorphology. 2012;171-172:94�100.  

56.  Wiegerinck WAJJ, Kappen B, Burgers W. Bayesian Networks for expert systems, theory 
and practical applications. In: Babuska R, Groen F, editors. Interactive Collaborative 
Information Systems. Springer; 2009.  

57.  Kannan PR. Bayesian networks: application in safety instrumentation and risk reduction. 
ISA transactions. Elsevier; 2007;46(2):255�9.  

58.  Martinelli G, Eidsvik J, Hauge R, Førland MD. Bayesian networks for prospect analysis in 
the North Sea. AAPG bulletin. American Association of Petroleum Geologists (AAPG); 
2011;95(8):1423�42.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

118 

59.  Abdollahzadeh A, Reynolds A, Christie M, Corne D, Davies B, Williams G. Bayesian 
optimization algorithm applied to uncertainty quantification. SPE Journal. Society of 
Petroleum Engineers; 2012;17(3):865�73.  

60.  Masoudi P, Tokhmechi B, Jafari MA, Moshiri B. Application of fuzzy classifier fusion in 
determining productive zones in oil wells. Energy, Exploration & Exploitation. Multi-
Science; 2012;30(3):403�16.  

61.  Cooper HM. The structure of knowledge synthesis. Knowledge in Society. 1988;1:104�26.  

62.  Duespohl M, Frank S, Doell P. A Review of Bayesian Networks as a Participatory 
Modeling Approach in Support of Sustainable Environmental Management. Journal of 
Sustainable Development. 2012 Nov 8;5(12).  

63.  Chickering DM, Heckerman D, Meek C. Large-sample learning of Bayesian networks is 
NP-Hard. The Journal of Machine Learning Research. 2004;  

64.  Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. The MIT Press; 
2001.  

65.  De Campos LM, Huete JF. A new approach for learning Bayesian networks using 
independence criteria. International Journal of Approximate Reasoning. 2000;24:11�37.  

66.  De Campos LM, Huete JF. On the use of independence relationships for learning simplified 
belief networks. International Journal of Intelligent Systems. Citeseer; 1997;12(7):495�522.  

67.  McAuley J, Caetano T, Buntine W. Graphical models. Encyclopedia of Machine Learning. 
Springer; 2010.  

68.  Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network 
structure learning algorithm. Machine learning. Springer; 2006;65(1):31�78.  

69.  Larrañaga P, Yurramendi Y. Symbolic and quantitative approaches to reasoning and 
uncertainty. Symbolic and Quantitative Approaches to Reasoning and Uncertainty. 
Berlin/Heidelberg: Springer-Verlag; 1993. p. 227�32.  

70.  Larrañaga P, Murga R, Poza M, Kuijpers C. Structure learning of Bayesian networks by 
hybrid genetic algorithms. Lecture notes in statistics. New York: Springer Verlag KG; 1996. 
p. 165�74.  

71.  Singh M, Valtorta M. Construction of Bayesian network structures from data: a brief survey 
and an efficient algorithm. International Journal of Approximate Reasoning. 
1995;12(2):111�32.  

72.  Larrañaga P, Poza M, Yurramendi Y, Murga RH, Kuijpers CMH. Structure learning of 
Bayesian networks by genetic algorithms�: Performance Analysis of Control Parameters. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996;18(9):912�26.  

73.  Wang T, Touchman JW, Xue G. Applying two-level simulated annealing on Bayesian 
structure learning to infer genetic networks. IEEE Computational Systems Bioinformatics 
Conference. 2004. p. 647�8.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

119 

74.  Glover F. Future paths for integer programming and links to artificial intelligence. 
Computers and Operations Research - Special issue: Applications of integer programming. 
1986;13(5):533�49.  

75.  De Campos LM, Gámez Martín JA, Puerta Castellón JM. Learning Bayesian networks by 
ant colony optimisation: searching in two different spaces. Mathware & soft computing. 
2002;9(2-3).  

76.  De Campos LM, Fernandez-Luna JM, Gámez Martín JA, Puerta Castellón JM. Ant colony 
optimization for learning Bayesian networks. International Journal of Approximate 
Reasoning. Elsevier; 2002;31(3):291�311.  

77.  Cowie J, Oteniya L, Coles R. Particle swarm optimisation for learning Bayesian networks. 
World Congress on Engineering. 2007. p. 5�10.  

78.  Sahin F, Devasia A. Distributed particle swarm optimization for structural Bayesian 
network learning. In: Chan FTS, Tiwari MK, editors. Swarm Intelligence: Focus on Ant and 
Particle Swarm Optimization. Itech Education and Publishing; 2007. p. 532.  

79.  Heng X, Qin Z. Research on learning bayesian networks by particle swarm optimization. 
Information Technology Journal. 2006;5(3):540�5.  

80.  Correa ES, Freitas A a., Johnson CG. Particle swarm and bayesian networks applied to 
attribute selection for protein functional classification. Proceedings of the 2007 GECCO 
conference companion on Genetic and evolutionary computation. New York, New York, 
USA: ACM Press; 2007;2651.  

81.  Larrañaga P, Yurramendi Y. Structure learning approaches in Causal Probabilistics 
Networks. Symbolic and quantitative approaches to reasoning and uncertainty: European 
Conference ECSQARU�93, Granada, Spain, November 8-10, 1993: proceedings. 1993. p. 
227.  

82.  Bäck T, Hoffmeister F, Schwefel H-P. A survey of evolution strategies. Proceedings of the 
Fourth International Conference on Genetic Algorithms. Morgan Kaufmann; 1991. p. 2�9.  

83.  Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Computational 
Intelligence Magazine. IEEE Computational Inteligence Magazine; 2006;(November):28�
39.  

84.  DeCampos L, Fernandez-Luna J, Gamez J, Puerta J. Ant colony optimization for learning 
Bayesian networks. International Journal of Approximate Reasoning. 2002;31(3):291�311.  

85.  Daly R, Shen Q. Learning Bayesian network equivalence classes with ant colony 
optimization. Artificial Intelligence. AI Access Foundation,; 2009;35:391� 447.  

86.  Ortiz-Boyer D, Hervás-Mart�nez C, Garc�a-Pedrajas N. Cixl2: A crossover operator for 

evolutionary algorithms based on population features. Journal of Artificial Intelligence 

Research. AI Access Foundation; 2005;24(1):1�48.  

87.  Myers JW, Laskey KB, DeJong KA. Learning bayesian networks from incomplete data 

using evolutionary algorithms. Proceedings of the Genetic and Evolutionary Computation 

Conference. Citeseer; 1999. p. 458�65.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

120 

88.  Pelikan M, Goldberg DE, Cantu-Paz E. BOA: The Bayesian optimization algorithm. 

Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99. 

Citeseer; 1999. p. 525�32.  

89.  Brownlee A. Multivariate Markov networks for fitness modelling in an estimation of 

distribution algorithm. Evolutionary Computation. The Robert Gordon University; 2009.  

90.  Luke S. Essentials of metaheuristics. Lulu; 2009.  

91.  Robbins H, Monro S. A stochastic approximation method. The Annals of Mathematical 

Statistics. 1951;400�7.  

92.  Fermi E, Metropolis N. Los Alamos unclassified report LA-1492. Los Alamos, NM: Los 

Alamos National Laboratory; 1952.  

93.  Davidon W. Variable metric method for minimization. SIAM Journal on Optimization. 

1991;1(1):1�17.  

94.  Barricelli NA. Esempi numerici di processi di evoluzione. Methodos. 1954;6:45�68.  

95.  Michalewicz Z, Fogel DB. How to Solve It: Modern Heuristics. Springer-V. New York; 
2004.  

96.  Holland JH. Adaptation in natural and artificial systems: an introductory analysis with 
applications to biology, control, and artificial intelligence. University of Michigan Press; 
1992.  

97.  Goldberg DE. Genetic algorithms in search, optimization and machine learning. Kluwer 
Academic Publishers; 1989.  

98.  Larrañaga P, Kuijpers CMH. Genetic algorithms for the travelling salesman problem: A 
review of representations and operators. Artificial Intelligence Review. 1999;13:129�70.  

99.  Eberhart RC, Shi Y. Comparison between genetic algorithms and particle swarm 
optimization. Lecture Notes in Computer Science. 1998;1447:611�6.  

100.  Akbari R, Ziarati K. A multilevel evolutionary algorithm for optimizing numerical 
functions. International Journal of Industrial Engineering Computations. 2011 Apr 
1;2(2):419�30.  

101.  Vassilas N, Miaoulis G, Chronopoulos D, Konstantinidis E, Ravani I, Makris D, et al. 
MultiCAD-GA: A system for the design of 3D forms based on genetic algorithms and 
human evaluation. Lecture Notes in Computer Science, Methods and applications of 
artificial intelligence. 2002;2308:743�4.  

102.  Ahn L von. Human computation. International Conference On Knowledge Capture. 2007;  

103.  Dorigo M. Optimization, learning and natural algorithms. Politecnico di Milano, Italy; 
1992.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

121 

104.  Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. actes de la 

première conférence européenne sur la vie artificielle. Paris, France: Elsevier Publishing; 

1991. p. 134�42.  

105.  Bonabeau E. Editor�s introduction: stigmergy. Special issue of Artificial Life on Stigmergy. 

1999;5(2):95�6.  

106.  Grassé PP. La reconstruction du nid et les coordinations interindividuelles chez 

Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai 

d�interprétation du comportement des termites constructeurs. Insectes sociaux. Springer; 

1959;6(1):41�80.  

107.  Dorigo M, Socha K. An introduction to ant colony optimization. In: Gonzalez TF, editor. 

Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC; 2007.  

108.  Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests 

for the logistic regression model. Statistics in medicine. 1997 May 15;16(9):965�80.  

109.  Cramer JS. The origins of logistic regression. Tinbergen Institute; 2002.  

110.  Verhulst P-F. Notice sur la loi que la population poursuit dans son accroissement. Garnier 

JG, Quetelet A, editors. Correspondance mathématique et physique. Impr. d�H. 

Vandekerckhove; 1838;10:113�21.  

111.  Verhulst P-F. Recherches mathématiques sur la loi d�accroissement de la population. 

Nouveaux Mémoires de l�Académie Royale des Sciences et Belles-Lettres de Bruxelles. 

1845;18:1�42.  

112.  Verhulst P-F. Deuxième mémoire sur la loi d�accroissement de la population. Mémoires de 

l�Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. 1847;20:1�32.  

113.  Gabriel J-P, Saucy F, Bersier L-F. Paradoxes in the logistic equation? Ecological 

Modelling. 2005;185(1):147�51.  

114.  Xu X. Class Logistic. Weka - University of Waikato; 2011.  

115.  Le Cessie S, Van Houwelingen JC. Ridge estimators in Logistic regression. Applied 

Statistics. 1992;41(1):191�201.  

116.  Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data 

mining software: An update. SIGKDD Explorations. 2009;11(1).  

117.  Eibe F. Class ReplaceMissingValueFilter. Weka - University of Waikato; 2011.  

118.  Carvalho AM. Scoring functions for learning Bayesian networks. Lisboa: INESC-ID; 2009.  

119.  Buntine W. Theory refinement on Bayesian networks. Proceedings of the Seventh 

Conference on Uncertainty in Artificial Intelligence. 1991. p. 52�60.  

120.  Hall M. Correlation-based feature selection for machine learning. University of Waikato; 

1999.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

122 

121.  Raykar V, Steck H. On ranking in survival analysis: Bounds on the concordance index. 

Advances in Neural Information Processing Systems. 2007;20:1209�16.  

122.  Roy B. The outranking approach and the foundations of ELECTRE methods. Theory and 

decision. Springer; 1991;31(1):49�73.  

123.  Fournier FA, Mccall J, Petrovski A, Barclay PJ. Evolved bayesian network models of rig 

operations in the Gulf of Mexico: preliminary experiments. Aberdeen: SICSA/SEABIS 

Workshop; 2010.  

124.  Osmundsen P, Roll KH, Tveterås R. Productivity in exploration drilling. IAEE International 

Conference. 2009;1�17.  

125.  Pinto PC, Nagele A, Dejori M, Runkler TA, Sousa J. Learning of Bayesian networks by a 

local discovery ant colony algorithm. IEEE World Congress on Computational Intelligence. 

2008. p. 2741�8.  

126.  Pinto PC, Nagele A, Dejori M, Runkler TA, Sousa JMC. Using a local discovery ant 

algorithm for Bayesian network structure learning. IEEE Transactions on Evolutionary 

Computation. IEEE; 2009;13(4):767�79.  

127.  Daly R. Using ant colony optimisation in learning bayesian network equivalence classes. 

Proceedings of the 2006 UK Workshop on Computational Intelligence. 2006;111�8.  

128.  De Campos L, Puerta J. Stochastic local algorithms for learning belief networks: Searching 

in the space of the orderings. Symbolic and Quantitative Approaches to Reasoning with 

Uncertainty. Springer; 2001;228�39.  

129.  Fournier FA, Wu Y, Mccall J, Petrovski A, Barclay PJ. Application of evolutionary 

algorithms to learning evolved bayesian network models of rig operations in the Gulf of 

Mexico. Proceedings of the UKCI Conference. 2010. p. 1�10.  

130.  García S, Luengo J, Sáez JA, López V, Herrera F. A Survey of discretization techniques: 

taxonomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge 

and Data Engineering. IEEE; 2013;25(4):734�50.  

131.  Fu LD, Tsamardinos I. A comparison of Bayesian network learning algorithms from 

continuous data. AMIA Annual Symposium Proceedings. 2005. p. 960.  

132.  Trigg L, Frank E. Class Discretize. Weka - University of Waikato; 2011.  

133.  Hall M, Rockett P. �Algorithm used by weka.filters.unsupervised.attribute.Discretize?� 

Forum Post [Internet]. nabble.com. 2010 [cited 2012 Aug 2]. Available from: 

http://old.nabble.com/Algorithm-used-by-weka.filters.unsupervised.attribute.Discretize--

td29525562.html 

134.  Witten IH, Frank E. Data mining: practical machine learning tools and techniques. Morgan 

Kaufmann; 2005.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

123 

135.  Oxford Dictionaries. �cluster� [Internet]. Oxford Dic. Oxford Dictionaries. Oxford 

University Press.; 2010 [cited 2012 Aug 2]. Available from: 

http://oxforddictionaries.com/definition/english/cluster  

136.  Hall M, Frank E. Class EM. Weka; 2011.  

137.  Borman S. The expectation maximization algorithm a short tutorial. Unpublished paper 

available at http://www. seanborman. com/publications. Citeseer; 2004;1�9.  

138.  Bouckaert R. Bayesian network classifiers in Weka. Department of Computer Science, 

University of �. Hamilton, NZ: University of Waikato; 2004. p. 1�23.  

139.  Cooper GF, Herskovits E. A Bayesian method for constructing Bayesian belief networks 
from databases. Proceedings of the Conference on Uncertainty in AI. 1990. p. 86�94.  

140.  Bouckaert R. Class K2. Weka - University of Waikato; 2011.  

141.  Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. 
Proceedings of the sixth international congress on �. 1932;1(6):356�66.  

142.  Haldane JBS. A mathematical theory of natural and arti cial selection, part viii: Metastable 
populations. Transactions of the Cambrige Philosophical Society. 1931;17:137�42.  

143.  Jones T. Evolutionary algorithms, fitness landscapes and search. The University of New 
Mexico; 1995. p. 249.  

144.  Hall M, Guetlein M. Class BestFirst. Weka - University of Waikato; 2011.  

145.  Pearl J. Heuristics: intelligent search strategies for computer problem solving. Addison-
Wesley Pub. Co., Inc., Reading, MA; 1984;  

146.  Hall M. Class GreedyStepwise. Weka - University of Waikato; 2011.  

147.  Hall M. Class GeneticSearch. Weka. Weka - University of Waikato; 2011.  

148.  Guetlein M. Class LinearForwardSelection. Weka. Weka - University of Waikato; 2011.  

149.  Pino A. Class ScatterSearchV1. Weka. Weka - University of Waikato; 2011.  

150.  Glover F. Heuristics for integer programming using surrogate constraints. Decision 
Sciences. Wiley Online Library; 1977;8(1):156�66.  

151.  Garc� �a López F, Garc� �a Torres M, Melián Batista B, Moreno Pérez JA, Moreno-Vega JM. 

Solving feature subset selection problem by a Parallel Scatter Search. European Journal of 

Operational Research. 2004 Mar;169(2):477�89.  

152.  Guetlein M. Class SubsetSizeForwardSelection. Weka. Weka - University of Waikato; 

2011.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

124 

153.  Guetlein M, Frank E, Hall M, Karwath A. Large-scale attribute selection using wrappers. 

Computational Intelligence and Data Mining, 2009. CIDM�09. IEEE Symposium on. 2009. 

p. 332�9.  

154.  Hall M. Class ClassifierSubsetEval. Weka. Weka - University of Waikato; 2011.  

155.  Hall M. Class WrapperSubsetEval. Weka. Weka - University of Waikato; 2011.  

156.  Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence. 

1997;97(1-2):273�324.  

157.  Frank E. Class ZeroR. Weka. Weka; 2011.  

158.  Trigg L, Frank E. Class NaiveBayes. Weka. Weka - University of Waikato; 2011.  

159.  John GH, Langley P. Estimating continuous distributions in bayesian classifiers. In: 
Kaufmann M, editor. Proceedings of the Eleventh Conference on Uncertainty in Artificial 
Intelligence. San Mateo; 1995. p. 339�45.  

160.  Hall M. Class ConsistencySubsetEval. Weka. Weka - University of Waikato; 2011.  

161.  Liu H, Setiono R. A probabilistic approach to feature selection - A filter solution. 13th 
International Conference on Machine Learning. 1996. p. 319�27.  

162.  Guyon I, Elisseeff A. An introduction to variable and feature selection. The Journal of 
Machine Learning Research. 2003;3:1157�82.  

163.  Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. 
Bioinformatics. Oxford Univ Press; 2007;23(19):2507�17.  

164.  Massa P, Avesani P. Trust-aware collaborative filtering for recommender systems. On the 
Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. Springer; 
2004;492�508.  

165.  Devaney M, Ram A. Efficient feature selection in conceptual clustering. Machine Learning: 
Proceedings of the Fourteenth International Conference. 1997;1997(July).  

166.  Janecek A, Gansterer W. On the relationship between feature selection and classification 
accuracy. JMLR: Workshop and Conference Proceedings. 2008;4:90�105.  

167.  Wang L, Singh C, Kusiak A, editors. Wind Power Systems: Applications of Computational 
Intelligence (Green Energy and Technology). Springer; 2010.  

168.  Saxena D, Singh S., Verma K. Application of computational intelligence in emerging power 
systems. International Journal of Engineering, Science and Technology. 2010 Sep 7;2(3):1�
7.  

169.  Swain SC, Panda S, Mohanty AK, Ardil C. Application of computational intelligence 
techniques for economic load dispatch. 2010;497�505.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

125 

170.  Velez-Langs O. Genetic algorithms in oil industry: An overview. Journal of Petroleum 

Science and Engineering. 2005;47(1-2):15�22.  

171.  Tadeusiewicz R. Using neural models for evaluation of biological activity of selected 

chemical compounds. In: Smolinski T, Milanova M, Hassanien A-E, editors. Applications 

of Computational Intelligence in Biology. Springer Berlin Heidelberg; 2008. p. 135�59.  

172.  Park H, Yoo J, Cho S. A context-aware music recommendation system. Lecture Notes in 

Artificial Intelligence. 2006;4223:970 � 979.  

173.  Oh H. Literature review on advisor selection [Internet]. University of Minnesota. University 

of Minnesota; 2009 [cited 2012 Sep 15]. Available from: 

http://misrc.umn.edu/workshops/2009/spring/Oh.pdf 

174.  Resnick P, Varian HR. Recommender systems. Communications of the ACM. ACM; 

1997;40(3):58.  

175.  Ujjin S, Bentley P. Building a Lifestyle Recommender System. Poster Proceedings of the 

10th International World Wide Web Conference, Hong Kong. Citeseer; 2001. p. 3�7.  

176.  Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for 

collaborative filtering. Proceedings of the Fourteenth Conference on Uncertainty in 

Artificial Intelligence. San Francisco, CA; 1998.  

177.  Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: a constant time collaborative 

filtering algorithm. Information Retrieval. 2001;(August).  

178.  Terveen LG, Hill W. Beyond recommender systems: helping people help each other. HCI in 

the New Millennium. Addison Wesley. Citeseer; 2001;(1):487�509.  

179.  Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering 

recommender systems. ACM Transactions on Information Systems. ACM; 2004;22(1):5�

53.  

180.  Shani G, Heckerman D, Brafman RI. An MDP-based recommender system. Journal of 

Machine Learning Research. Citeseer; 2006;6(2):1265.  

181.  Zukerman I, Albrecht DW. Predictive statistical models for user modeling. User Modeling 
and User-Adapted Interaction. Springer; 2001;11(1):5�18.  

182.  Condli MK, Lewis DD, Madigan D, Posse C, Talaria I. Bayesian mixed-effects models for 
recommender systems. Conference SIGIR-99 Workshop on Recommender Systems: 
Algorithms and Evaluation. Citeseer; 1999.  

183.  Pearl J, Shafer G. Probabilistic reasoning in intelligent systems: networks of plausible 
inference. Morgan Kaufmann. Morgan Kaufmann San Mateo, CA; 1988.  

184.  Jameson A. Numerical uncertainty management in user and student modeling: An overview 
of systems and issues. User Modeling and User-Adapted Interaction. Springer; 
1995;5(3):193�251.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

126 

185.  Dean TL, Wellman MP. Planning and control. Morgan Kaufmann Publishers Inc. San 

Francisco, CA, USA; 1991.  

186.  Howard RA, Matheson JE. Influence diagrams, In the Principles and Applications of 

Decision Analysis. Strateg Decis Group. 1984;2:719�26.  

187.  Howard RA, Matheson JE. Influence diagrams. Decision Analysis. INFORMS; 

2005;2(3):127�43.  

188.  Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K. The Lumiere project: Bayesian 

user modeling for inferring the goals and needs of software users. Proceedings of the 

fourteenth Conference on Uncertainty in Artificial Intelligence. 1998. p. 256�65.  

189.  Lau T, Horvitz E. Patterns of search: Analyzing and modeling web query refinement. 

Courses and Lectures - International centre for mechanical sciences. Citeseer; 1999;119�28.  

190.  Albrecht DW, Zukerman I, Nicholson AE. Bayesian models for keyhole plan recognition in 
an adventure game. User modeling and user-adapted interaction. Springer; 1998;8(1):5�47.  

191.  Horvitz E, Jacobs A, Hovel D. Attention-sensitive alerting. Proceedings of the Fifteenth 
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc; 
1999.  

192.  Gmytrasiewicz PJ, Noh S, Kellogg T. Bayesian update of recursive agent models. User 
Modeling and User-Adapted Interaction. Springer; 1998;8(1):49�69.  

193.  Jameson A, Großmann-Hutter B, March L, Rummer R. Creating an empirical basis for 
adaptation decisions. Proceedings of the 5th international conference on Intelligent user 
interfaces. 2000. p. 149�56.  

194.  Macho S, Torrens M, Faltings B. A multi-agent recommender system for planning 
meetings. Fourth International Conference on Autonomous Agents, Workshop on Agent-
based Recommender Systems (WARS2000). Citeseer; 2000.  

195.  MacLeod K. Global vessel scheduling in the subsea engineering & construction industry. 
Robert Gordon University; 2008.  

196.  Actenum. Scheduling in asset-intensive organizations�: is there a better way�? Vancouver: 
Actenum Corporation; 2006. p. 1�6.  

197.  Israel M. Advances in rig scheduling techniques. Upstream Technology. 2008;3(4).  

198.  Proud JF. Master scheduling: a practical guide to competitive manufacturing. Wiley; 2007.  

199.  Wallace TF, Kremzar MH. ERP: making it happen: the implementers� guide to success with 
enterprise resource planning. John Wiley & Sons Inc; 2001.  

200.  Kerzner H. Project management: a systems approach to planning, scheduling, and 
controlling. Wiley; 2009.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

127 

201.  Blazewicz J. Scheduling in computer and manufacturing systems. Springer-Verlag New 

York, Inc. Secaucus, NJ, USA; 1996.  

202.  Nino-Mora J. Stochastic scheduling. Encyclopedia of Optimization. 2001;5:367�72.  

203.  Bierwirth C. A generalized permutation approach to job shop scheduling with genetic 

algorithms. OR Spectrum. Springer; 1995;17(2):87�92.  

204.  Dorndorf U, Pesch E. Evolution based learning in a job shop scheduling environment. 

Computers & Operations Research. Elsevier; 1995;22(1):25�40.  

205.  Mesghouni K, Hammadi S, Borne P. Evolutionary algorithms for job-shop scheduling. 

International Journal of Applied Mathematics and Computer Science. Citeseer; 2004. p. 91�

104.  

206.  Hindi KS, Yang H, Fleszar K. An evolutionary algorithm for resource-constrained project 

scheduling. Evolutionary Computation, IEEE Transactions on. IEEE; 2002;6(5):512�8.  

207.  Garrido A, Salido M, Barber F, López M. Heuristic methods for solving job-shop 

scheduling problems. ECAI-2000 Workshop on New Results in Planning, Scheduling and 

Design. Berl�\in. Citeseer; 2000. p. 36�43.  

208.  Kim J. Permutation-based elitist genetic algorithm using serial scheme for large-sized 

resource-constrained project scheduling. Proceedings of the 39th conference on Winter 

simulation. IEEE Press; 2007. p. 2112�8.  

209.  Zhang H, Gen M. Effective genetic approach for optimizing advanced planning and 
scheduling in flexible manufacturing system. Proceedings of the 8th annual conference on 
Genetic and evolutionary computation - GECCO  �06. New York, New York, USA: ACM 
Press; 2006;1841.  

210.  Coburn P. The change function: why some technologies take off and others crash and burn. 
A & C Black Publishers Ltd; 2007. p. 224.  

211.  Christensen CM, Raynor ME. The innovator�s solution: Creating and sustaining successful 
growth. Harvard Business Press; 2003.  

212.  Levitt TM. The marketing imagination. Expanded. Free Press; 1986. p. 238.  

213.  Araki M. PID control. Control systems, robotics and automation. 2002;2.  

214.  McLendon R. Types of offshore oil rigs [Internet]. Mother Nature Network - Earth Matters 
- Energy. 2010 [cited 2012 Sep 14]. Available from: http://www.mnn.com/earth-
matters/energy/stories/types-of-offshore-oil-rigs 

215.  Quinlan J. C4.5: Programs for machine learning. Morgan Kaufmann Publishers; 1993.  



Probabilistic Modelling of Oil Rig Drilling Operations for Business Decision Support François A. Fournier

128 

Appendix 

Figure 30: Pearson Correlations of all continuous variables for WRD2.0 

Figure 31: Pearson Correlations of all continuous variables for WRD2.0, ordered by correlation with 

AveragePerformanceFootagePerDay 
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Figure 32: Pearson Correlations of all continuous variables for WRD2.5 

Figure 33: Pearson Correlations of all continuous variables for WRD2.5, ordered by correlation with 

AveragePerformanceFootagePerDay 

APF/d is AveragePerformanceFootagePerDay. 
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Figure 34: Pearson Correlations of all continuous variables for WRD2.0-preD 

Figure 35: Pearson Correlations of all continuous variables for WRD2.0-preD, ordered by correlation 

with AveragePerformanceFootagePerDay 
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Table 36: Parameter search with WRD2.5 
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Review of Extracts from Kordon’s Work in View of This Research 

One of the main issues encountered while working on this research was the barriers raised in the 
course of interaction between different disciplines: abstract computing research and the real world 
of engineering and stakeholders. In his book “Applying computational intelligence” [27], Kordon 
explores the problems and issues associated with technology transfer between the world of 
advanced theory of computational intelligence and the world of practical applications of 
engineering methodologies to the industry. He explores the specificities of various computational 
intelligence techniques, their typical applications and the creation of value and reviews application 
strategies. Throughout the book, Kordon’s focus on ‘competitive advantage’ helps expanding the 
industrial side of this research.  

The adoption of the technology developed in this research relies on the credibility associated with it 
at the end of the project. Kordon highlights that “one of the differences between computational 
intelligence and the other high-tech alternatives is that it has already demonstrated its potential for 
value creation in many application areas” [27] (page 221). This confirms observations in the energy 
sector regarding the use of computational intelligence for wind power systems [167], electric 
power systems [168], thermal plants [169], and the oil industry (including reservoir 
characterization, gas storage, seismic inversion, engine oil development, oil field development,  
production scheduling) [170] as well as for biology [171]. Kordon explains that a variety of 
technology such as “search engines, word-processor, spell checkers and [...] rice cooker” are also 
everyday examples of the application of the technology [27]. One highly publicised event, 
demonstrating further avenue of value creation of computational intelligence, was the “chess battle 
between Kasparov and Big Blue” [27]. 

The key elements to demonstrate a competitive advantage from a research approach are expressed 
in [27] (page 233). The competitive advantage is clearly demonstrated by the clarification of its 
technical superiority, the indication of a low cost of ownership and the evidence of its ability to be 
applied in “areas of high impact”. This project is able to deliver the competitive advantage sought 
by Kordon because, first, it is inherent to the scientific and methodical approach; secondly, the cost 
of computation is constantly lowering while the cost of field experts is raising or at least remains 
stable; lastly, the potential impact of an objective decision support system to rig performance can 
easily be considered a “high impact” in view of the oil drilling rig operating costs only. 

In the course of his discussion, Kordon [27] (page 248) analyses the main competitive advantage of 
computational intelligence. The first advantage is the objectivity of the intelligence provided by 
those algorithms. They have indeed less possibility to be contaminated by human biases an expert 
could have. The second advantage is the ability of the algorithms to deal with uncertainty. The 
computational intelligence approach to data modelling inherently includes the real world 
uncertainties within its models.  Evolutionary Computation adopts the strategy of “reducing 
uncertainty through simulated evolution”. “This technology is one of the rare cases when modelling 
can begin with no a priori assumptions at all” [27]. Kordon also states that “uncertainty is gradually 
reduced by the evolving population and the fittest winners in this process are the final results of this 
fight with the unknown.” The third advantage is the ability of computational intelligence to deal 
with complexity. Evolutionary Computation amounts to “reducing complexity through simulated 
evolution” [27]. One side-effect during simulated evolution is that “the unimportant variables are 
gradually removed from the final solutions, which leads to automatic variable selection and 
dimensionality reduction” [27]. The fourth advantage is the “unique capability to automatically 
create innovative solutions” [27]. Using small building blocks, an evolutionary algorithm can 
generate almost any type of new structure and find new relationships between the different 
variables. Finally, the relative low-cost of modelling is a major advantage. Computational 
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variables. Finally, the relative low-cost of modelling is a major advantage. Computational 

intelligence can create high quality empirical models that would have taken decades, if at all 

possible, for human experts to imagine. 

Kordon also explores common issues encountered when applying computational intelligence and 

proposes ways to mitigate the risks [27] (page 257). The first issue to explore here is the change 

function. According to this idea, proposed by Coburn [210], �people are only willing to change and 

accept new technologies when the pain of their current situation outweighs the perceived pain of 

trying something new�. The reaction level from a user to a new technology product can vary from 

indifference to crisis. �People are more willing to change the higher the level of crisis they have in 

their current situation.� The suggested response to that issue [27] is that the application of 

computational intelligence should be made in such a way as to minimise the perceived pain of 

adoption, while demonstrating a clear competitive advantage such as when �a novel solution is 

needed in a dynamic environment of high complexity or uncertainty� [27]. The second issue to 

mention here is an issue created by the technologists themselves. Christensen mentions that three 

quarters of the money spent on product development investments result in products that do not 

succeed commercially [211]. This issue is produced by the technologists trying to create a need 

where nothing has ever been needed. �A typical result of the technocentric culture is pushing 

technology improvement at any cost by management. Often introducing technology is part of the 

process [...]� [27]. The �real customer needs� are neglected. Relating to that issue, Levitt notes: 

�When people buy quarter-inch drill bits, it�s not because they want the bits themselves. People 

don�t want quarter-inch drill bits � they want quarter-inch holes� [212]. Kordon goes further and 

says that: �Imposing the technology for purely technology�s sake may lead to lost credibility, as we 

know from applied AI� [27].  The third important issue is the increased complexity of applied new 

solutions. This complexity is the �root cause for the high total perceived pain of adoption.� An 

example given by Kordon [27] is the use of neural networks to control industrial nonlinear systems. 

The neural network will allow more flexibility and control over the dynamic environment but the 

user will have to deal with 10 to 12 parameters necessary to tune the neural network when a 

conventional PID controller (proportional�integral�derivative, generic control loop feedback 

mechanism widely used in industrial control systems [213]) commonly requires 3 parameters. 

Other issues such as �technology hype�, �modelling fatigue� and the over-academic image of 

computational intelligence  are examples of additional issues addressed in [27] as well.   

Kordon describes his approach to integrating computational intelligence technology in [27] (page 

309). One of his key messages on integration is that the �reality of industrial applications requires 

the joint solution of the technical, infrastructural, and people-related components of a given 

problem�. Kordon [27] lists obstacles to the integration efforts. Some of them are usually related to 

data quality (availability, range and occurrence coverage, frequency of collection, noise level
30

), 

availability of expertise (to understand the domain knowledge), and limited infrastructure 

(integration capabilities with current systems). 

                                                     

30
 Kordon uses the acronym GIGO: Garbage-in-garbage-out to talk about issues with data quality as an input 

to data-trained models. 
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Glossary 

• Average Day Rate:  Average price of the rig on the market. 

• Average Feet drilled Per Non-(idle/WOW) Day: Distance drilled adjusted for the days when the 

rig was not drilling. 

• Average Price Per Foot Drilled: Relative price of drilling one foot with this rig. This is an 

alternative measure of performance. 

• Bulk Cement: Bulk cement is a powder form of cement that is used for pumping down the well to 

set casing pipe, and to block the well if required. Only the amount needed to be used immediately is 

made up, as it sets very quickly. 

• Bulk Mud: Bulk mud is powder storage of ingredients used in making up drilling fluid that is 

pumped through the drill pipe. Drilling mud has a very high density to hold gas and oil that is under 

pressure in the well. Bulk mud is stored in dry form so that different densities of liquid mud can be 

made up as and when required for the current drilling conditions. 

• Cantilever Capacity: Cantilever capacity is the amount of weight that can be carried at the end of 

the cantilever on a deployed jack-up rig when on location. The cantilever on a jack-up rig is a 

mechanical arm able to extend the drilling package over the side of the rig hull. The drilling package 

includes the derrick and most of the machinery necessary for drilling an oil well. 

• Design Company: The name of the company which designed the rig. 

• Drawworks:  This is a winch that is used to raise and lower the top drive which  holds the drill pipe. 

The stronger the draw works, the longer the pipe that can be held and the faster the pipe can be 

raised and lowered. 

• Footage Drilled: Linear length of the hole drilled under the ocean floor. 

• Last Upgrade Year: The year the rig has been upgraded the last time. 

• Market Category: The category in which the rig is marketed. Most often it is based on the rig type 

and the water depth rating. 

• Operator: The name of the company operating the rig on behalf of the rig owner. 

• Overrun Rates: Rates which have to be paid if the rig goes over contract when drilling a well. 

• Recent Management Change: An indicator of recent management change. This can impact 

performance as the crew might have to adapt to new operating practices. 

• Rig Design: The specific model of rig.  

• Spud Date: Spud date is the date at which the rig starts drilling the well. Start date and Spud date 

are often different due to the preparation and deployment necessary before drilling. 

• Start Date: Date the oil drilling rig arrives on site and starts preparing to drill. 

• Storage Mud Liquid: Storage Mud Liquid is a liquid store of drilling fluid that is ready to be 

pumped down the drill pipe. The fluid in these containers is continuously circulated through the drill 

pipe and back up the well, cleaned and then pumped down again. 

• Termination date: Date the oil drilling rig completes the drilling and testing operations following 

the drilling. 

• Time Since Last Well: The number of days a rig has spent inactive since it last drilled a well. 

• Top Drive: Tool used to drive the drilling process. It turns the drill pipe to perform drilling. 

• Total Depth Date: Date the oil drilling rig has reached the target depth of drilling. 

• Utilisation of Fleet for Rig Type:  Ratio of the fleet in use for the specific rig type. 

• Utilisation of Fleet: Ratio of the fleet in use or under contract. 

• Water Depth Rating: Depth the oil drilling rig is certified to operate at. 

• Water Depth: Depth from the ocean floor to the surface. 

• WOW: Waiting on weather, the rig is idle and waiting for clearer conditions. 
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