
ALZA, J., BARTLETT, M., CEBERIO, J. and MCCALL, J. 2019. On the definition of dynamic permutation problems under
landscape rotation. In López-Ibáñez, M. (ed.) Proceedings of the 2019 Genetic and evolutionary computation

conference companion (GECCO 2019), 13-17 July 2019, Prague, Czech Republic. New York: ACM [online], pages
1518-1526. Available from:

https://doi.org/10.1145/3319619.3326840

On the definition of dynamic permutation
problems under landscape rotation.

ALZA, J., BARTLETT, M., CEBERIO, J., MCCALL, J.

2019

This document was downloaded from
https://openair.rgu.ac.uk

© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of the 2019 Genetic
and evolutionary computation conference companion (GECCO 2019), 13-17 July 2019, pages 1518-1526.
http://doi.acm.org/10.1145/3319619.3326840

https://doi.org/10.1145/3319619.3326840
http://doi.acm.org/10.1145/3319619.3326840

On the Definition of Dynamic Permutation

Problems under Landscape Rotation

Joan Alza
The Robert Gordon University, The Sir Ian Wood Building,

Garthdee Road, Aberdeen, Scotland, AB10 7GJ
j.alza-santos@rgu.ac.uk

Mark Bartlett
The Robert Gordon University, The Sir Ian Wood Building,

Garthdee Road, Aberdeen, Scotland, AB10 7GJ
m.bartlett3@rgu.ac.uk

Josu Ceberio
University of the Basque Country (UPV/EHU),

Faculty of Computer Science, Donostia, Spain, 20018
josu.ceberio@ehu.eus

John McCall
The Robert Gordon University, The Sir Ian Wood Building,

Garthdee Road, Aberdeen, Scotland, AB10 7GJ
j.mccall@rgu.ac.uk

Abstract

Dynamic optimisation problems (DOPs) are optimisation problems
that change over time. Typically, DOPs have been defined as a sequence
of static problems, and the dynamism has been inserted into existing static
problems using different techniques. In the case of dynamic permutation
problems, this process has been usually done by the rotation of the land-
scape. This technique modifies the encoding of the problem and maintains
its structure over time. Commonly, the changes are performed based on
the previous state, recreating a concatenated changing problem. However,
despite its simplicity, our intuition is that, in general, the landscape rota-
tion may induce severe changes that lead to problems whose resemblance
to the previous state is limited, if not null. Therefore, the problem should
not be classified as a DOP, but as a sequence of unrelated problems. In
order to test this, we consider the flow shop scheduling problem (FSSP)
as a case study and the rotation technique that relabels the encoding of
the problem according to a permutation. We compare the performance of
two versions of the state-of-the-art algorithm for that problem on a wide

1

experimental study: an adaptive version that benefits from the previous
knowledge and a restarting version. Conducted experiments confirm our
intuition and reveal that, surprisingly, it is preferable to restart the search
when the problem changes even for some slight rotations. Consequently,
the use of the rotation technique to recreate dynamic permutation prob-
lems is revealed in this work.

1 Introduction

In real-world situations, optimisation problems usually depend on changing con-
ditions, and it is important for an optimisation algorithm to react efficiently.
Known as dynamic optimisation problems (DOPs), these problems rely on solv-
ing an optimisation problem by an optimisation algorithm in a time window
in which the problem changes at least once. Consequently, the algorithm re-
quires a reaction to the change to provide new promising solutions. Examples
of real-world dynamic optimisation problems include the arrival of a new task
or the improper functioning of a machine in a scheduling problem, the influence
of traffic in the transportation domain, or customer demand in logistics.

In the literature, many definitions have been proposed to refer to DOPs.
Some researchers have defined DOPs as a sequence of static problems linked up
by a dynamic rule Younes et al. (2005); Rohlfshagen and Yao (2008), whereas
others define them as optimisation problems composed by time-dependent param-
eters Cruz et al. (2011); Back (1998). Not limited to that, in Nguyen (2011), the
author inserted the way that the algorithm solves the problem defining DOPs
as a special class of dynamic problems that are solved online by an optimisation
algorithm as time goes by. However, it is our belief that not any sequence of
static problems should be considered a DOP. Consider a case where a severe
problem-change translates to a problem completely different. In that case, the
adaptability inserted to existing evolutionary algorithms is harmful to solve the
problem effectively.

Related to the definition of DOPs, the simulation of realistic scenarios has
been an outstanding issue due to the recreation of real-world applications in
academic research. In short, DOPs modify the problem over time hindering the
search for the new global optimum. In the literature, some dynamic benchmark
generators such as Moving Peaks Branke (1999) or exclusive-or (XOR) Yang
(2003) have been presented. The XOR DOP generator has been widely used
since it rotates the landscape at each change-step (moment of change), maintain-
ing the structure of the problem. Although this technique was initially proposed
to generate dynamism into binary problems, later works extend it to other fields
such as permutation problems Mavrovouniotis et al. (2012). It appears a useful
technique to draw preliminary conclusions because it is a quick and straightfor-
ward way to insert dynamism into an existing permutation problem. However,
in this manuscript, we put in question the utility of this technique to generate
dynamism since it might create such severe modifications on the problem that
the scenario after a change might be categorised as a new problem completely

2

different.
To that end, we consider the flow shop scheduling problem (FSSP) as a

case study and the state-of-the-art algorithm for that problem, the random key
based estimation of distribution algorithm (RKEDA) Ayodele et al. (2017). We
select the first instances (considering the different number of machines) from
the original instances of the FSSP Taillard (1993) for the sizes 20, 50 and 100,
and we insert dynamism considering different change-severity (magnitude of
change) values. The landscape rotations are produced by three distance metrics
for permutation space Irurozki (2014): Kendall’s-τ , Cayley and Ulam.

For the sake of solving dynamic FSSPs, two different versions of the RKEDA
are presented. The first version adjusts to a problem change while retaining some
previously earned knowledge (aRKEDA). The second version restarts the search
process by generating an entirely new population every change-step (rRKEDA).
The aim is to compare the performance of aRKEDA and rRKEDA through
different change-severity values under the landscape rotation. Our hypothesis
is that reusing knowledge from the previous state at severe problem-changes
will be useless, if not harmful. Therefore, restarting the algorithm will be more
beneficial in that case. At this point, we can conclude that it is not appropriate
to call dynamic to the changing problem.

Our experiments, surprisingly, show the few cases where the adaptation using
previous knowledge is effective. As expected, for low-severity changes aRKEDA
performs better than rRKEDA, but they tend to reverse their role so rapidly as
change-severity increases that restarting the algorithm from scratch is preferable
even in some of the slightly changing problems. In this way, a sequence of
FSSPs linked up by the landscape rotation should not be considered a DOP
but a sequence of problems completely different in case that the effectiveness of
restarting the algorithm is higher than adapting to problem-changes.

The rest of this paper is organised as follows. Section 2 presents the context
used in this work by explaining the background of permutations. Section 3
describes the commonly used definitions for DOPs, our points to consider and
the dynamic benchmark generator used. Section 4 introduces the RKEDA, and
the methods used to deal with the dynamism. Section 5 explores the results
obtained by both techniques, before Section 6 provides discussion about the
interpretation of the results. Finally, Section 7 concludes the paper by giving
some conclusions and future works.

2 Permutation space

A permutation is a bijection from the set S, composed of natural numbers, to
itself. For a set of size n, there are n! possible permutations, and they form
the algebraic group called symmetric group, denoted as Sn. Figure 1 displays
a graphical representation of Sn of size 4 in the form of a Permutahedron1.
Commonly permutations are represented as σ, π ∈ Sn, where σ(i) stands for the
element at position i.

1https://upload.wikimedia.org/wikipedia/commons/3/3e/Permutohedron.svg

3

Figure 1: Permutahedron1 of order 4.

There is a special permutation, the identity permutation, in which the item
i is mapped on the position i, and it is usually denoted as e. In addition, for
every permutation σ, there is an inverse permutation σ−1 ∈ Sn, where each
item and its position on the permutation σ are exchanged.

The composition of two permutations is used to provide a new permutation,
and it is defined as σ ◦π (i) = σ(π(i)). In this sense, the composition of permu-
tation σ and its inverse permutation σ−1 is equal to the identity permutation,
σ ◦σ−1 = e. It is worth noting that the composition of two permutations is not
in general commutative, σ ◦ π 6= π ◦ σ.

2.1 Distance metrics

The distance between permutations can be defined as the minimum number
of steps to change one permutation into another. There are many metrics,
although Kendall’s-τ , Cayley and Ulam distances have been prominently used
as the distance between permutations in combinatorial space Irurozki (2014).

Given two permutations σ and π, Kendall’s-τ metric counts the minimum
number of pairwise disagreements between two permutations. Equivalently,
it corresponds to the number of adjacent swaps to turn σ−1 into π−1. The
maximum distance between two permutations under Kendall’s-τ metric is

(
n
2

)
,

where n represents the size of the permutations.
The Cayley metric counts the minimum number of (possibly non-adjacent)

swaps that are needed to turn σ into π. In the case of Cayley metric, the
maximum distance between two permutations is n− 1.

Finally, the Ulam metric represents the minimum number of insertions needed
to transform a permutation into another. The maximum Ulam distance between
two permutations is n− 1.

For a better understanding about the metrics, consider the following two
permutations: σ = (3, 4, 2, 1) and e = (1, 2, 3, 4), whose inverts permutations
are σ−1 = (4, 3, 1, 2) and π−1 = (1, 2, 3, 4). The distance between both permu-
tations is the following for each metric:

4

• The Kendall’s-τ distance between σ−1 and π−1 is equal to 5:

(4, 3, 1, 2)
3−1−−→ (4, 1, 3, 2)

4−1−−→ (1, 4, 3, 2)
3−2−−→ (1, 4, 2, 3)

4−2−−→ (1, 2, 4, 3)
4−3−−→

(1, 2, 3, 4).

• The Cayley distance between σ and π is equal to 3:

(3, 4, 2, 1)
3−1−−→ (1, 4, 2, 3)

4−2−−→ (1, 2, 4, 3)
4−3−−→ (1, 2, 3, 4).

• The Ulam distance between σ and π is equal to 2:

(3, 4, 2, 1)
1−→ (1, 3, 4, 2)

2−→ (1, 2, 3, 4).

3 Dynamic Optimisation Problems

In the literature, researchers have defined DOPs as problems that change over
time while an optimisation algorithm solves them. Changes may affect the ob-
jective function, the problem instance, or the constraints of the problem, among
other elements. They are divided into two types: dimensional changes and non-
dimensional changes. Dimensional changes alter the cardinality of the solution
space while non-dimensional ones change the variables and/or constraints of the
problems. Dynamic problems with dimensional changes tend to be harder to
solve Li and Yang (2008).

Recently, researchers have defined DOPs in several ways: (i) a sequence of
static problems linked up by a dynamic rule, (ii) optimisation problems com-
posed by time-dependent parameters or (iii) dynamic problems that are solved
by an optimisation algorithm as time goes by. In the latter case Nguyen (2011),
the author proposed a definition composed of full-description forms, dynamic
drivers and an optimisation algorithm. That work interprets DOPs as full-
description forms that represent a finite set of static instances governed by
dynamic drivers while an optimisation algorithm solves the problem online2.
Furthermore, others have also mentioned that the definition of a sequence of
static problems linked up by a dynamic rule might be ambiguous because of
the way to cross from a static problem into another Nguyen (2011). Dynamic
drivers on the previously introduced definition addressed that problem. For
further details, we refer the interested reader to Chapter 4 in Nguyen (2011).

3.1 Dynamic benchmark generator for combinatorial space

Dynamic benchmark generators are tools to construct DOPs using controllable
parameters such as the change-frequency, the change-severity or the number of
changes. Often, DOPs are considered hard to construct because of the difficulty
of simulating real-world situations. Therefore, DOPs are treated mainly as
academic problems. Usually, they mix real-world data and randomly generated
data in order to reduce the evaluation complexity of real-world data Younes
et al. (2005). Hence, most of the proposed dynamic benchmark generators have
focused on empirical testing.

2We return to this point in Section 6

5

The XOR DOP generator Yang (2003) is one of the most popular genera-
tors because it constructs DOPs from any static binary problem. The generator
rotates the landscape at a change-step applying an exclusive-or operator to
every individual of the search space, shifting them to a new location of the
search space. In Mavrovouniotis et al. (2012), the authors extended the previ-
ous method to the permutation space modifying the encoding of the problem
instance. In any case, the structure of the problem is maintained over time
without affecting the fitness of the global optimum.

These techniques offer a quick and straightforward way to generate dy-
namism in any combinatorial problem, but it is not likely to find them in real-
world situations.

In this work, DOPs are obtained from a dynamic benchmark generator sim-
ilar to the one presented in Mavrovouniotis et al. (2012). As we are working
with dynamic permutation-based optimisation problems, we generate different
dynamic scenarios to recreate changes on a static permutation problem. In this
way, we change the labelling of the previous scenario to rotate the landscape,
creating a concatenated changing problem. To that end, we compose the so-
lutions of the problem with a random permutation at a specific distance value
using the metrics presented in Section 2, where the increment of the distance
produces more severe changes in the problem. Mathematically, given an objec-
tive function f and a solution σ ∈ Sn,

f(e ◦ σ) = f(σ)
c1−→ f(π1 ◦ σ)

c2−→ f(π2 ◦ π1 ◦ σ)
c3−→ · · ·

ck−→ f(Ω ◦ σ),
(1)

where e is the identity permutation, ci is the ith change of the problem, k is the
number of changes and Ω = (πk ◦ · · · ◦ π1) is the composition of the previous
permutations.

In this way, the dynamic benchmark generator reorders the labels of the
items that compose the problem according to a permutation.

4 Case study: FSSP and RKEDA

In the flow shop scheduling problem (FSSP) Allahverdi et al. (2008), the per-
mutation represents a set of n jobs that have to be scheduled on m machines
reducing a given measurement. Regardless of the measurement used, the gen-
eral idea is to maintain the flow of the sequence of jobs minimising the idle and
waiting time of machines. FSSP is categorised as a NP-hard problem Garey
and Johnson (1979).

Typically, in optimisation, two different measurements are considered: makespan
and the total flow time measurements. The makespan measurement counts the
processing time taken to finish a batch of jobs. In contrast, the total flow time
measurement sums the time to complete each job. The mathematical represen-

6

tation of the FSSP using the total flow time measurement is defined as:

F (σ) =
∑
i∈n

Cσ(i),m,

where F (σ) is the fitness value of permutation σ and C is the completion time
of each job at each machine. The completion time of job i on machine j may
be calculated recursively as follows.

Ci,j =


pi,j , if i, j = 1,

pi,j + Ci,j−1, if i = 1, j > 1,

pi,j + Ci−1,j , if i > 1, j = 1,

pi,j + max{Ci−1,j , Ci,j−1}, if i > 1, j > 1,

where pi,j is the processing time of job i at machine j.
The fitness value of a solution depends on the position of each item in ad-

dition to the whole ordering of the permutation. Note that there is a strong
correlation between a job and the ordering of the rest of the jobs.

In order to solve the FSSP effectively, the random key based EDA (RKEDA)
has been proposed Ayodele et al. (2017). RKEDA is an EDA that creates new
solutions by learning and sampling a Gaussian distribution based on mean values
of the promising solutions of the population and a variance parameter. The
variance parameter, like that used in simulated annealing, is based on a gradient
descent cooling that decreases the probability of accepting worse solutions as
the solution space is explored. In this way, it is cooled from a set initial value
until it reaches zero at the end of the process.

As we are working with DOPs, it is necessary to modify the algorithm by
introducing an optimisation approach to react to problem changes. Commonly,
the consciousness of changes has been assumed just using few detectors Yang
(2015).In this paper, we adopt a simple scheme where the algorithm realises a
change has occurred by the variation of the fitness value of the solutions in the
population with respect to the previous generation whereas their permutation
structure remains unchanged.

Two different versions are utilised in our study to analyse the resemblance
between scenarios: an adaptive version and an iterative version of the RKEDA.
The adaptive version of the RKEDA (aRKEDA) maintains the knowledge earned
before a problem-change to adjust to the new state. The idea is to benefit from
the new environment transferring the knowledge of the previous state.

In contrast, the restarting version of the RKEDA (rRKEDA) restarts the
optimisation process of the algorithm from scratch when a change occurs, gen-
erating a new random population. In this case, the new scenario is considered
as a new problem.

The purpose of comparing both version is to analyse whether a problem
should be considered a DOP or, in contrast, a sequence of unrelated static
problems. Therefore, a sequence of static problems should only be considered a
DOP in the event that aRKEDA outperforms the performance of rRKEDA.

7

Algorithm 1 Pseudo-code of both RKEDA

1: P ← Generate M random individuals.
2: θ ← Initialise cooling scheme.
3: Evaluate, sort and normalise individuals in P .
4: best ← Pbest.
5: repeat
6: if best = Pbest ∧ f(best) ! = f(Pbest) then
7: if rRKEDA then
8: Back to line 1.
9: else if aRKEDA then

10: θ ← Initialise cooling scheme.
11: end if
12: end if
13: P top ← Select best ts solutions from P .
14: µ ← Average of P top for each position.
15: P ′ ← Create new population of size M by sampling N(µ, θ).
16: P ← P ′.
17: θ ← Update cooling scheme.
18: Evaluate, sort and normalise individuals in P .
19: best ← Pbest.
20: until Stopping criteria is met.

Algorithm 1 displays the pseudo-code of both versions. When the prob-
lem changes, aRKEDA only resets the variance whereas rRKEDA restarts the
optimisation process from scratch.

5 Experimental study

In this section, we present the experimental design and the results obtained.
The section is divided into three parts. First, we explain the dynamism in-
serted to existing problems. Next, we present the experimental setup to run the
experiments. Finally, we present the results obtained.

5.1 Dynamism generation

As previously mentioned, our DOPs are concatenated scenarios generated by
a rotation technique. Initially, the rotation is applied into an existing instance
to generate a new scenario, and the next changes are performed based on the
previously generated scenarios. The number of problem-changes, the change-
severity and the metric to calculate the change-severity are aspects to be borne
in mind to generate DOPs. For each DOP, we considered 10 changes that occur
regularly and are distributed periodically through the optimisation process. All
the changes of each DOP share the same change-severity, so the changes perturb
similarly every change-step.

8

Table 1: Parameter values for the experimental study.

Parameter Default value

Population size 10n
Truncation size 10%
Elitism criteria TRUE
Initial variance 0.15

Number of samples 10n
Stopping criteria 100nk generations

n: problem size
k: number of changes

In Section 2.1, we presented three different metrics to perform landscape
rotations: Kendall’s-τ distance, Cayley distance and Ulam distance. It is worth
mentioning that Cayley and Ulam distances share the maximum distance be-
tween permutations, n − 1, whereas Kendall’s-τ metric extends to

(
n
2

)
. It is

computationally too expensive to test all the cases for the Kendall’s-τ metric,
so we have established limitations to reduce the computational cost limiting the
information loss:

• On problems of size 20, generate all the combinations.

• On problems of size 50, generate DOPs considering the Kendall’s-τ dis-
tance from 1 to 150.

• On problems of size 100, generate DOPs considering the Kendall’s-τ dis-
tance from 1 to 50.

All metrics follow the same pattern for modifying the encoding of the prob-
lem. A permutation at the required distance is generated uniformly at random
and composed with the permutation of the previous state (see Equation 1 at
Section 3.1). The R package PerMallows Irurozki et al. (2016) is used for this
process.

5.2 Experimental setup

Both algorithms are executed over many dynamic benchmarks generated from
the static versions of the FSSP. The original Taillard’s instances Taillard (1993)
are used as the first scenario of each dynamic benchmark. The configurations
used in this work are as follows3.

• 20× 5, 20× 10 and 20× 20.

• 50× 5, 50× 10 and 50× 20.

• 100× 5, 100× 10 and 100× 20.

3Number of jobs × Number of machines

9

In this way, for each instance, we generated 30 different DOPs with each
distance metric considering the limitations presented in Section 5.1.

The execution parameters for the RKEDA algorithms are those from Ayodele
et al. (2017), slightly modified to account for the dynamic behaviour, as shown in
Table 1. The elitism criteria is used to detect a problem-change by the variation
of the fitness of the best solution of the population whereas the permutation is
maintained.

A basic scheme Cruz et al. (2011) is used to calculate the performance of
the algorithms for every dynamic benchmark: the average relative percentage
deviation (ARPD). As the structure of the problem is maintained through the
optimisation process, the best-known value is known permanently allowing the
usage of this performance measure. In this case, the ARPD is used to minimise
the sum of the distance from the optimum to the best solution at each genera-
tion, so it measures the quality of the best fitness value at each generation. It
is calculated as follow:

ARPD =
1

G

∑
i∈G

fi(best)− Best known

Best known
,

where G is the maximum number of generations and fi(best) is the fitness of
the best solution at generation i.

5.3 Results

The results4 are summarised in Table 2. The table shows the number of times
in which aRKEDA outperformed rRKEDA in terms of the ARPD measure and
the percentage of rotation distances for which the generated problem can be
considered as a DOP under the Cayley, Kendall’s-τ and Ulam metrics. In
general, increasing the problem size increases the number of times that the
adaptive version is preferable to restarting the process from scratch. These
results suggest that most of the studied benchmarks are probably better viewed
as sequences of unrelated static problems than as dynamic problems.

For a better understanding of the results, Figure 2, Figure 3, and Figure 4
show the distribution of the ARPD through the DOPs generated at different
permutation distance changes for instances of size 20, 50 and 100. The plots con-
firm that, for small changes, it is beneficial to transfer the previous knowledge,
but the situation reverses rapidly as the change-severity increases. However, in
DOPs of size 20 generated by Ulam metric, it is always more effective to restart
the algorithm from scratch when the problem changes. The increase of the prob-
lem size extends the preference of using aRKEDA for slight changes up to the
point of being much more beneficial than rRKEDA on DOPs generated at the
smallest distance. The continuity of the restarting version could be understood
because the algorithm is able to obtain approximately the same fitness value at
each change-period.

4The Ulam metric experiments on problems of size 100 have not been performed because
of the high computational cost to generate uniformly at random permutations

10

0.0110

0.0115

0.0120

0.0125

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Kendall

0.0110

0.0115

0.0120

0.0125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Cayley

0.0110

0.0115

0.0120

0.0125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_5_0 - Ulam

0.015

0.016

0.017

0.018

0.019

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Kendall

0.015

0.016

0.017

0.018

0.019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Cayley

0.015

0.016

0.017

0.018

0.019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_10_0 - Ulam

0.0150

0.0175

0.0200

0.0225

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Kendall

0.0150

0.0175

0.0200

0.0225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Cayley

0.0150

0.0175

0.0200

0.0225

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai20_20_0 - Ulam

Figure 2: Performance of aRKEDA and rRKEDA for instances of size 20 show-
ing the mean and interquartile ribbon of each run through different change-
severities (in terms of permutation distances). The plots are distributed by
columns specifying the metric used (Kendall’s-τ , Cayley and Ulam from left to
right) and by rows representing the number of machines of each problem (5, 10
and 20 machines from top to bottom).

It is worth emphasising some aspects of aRKEDA on problems of size 20. On
the one hand, the increase of the number of machines in the problem produces
a chaotic behaviour of the adaptive version as can be observed in the variance
of the results. On the other hand, the Kendall’s-τ and Ulam metrics reflect a
curious case on instances with 20 machines. Kendall’s-τ metric reflects an arc
shape where aRKEDA is preferred on DOPs at the minimum and maximum
distances. Surprisingly, under the Ulam metric, aRKEDA is only preferred at
the maximum distance, since at minimum distance it is even preferable to restart
the algorithm.

Analysing the performance of aRKEDA and rRKEDA, we might conclude
that the values in Table 2 are mostly distributed over DOPs that are generated
at small distances, but it also includes the anomaly cases mentioned above.
With respect to the performance of each metric, the Ulam metric shows that
restarting the algorithm from scratch is almost always the best option.

11

0.038

0.040

0.042

0.044

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Kendall

0.038

0.040

0.042

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Cayley

0.038

0.040

0.042

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_5_0 - Ulam

0.052

0.056

0.060

0.064

0.068

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Kendall

0.052

0.056

0.060

0.064

0.068

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Cayley

0.052

0.056

0.060

0.064

0.068

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_10_0 - Ulam

0.045

0.050

0.055

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Kendall

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Cayley

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai50_20_0 - Ulam

Figure 3: Performance of aRKEDA and rRKEDA for instances of size 50 show-
ing the mean and interquartile ribbon of each run through different change-
severity values (in terms of permutation distances). The plots are distributed
by columns specifying the metric used (Kendall’s-τ , Cayley and Ulam from left
to right) and by rows representing the number of machines of each problem (5,
10 and 20 machines from top to bottom).

Table 2: Number of case that aRKEDA outperforms rRKEDA. The number in
parentheses displays the percentage considering the maximum distance between
permutations.

Jobs Cayley Kendall’s-τ Ulam
20 2 (10%) 1 (5%) 2 (10%) 2 (1.05%) 3 (1.58%) 3 (1.58%) 0 (0%) 0 (0%) 0 (0%)
50 7 (14%) 7 (14%) 12 (26%) 14 (1.14%) 7 (0.57%) 8 (0.65%) 0 (0%) 2 (4%) 1 (2%)

100 19 (19%) 15 (15%) 20 (20%) 16 (0.32%) 19 (0.38%) 26 (0.52%) - - -
5 10 20 5 10 20 5 10 20

Machines

12

0.030

0.035

0.040

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_5_0 - Kendall

0.030

0.035

0.040

0.045

0.050

0.055

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_5_0 - Cayley

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_10_0 - Kendall

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_10_0 - Cayley

0.035

0.045

0.055

0.065

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_20_0 - Kendall

0.035

0.045

0.055

0.065

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Change-severity (permutation distance)

A
R

P
D

Algorithm:

aRKEDA

rDRKEDA

tai100_20_0 - Cayley

Figure 4: Performance of aRKEDA and rRKEDA for instances of size 100
showing the mean and interquartile ribbon of each run through different change-
severity values (in terms of permutation distances). The plots are distributed
by columns specifying the metric used (Kendall’s-τ and Cayley) and by rows
representing the number of machines of each problem (5, 10 and 20 machines
from top to bottom).

13

6 Discussion

The experiments conducted reveal that, under the rotation technique with the
considered distances, restarting the optimisation is almost always preferable to
reusing previously earned knowledge in the FSSP, even when slight modifications
are applied. More than three-quarters of the problems generated under the
rotation technique produce such severe modifications that considering the new
state as a new problem is the best option. However, the performance difference
between both versions is considerably higher for slightly rotating DOPs. Be that
as it may, in most of the cases, the problem generated should not be considered
a DOP, but a sequence of unrelated problems.

The percentages with respect to the maximum distances have indicative pur-
poses only. The means of the percentage over each metric are 15% on Cayley
metric, 1% on Kendall’s-τ metric and 0.5% on Ulam metric. It is of special inter-
est that although the percentages are relatively small in all the cases, Kendall’s-
τ and Ulam metrics present surprisingly few cases in which reusing previous
knowledge is beneficial.

In the case of Ulam metric, restarting the algorithm is almost always the
best option, even for permutation distances equal to 1. It can be justified as
the Ulam metric produces more chaotic changes compared to the other metrics.
This is mainly motivated by the type of rotation (relabelling) applied by the
Ulam metric. In contrast to Kendall’s-τ and Cayley metrics, where only a few
elements are swapped for slight changes, a simple insert operation on the Ulam
metric might cause the relabelling of all the permutation. The following example
will clarify the concept.

Let us consider the same example proposed in Section 2.1, where σ =
(3, 4, 2, 1) and e = (1, 2, 3, 4). The simple movement of the item σ(4) to the
position 1 causes the translation of the items at the positions {1, 2, 3} one po-
sition to the right. Therefore, all the item of the permutation are relabelled on
a simple insertion, and it is likely that even a slight rotation produces a severe
change on the fitness in the landscape of solutions.

As commented in Section 3.1, the rotation technique gives an obvious and
straightforward way to generate dynamism in existing static permutation prob-
lems. Nonetheless, the results obtained for the case study in this work show
that the rotation technique would generate a set of independent and unrelated
problems that should be senseless to associated with DOPs.

Taking that fact into account, we glimpse the need to extend the exist-
ing definitions for dynamic permutation-based optimisation problems, especially
concerning the change-severity to distinguish related-sequences of static prob-
lems from sequences of completely different problems. In this sense, the author
in Nguyen (2011) uses notations such as full-description form, a dynamic driver
and the optimisation algorithm to define DOPs that encompasses more aspects
of dynamism. Therefore, the definition used by the author in Nguyen (2011)
should be explored and enhanced in order to include the impact of the change
on the performance of the algorithm for a more accurate description of dynamic
permutation-based optimisation problems.

14

7 Conclusions and future work

Over the last decades, DOPs have been a topic of growing interest in the field
of evolutionary optimisation due to their similarity with existing real-world sit-
uations where problems change over time. In academic research, DOPs have
been defined in several ways, although our intuition is that existing definitions
do not fully cover all aspects of dynamism. Current definitions of DOPs encom-
pass all type of changing problem, including problems that change drastically,
which, in our opinion, should not be interpreted as DOPs, but as sequences of
different problems. In that case, considering the new state as a new problem
might be more beneficial than adjusting an algorithm to overcome a change of
the problem.

In this paper, we test the current definitions considering permutation prob-
lems under the landscape rotation technique that generates dynamism into an
existing permutation problem. This technique shifts the landscape of solutions
maintaining the structure of the problem. In order to illustrate the sense of
rotating the landscape to generate dynamic problems, we considered the FSSP
and two versions of its state-of-the-art algorithm to deal with dynamism: an
adaptive version and a restarting version. The adaptive version stays ahead
from the previous knowledge to address a problem-change, whereas the restart-
ing version initialises the algorithm from a new random solution. The aim is to
identify those rotations that, due to their severity, make the restarting version of
the algorithm outperform the adaptive version. Therefore, the problem should
not be considered a dynamic problem but a sequence of unrelated problems.

The results revealed that restarting the algorithm is preferable for the major-
ity of tested landscape rotations because of the severity of the produced changes.
Looking at the results over the metrics, we perceive that the adaptive version
performed poorly for Ulam metric to the point of restarting the algorithm is
almost always the best option. That could be understood by the relabelling
type of the Ulam metric since a simple insertion might produce shifting all the
elements of the permutation (a full relabelling). In contrast, the Kendall’s-τ
and the Cayley metrics only swap some items for a simple change, producing
more limited changes that the ones produced by the Ulam metric.

This work can be extended in several ways. One of the most interesting re-
search lines is to analyse and motivate the performance difference of the metrics
used in this work such as analysing the reason for which generating dynamism
under the Kendall’s-τ and Cayley distances produces such different results. One
appealing approach would be analysing the number of relabelled items for each
metric and tracking the quality of the model. Not limited to that, the exper-
imental comparison could be extended to other metrics such as the Hamming
metric Irurozki (2014). Other possible lines for future work could be considering
other algorithms to analyse their behaviour since deciding whether a problem is
dynamic or a sequence of unrelated problems has been carried out for a partic-
ular case. Similarly, other methods of generating dynamism, other permutation
problems or even more ways to measure the performance of the algorithms could
be also analysed in future investigations. Finally, we find it interesting to study

15

the existing definitions for DOPs and, if necessary, extend them to include more
observations such as the severity of the problem-change in their description.

Acknowledgments

This work has been partially supported by the project TIN2016-78365-R from
the Spanish Ministry of Economy, Industry and Competitiveness.

References

Ali Allahverdi, C.T. Daniel Ng, Tai Chiu Edwin Cheng, and Mikhail Y. Ko-
valyov. 2008. A survey of scheduling problems with setup times or costs.
European Journal of Operational Research 187, 3 (2008), 985 – 1032. https:

//doi.org/10.1016/j.ejor.2006.06.060

Mayowa Ayodele, John McCall, Olivier Regnier-Coudert, and Liam Bowie. 2017.
A Random Key based Estimation of Distribution Algorithm for the Permu-
tation Flowshop Scheduling Problem. In 2017 IEEE Congress on Evolution-
ary Computation (CEC). 2364–2371. https://doi.org/10.1109/CEC.2017.
7969591

Thomas Back. 1998. On the behavior of evolutionary algorithms in dy-
namic environments. In 1998 IEEE International Conference on Evolution-
ary Computation Proceedings. IEEE World Congress on Computational In-
telligence (Cat. No.98TH8360). 446–451. https://doi.org/10.1109/ICEC.
1998.699839

Jurgen Branke. 1999. Memory enhanced evolutionary algorithms for changing
optimization problems. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Vol. 3. 1875–1882 Vol. 3. https:
//doi.org/10.1109/CEC.1999.785502

Carlos Cruz, Juan R. González, and David A. Pelta. 2011. Optimization in dy-
namic environments: a survey on problems, methods and measures. Soft
Computing 15, 7 (01 Jul 2011), 1427–1448. https://doi.org/10.1007/

s00500-010-0681-0

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA.

Ekhine Irurozki. 2014. Sampling and learning distance-based probability models
for permutation spaces. Ph.D. Dissertation.

Ekhine Irurozki, Borja Calvo, and Jose Lozano. 2016. PerMallows: An R Pack-
age for Mallows and Generalized Mallows Models. Journal of Statistical Soft-
ware, Articles 71, 12 (2016), 1–30. https://doi.org/10.18637/jss.v071.

i12

16

https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1109/CEC.2017.7969591
https://doi.org/10.1109/CEC.2017.7969591
https://doi.org/10.1109/ICEC.1998.699839
https://doi.org/10.1109/ICEC.1998.699839
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1109/CEC.1999.785502
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.1007/s00500-010-0681-0
https://doi.org/10.18637/jss.v071.i12
https://doi.org/10.18637/jss.v071.i12

Changhe Li and Shengxiang Yang. 2008. A Generalized Approach to Construct
Benchmark Problems for Dynamic Optimization. In Simulated Evolution and
Learning, Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic
Ciesielski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyan-
moy Deb, Kay Chen Tan, Jürgen Branke, and Yuhui Shi (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 391–400.

Michalis Mavrovouniotis, Shengxiang Yang, and Xin Yao. 2012. A Benchmark
Generator for Dynamic Permutation-Encoded Problems. In Parallel Problem
Solving from Nature - PPSN XII, Carlos A. Coello Coello, Vincenzo Cutello,
Kalyanmoy Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 508–517.

Trung Thanh Nguyen. 2011. Continuous dynamic optimisation using evolution-
ary algorithms. Ph.D. Dissertation. University of Birmingham.

Philipp Rohlfshagen and Xin Yao. 2008. Attributes of Dynamic Combinatorial
Optimisation. In Simulated Evolution and Learning, Xiaodong Li, Michael
Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbig-
niew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen
Branke, and Yuhui Shi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
442–451.

Eric D. Taillard. 1993. Benchmarks for basic scheduling problems. European
Journal of Operational Research 64, 2 (1993), 278 – 285. https://doi.org/

10.1016/0377-2217(93)90182-M Project Management anf Scheduling.

Shengxiang Yang. 2003. Non-stationary problem optimization using the primal-
dual genetic algorithm. In The 2003 Congress on Evolutionary Computation,
2003. CEC ’03., Vol. 3. 2246–2253 Vol.3. https://doi.org/10.1109/CEC.

2003.1299951

Shengxiang Yang. 2015. Evolutionary Computation for Dynamic Optimization
Problems. In Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation (GECCO Compan-
ion ’15). ACM, New York, NY, USA, 629–649. https://doi.org/10.1145/

2739482.2756589

Abdunnaser Younes, Paul Calamai, and Otman Basir. 2005. Generalized
Benchmark Generation for Dynamic Combinatorial Problems. In Proceed-
ings of the 7th Annual Workshop on Genetic and Evolutionary Computation
(GECCO ’05). ACM, New York, NY, USA, 25–31. https://doi.org/10.

1145/1102256.1102262

17

https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1109/CEC.2003.1299951
https://doi.org/10.1109/CEC.2003.1299951
https://doi.org/10.1145/2739482.2756589
https://doi.org/10.1145/2739482.2756589
https://doi.org/10.1145/1102256.1102262
https://doi.org/10.1145/1102256.1102262

	ALZA 2019 Coversheet.pdf
	ALZA 2019 On the definition (AAM).pdf
	Introduction
	Permutation space
	Distance metrics

	Dynamic Optimisation Problems
	Dynamic benchmark generator for combinatorial space

	Case study: FSSP and RKEDA
	Experimental study
	Dynamism generation
	Experimental setup
	Results

	Discussion
	Conclusions and future work

