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Abstract

Class imbalanced datasets are common across different domains including

health, security, banking and others. A typical supervised learning algorithm

tends to be biased towards the majority class when dealing with imbalanced

datasets. The learning task becomes more challenging when there is also an

overlap of instances from different classes. In this paper, we propose an under-

sampling framework for handling class imbalance in binary datasets by removing

potential overlapped data points. Our methods are designed to identify and

eliminate majority class instances from the overlapping region. Accurate identifi-

cation and elimination of these instances maximises the visibility of the minority

class instances and at the same time minimises excessive elimination of data,

which reduces information loss. Four methods based on neighbourhood searching

with different criteria to identify potential overlapped instances are proposed in

this paper. Extensive experiments using simulated and real-world datasets were

carried out. Results show comparable performance with state-of-the-art methods

across different common metrics with exceptional and statistically significant

improvements in sensitivity.
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1. Introduction

In an imbalanced dataset, the class of interest is often underrepresented,

and difficult to identify. Typical examples include fraud detection and medical

predictions [9, 20], where misclassifying an instance of the class of interest

often comes at a high cost. This problem has attracted significant attention5

from the research community over the past years [16], and solutions addressing

such a problem can be broadly categorised into data-level and algorithm-level

methods [10]. Data-level methods involve data resampling, where the class

distributions are adjusted [7], while algorithm-level methods involve creating

new algorithms or modifying existing ones. Algorithm-level methods are fixed10

to the predetermined learning algorithms and require deep understanding of the

algorithm and costs function. On the contrary, data resampling methods, which

we are more interested in, are less complicated and able to be applied to any

learning algorithms [3].

Most common resampling methods include random oversampling, random15

undersampling and Synthetic Minority Oversampling Technique (SMOTE) [7].

More recent resampling methods include k-means clustering [11, 27], density-

based clustering [4, 27, 6], neural networks [8], and ensemble [38]. These methods

are designed to produce better data distribution. However, a number of studies

showed that the classifiers’ performance was affected more by class overlap rather20

than class distribution [39, 9, 36, 13]. A recent study [41] supported these findings

by showing significant improvement over state-of-the-art k-means based method

[27], by only focusing on removing negative instances from the overlapping region

and without having to rebalance the data distribution. Consider Fig. 1a and

Fig. 1b, which show two datasets with the same class distribution. Despite25

class imbalance, the learning task on the dataset in Fig. 1a is simple. Also, it

is far easier than on the dataset in Fig. 1b due to the presence of class overlap.

In real-world scenarios, datasets are often found imbalanced and overlapped.

Therefore, undersampling majority class instances from the overlapping region

is a reasonable approach to improve the learning algorithm performance.30
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Figure 1: Synthetic datasets with (a) imbalanced class distributions, (b) class imbalance and
overlap problems, (c) negative instances removed from the overlapping region

In this paper, we propose a neighbourhood-based undersampling framework

for identifying and eliminating overlapped negative instances. By applying

this framework, we hypothesize that most of the negative instances will be

removed from the overlapping region as illustrated in Fig. 1c. The benefits are

twofold. First, it maximises the visibility of minority class instances. Second,35

by employing a neighbourhood search technique, more accurate identification

of overlapped negative instances can be achieved, hence preventing excessive

eliminations and minimising information loss. We introduce four different k-NN

based methods to explore the local surroundings of individual instances and

identify overlapped instances for elimination. The main contributions of this40

paper can be outlined as follows:

� Four k-NN -based methods for handling imbalanced datasets by accurately

detecting and optimally removing potential overlapped negative instances

are proposed. Different criteria to identify overlapped instances for removal

are introduced. These methods are different from existing variations of45

k-NN in several aspects. First, we consider the entire overlapping region

rather than just borderline instances. Second, the removal of potential

overlapped negative instances is made based on the class overlap degree,

not the class distribution. Finally, our methods proved to be capable of

handling any degree of class overlap as can be seen in the Experiments50

Section.
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� Extensive experiments using extremely imbalanced and overlapped simu-

lated and real-world datasets were carried out.

� The methods presented provide a suitable framework for real-world appli-

cation and domain-specific imbalanced problems, where high positive class55

accuracy is required and negative class accuracies can be compromised.

This is evident by the significant improvement in sensitivity and other

metrics achieved.

The rest of this paper is organised as follows: In section 2, we review and

discuss related work. Section 3 addresses the problem statement. In section 4,60

the proposed methods are described and discussed in detail. Section 5 discusses

the experimental setup. Section 6 presents the results and discussion. Finally,

Section 7 concludes and discusses future work.

2. Related Work

Solutions for class imbalanced problems at the data level aim at modifying65

the class distribution. A common practice is to resample data by either un-

dersampling or oversampling, which reduces the majority class instances and

increases the minority class instances, respectively. At the algorithmic level, the

problem is handled by creating new learning algorithms or by modifying existing

ones. Algorithm-level solutions have an advantage of directly incorporating the70

user’s preferences into the model [3]. However, as opposed to data resampling,

a learning algorithm need to be predetermined and cannot be changed once

implemented. Ensemble-based methods, which are combinations of data-level

and algorithm-level methods, are also used. Because of the scope of this paper,

our discussion will be focused on data-level solutions. For a detailed review of75

algorithm-level methods and ensemble-based methods, the reader is referred to

[16]. Additional recent algorithm-level and ensemble-based methods can be seen

in [46, 32, 29, 14, 35, 42].

The class-imbalance issue has led to the development of well-established

data-level solutions. However, for linearly separable or sufficiently large datasets,80

4
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it was shown that results were not affected by any degree of class imbalance

[20]. Other studies showed that class overlap had a higher negative impact on

models performance than class imbalance [39, 9, 36, 13]. Thus, in this paper,

we broadly categorise existing solutions as class distribution-based methods and

class overlapped-based methods.85

Random resampling is the most widely-used class distribution-based approach

due to the simplicitiy of application. However, as balanced class distribution is

typically the stopping criteria, random undersampling may lead to information

loss while random oversampling is often prone to overfitting [28]. To replace

random selection, Synthetic Minority Over-sampling Technique (SMOTE) [7]90

was introduced. The method generates new minority class instances by means

of linear interpolation between neighbouring points. SMOTE has led to many

well-known extensions [17, 5, 6, 34, 11]. Some of these extensions, e.g. Borderline-

SMOTE [17] andSMOTE-IPF [34], focused on resampling instances within the

overlapping region. In contrast, other extensions such as Safe-level-SMOTE [5]95

and DBSMOTE [6], avoided resampling hard-to-classify instances and showed

less improvements compared to their counterpart overlap-based methods, in

particular, Borderline-SMOTE [17] and DBMUTE [4].Other recent methods

based on clustering [27, 31] and Neural Network [8] have also been proposed.

These methods attempted to preserved the topology of the original data while100

rebalancing class distribution. A common drawback of class distribution-based

methods is that the resampling rate is limited by imbalance degree. If the class

imbalance is low, a small number of minority class instances generated may

not be sufficient to emphasise the present of the minority class near the class

boundary. On the other hand, if the class imbalance is high, a significant amount105

of important information may be lost.

Since the class overlap problem of imbalanced datasets is focused in this

paper, existing class overlap-based methods are extensively reviewed in the

following subsection.

5
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2.1. Class Overlap-based Methods110

Class overlap-based methods deal with instances near the borderline or in

the entire overlapping region. We define borderline instances as those near

the physical borderline of their own class whereas overlapped instances can

extend far from the borderlines. This concept is similar to that illustrated in

[40]; however, we also consider borderline instances as a subset of overlapped115

instances. Literature shows that only few existing methods address the entire

overlapping region. This might be due to the risk of losing information by

excessive elimination of negative instances. However, there is a trade-off between

sensitivity and specificity [45], and for some specific domains having a higher

sensitivity is crucial and therefore scarifying some information becomes essential.120

Examples of methods that address the entire overlapping region are [41, 18, 4].

A recent overlapped-based method, OBU [41], based on removal of negative

instances from the entire overlapping region led to significant improvements

over a state-of-the-art class distribution-based method [27]. However, excessive

eliminations were observed in some cases as a result of a global approach to125

identify the overlapping region. DBMUTE [4] utilised a density-based clustering

algorithm to discover and undersample negative instances from the overlapping

region. The method outperformed other existing methods such as DBSMOTE[6],

which in contrast focused on instances outside the overlapping region. This

evidences that between the two methods that employed the same technique,130

the variation that emphasised the class overlap issue led to better classification

results. Another well-established method, Adaptive Synthetic sampling approach

(ADASYN) [18], works by synthesizing more data points from positive examples

surrounded with more negative neighbours. Results showed that ADASYN

improved sensitivity. However, as opposed to undersampling, this method does135

not guarantee the maximum visibility of the positive class instances because

negative instances are still present in the overlapping region.

Other methods focused on instances near the decision boundary. Edited

Nearest Neighbour (ENN) is a long-standing undersampling method for imbal-

anced learning that was adapted from the study of [43]. ENN selectively removes140

6
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majority class instances by considering its k nearest neighbours that belong to

the other class, where k = 3. It has to be noted that the setting of the k value

in this approach significantly impacts the performance. For example, a small

k value can leave a lot of the overlapped majority class instances unremoved.

Neighbourhood Cleaning Rule (NCL) [25] is an extension of this method, where145

the k nearest neighbours of both positive and negative instances were considered

for the removal of negative instances. Results showed an improvement over a

data-distribution based method proposed in [22]. Later overlap-based methods

showed superior results over NCL. These include a combined cleaning and re-

sampling approach, which consisted of neighbourhood cleaning and selectively150

oversampling positive instances in the overlapping region [23], and Evolution-

ary undersampling, which employed an Evolutionary algorithm to significantly

reduce the dataset size and achieve optimal classification results [24].

A method to avoid erroneous eliminations of positive instances during noise

cleaning was proposed in SMOTE-IPF [34]. This was done by first applying155

SMOTE, followed by applying a noise filtering algorithm. SMOTE-IPF allows

new minority class instances to be generated before determining noisy instances.

By doing so, fewer rare cases of the minority class will appear as noise, hence

reducing erroneous eliminations, which is crucial for preserving highly important

information. In Borderline-SMOTE [17] (BLSMOTE), synthetic instances were160

created from the borderline minority class instances and their nearest neigh-

bours. Based on this approach, two methods were proposed. One considers

only the minority-class nearest neighbours while the other includes the nearest

neighbours of both classes in generating new instances. Results showed that the

latter method whose synthetic instances were generated closer to the borderline165

achieved higher true positive rates. Redundancy-driven modified Tomek-link

based undersampling [10] considered similarity and contribution factors as the un-

dersampling criteria. This is achieved by removing redundant negative instances

with the lowest contributions to classification. The undersampling process is

terminated when a data balance is reached. In other words, the imbalance degree170

indeed dominates the proposed elimination criteria, which could eventually lead

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

to an insufficient elimination or an excessive elimination of negative instances.

In Majority Weighted Minority Oversampling Technique (MWMOTE) [1]

and Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) [30], new

instances are synthesized within the sub-clusters of the minority class. Both175

methods used a bottom-up clustering technique that does not require the number

of clusters to be fixed a prior. Each minority class instance was weighted with the

selection probability based on its proximity to the majority class. This proximity

was calculated differently in the two methods. MWMOTE assigned higher

weights to minority class instances that are closer to the predefined borderline180

majority class instances while A-SUWO put higher weights on instances with

more majority class nearest neighbours. Another weighting factor MWMOTE

determined was the density of a sub-cluster. More synthetic positive instances

were created in sparse sub-clusters. On the other hand, A-SUWO synthesised

more instances in the sub-clusters with higher misclassification errors to handle185

small sub-clusters, which were the results of the within-class imbalance issue.

3. Problem Statement

It was illustrated earlier in Fig. 1a and Fig. 1b how class overlap adds

difficulties to classification tasks of a dataset with imbalanced class distribution.

Also, performance of a learning algorithm on imbalanced datasets was shown to190

be highly dependant on the level of class overlap [13]. In this section, we express

how class overlap is quantified. Detailed discussion of how we extended solution

that deals with borderline instances to cover instances in the entire overlapping

region is also provided.

3.1. Quantification of Class Overlap195

Since class overlap is not yet mathematically well-defined [37], several methods

to estimate class overlap have been proposed, such as in [44, 26, 37]. However,

these methods have some limitations, including a prior assumption of normal

distribution of data, which are not generally applicable to real-world datasets.

8
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Figure 2: Regions approximation

To facilitate the measurement of class overlap degree later in the Experiments200

Section, we adapted the formula used in [13]. The formula was modified to

suit class imbalanced problems as expressed in Eq. 1, and how the regions are

approximated for the calculation is shown in Fig. 2(a). Note that this formula is

only designed for binary-class datasets with 2 dimensional features for simplicity

of exploring the problem.205

overlap(%) =
overlapping area

minority class area
∗ 100 (1)

3.2. Borderline vs Overlap

Fig. 3b gives an example of majority class instances that are close to the

minority class borderline being removed from the original dataset (Fig. 3a).

This is carried out by removing majority class instances that most of their

three nearest neighbours are of the minority class. Now that the minority class210

instances in the overlapping region is more visible to the learner, the resulting

dataset (Fig. 3b) is likely to produce better classification results. However, high

classification errors in the minority class in the complex region may yet occur

as the minority class is still under-represented. This issue can be addressed

by further removal of the remaining majority class instances in such a region215

as demonstrated in Fig. 3c. To achieve this, the removal is performed on the

majority class instances having a minority class instance as one of the three

9
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Figure 3: Undersampling solutions to (a) imbalanced and overlapped dataset with (b) borderline
instances removed and (c) overlapped instances removed

nearest neighbours. As a result, the visibility of the minority class as well as

its class boundary are maximised. Such an approach is suitable for application

domains where the accuracy of the class of interest cannot be compromised.220

4. Proposed Methods

Our approach is to maximise the visibility of the positive instances in the

overlapping region by eliminating overlapped negative instances as can be seen

in Fig. 2. In order to minimise excessive elimination, we utilised the k-NN rule

to explore the local surroundings of each instance. By doing so, a near-optimal225

trade-off was achieved by minimising information loss and maximising sensitivity.

In this paper, we propose four neighbourhood-based (NB-based) undersam-

pling methods. These are Basic Neighbourhood Search (NB-Basic), Modified

Tomek Link Search (NB-Tomek), Common Nearest Neighbours Search (NB-

Comm), and Recursive Search (NB-Rec). The methods vary in terms of local230

search criteria and negative instances elimination. NB-Basic is the first and

simplest proposed method created to remove negative instances from the overlap-

ping region without compromising any positive instance. This method showed

an exceptional improvement in the minority class accuracy as will be discussed

later. However, with such an approach, there is a risk of excessive elimination235

of negative instances, which could lead to a significant drop in accuracy. Three

different methods were subsequently developed by varying the search criteria

10
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and queries. These methods were proposed to offer different trade-offs suitable

for a wide range of real-world problems. NB-Tomek and NB-Comm were created

to address the potential excessive elimination of negative instances. NB-Comm240

was then extended to NB-Rec aiming at improving the detection of overlapped

negative instances. Algorithms 1, 2, 3 and 4 depict these methods 1.

4.1. Basic Neighbourhood Search

NB-Basic was implemented as in Algorithm 1. The method removes any

negative query that has a positive neighbour.245

Algorithm 1: Basic Neighbourhood Search Undersampling

Data: training set, k

Result: undersampled training set

begin
T ← training set;

Tneg ← negative instances in T ;

foreach x ∈ Tneg do
NN ← k nearest neighbours′ class labels;

if ‘positive’ ∈ NN then
X ← X ∪ {x};

T̂ ← T −X;

return (T̂ )

As can be seen in Fig. 4(a), the query in the centre of the circle is marked as

a potential overlapped instance because one of its nearest neighbours is a positive

instance. Upon identifying all potential overlapped instances, the removal is

executed. Only one positive neighbour is set as the elimination criterion to

ensure the presence of every positive instance is clearly visible to the learning250

algorithm. This is because the minority class information is considerably more

valuable and losing part of it is highly undesirable.

1Source code available at https://github.com/fonkafon/NB-undersampling.git

11
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Figure 4: The proposed neighbourhood-based undersampling methods (a) NB-Basic (b) NB-
Tomek (c) NB-Comm (d) NB-Rec

4.2. Modified Tomek Link Search

Modified Tomek Link Search is proposed as an extension of NB-Basic to

address potential excessive elimination of negative instances. As described255

in Algorithm 2, for every negative instance x with a positive neighbour y, x

is removed only if it appears within the k nearest neighbours of the positive

instance y. In other words, when the neighbourhood between a negative query

and a positive query is established in both directions, the negative query in the

modified Tomek Link is eliminated (Fig. 4(b)).260
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Figure 5: Neighbourhood is not established in both directions

The rationale behind this second query is illustrated in Fig. 5 which shows

that if q is within the k nearest neighbours of p, it does not necessarily mean

that p is within the k nearest neighbours of q.

Algorithm 2: ModifiedTomek Link Search Undersampling

Data: training set, k

Result: undersampled training set

begin
T ← training set;

Tneg ← negative instances in T ;

foreach x ∈ Tneg do
NN ← k nearest neighbours;

foreach y ∈ NN do
c← class(y);

if c == ‘positive’ then
NNc ← k nearest neighbours of y;

if x ∈ NNc then
X ← X ∪ {x};

T̂ ← T −X;

return (T̂ )

4.3. Common Nearest Neighbours Search

It was observed that when a majority class query was used, there was a higher265

probability that NB-Tomek would miss nearby positive instances. Therefore, in

this variation, we propose an alternative method, NB-Comm, to remove common

negative neighbours of positive instances. As defined in Algorithm 3, two positive

queries will be used for considering an elimination of a negative instance. The

common negative nearest neighbours of any two positive queries are identified270

as potential overlapped instances and removed (Fig.4(c)).

NB-Comm as discussed in the results section provided competitive results.

However, we hypothesise that the performance of the method can be dependant

on the data density. In other words, when the density of the minority class

13
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is much lower than that of the majority class, fewer common nearest negative275

neighbours instances would be found.

Algorithm 3: Common Nearest Neighbours Search Undersampling

Data: training set, k

Result: undersampled training set

begin
T ← training set;

Tpos ← positive instances in T ;

A← frequency table;

foreach x ∈ Tpos do
NN ← k nearest neighbours;

NNneg ← negative members of NN ;

foreach y ∈ NNneg do
Ay.freq ← Ay.freq + 1;

foreach x ∈ A.instance do

if Ax.freq > 1 then
X ← X ∪ {x};

T̂ ← T −X;

return (T̂ )

4.4. Recursive Search

NB-Rec is proposed as an extension of NB-Comm to ensure sufficient and

accurate elimination of overlapped negative instances. From Algorithm 3, X

is the set of potential negative instances to be eliminated by NB-Comm, all280

elements in X are used as the secondary queries in NB-Rec as described in

Algorithm 4. The negative instances that are the common nearest neighbours of

any pair of secondary queries are then to be eliminated along with all elements

in X. We hypothesise that by introducing this extension, a finer-grained search

criteria is provided. As a result, more overlapped negative instances will be285

detected, hence further improvements in sensitivity are expected (Fig.4(d)).

5. Experiments

In order to provide conclusive results, we simulated 66 datasets representing a

wide range of scenarios including extremely imbalanced and overlapped datasets

and used them for evaluating our methods. Extensive experiments using 24290

public real-world datasets were carried out for further evaluation. In addition, 2

large high-dimensional datasets were used in the final experiment to verify the

consistency in the performance of our methods.
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Algorithm 4: Recursive Search Undersampling

Data: training set, k, set X from Algorithm 3

Result: undersampled training set

begin
T ← training set;

A′ ← frequency table;

foreach x1 ∈ X do
NN2 ← k nearest neighbours;

NN2neg ← negative members of NN2;

foreach y ∈ NN2neg do

A′
y.freq ← A′

y.freq + 1;

foreach x2 ∈ A′.instance do

if A′
x2

.freq > 1 then
X2 ← X2 ∪ {x2};

T̂ ← T − (X ∪X2);

return (T̂ )

5.1. Setup

Three sets of experiments were carried out. In Experiment I, simulated295

datasets were used, and in Experiment II, small to medium-sized real-world

datasets were used for evaluation. In Experiment III, further evaluation was car-

ried out using large real-world datasets with high dimensions. The datasets used

in Experiment II and III also include multi-class problems. To straightforwardly

apply our methods on multi-class datasets without modifications, we treated one300

specific class as the minority class and employed the one-vs-all scheme, which is

one of the most common strategies to handle multi-class problems [12] and was

showed to have good performance [33]. Experimental results were compared with

state-of-the-art and well-established methods for handling imbalanced datasets.

These included class distribution-based methods namely, SMOTE [7] and k -305

means undersampling (kmUnder) [27], and class-overlap based methods including

OBU [41], BLSMOTE [17] and ENN [43]. Support Vector Machine (SVM) and

Random Forest (RF) were chosen as the learning algorithms. These classifiers

are considered ones of the most widely used learning methods in imbalanced

classification [16].310

5.2. Datasets

In Experiment I, 66 uniformly-distributed binary-class datasets were sim-

ulated. These datasets captures wide ranges of class-overlap and imbalance

15
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Table 1: Datasets

Dataset Instances Minority Imbalance ratio No. features

1 Wisconsin 683 239 1.86 9

2 Pima 768 268 1.87 8

3 Glass0 214 70 2.06 9

4 Vehicle1 846 217 2.9 18

5 Vehicle0 846 199 3.25 18

6 Ecoli1 336 77 3.36 7

7 New-thyroid1 215 35 5.14 5

8 New-thyroid2 215 35 5.14 5

9 Ecoli2 336 52 5.46 7

10 Segmemt0 2308 329 6.02 19

11 Yeast3 1484 163 8.1 8

12 Ecoli3 336 35 8.6 7

13 Yeast2vs4 514 51 9.08 8

14 Vowel0 988 90 9.98 13

15 Glass2 214 17 11.59 9

16 Yeast1vs7 459 30 14.3 7

17 Glass4 214 13 15.46 9

18 Ecoli4 336 20 15.8 7

19 Page-blocks13vs2 472 28 15.86 10

20 Abalone09-18 731 42 16.4 8

21 Glass5 214 9 22.78 9

22 Yeast4 1484 51 28.1 8

23 Ecoli0137vs26 281 7 39.14 7

24 Yeast6 1484 35 41.4 8

degrees. The class imbalance degree is defined in Eq.2 where N and P are the

numbers of negative and positive instances in the dataset, respectively and values315

were set to 1.5, 3, 12, 30, 60, 120. For each imbalance degree, the class overlap

degrees was varied between 0%− 100% in a step of 10. The number of negative

instances was fixed at 6, 000, and the number of positive instances was varied

between 50− 4, 000 with regard to the imbalance degree.

imbalance degree (imb) =
N

P
(2)

Table 1 shows the public datasets that were used in Experiment II. These320

datasets were obtained from UCI Repository2 and KEEL Repository3. The

datasets vary in terms of imbalance degrees (1.86-41.4 ), number of features

2https://archive.ics.uci.edu/ml/index.php
3http://sci2s.ugr.es/keel/imbalanced.php
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(5-18 ), and number of instances (214-5,472 ).

In Experiment III, we used the breast cancer dataset from KDD Cup 2008 4

and the handwritten digits dataset from the MNIST database5. The breast325

cancer dataset is 117-feature, binary-class and contains 102,294 samples with

101,671 negative and 623 positive samples, which makes imb = 163.20. The

handwritten digits dataset is 10-class with 784 features, and contains 60,000

samples. Class 3 and class 5 were selected as the minority class in two scenarios,

and were undersampled to obtained higher class imbalance degrees. In the first330

scenario, class 3 was undersampled such that imb = 43.90, which consists of

53,869 negative and 1,227 positive instances. In the second scenario, class 5

was undersampled such that imb = 20.13, which consists of 53,869 negative and

2,711 positive instances.

In all experiments, each dataset was partitioned into 80 : 20 ratio of training335

and testing sets. In Experiment I and II, 10-fold cross-validation was used in the

training phase for the purpose of model selection whereas no cross-validation

was applied to the large datasets in Experiment III.

5.3. Parameter Settings

No parameters tuning or optimisation was performed in our experiments.340

This allows us to provide a fair comparison and assess our methods. In the

proposed NB-based methods, k is an important parameter, where k-NN is used to

investigate the surroundings of instances. A simple rule of thumb, where k is set

to equal the square root of the dataset size, was considered. Furthermore, to take

into account the class imbalance issue and promote the discovery of overlapped345

majority class instances, we adjusted the k value to also be proportional to the

imbalance degree as can be seen in Eq. 3, where N is the number of instances in

the dataset.

k =
√
N +

√
imb (3)

4https://www.kdd.org/kdd-cup/view/kdd-cup-2008
5http://yann.lecun.com/exdb/mnist/
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Unlike the settings in our method, SMOTE requires a small k value to ensure

better distribution of synthesized instances. In experiment I, k was set to equal350

5, following [7]. However, one of the real-world datasets used in Experiment II

comprises too few positive instances, and assigning k = 5 was not applicable. To

keep the same parameter settings for all methods and all datasets, k = 3 was

assigned throughout for SMOTE-related procedures. To avoid biased results,

we tested both k = 3 and k = 5 on all possible datasets, but no inferior results355

were obtained with k = 3. For ENN [43], kmUnder [27], and OBU [41], the same

parameter settings as stated in the original work were used.

The default parameter settings of SVM and RF in caret6 package in R were

used. The Radial Bias Function kernel was used for SVM and the default

cost (C) = 1 and γ = 1
datadimension remained unchanged. In RF, the number of360

trees was set to 500 and mtry was set to
√
datadimension.

5.4. Evaluation Metrics

Sensitivity, G-mean, precision, and F1-score were selected for evaluating our

methods. These are common metrics and widely used for imbalanced learning

[21, 15, 19, 2, 3]. Sensitivity (Eq. 4) measures the minority class accuracy and is365

considered essential metric for imbalanced problems. G-mean (Eq. 5) is used to

ensure a good balance between the accuracy of both classes [2, 15] while it is

not affected by the class distribution.

sensitivity =
TP

TP + FN
(4)

G−mean =
√

specificity ∗ sensitivity, (5)

where

specificity =
TN

TN + FP
(6)

6https://CRAN.R-project.org/package=caret
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Precision (Eq. 7) and F1-score (Eq. 8) provide good measures to evaluate the

trade-offs between positive class accuracy anbd negative class errors. Precision,370

which considers the raw number of incorrectly classified negative instances,

might potentially be a misleading metric by underestimating the performance

when data is highly imbalanced. Consider, for instance, a dataset of 10 : 1, 000

(positive : negative) distribution. Classification results of 10 true positives and

10 false positives resulting in 100% sensitivity and 99% specificity, wihch in375

general is highly desirable. However, precision in such case is 50% and might

be very misleading. This observation also applies to F1-score where in this

typical example, an F1-score of 67% can also be misleading. That said, both

measures are still very useful to evaluate classifiers, especially if used to provide

further insights on performance if G-mean and sensitivity were competitive380

across different methods.

precision =
TP

TP + FP
(7)

F1− score =
2

1
sensitivity + 1

precision

(8)

6. Results and Discussion

Three experiments were carried out. In Experiment I, we discuss performance

of our methods using simulated datasets. In Experiment II, we evaluate our

methods using real-world datasets, and further in Experiment III, performance385

on the large, high-dimension real-world datasets is discussed.

6.1. Experiment I: Simulations

The main objective of this experiment is to asses the impact of class imbalance

and class overlap on our methods performance across a wide range of degrees.

Overall performance is discussed and compared against other existing methods.390

An experiments using 66 simulated datasets showed superior performance of the

proposed methods across different metrics. In particular, our methods yielded
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highest sensitivity and competitive G-mean with nearly 100% true positive

rates were achieved, which was interestingly relatively stable across all datasets

regardless of class imbalance and class overlap degrees. This is clearly illustrated395

in Fig. 6, where results of our methods are presented with solid lines, the results

of the other methods are marked with dashed lines, and the shaded areas are

the areas under the performance curves of the baseline (SVM).

Among the proposed NB-based methods, NB-Rec showed the highest sen-

sitivity (99.95%) and competitive G-mean, but least tolerable to information400

loss, resulting in the lowest precision and F1-scores. NB-Comm showed slightly

better overall results than NB-Basic and NB-Tomek. Detailed discussion of

these results are provided in the following subsections. Numerical results of this

experiment are provided in the supplementary material7.

6.1.1. NB-based methods VS class-distribution based methods405

The superior performance in sensitivity achieved by our methods in com-

parison with the class-distribution based methods namely, SMOTE [7]8 and

kmUnder [27], strongly suggests that our NB-based methods promoted the

visibility of the positive class across different class imbalance and class overlap

degrees. Moreover, while our methods provided relatively stable sensitivity under410

different scenarios, sensitivity of other methods tended to drop when the class

overlap degree increased.

The NB-based methods not only produced the highest sensitivity but also

showed competitive G-mean with SMOTE, and produced higher overall G-mean

than kmUnder. These improvements in terms of G-mean and sensitivity indicate415

that our methods had improved the trade-offs between sensitivity and specificity,

which means we have reduced both false positives and false negatives, over

state-of-the-art kmUnder across different ranges of class imbalance and class

overlap degrees. It was observed that for low imbalanced datasets (imb = 1.5, 3),

7https://github.com/fonkafon/NB-undersampling Results.git
8In Fig. 6, SMOTE has similar performance in sensitivity to kmUnder (hence the line is

not visible)
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lower precision was obtained by the NB-based methods comparing to SMOTE420

and kmUnder; however, competitive F1-score was achieved. For datasets with

higher degrees of class imbalance, our methods showed more favourable results

over kmUnder in both precision and F1-score. It can be said that our methods

yielded relatively better performance as the degree of class imbalance and class

overlap increased. As for moderate to extreme imbalanced datasets (i.e. imb =425

12 to imb = 120 ), our NB-based methods achieved comparable precision and

F1-score with SMOTE in almost all datasets. It should be noted that with our

methods, these results were obtained with less training data in comparison to

SMOTE, which could potentially reduce training time, especially in case of large

datasets.430

6.1.2. NB-based methods VS class-overlap based methods

Our NB-based methods showed more favourable performance over other

common and recent class-overlap based techniques (Fig. 6), which are BLSMOTE

[17], ENN [43], and OBU [41]. All NB-based methods have competitive results

in sensitivity and G-mean with OBU, but with higher precision and F1-score435

obtained. The improvements in precision and F1-score of our methods over

OBU were significant, especially when the degrees of class imbalance and class

overlap were higher. It suggests that our methods had relatively reduced both

false positives and false negatives by the more accurate detection of potential

overlapped negative instances and minimisation of information loss over the440

similar approach offered by OBU. Compared to BLSMOTE, our NB-based

methods provided comparable G-mean, precision, and F1-score. However, our

methods showed more stable sensitivity values throughout all class imbalance and

class overlap degrees. This suggests that our NB-based methods had improved

the positive class accuracy without sacrificing the performance in other metrics.445

In other words, by using our methods, lower false negatives can be achieved

without increasing the amount of false positives. Lastly, it can be said that our

methods led to significantly better results than ENN in all scenarios as ENN

barely improved the performance from the baseline.
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6.1.3. Overall results450

Table 2 shows the average performance of the methods across all imbalance

and overlap degrees. Winning numbers are presented in bold. Our NB-based

methods produced exceptionally high sensitivity. NB-Rec achieved the highest

average sensitivity of 99.95%. Such high sensitivity is required across different

domains, especially in medical. Comparable results with SMOTE and BLSMOTE455

were achieved in terms of G-means, but with lower precision and recall. It was also

observed that NB-Rec produced the lowest precision and recall when compared

with the other proposed NB-based methods. This suggests that maximising

the visibility of positive instances may cost an increase in the false positives.

Our NB-based methods significantly outperformed ENN in sensitivity and G-460

mean with comparable F1-score (except F1-score of NB-Rec). More importantly,

our methods outperformed state-of-the-art kmUnder and OBU in all measures,

except for precision of NB-Rec that was competitive with kmUnder.

Table 2: Average classification results from Experiment I

NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

sensitivity 99.86 99.59 99.64 99.95 98.11 98.56 75.52 98.35 97.46 67.75

G-mean 92.93 93.09 93.19 92.18 93.87 93.78 82.53 91.71 90.43 77.86

precision 58.83 59.67 60.12 54.59 64.21 62.83 72.8 55.3 43 74.04

F1-score 73.05 73.66 74.03 69.65 76.41 75.59 73.59 68.54 57.57 69.88

6.2. Experiment II: Real-world datasets

In this experiment, our methods were evaluated on real-world datasets.465

Tables 3 to Table 6 show performance of our methods against other methods

on the UCI datasets using SVM, where the datasets are sorted by imbalance

ratio from low to high. These tables also show methods ranks and average

ranking based on their performance (i.e. rank 1 means top performance and so

on). Wilcoxon Signed Rank Tests were carried to assess statistical significance470

of the difference in methods performance. Results are presented in Table 7,

with significance level of 0.05, the p values indicating a statistically significant

difference between two methods are highlighted in bold.
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Table 3: Sensitivity values and ranks with SVM baseline from Experiment II

Sensitivity Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 100 1 100 1 100 1 100 1 97.87 6 97.87 6 97.87 6 97.87 6 100 1 97.87 6

Pima 98.11 2 96.23 3 92.45 5 100 1 43.4 10 47.17 8 52.83 7 79.25 6 96.23 3 47.17 8

Glass0 85.71 1 85.71 1 71.43 6 85.71 1 50 8 42.86 9 57.14 7 78.57 5 85.71 1 42.86 9

Vehicle1 100 1 100 1 95.35 3 95.35 3 25.58 10 27.91 8 34.88 7 83.72 6 86.05 5 27.91 8

Vehicle0 100 1 94.87 4 100 1 94.87 4 71.79 10 82.05 6 82.05 6 76.92 9 97.44 3 82.05 6

Ecoli1 100 1 93.33 3 93.33 3 86.67 5 53.33 10 66.67 7 66.67 7 80 6 100 1 60 9

New-thyroid1 71.43 5 71.43 5 100 1 100 1 57.14 7 57.14 7 57.14 7 100 1 100 1 57.14 7

New-thyroid2 100 1 100 1 100 1 100 1 100 1 85.71 10 100 1 100 1 100 1 100 1

Ecoli2 90 1 90 1 90 1 90 1 70 10 80 8 90 1 90 1 90 1 80 8

Segmemt0 100 1 100 1 100 1 100 1 95.38 8 98.46 6 95.38 8 96.92 7 100 1 95.38 8

Yeast3 96.88 4 100 1 100 1 100 1 46.88 10 50 8 56.25 7 87.5 5 65.63 6 50 8

Ecoli3 100 1 100 1 100 1 100 1 28.57 8 14.29 9 57.14 7 100 1 100 1 14.29 9

Yeast2vs4 80 1 70 3 70 3 60 6 40 8 30 10 50 7 80 1 70 3 40 8

Vowel0 88.89 4 88.89 4 100 1 100 1 72.22 10 88.89 4 88.89 4 88.89 4 100 1 88.89 4

Glass2 66.67 1 66.67 1 66.67 1 66.67 1 33.33 7 33.33 7 0 9 66.67 1 66.67 1 0 9

Yeast1vs7 50 2 16.67 6 33.33 4 83.33 1 0 7 0 7 0 7 50 2 33.33 4 0 7

Glass4 50 3 50 3 50 3 100 1 50 3 50 3 50 3 100 1 50 3 50 3

Ecoli4 100 1 100 1 100 1 100 1 100 1 75 10 100 1 100 1 100 1 100 1

Page-blocks13vs2 100 1 100 1 100 1 100 1 100 1 80 10 100 1 100 1 100 1 100 1

Abalone09-18 50 4 37.5 6 50 4 75 1 12.5 7 0 8 0 8 62.5 3 75 1 0 8

Glass5 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Yeast4 80 1 80 1 80 1 80 1 30 7 30 7 0 10 60 5 50 6 10 9

Ecoli0137vs26 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

Yeast6 85.71 1 85.71 1 57.14 5 85.71 1 57.14 5 14.29 9 28.57 8 57.14 5 85.71 1 14.29 9

Average 1.74 2.22 2.17 1.61 6.74 7.3 5.65 3.43 2.09 6.39

As can be seen in Table 3, an overall superior performance over other methods

in sensitivity was achieved by our NB-based methods as minimum false negatives475

occurred. These results are consistent with the results obtained from Experiment

I. Amongst the four proposed methods, NB-Rec ranked top on average sensitivity,

while NB-basic was the second best ranking method. NB-Comm and NB-Tomek

had competive ranking with OBU, and higher ranking than kmUnder, SMOTE,

BLSMOTE, and ENN. Improvements in sensitivity achieved by our methods480

over SMOTE, BLSMOTE and ENN is statically significant as shown in Table 7.

Interestingly, both SMOTE and BLSMOTE did not improve the sensitivity and

performed worse than the baseline in some cases.

On average, the highest ranking in G-mean was obtained using our NB-

Comm, and it was significantly better than BLSMOTE (Table 7). The other NB-485

based methods outperformed SMOTE and BLSMOTE, and showed comparable

performance with ENN, kmUnder and OBU in G-mean. This is also consistent

with the results on synthetic datasets.

SMOTE, BLSMOTE, and ENN outperformed our methods in precision

(Table 5) but with significantly lower sensitivity values. Such a trade-off is not490

generally desirable in some specific imbalanced domains. In contrast, all our

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 4: G-mean values and ranks with SVM baseline from Experiment II

G-mean Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 97.12 1 97.12 1 97.12 1 95.35 9 96.66 4 96.66 4 96.66 4 96.66 4 0 10 96.66 4

Pima 47.5 8 52.83 7 55.24 6 0 10 60.02 5 61.43 3 64.6 2 67.8 1 29.43 9 61.43 3

Glass0 67.76 7 69.99 5 73.19 3 72.14 4 68.14 6 64.29 9 74.23 2 80.34 1 67.76 7 64.29 9

Vehicle1 40 9 46.48 8 55.92 2 51.67 4 48.93 7 51.54 5 55.91 3 70.4 1 38.02 10 51.54 5

Vehicle0 85.82 7 89.94 1 87.16 6 87.88 5 84.07 9 88.81 2 88.81 2 84.59 8 80.6 10 88.09 4

Ecoli1 91.82 2 88.71 3 87.67 4 82.45 6 70.11 10 80.85 7 80.85 7 84.95 5 93.93 1 77.46 9

New-thyroid1 82.13 5 82.13 5 95.74 2 94.28 3 75.59 7 75.59 7 75.59 7 100 1 89.75 4 75.59 7

New-thyroid2 95.74 4 95.74 4 95.74 4 88.19 10 100 1 92.58 9 98.6 2 95.74 4 92.8 8 98.6 2

Ecoli2 94.02 2 94.02 2 94.02 2 93.16 5 83.67 9 89.44 7 94.87 1 92.29 6 78.15 10 89.44 7

Segmemt0 87.58 8 92.91 7 94 6 87.15 9 97.54 5 98.85 1 97.67 3 97.95 2 84.64 10 97.67 3

Yeast3 90.66 3 93.74 1 91.08 2 73.85 7 67.68 10 70.04 8 74.14 6 90.11 4 78.99 5 69.9 9

Ecoli3 92.2 4 93.09 2 94.87 1 93.09 2 52.55 8 36.84 10 74.32 7 89.44 6 92.2 4 37.16 9

Yeast2vs4 86.98 2 82.29 3 81.83 5 72.23 6 62.9 9 54.77 10 70.71 7 88.47 1 82.29 3 63.25 8

Vowel0 94.28 4 94.28 4 99.72 1 98.31 3 84.98 10 94.28 4 94.28 4 94.28 4 99.72 1 94.28 4

Glass2 73.96 2 76.24 1 73.96 2 71.61 4 57.74 6 57.74 6 0 9 66.67 5 55.47 8 0 9

Yeast1vs7 57.9 3 36.78 6 51.64 4 61.83 2 0 7 0 7 0 7 64.17 1 51.26 5 0 7

Glass4 70.71 3 70.71 3 70.71 3 82.16 1 70.71 3 70.71 3 70.71 3 82.16 1 70.71 3 70.71 3

Ecoli4 99.2 7 99.2 7 100 1 98.4 9 100 1 86.6 10 100 1 100 1 100 1 100 1

Page-blocks13vs2 97.7 5 97.7 5 97.7 5 89.19 10 100 1 89.44 9 99.43 3 97.12 8 100 1 99.43 3

Abalone09-18 56.35 5 52.84 6 64.5 3 64.5 3 35.1 7 0 8 0 8 66.52 2 67 1 0 8

Glass5 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Yeast4 81.42 3 83.79 2 84.29 1 77.19 4 54.29 7 54.29 7 0 10 72.13 5 66.64 6 31.62 9

Ecoli0137vs26 98.13 8 98.13 8 100 1 99.07 7 100 1 100 1 100 1 96.23 10 100 1 100 1

Yeast6 90.97 2 91.13 1 74.54 7 90.97 2 75.46 5 37.67 10 53.27 8 74.8 6 90.64 4 37.8 9

Average 4.52 4 3.13 5.43 6 6.39 4.65 3.78 5.3 5.78

Table 5: Precision values and ranks with SVM baseline from Experiment II

Precision Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 91.18 8 91.1 9 91.77 7 92.15 1 92.06 2 92.06 2 92.06 2 92.06 2 34.99 10 92.06 2

Pima 91.33 2 83.4 3 81.13 4 98.17 1 57.77 5 55.83 7 57.42 6 50.28 9 42.23 10 55.83 7

Glass0 76.36 5 65.12 9 69.57 6 66.7 8 77.29 4 85.37 2 88.61 1 68.14 7 56.38 10 85.37 2

Vehicle1 72.39 2 68.51 4 69.37 3 87.47 1 57.96 7 66.73 5 53.64 8 41.45 9 32.38 10 66.73 5

Vehicle0 64.03 9 74.11 7 66 8 76.83 6 93.44 1 86.69 2 86.69 2 77.23 5 60.7 10 82.3 4

Ecoli1 72.49 6 70.28 8 69.05 9 74.12 5 66.91 10 91 2 91 2 70.81 7 83.05 4 100 1

New-thyroid1 75.31 8 75.31 8 76.89 7 83.44 6 100 1 100 1 100 1 100 1 65.49 10 100 1

New-thyroid2 74.01 6 73.68 7 76.54 5 70.79 9 100 1 100 1 87.5 3 70 10 72.97 8 87.5 3

Ecoli2 94.21 5 92.32 6 91.41 7 87.3 8 100 1 100 1 100 1 75.47 9 42.99 10 100 1

Segmemt0 52.22 8 62.07 7 65.29 6 51.49 10 98.43 3 95.57 4 100 1 94.09 5 51.98 9 100 1

Yeast3 57.27 7 60.79 5 52.58 9 56.05 8 71.79 4 76.51 1 75.33 2 60 6 27.82 10 73.08 3

Ecoli3 50.22 6 51.47 4 56.68 3 51.34 5 49.92 7 24.94 10 66.59 1 36.76 8 59.84 2 33.26 9

Yeast2vs4 68.85 8 74.58 6 69.04 7 54.41 9 80.21 5 100 1 100 1 80.21 4 30.33 10 100 1

Vowel0 100 1 100 1 96.1 9 89.65 10 100 1 100 1 100 1 100 1 97.28 8 100 1

Glass2 44.07 3 41.41 4 31.9 6 33.58 5 100 1 100 1 0 9 14.72 7 11.44 8 0 9

Yeast1vs7 17.91 2 8.88 5 15.44 4 25.15 1 0 7 0 7 0 7 16.54 3 4.56 6 0 7

Glass4 100 1 100 1 100 1 39.89 8 100 1 100 1 100 1 16.6 9 9.94 10 100 1

Ecoli4 82.62 8 82.35 9 100 1 72.31 10 100 1 100 1 100 1 100 1 100 1 100 1

Page-blocks13vs2 62.09 7 61.78 8 63.57 6 33.32 10 100 1 100 1 84.73 4 52.6 9 100 1 84.73 4

Abalone09-18 14.85 4 14.77 5 21.62 2 19.66 3 34.29 1 0 8 0 8 11.54 6 10.22 7 0 8

Glass5 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Yeast4 19.63 7 23.57 5 24.22 4 21.01 6 37.92 2 37.92 2 0 10 13.85 8 5.06 9 100 1

Ecoli0137vs26 47.93 8 46.69 9 100 1 66.67 7 100 1 100 1 100 1 25.64 10 100 1 100 1

Yeast6 42.41 6 43.23 5 35.37 8 46.56 4 79.96 2 33.27 9 49.93 3 39.93 7 18.11 10 100 1

Average 5.52 5.87 5.35 6.13 3 3.09 3.3 6.22 7.57 3.22

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 6: F1-score values and ranks with SVM baseline from Experiment II

F1-Score Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 94.95 1 94.95 1 94.95 1 92.16 9 94.85 4 94.85 4 94.85 4 94.85 4 51.65 10 94.85 4

Pima 57.14 4 58.29 2 57.99 3 51.46 7 49.46 10 51.02 8 54.9 5 61.31 1 52.31 6 51.02 8

Glass0 61.54 6 63.16 5 64.52 4 64.86 3 60.87 8 57.14 9 69.57 2 73.33 1 61.54 6 57.14 9

Vehicle1 45.03 5 46.74 4 48.81 2 47.13 3 35.48 10 39.34 8 42.25 6 55.38 1 40.22 7 39.34 8

Vehicle0 69.64 9 77.89 5 71.56 8 74 7 81.16 4 84.21 1 84.21 1 76.92 6 63.33 10 82.05 3

Ecoli1 78.95 2 75.68 5 73.68 8 66.67 9 59.26 10 76.92 3 76.92 3 75 6 83.33 1 75 6

New-thyroid1 71.43 8 71.43 8 82.35 2 77.78 3 72.73 4 72.73 4 72.73 4 100 1 66.67 10 72.73 4

New-thyroid2 82.35 5 82.35 5 82.35 5 63.64 10 100 1 92.31 4 93.33 2 82.35 5 73.68 9 93.33 2

Ecoli2 90 2 90 2 90 2 85.71 7 82.35 8 88.89 5 94.74 1 81.82 9 48.65 10 88.89 5

Segmemt0 58.56 8 70.65 7 73.86 6 57.78 9 96.88 4 96.97 3 97.64 1 95.45 5 53.72 10 97.64 1

Yeast3 60.19 6 66.67 2 58.72 8 34.78 10 56.6 9 60.38 5 64.29 3 70.89 1 63.64 4 59.26 7

Ecoli3 60.87 5 63.64 2 70 1 63.64 2 36.36 8 18.18 10 61.54 4 53.85 7 60.87 5 20 9

Yeast2vs4 69.57 4 70 2 66.67 5 42.86 10 53.33 8 46.15 9 66.67 5 80 1 70 2 57.14 7

Vowel0 94.12 3 94.12 3 97.3 1 85.71 9 83.87 10 94.12 3 94.12 3 94.12 3 97.3 1 94.12 3

Glass2 33.33 4 40 3 33.33 4 28.57 6 50 1 50 1 0 9 22.22 7 15.38 8 0 9

Yeast1vs7 16.22 3 8.7 6 16 4 17.54 2 0 7 0 7 0 7 25 1 15.38 5 0 7

Glass4 66.67 1 66.67 1 66.67 1 23.53 9 66.67 1 66.67 1 66.67 1 23.53 9 66.67 1 66.67 1

Ecoli4 88.89 7 88.89 7 100 1 80 10 100 1 85.71 9 100 1 100 1 100 1 100 1

Page-blocks13vs2 71.43 6 71.43 6 71.43 6 35.71 10 100 1 88.89 5 90.91 3 66.67 9 100 1 90.91 3

Abalone09-18 12.9 7 13.04 6 22.86 1 16 5 18.18 3 0 8 0 8 18.87 2 17.39 4 0 8

Glass5 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -

Yeast4 23.88 5 30.19 4 32 3 17.58 9 33.33 1 33.33 1 0 10 22.22 6 21.28 7 18.18 8

Ecoli0137vs26 50 8 50 8 100 1 66.67 7 100 1 100 1 100 1 33.33 10 100 1 100 1

Yeast6 52.17 3 54.55 2 42.11 7 52.17 3 66.67 1 20 10 36.36 8 47.06 6 48 5 25 9

Average 4.87 4.17 3.65 6.91 5 5.17 4 4.43 5.39 5.35

Table 7: p-values of the Wilcoxon Signed Rank Tests with SVM baseline from Experiment II

Sensitivity

SMOTE BLSMOTE ENN kmUnder OBU Baseline
NB-Basic 2.71E-03 3.82E-04 1.04E-02 4.35E-01 8.81E-01 3.66E-03
NB-Tomek 1.04E-02 1.27E-03 1.90E-02 6.07E-01 8.98E-01 1.01E-02
NB-Comm 5.16E-03 6.99E-04 1.08E-02 5.11E-01 8.80E-01 5.14E-03
NB-Rec 3.99E-04 4.04E-05 1.20E-03 1.13E-01 4.16E-01 7.98E-04

G-mean

SMOTE BLSMOTE ENN kmUnder OBU Baseline
NB-Basic 2.48E-01 9.89E-02 4.76E-01 7.34E-01 4.09E-01 2.52E-01
NB-Tomek 2.65E-01 9.89E-02 4.64E-01 8.45E-01 3.70E-01 2.27E-01
NB-Comm 1.60E-01 4.88E-02 3.07E-01 9.42E-01 2.70E-01 1.37E-01
NB-Rec 2.70E-01 1.49E-01 6.20E-01 5.03E-01 6.43E-01 3.12E-01

precision

SMOTE BLSMOTE ENN kmUnder OBU Baseline
NB-Basic 4.31E-02 5.07E-02 1.53E-01 4.70E-01 9.88E-02 3.27E-02
NB-Tomek 4.76E-02 4.60E-02 1.36E-01 5.36E-01 9.07E-02 3.10E-02
NB-Comm 7.39E-02 9.56E-02 2.90E-01 4.15E-01 6.47E-02 5.73E-02
NB-Rec 1.00E-02 1.92E-02 6.56E-02 7.57E-01 2.01E-01 1.17E-02

F1-score

SMOTE BLSMOTE ENN kmUnder OBU Baseline
NB-Basic 3.82E-01 3.78E-01 2.70E-02 5.83E-01 8.26E-01 2.33E-01
NB-Tomek 5.32E-01 4.81E-01 5.63E-02 7.42E-01 5.38E-01 3.12E-01
NB-Comm 8.02E-01 8.23E-01 1.97E-01 8.35E-01 2.96E-01 6.52E-01
NB-Rec 7.45E-02 7.40E-02 2.62E-03 1.95E-01 6.13E-01 4.45E-02
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methods, outperformed sate-of-the-art kmUnder in both sensitivity and precision.

Similarly, our methods outperformed OBU in precision with comparable results

in sensitivity and G-mean.

In conclusion, NB-Comm on average ranked best in F1-score (Table 6) and G-495

mean. The method also showed high average ranking in terms of sensitivity, and

relatively good ranking in precision. This high performance across the different

measures reflects a good trade-off between true positive and false positive rates of

NB-Comm. Even though relatively high false positives in comparison to low false

negatives might be obtained due to the class imbalance nature, low false positive500

and low false negative rates can be achieved with regards to the total numbers of

the majority class instances and minority class instances, respectively. This also

shows better trade-off over other methods such as OBU, where high sensitivity

was obtained but with lower precision and F1-score. NB-Basic and NB-Tomek

showed competitive average ranking in F1-score. They provided comparable505

trade-offs between sensitivity, and G-means and F1-score, to OBU and kmUnder.

In particular, NB-Basic and OBU had higher positive class accuracy but lower

negative class accuracy than NB-Tomek and kmUnder. Thus, it can be said

that NB-Basic, OBU, NB-Tomek, and kmUnder performed comparably on these

datasets, and to consider which method was more preferable, the error costs of510

each class must be specified. As a result of the trade-off for the highest positive

accuracy, NB-Rec did not perform well in F1-score. NB-Rec is thus more desirable

when the classification accuracy of the positive class (false negatives) cannot be

compromised while misclassifying negative instances (false positives) is tolerable.

Finally, it was interesting to observe that the two well-established methods515

SMOTE and BLSMOTE ranked best in precision but showed very low ranking

in G-means, F1-score and sensitivity; also, ENN showed the least improvement

over the baseline in sensitivity. Thus, these well-established methods are the

least suitable solutions for handling the selected imbalanced problems.

Table 8 - 11 shows the results of Random Forest applied with the same exper-520

iment settings. All our NB-based methods ranked top in sensitivity. However,

low precision was observed in some cases. For example, NB-Rec achieved the
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Table 8: Sensitivity values and ranks with RF baseline from Experiment II

Sensitivity Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 100 1 100 1 100 1 100 1 91.49 10 95.74 6 95.74 6 95.74 6 100 1 95.74 6

Pima 100 1 96.23 3 94.34 4 100 1 71.7 8 73.58 7 66.04 9 75.47 6 90.57 5 62.26 10

Glass0 100 1 78.57 3 78.57 3 78.57 3 64.29 7 64.29 7 64.29 7 78.57 3 100 1 50 10

Vehicle1 100 1 100 1 93.02 4 100 1 65.12 7 62.79 8 55.81 9 74.42 6 90.7 5 51.16 10

Vehicle0 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

Ecoli1 100 1 100 1 100 1 100 1 80 6 80 6 80 6 80 6 100 1 80 6

New-thyroid1 85.71 6 100 1 100 1 100 1 85.71 6 85.71 6 85.71 6 100 1 100 1 85.71 6

New-thyroid2 98.2 4 99.1 1 99.1 1 99.1 1 91.89 6 90.99 7 87.39 9 96.4 5 87.39 9 88.29 8

Ecoli2 80 2 80 2 80 2 80 2 80 2 80 2 80 2 80 2 90 1 80 2

Segmemt0 100 1 98.46 5 98.46 5 100 1 98.46 5 100 1 98.46 5 98.46 5 100 1 98.46 5

Yeast3 93.75 3 93.75 3 84.38 5 100 1 68.75 8 84.38 5 62.5 9 100 1 78.13 7 62.5 9

Ecoli3 85.71 1 85.71 1 71.43 7 85.71 1 85.71 1 57.14 8 57.14 8 85.71 1 85.71 1 42.86 10

Yeast2vs4 90 2 90 2 90 2 90 2 70 7 60 8 50 9 100 1 80 6 50 9

Vowel0 94.44 3 94.44 3 94.44 3 100 1 94.44 3 94.44 3 94.44 3 100 1 94.44 3 94.44 3

Glass2 100 1 33.33 5 0 6 66.67 4 0 6 0 6 0 6 100 1 100 1 0 6

Yeast1vs7 50 3 50 3 50 3 100 1 33.33 9 33.33 9 50 3 100 1 50 3 50 3

Glass4 50 4 50 4 50 4 100 1 100 1 50 4 50 4 50 4 100 1 50 4

Ecoli4 50 6 50 6 50 6 75 4 100 1 75 4 50 6 100 1 100 1 50 6

Page-blocks13vs2 80 7 80 7 100 1 100 1 100 1 100 1 80 7 100 1 100 1 80 7

Abalone09-18 50 3 50 3 50 3 75 1 37.5 7 37.5 7 37.5 7 50 3 75 1 37.5 7

Glass5 100 1 0 5 0 5 100 1 0 5 0 5 0 5 100 1 100 1 0 5

Yeast4 80 3 70 5 50 6 90 2 30 7 30 7 20 9 100 1 80 3 10 10

Ecoli0137vs26 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1

Yeast6 57.14 3 42.86 5 42.86 5 42.86 5 57.14 3 42.86 5 42.86 5 100 1 71.43 2 42.86 5

Average 2.5 3 3.33 1.63 4.92 5.17 5.92 2.5 2.42 6.21

Table 9: G-mean values and ranks with RF baseline from Experiment II

G-mean Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 99.43 1 99.43 1 98.86 3 98.28 4 94.56 9 96.73 7 97.29 5 96.73 7 0 10 97.29 5

Pima 48.99 8 54.62 7 57.46 6 0 10 74.3 1 74.29 2 73.59 4 74.23 3 30.09 9 71.89 5

Glass0 68.14 10 76.76 7 78.57 5 78.57 5 80.18 2 78.73 4 80.18 2 82.07 1 73.19 8 70.71 9

Vehicle1 45.61 8 49.8 7 59.77 6 26.83 10 73.96 2 71.23 3 71.03 4 74.81 1 39.95 9 67.4 5

Vehicle0 88.48 9 90.65 7 90.22 8 76.76 10 97.25 3 96.45 5 96.85 4 94.83 6 97.65 1 97.65 1

Ecoli1 93.93 1 93.93 1 93.93 1 92.88 5 86.77 9 85.86 10 88.56 6 88.56 6 93.93 1 88.56 6

New-thyroid1 92.58 6 100 1 100 1 98.6 3 92.58 6 92.58 6 92.58 6 95.74 5 97.18 4 92.58 6

New-thyroid2 94.6 4 95.2 2 89.17 9 64.71 10 95.03 3 94.56 5 92.91 7 95.34 1 92.91 7 93.43 6

Ecoli2 85.36 10 88.64 8 89.44 2 86.19 9 89.44 2 89.44 2 89.44 2 89.44 2 92.29 1 89.44 2

Segmemt0 98.08 9 99.23 3 98.85 7 99.24 2 99.1 6 99.87 1 99.23 3 98.85 7 73.43 10 99.23 3

Yeast3 93.08 3 94.03 2 89.92 5 94.35 1 81.65 8 90.45 4 78.3 10 89.82 6 83.92 7 78.46 9

Ecoli3 80.18 6 84.52 3 80.92 5 83.67 4 87.83 1 71.71 9 74.96 8 85.36 2 79.28 7 65.47 10

Yeast2vs4 93.31 3 93.83 2 94.35 1 93.31 3 83.21 7 77.04 8 70.71 9 92.67 5 88.96 6 70.71 9

Vowel0 95.26 7 95.54 6 94.71 8 91.24 10 97.18 1 97.18 1 97.18 1 97.17 5 93.87 9 97.18 1

Glass2 86.23 1 53.91 5 0 6 70.41 2 0 6 0 6 0 6 67.94 3 64.05 4 0 6

Yeast1vs7 64.17 7 66.42 6 69.87 5 90.1 1 56.01 9 57.05 8 70.71 2 48.51 10 70.71 2 70.71 2

Glass4 69.82 3 69.82 3 68.92 8 93.54 2 98.74 1 69.82 3 69.82 3 68.92 8 67.08 10 69.82 3

Ecoli4 70.71 6 70.71 6 70.71 6 83.81 5 100 1 86.6 4 70.71 6 96.77 3 100 1 70.71 6

Page-blocks13vs2 87.39 8 87.39 8 97.12 4 95.94 5 100 1 100 1 89.44 6 99.43 3 26.11 10 89.44 6

Abalone09-18 65.62 5 66.18 4 66.45 3 76.54 1 59.88 10 60.34 9 61.24 6 61.01 8 71.74 2 61.24 6

Glass5 96.27 1 0 5 0 5 96.27 1 0 5 0 5 0 5 93.7 4 96.27 1 0 5

Yeast4 83.96 3 80.84 4 68.32 5 87.81 1 54.1 7 54.48 6 44.72 8 11.83 10 84.79 2 31.62 9

Ecoli0137vs26 99.07 1 99.07 1 99.07 1 99.07 1 99.07 1 99.07 1 98.13 8 57.74 10 99.07 1 98.13 8

Yeast6 74.01 3 64.78 8 65.12 6 64.32 9 75.33 2 65.12 6 65.35 4 13.15 10 80.62 1 65.35 4

Average 5.13 4.46 4.83 4.75 4.29 4.83 5.21 5.25 5.13 5.5

Table 10: Precision values and ranks with RF baseline from Experiment II

Precision Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 97.93 1 97.93 1 95.95 5 94.04 9 95.59 8 95.78 6 97.84 3 95.78 7 34.99 10 97.84 4

Pima 41.36 8 42.78 7 43.76 6 34.9 10 62.56 3 61.21 4 66.29 1 59.97 5 35.04 9 66.25 2

Glass0 47.57 10 60.44 8 64.06 6 64.06 6 100 1 89.74 4 100 1 72.78 5 51.15 9 100 1

Vehicle1 30.34 8 31.45 7 34.25 6 27.1 10 58.4 3 53.01 4 66.73 1 50.87 5 27.52 9 61.18 2

Vehicle0 58.63 9 63.3 7 62.31 8 42.81 10 85 3 81.51 5 83.22 4 75.32 6 86.86 1 86.86 1

Ecoli1 71.65 7 71.65 7 71.65 6 68.41 10 80.17 4 75.2 5 92.38 3 92.38 1 71.65 7 92.38 1

New-thyroid1 100 1 100 1 100 1 87.5 8 100 1 100 1 100 1 70 10 77.78 9 100 1

New-thyroid2 87.5 6 87.5 6 100 1 70 10 100 1 100 1 100 1 77.78 9 87.5 6 100 1

Ecoli2 62.13 10 89.13 7 100 1 67.22 9 100 1 100 1 100 1 100 1 75.47 8 100 1

Segmemt0 81.41 9 100 1 95.57 6 91.63 8 98.48 5 98.5 4 100 1 95.57 7 26.51 10 100 1

Yeast3 60.43 7 67.06 6 71.42 5 52.9 8 73.68 4 77.46 3 80.28 2 38.98 10 49.46 9 83.58 1

Ecoli3 28.5 9 37.42 7 49.92 3 35.22 8 49.92 4 39.92 5 79.95 2 39.92 6 27.21 10 100 1

Yeast2vs4 75.25 9 82.02 7 90.12 3 75.25 8 87.64 5 85.88 6 100 1 43.81 10 89.02 4 100 1

Vowel0 70.76 6 73.85 5 65.31 7 37.42 10 100 1 100 1 100 1 64.21 8 58.54 9 100 1

Glass2 25.18 1 18.33 2 0 6 18.33 3 0 6 0 6 0 6 13.81 4 12.76 5 0 6

Yeast1vs7 16.54 9 22.91 8 59.77 4 27.09 7 28.38 6 49.77 5 100 1 8.38 10 100 1 100 1

Glass4 56.4 2 56.4 2 39.27 7 34.1 9 72.12 1 56.4 2 56.4 2 39.27 7 10.52 10 56.4 2

Ecoli4 100 1 100 1 100 1 42.78 10 100 1 100 1 100 1 49.92 9 100 1 100 1

Page-blocks13vs2 52.6 6 52.6 6 52.6 8 44.22 9 100 1 100 1 100 1 84.73 5 6.34 10 100 1

Abalone09-18 18.02 7 19.72 6 20.7 5 17.27 8 34.29 4 43.91 3 100 1 10.66 10 12.71 9 100 1

Glass5 37.5 2 0 5 0 5 37.5 1 0 5 0 5 0 5 26.47 4 37.5 2 0 5

Yeast4 19.32 8 27.27 5 21.13 7 18.26 9 30.37 4 50.44 3 100 1 3.48 10 21.92 6 100 1

Ecoli0137vs26 57.98 5 57.98 5 57.98 1 57.98 1 57.98 1 57.98 1 40.82 9 3.69 10 57.98 5 40.82 8

Yeast6 24.95 7 33.27 6 49.93 4 23.03 8 66.61 3 49.93 4 74.95 1 2.4 10 16.09 9 74.95 2

Average 6.17 5.13 4.67 7.88 3.17 3.38 2.13 7.04 7 1.96
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Table 11: F1-score values and ranks with RF baseline from Experiment II

F1-Score Value/Rank

Dataset NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU Baseline

Wisconsin 98.95 1 98.95 1 97.92 3 96.91 4 93.48 9 95.74 7 96.77 6 95.74 8 51.65 10 96.77 5

Pima 58.24 8 58.96 7 59.52 6 51.46 9 66.67 2 66.67 2 66.04 4 66.67 1 50.26 10 64.08 5

Glass0 65.12 10 68.75 7 70.97 5 70.97 5 78.26 1 75 4 78.26 1 75.86 3 68.29 8 66.67 9

Vehicle1 46.49 8 47.78 7 50 6 42.57 9 61.54 1 57.45 4 60.76 2 60.38 3 42.16 10 55.7 5

Vehicle0 73.58 9 77.23 7 76.47 8 59.54 10 91.76 3 89.66 5 90.7 4 85.71 6 92.86 1 92.86 1

Ecoli1 83.33 5 83.33 5 83.33 4 81.08 8 80 9 77.42 10 85.71 1 85.71 2 83.33 5 85.71 2

New-thyroid1 92.31 7 100 1 100 1 93.33 3 92.31 4 92.31 4 92.31 4 82.35 10 87.5 9 92.31 7

New-thyroid2 93.33 6 93.33 6 100 1 82.35 10 100 1 100 1 100 1 87.5 9 93.33 6 100 1

Ecoli2 69.57 10 84.21 7 88.89 3 72.73 9 88.89 3 88.89 3 88.89 3 88.89 1 81.82 8 88.89 1

Segmemt0 89.66 9 99.22 3 96.97 7 95.59 8 98.46 5 99.24 1 99.22 2 96.97 6 41.67 10 99.22 3

Yeast3 73.17 4 77.92 2 77.14 3 68.82 8 70.97 6 80.6 1 70.18 7 55.65 10 60.24 9 71.43 5

Ecoli3 42.86 9 52.17 6 58.82 4 50 7 63.16 2 47.06 8 66.67 1 54.55 5 41.38 10 60 3

Yeast2vs4 81.82 5 85.71 2 90 1 81.82 4 77.78 6 70.59 7 66.67 9 60.61 10 84.21 3 66.67 8

Vowel0 80.95 6 82.93 5 77.27 8 54.55 10 97.14 1 97.14 1 97.14 1 78.26 7 72.34 9 97.14 4

Glass2 37.5 1 22.22 3 0 6 26.67 2 0 6 0 6 0 6 22.22 3 20.69 5 0 6

Yeast1vs7 25 9 31.58 7 54.55 4 42.86 5 30.77 8 40 6 66.67 3 15.58 10 66.67 1 66.67 1

Glass4 50 2 50 2 40 8 44.44 7 80 1 50 2 50 2 40 8 15.38 10 50 2

Ecoli4 66.67 4 66.67 4 66.67 8 54.55 10 100 1 85.71 3 66.67 8 66.67 4 100 1 66.67 4

Page-blocks13vs2 61.54 7 61.54 7 66.67 6 58.82 9 100 1 100 1 88.89 5 90.91 3 10.87 10 88.89 4

Abalone09-18 25.81 8 27.59 6 28.57 5 27.27 7 35.29 4 40 3 54.55 1 17.02 10 21.05 9 54.55 2

Glass5 40 1 0 5 0 5 40 1 0 5 0 5 0 5 28.57 4 40 1 0 5

Yeast4 30.77 5 38.89 1 29.41 8 30 6 30 6 37.5 2 33.33 4 6.62 10 34.04 3 18.18 9

Ecoli0137vs26 66.67 1 66.67 1 66.67 4 66.67 4 66.67 4 66.67 4 50 8 5.26 10 66.67 1 50 8

Yeast6 34.78 7 37.5 6 46.15 4 30 8 61.54 1 46.15 4 54.55 2 4.7 10 26.32 9 54.55 3

Average 5.92 4.5 4.92 6.79 3.75 3.92 3.75 6.38 6.58 4.29

Table 12: p-values of the Wilcoxon Signed Rank Tests with RF baseline from Experiment II

Sensitivity
SMOTE BLSMOTE ENN kmUnder OBU Baseline

NB-Basic 8.00E-02 1.76E-02 3.51E-03 3.87E-01 4.67E-01 2.08E-03
NB-Tomek 4.87E-01 2.02E-01 7.98E-02 3.67E-02 5.91E-02 5.90E-02
NB-Comm 6.40E-01 3.14E-01 1.38E-01 2.58E-02 4.50E-02 9.86E-02
NB-Rec 4.47E-03 7.83E-04 8.43E-05 8.29E-01 7.53E-01 8.02E-05

G-mean
SMOTE BLSMOTE ENN kmUnder OBU Baseline

NB-Basic 8.08E-01 6.62E-01 3.62E-01 1.00E+00 4.85E-01 2.86E-01
NB-Tomek 6.48E-01 9.00E-01 5.93E-01 8.69E-01 7.64E-01 4.85E-01
NB-Comm 5.35E-01 1.00E+00 7.49E-01 7.93E-01 9.38E-01 6.00E-01
NB-Rec 9.46E-01 4.21E-01 1.68E-01 7.15E-01 3.67E-01 1.45E-01

precision
SMOTE BLSMOTE ENN kmUnder OBU Baseline

NB-Basic 4.16E-02 6.89E-02 1.04E-03 6.57E-01 4.15E-01 7.47E-04
NB-Tomek 1.25E-01 1.66E-01 3.85E-03 4.70E-01 2.74E-01 2.57E-03
NB-Comm 2.02E-01 3.05E-01 6.49E-03 3.53E-01 1.83E-01 5.53E-03
NB-Rec 7.72E-03 5.00E-03 8.21E-05 6.75E-01 8.45E-01 6.65E-05

F1-score
SMOTE BLSMOTE ENN kmUnder OBU Baseline

NB-Basic 1.83E-01 2.88E-01 2.83E-01 7.41E-01 5.43E-01 3.97E-01
NB-Tomek 3.12E-01 5.09E-01 4.57E-01 6.35E-01 4.03E-01 5.91E-01
NB-Comm 2.97E-01 6.65E-01 6.42E-01 5.50E-01 3.37E-01 7.96E-01
NB-Rec 7.27E-02 1.94E-01 1.24E-01 8.93E-01 6.65E-01 1.76E-01
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Table 13: Results on large and high-dimensional datasets

Dataset Metric NB-Basic NB-Tomek NB-Comm NB-Rec ENN kmUnder OBU Baseline

Breast Cancer

sensitivity 64.52 58.87 60.48 86.29 40.32 86.29 42.74 28.23
G-mean 78.83 76.1 76.69 79.65 63.48 79.12 65.35 53.12
precision 9.66 18.02 11.81 1.95 81.97 2.77 73.61 81.4
F1-score 16.81 27.6 19.76 3.81 54.05 5.36 54.08 41.92

MNIST 3

sensitivity 94.29 92.65 93.47 99.18 82.45 95.92 82.45 82.45
G-mean 94.82 94.56 94.38 77.19 90.71 59.22 90.71 90.71
precision 31.56 37.58 31.11 5.35 90.18 3.32 90.18 90.18
F1-score 47.29 53.47 46.69 10.15 86.14 6.43 86.14 86.14

MNIST 5

sensitivity 97.42 97.42 97.42 99.26 91.14 95.94 90.96 90.96
G-mean 96.26 96.85 95.52 70.98 95.28 93.85 95.18 95.18
precision 49.72 56.53 43.28 9.1 91.99 36.78 91.98 91.98
F1-score 65.84 71.54 59.93 16.67 91.57 53.17 91.47 91.47

highest average ranking in sensitivity among all methods but with low precision.

NB-Basic provided competitive sensitivity and G-mean with state-of-the-art

kmUnder and OBU, however with higher precision and F1-score ranks. NB-525

Tomek and NB-Comm yielded comparable trade-offs between sensitivity and,

G-mean and F1-score, with kmUnder and OBU. Finally, SMOTE, BLSMOTE,

and ENN produced the least favourable performance amongst all methods. These

results are consistent with the results obtained using SVM, which indicates a

stable performance of our methods across different learning algorithms.530

6.3. Experiment III: Large and high-dimensional datasets

In this experiment, we aimed at validating the stability of our methods on

large and high-dimensional real-world datasets. Table 13 shows the performance

of the methods using SVM. In this experiment we compared our methods with

the top performing methods in Experiment II based on SVM with emphasis on535

the class of interest accuracy, namely ENN, kmUnder, and OBU.

On the breast cancer dataset, all of our NB-based methods significantly

improved both sensitivity and G-mean from the baseline. They also outperformed

ENN and OBU in the two metrics, where NB-Rec yielded the highest results

(86.29% in sensitivity and 79.65& in G-mean). As a result of the trade-off, they540

suffered more from higher false positives as can be seen from lower precision and

F1-score. However, their false positive rates were reasonable as evidenced by

fair G-mean. Low precision and F1-score obtained were due to the extremely
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class imbalance nature on a large dataset as well as high class overlap (as can

be observed that none of the methods with relatively high sensitivity could545

simultaneously yield high precision and F1-score, and vice versa). NB-Rec

and kmUnder produced the highest sensitivity while the other metrics were

comparable.

On the handwritten digits with class 3 as the minority class (MNIST 3), the

NB-based methods improved both sensitivity and G-mean. NB-Rec achieved550

the highest sensitivity of 99.18% and outperformed kmUnder in all metrics. The

other NB-based methods showed competitive sensitivity with significantly higher

G-means, precision, and F1-scores than kmUnder. ENN and OBU did not show

any improvement over the baseline.

Similarly, on the handwritten digits with class 5 as the minority class555

(MNIST 5), NB-based methods showed significant improvements in sensitiv-

ity while G-mean results were competitive with that of the baseline. NB-Rec had

the highest sensitivity of 99.26%. NB-Basic, NB-Tomek, and NB-Comm yielded

better results in all metrics than kmUnder. They also performed better than

ENN, which rarely showed improvement over the baseline, in both sensitivity560

and G-mean. OBU did not show any improvement over the baseline.

In summary, the performance of our methods on the large high-dimensional

datasets was consistent with the previous experiments. NB-Rec performed best

in sensitivity on all of the large high-dimensional datasets and had reasonable

true negative rates (as can be observed from G-mean), however highly suffered565

from high false negatives due to the trade-off nature on the large and highly

imbalanced datasets. NB-Basic, NB-Tomek, and NB-Comm showed significantly

higher improvements over ENN and OBU. They were competitive with kmUnder

on average.

7. Conclusions570

In this paper, we proposed a novel undersampling approach to handle classi-

fication of imbalanced and overlapped datasets by identifying and eliminating
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potential negative instances in the overlapping region. Four different variants

of the proposed approach have been created and extensive experiments using

simulated and real-world datasets were carried out. The proposed methods575

were compared against well-established and state-of-the-art methods. Results

showed that our methods achieved highest sensitivity with competitive G-means

across all imbalance degrees on both simulated and real-world datasets. Our

methods also showed competitive performance across all degrees of class overlap

on the simulated datasets. The four variants of the proposed approach provided580

different benefits and trade-offs: 1) NB-Rec yielded exceptionally high sensitivity

at all degrees of class imbalance and class overlap but had higher false positives

at higher class imbalance degrees; 2) NB-Basic resulted in competitive sensitivity

with better trade-offs of fewer negative class prediction errors (false positives)

than the state-of-the-art methods; 3) NB-Tomek and NB-Comm showed similar585

trade-offs and were comparable to state-of-the-art in all metrics. These methods

provide different options that suit various problem domains.

From our experimental results, a more consistent performance was observed

across all simulated datasets whereas some variations were observed in real-world

datasets. The difference may be due to the difference in data uniformity. The590

simulated datasets are uniformly distributed (i.e. data density is uniform across

the entire data space), but this cannot be guaranteed in real-world scenarios.

Such an issue has not been considered in this work. Thus, a possible future

direction includes integrating a density factor into the neighbourhood search

criteria of our methods. Another potential solution is to create an adaptive595

method for setting k value in the k-NN rule, where the value will be dependent

on the local minority class density. For example, a higher k value can be used

when the local minority class density is lower than the local majority class

density, otherwise a lower k may be considered. In this work, we only consider

the undersampling criteria for binary-class problems. Multi-class datasets were600

treated as a binary-class problem using one-vs-all scheme. However, the searching

criteria of our methods can be modified and extended to handle imbalanced

datasets with more than one minority class. Finally, another interesting direction
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would be to apply a global algorithm to roughly separate the overlapping and

non-overlapping regions, followed by performing a local search. Such an approach605

could potentially lead to a significant reduction of processing time, which is

required for large datasets.
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Sensitivity
overlap imb Baseline NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU

0 1.5 0.998333 1 1 1 1 0.999167 0.999167 0.998333 1 0.999167
10 1.5 0.941667 1 1 1 1 0.968333 1 0.95 0.970833 0.975833
20 1.5 0.895 1 1 1 1 0.960833 0.996667 0.9275 0.9575 0.954167
30 1.5 0.806667 1 1 1 1 0.934167 0.983333 0.905 0.9425 0.930833
40 1.5 0.7275 1 1 1 1 0.924167 0.968333 0.880833 0.925833 0.91
50 1.5 0.625 1 1 1 1 0.935833 0.965833 0.875833 0.93 0.911667
60 1.5 0.661667 1 1 1 1 0.921667 0.955 0.873333 0.925 0.928333
70 1.5 0.553333 1 1 1 1 0.916667 0.944167 0.829167 0.915833 0.826667
80 1.5 0.524167 1 1 1 1 0.915833 0.94 0.764167 0.9175 0.816667
90 1.5 0.4075 1 1 1 1 0.900833 0.903333 0.733333 0.9 0.779167

100 1.5 0.333333 1 1 1 1 0.888333 0.8875 0.699167 0.871667 0.760833
0 3 0.996667 1 1 1 1 1 0.991667 0.996667 1 1

10 3 0.916667 1 1 1 1 0.971667 1 0.918333 0.97 0.991667
20 3 0.848333 1 1 1 1 0.986667 1 0.861667 0.98 0.98
30 3 0.793333 1 1 1 1 0.973333 0.998333 0.82 0.986667 0.976667
40 3 0.751667 1 1 1 1 0.965 0.995 0.79 0.978333 0.968333
50 3 0.67 1 1 1 1 0.96 0.995 0.753333 0.963333 0.961667
60 3 0.616667 1 1 1 1 0.965 1 0.65 0.965 0.951667
70 3 0.52 1 1 1 1 0.963333 0.998333 0.625 0.975 0.943333
80 3 0.421667 1 1 1 1 0.965 0.983333 0.573333 0.98 0.933333
90 3 0.376667 1 1 1 1 0.965 0.98 0.595 0.963333 0.92

100 3 0.448333 1 1 1 1 0.97 0.97 0.5 0.96 0.901667
0 12 0.986667 0.993333 0.993333 0.993333 1 1 0.993333 0.986667 1 1

10 12 0.94 0.993333 0.993333 0.993333 1 0.973333 1 0.94 0.993333 1
20 12 0.88 0.993333 0.993333 0.993333 1 0.986667 0.993333 0.886667 0.993333 1
30 12 0.753333 0.993333 0.993333 0.993333 1 0.986667 1 0.773333 0.993333 1
40 12 0.666667 0.993333 0.993333 0.993333 1 0.993333 0.993333 0.7 0.993333 1
50 12 0.613333 0.993333 0.993333 0.993333 0.993333 0.993333 0.993333 0.633333 0.993333 1
60 12 0.54 0.993333 0.993333 0.993333 0.993333 0.993333 1 0.593333 0.993333 1
70 12 0.453333 0.993333 0.993333 0.993333 0.993333 0.993333 0.993333 0.613333 0.993333 1
80 12 0.34 0.993333 0.993333 0.993333 0.993333 0.993333 0.993333 0.606667 0.993333 1
90 12 0.506667 0.993333 0.993333 0.993333 0.993333 0.993333 0.993333 0.58 0.993333 1

100 12 0.366667 0.993333 0.993333 0.993333 1 0.993333 0.993333 0.473333 0.993333 1
0 30 0.983333 1 1 1 1 1 0.983333 0.983333 1 1

10 30 0.966667 1 1 1 1 0.983333 1 0.966667 1 1
20 30 0.95 1 1 1 1 0.966667 1 0.95 1 1
30 30 0.883333 1 1 1 1 0.966667 1 0.916667 1 1
40 30 0.666667 1 1 1 1 1 1 0.65 1 1
50 30 0.616667 1 1 1 1 0.983333 0.95 0.683333 1 1
60 30 0.566667 1 0.966667 1 1 1 1 0.566667 1 1
70 30 0.533333 1 0.966667 0.966667 1 1 1 0.55 1 1
80 30 0.416667 1 0.983333 0.983333 1 1 1 0.466667 1 1
90 30 0.466667 0.983333 0.966667 0.966667 1 1 0.966667 0.366667 1 1

100 30 0.383333 1 0.983333 0.983333 1 1 0.983333 0.6 1 1
0 60 1 1 1 1 1 1 1 1 1 1

10 60 0.966667 1 1 1 1 1 1 0.966667 1 1
20 60 0.9 1 1 1 1 1 1 0.9 1 1
30 60 0.866667 1 1 1 1 1 1 0.833333 1 1
40 60 0.8 1 1 1 1 1 1 0.8 1 1
50 60 0.8 1 1 1 1 1 1 0.8 1 1
60 60 0.733333 1 1 1 1 1 1 0.766667 1 1
70 60 0.7 1 1 1 1 1 1 0.833333 1 1
80 60 0.633333 1 1 0.966667 1 1 1 0.7 1 1
90 60 0.733333 1 0.966667 1 1 1 0.766667 0.5 1 1

100 60 0 1 0.966667 0.966667 1 1 1 0.466667 1 1
0 120 1 1 1 1 1 1 1 1 1 1

10 120 1 1 1 1 1 1 1 1 1 1
20 120 0.866667 1 1 1 1 1 1 0.866667 1 1
30 120 0.866667 1 1 1 1 1 1 0.866667 1 1
40 120 0.866667 1 1 1 1 1 1 0.933333 1 1
50 120 0.866667 1 1 1 1 1 1 0.866667 1 1
60 120 0.8 1 1 1 1 1 1 0.8 1 1
70 120 0.866667 1 1 1 1 1 1 0.8 1 1
80 120 0.133333 1 1 1 1 1 1 0.866667 1 1
90 120 0 1 1 1 1 1 1 0.266667 1 1

100 120 0 1 1 1 1 1 1 0 1 1

Results on Simulated Datasets (Experiment I)



G-mean
overlap imb Baseline NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU

0 1.5 0.998889 0.972968 0.974394 0.974109 0.947804 0.998194 0.995131 0.998611 0.9975 0.912186
10 1.5 0.950789 0.929456 0.93482 0.936305 0.912262 0.956314 0.951023 0.953328 0.948513 0.866203
20 1.5 0.90467 0.886629 0.893806 0.895669 0.871461 0.912829 0.912866 0.909124 0.890346 0.829494
30 1.5 0.851267 0.844919 0.854725 0.856349 0.820569 0.868079 0.878277 0.867849 0.836134 0.782154
40 1.5 0.802143 0.800694 0.804846 0.809321 0.778175 0.830689 0.834985 0.823851 0.788489 0.759499
50 1.5 0.748146 0.759751 0.767029 0.76956 0.737865 0.789537 0.791656 0.784548 0.73169 0.732369
60 1.5 0.730578 0.714532 0.727629 0.729155 0.690813 0.751516 0.757668 0.747618 0.685974 0.682432
70 1.5 0.678599 0.665415 0.678233 0.681094 0.640312 0.715406 0.718797 0.717959 0.641952 0.639328
80 1.5 0.644404 0.617792 0.630256 0.635085 0.588784 0.669134 0.671714 0.684298 0.586331 0.630072
90 1.5 0.569773 0.572033 0.584523 0.584998 0.527046 0.627586 0.627657 0.646214 0.5425 0.581067

100 1.5 0.510809 0.496096 0.528625 0.528625 0.470815 0.592361 0.590415 0.599735 0.506155 0.560406
0 3 0.997222 0.983757 0.984039 0.984322 0.973253 0.997775 0.994164 0.9975 0.996249 0.922858

10 3 0.94861 0.967241 0.968389 0.970109 0.955394 0.969163 0.978377 0.950009 0.9675 0.894396
20 3 0.906089 0.944281 0.947511 0.950146 0.935711 0.956769 0.955394 0.911346 0.94451 0.872117
30 3 0.870674 0.921954 0.926463 0.927661 0.909823 0.930734 0.937597 0.878471 0.913427 0.862493
40 3 0.835343 0.9 0.902466 0.907683 0.888194 0.907451 0.916335 0.850722 0.881922 0.84809
50 3 0.785822 0.878762 0.886002 0.886002 0.867307 0.887543 0.896515 0.820097 0.852545 0.840411
60 3 0.749568 0.860878 0.867948 0.868588 0.84951 0.870667 0.878446 0.765325 0.828779 0.822
70 3 0.689573 0.841625 0.847873 0.85049 0.827647 0.853142 0.8637 0.740214 0.805995 0.800916
80 3 0.62096 0.82226 0.828318 0.828989 0.808634 0.835153 0.837849 0.701052 0.780156 0.779886
90 3 0.579716 0.802773 0.810007 0.81035 0.784927 0.817309 0.821983 0.697077 0.755679 0.757613

100 3 0.616108 0.782091 0.787753 0.789163 0.765216 0.801807 0.799788 0.63901 0.733328 0.749358
0 12 0.993035 0.990273 0.991109 0.990273 0.989388 1 0.99583 0.993035 0.992497 0.960035

10 12 0.967649 0.986644 0.986924 0.986924 0.986577 0.981631 0.991351 0.967379 0.985413 0.954521
20 12 0.934166 0.982159 0.983844 0.984685 0.980363 0.982491 0.984124 0.93691 0.979573 0.948683
30 12 0.863112 0.977089 0.977089 0.980472 0.976957 0.979418 0.983475 0.874003 0.968715 0.942514
40 12 0.811263 0.972844 0.974828 0.974828 0.970681 0.977372 0.975394 0.830361 0.9637 0.935414
50 12 0.776602 0.967155 0.969719 0.96915 0.963153 0.971425 0.969435 0.78894 0.956589 0.931248
60 12 0.72808 0.963439 0.964584 0.96487 0.957406 0.966584 0.968676 0.762756 0.947377 0.925263
70 12 0.666722 0.957118 0.95827 0.959709 0.951044 0.961719 0.960858 0.771319 0.941928 0.920447
80 12 0.577235 0.952204 0.95423 0.954519 0.946682 0.95827 0.957982 0.763151 0.937315 0.912262
90 12 0.699036 0.947847 0.949593 0.949011 0.941128 0.952204 0.951044 0.744894 0.92682 0.909212

100 12 0.595352 0.941128 0.943178 0.943471 0.937787 0.946099 0.94464 0.673116 0.915469 0.902466
0 30 0.991632 0.997497 0.997497 0.997497 0.995546 0.999166 0.991632 0.991356 0.995415 0.982344

10 30 0.982646 0.996382 0.996382 0.996661 0.995267 0.989978 0.997775 0.982372 0.993748 0.980079
20 30 0.973596 0.995825 0.995825 0.995825 0.99387 0.980183 0.996382 0.973596 0.990412 0.977809
30 30 0.938813 0.99415 0.994429 0.994708 0.990791 0.978538 0.995267 0.956096 0.988326 0.975819
40 30 0.814453 0.991351 0.992192 0.993591 0.989388 0.994429 0.993031 0.804432 0.985822 0.973253
50 30 0.783316 0.989107 0.989669 0.989669 0.987702 0.9825 0.966796 0.82411 0.984153 0.970681
60 30 0.750469 0.98714 0.971654 0.987983 0.98545 0.989388 0.988826 0.750259 0.979977 0.968102
70 30 0.727655 0.986013 0.969994 0.970548 0.98545 0.987702 0.987421 0.738937 0.976636 0.965517
80 30 0.643162 0.984886 0.977203 0.976924 0.983475 0.985732 0.98545 0.680659 0.977471 0.961769
90 30 0.679706 0.975245 0.9675 0.968055 0.982344 0.985168 0.968609 0.603002 0.973711 0.959745

100 30 0.614651 0.982061 0.974964 0.975525 0.979229 0.984322 0.976924 0.766377 0.970367 0.956556
0 60 1 0.99694 0.99694 0.99694 0.994429 0.998332 1 1 0.989577 0.984886

10 60 0.981826 0.995825 0.996104 0.996382 0.993591 0.997497 0.997497 0.982099 0.991246 0.983757
20 60 0.947101 0.994429 0.994708 0.995267 0.991912 0.996104 0.996104 0.947101 0.989577 0.982344
30 60 0.929396 0.994429 0.994429 0.994429 0.990511 0.995546 0.995267 0.911348 0.978724 0.982344
40 60 0.892686 0.991632 0.993591 0.993591 0.99023 0.994708 0.99387 0.892437 0.976218 0.980929
50 60 0.890942 0.991351 0.991632 0.991912 0.989107 0.993311 0.99387 0.890942 0.974547 0.980079
60 60 0.853251 0.990511 0.990511 0.99023 0.988264 0.991912 0.991351 0.872183 0.973711 0.979229
70 60 0.833633 0.989949 0.99023 0.99023 0.98714 0.99023 0.991071 0.907785 0.973711 0.978661
80 60 0.7925 0.988264 0.988826 0.972206 0.986577 0.989949 0.989669 0.8327 0.972875 0.977809
90 60 0.851578 0.987702 0.971377 0.987983 0.985732 0.988826 0.866057 0.703562 0.972039 0.976388

100 60 0 0.986858 0.971101 0.970824 0.984604 0.987702 0.987702 0.679515 0.971621 0.974109
0 120 1 0.997497 0.997497 0.997497 0.996104 0.999166 0.99861 1 0.990829 1

10 120 1 0.997218 0.997218 0.997218 0.995546 0.999166 0.99694 0.999722 0.989994 1
20 120 0.930949 0.996382 0.996104 0.996661 0.994708 0.997218 0.996382 0.930949 0.988743 0.987702
30 120 0.930432 0.996104 0.996104 0.996104 0.994708 0.996661 0.995546 0.930432 0.991246 0.987421
40 120 0.930432 0.994987 0.995546 0.995546 0.994708 0.995546 0.995267 0.964749 0.990829 0.986858
50 120 0.930432 0.994708 0.994708 0.994429 0.994429 0.995267 0.995267 0.930432 0.990829 0.98545
60 120 0.89393 0.994708 0.994429 0.994429 0.994429 0.994429 0.994708 0.89393 0.977889 0.985168
70 120 0.929655 0.99415 0.994429 0.99415 0.993311 0.994987 0.994429 0.893184 0.976218 0.984886
80 120 0.365148 0.99387 0.993591 0.99387 0.992472 0.994429 0.99415 0.928619 0.974547 0.983757
90 120 0 0.993031 0.993591 0.993591 0.991632 0.99415 0.99415 0.515824 0.972457 0.983475

100 120 0 0.991912 0.992472 0.99387 0.991071 0.994429 0.993031 0 0.972039 0.982627



Precision
overlap imb Baseline NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU

0 1.5 0.999166 0.925926 0.929512 0.928793 0.867679 0.995847 0.986831 0.998333 0.995025 0.799333
10 1.5 0.9401 0.83045 0.840925 0.843882 0.798935 0.920761 0.874636 0.935961 0.916601 0.73787
20 1.5 0.874593 0.757098 0.768246 0.771208 0.734844 0.828305 0.802146 0.850267 0.829004 0.695203
30 1.5 0.841008 0.699708 0.712166 0.714286 0.671141 0.763104 0.752551 0.782421 0.760081 0.644175
40 1.5 0.807586 0.650054 0.654308 0.658979 0.628272 0.708626 0.697479 0.719048 0.707193 0.623644
50 1.5 0.799574 0.611933 0.618238 0.620476 0.594059 0.651392 0.647125 0.662673 0.65225 0.596185
60 1.5 0.695271 0.576646 0.586224 0.587372 0.560486 0.613422 0.614807 0.617925 0.613938 0.553953
70 1.5 0.687371 0.544712 0.552486 0.554273 0.530504 0.580475 0.581622 0.593675 0.58056 0.521556
80 1.5 0.627119 0.518807 0.525164 0.527704 0.505051 0.544329 0.546512 0.568154 0.54478 0.514436
90 1.5 0.57193 0.497719 0.503145 0.503356 0.48 0.516237 0.516436 0.531722 0.516994 0.478261

100 1.5 0.505689 0.4693 0.480577 0.480577 0.461361 0.494664 0.493513 0.489784 0.492931 0.463452
0 3 0.993355 0.911854 0.913242 0.914634 0.863309 0.986842 0.990017 0.995008 0.985222 0.692042

10 3 0.943396 0.837989 0.842697 0.849858 0.792602 0.906687 0.886263 0.946735 0.906542 0.630965
20 3 0.897707 0.754717 0.765306 0.774194 0.728155 0.819945 0.792602 0.888316 0.829337 0.59334
30 3 0.856115 0.689655 0.701754 0.705053 0.659341 0.746803 0.735872 0.822742 0.74842 0.57734
40 3 0.777586 0.636943 0.642398 0.654308 0.612245 0.686833 0.679954 0.7584 0.685748 0.556513
50 3 0.740331 0.594059 0.607903 0.607903 0.573614 0.640712 0.633086 0.700775 0.636564 0.546919
60 3 0.698113 0.562852 0.574713 0.575816 0.544959 0.6 0.593472 0.68662 0.599379 0.522415
70 3 0.669528 0.533333 0.542495 0.546448 0.514139 0.56778 0.568311 0.628141 0.56741 0.495622
80 3 0.621622 0.507185 0.515021 0.515907 0.490597 0.537106 0.533937 0.572379 0.536007 0.471778
90 3 0.538095 0.483871 0.492207 0.492611 0.464756 0.511033 0.512642 0.519651 0.509251 0.449146

100 3 0.493578 0.461894 0.467654 0.469116 0.445765 0.489487 0.487029 0.47619 0.486898 0.443443
0 12 0.993289 0.866279 0.881657 0.866279 0.797872 1 0.980263 0.993289 0.892857 0.515464

10 12 0.952703 0.805405 0.809783 0.809783 0.757576 0.890244 0.828729 0.946309 0.827778 0.483871
20 12 0.897959 0.741294 0.764103 0.776042 0.681818 0.791444 0.768041 0.880795 0.768041 0.454545
30 12 0.849624 0.680365 0.680365 0.719807 0.646552 0.747475 0.717703 0.84058 0.677273 0.42735
40 12 0.813008 0.636752 0.656388 0.656388 0.590551 0.683486 0.662222 0.795455 0.642241 0.4
50 12 0.754098 0.586614 0.608163 0.603239 0.55597 0.623431 0.605691 0.753968 0.598394 0.385604
60 12 0.710526 0.558052 0.56654 0.568702 0.517361 0.582031 0.574713 0.717742 0.549815 0.366748
70 12 0.660194 0.515571 0.522807 0.532143 0.480645 0.545788 0.539855 0.630137 0.524648 0.352941
80 12 0.586207 0.486928 0.498328 0.5 0.458462 0.522807 0.520979 0.558282 0.505085 0.331858
90 12 0.542857 0.464174 0.473016 0.470032 0.43314 0.486928 0.480645 0.527273 0.465625 0.324675

100 12 0.478261 0.43314 0.442136 0.443452 0.408719 0.455657 0.448795 0.47973 0.429395 0.309917
0 30 1 0.869565 0.869565 0.869565 0.789474 0.952381 1 0.983333 0.84507 0.487805

10 30 0.966667 0.821918 0.821918 0.833333 0.779221 0.907692 0.882353 0.95082 0.8 0.458015
20 30 0.934426 0.8 0.8 0.8 0.731707 0.84058 0.821918 0.934426 0.722892 0.431655
30 30 0.929825 0.740741 0.75 0.759494 0.645161 0.773333 0.779221 0.916667 0.681818 0.410959
40 30 0.816327 0.659341 0.681818 0.722892 0.612245 0.75 0.705882 0.829787 0.638298 0.387097
50 30 0.804348 0.606061 0.618557 0.618557 0.576923 0.641304 0.662791 0.788462 0.612245 0.365854
60 30 0.755556 0.566038 0.58 0.582524 0.535714 0.612245 0.6 0.73913 0.555556 0.346821
70 30 0.711111 0.545455 0.54717 0.557692 0.535714 0.576923 0.571429 0.717391 0.517241 0.32967
80 30 0.657895 0.526316 0.531532 0.526786 0.504202 0.540541 0.535714 0.682927 0.526316 0.307692
90 30 0.608696 0.5 0.504348 0.513274 0.487805 0.530973 0.522523 0.594595 0.487805 0.29703

100 30 0.469388 0.483871 0.495798 0.504274 0.447761 0.517241 0.526786 0.486486 0.458015 0.28169
0 60 1 0.731707 0.731707 0.731707 0.6 0.833333 1 1 0.545455 0.357143

10 60 0.852941 0.666667 0.681818 0.697674 0.566038 0.769231 0.769231 0.878788 0.588235 0.340909
20 60 0.818182 0.6 0.612245 0.638298 0.508475 0.681818 0.681818 0.818182 0.545455 0.322581
30 60 0.8125 0.6 0.6 0.6 0.46875 0.652174 0.638298 0.806452 0.37037 0.322581
40 60 0.774194 0.5 0.566038 0.566038 0.461538 0.612245 0.576923 0.75 0.344828 0.306122
50 60 0.631579 0.491803 0.5 0.508475 0.434783 0.555556 0.576923 0.631579 0.32967 0.29703
60 60 0.628571 0.46875 0.46875 0.461538 0.416667 0.508475 0.491803 0.621622 0.322581 0.288462
70 60 0.617647 0.454545 0.461538 0.461538 0.394737 0.461538 0.483871 0.555556 0.322581 0.283019
80 60 0.558824 0.416667 0.428571 0.42029 0.384615 0.454545 0.447761 0.552632 0.315789 0.275229
90 60 0.52381 0.405405 0.402778 0.410959 0.37037 0.428571 0.370968 0.454545 0.309278 0.263158

100 60 0 0.38961 0.39726 0.391892 0.352941 0.405405 0.405405 0.424242 0.306122 0.245902
0 120 1 0.625 0.625 0.625 0.517241 0.833333 0.75 1 0.405405 1

10 120 1 0.6 0.6 0.6 0.483871 0.833333 0.576923 0.9375 0.384615 1
20 120 1 0.535714 0.517241 0.555556 0.441176 0.6 0.535714 1 0.357143 0.254237
30 120 0.866667 0.517241 0.517241 0.517241 0.441176 0.555556 0.483871 0.866667 0.416667 0.25
40 120 0.866667 0.454545 0.483871 0.483871 0.441176 0.483871 0.46875 0.736842 0.405405 0.241935
50 120 0.866667 0.441176 0.441176 0.428571 0.428571 0.46875 0.46875 0.866667 0.405405 0.223881
60 120 0.857143 0.441176 0.428571 0.428571 0.428571 0.428571 0.441176 0.857143 0.220588 0.220588
70 120 0.722222 0.416667 0.428571 0.416667 0.384615 0.454545 0.428571 0.705882 0.208333 0.217391
80 120 1 0.405405 0.394737 0.405405 0.357143 0.428571 0.416667 0.590909 0.197368 0.205479
90 120 0 0.375 0.394737 0.394737 0.333333 0.416667 0.416667 0.5 0.185185 0.202703

100 120 0 0.340909 0.357143 0.405405 0.319149 0.428571 0.375 0 0.182927 0.194805



F1-score
overlap imb Baseline NB-Basic NB-Tomek NB-Comm NB-Rec SMOTE BLSMOTE ENN kmUnder OBU

0 1.5 0.998749 0.961538 0.963468 0.963082 0.929152 0.997504 0.992961 0.998333 0.997506 0.888148
10 1.5 0.940883 0.907372 0.91359 0.915332 0.888231 0.943948 0.933126 0.942928 0.942938 0.84033
20 1.5 0.884679 0.861759 0.868936 0.870827 0.847158 0.88966 0.888889 0.887206 0.888631 0.804355
30 1.5 0.823479 0.823328 0.831889 0.833333 0.803213 0.840015 0.852601 0.839258 0.841518 0.761418
40 1.5 0.765454 0.787919 0.791035 0.794439 0.771704 0.80217 0.810886 0.79176 0.801877 0.740088
50 1.5 0.70159 0.759253 0.764088 0.765795 0.745342 0.768126 0.774992 0.754487 0.766747 0.720923
60 1.5 0.678053 0.731484 0.739144 0.740056 0.718348 0.736597 0.748042 0.723757 0.738032 0.693865
70 1.5 0.613112 0.70526 0.711744 0.713224 0.693241 0.710824 0.719822 0.691933 0.710637 0.639587
80 1.5 0.571039 0.683177 0.688666 0.690846 0.671141 0.682821 0.691176 0.651741 0.683639 0.63124
90 1.5 0.475912 0.664636 0.669456 0.669643 0.648649 0.656345 0.657169 0.616462 0.656735 0.59271

100 1.5 0.401808 0.638808 0.649175 0.649175 0.631413 0.635469 0.634306 0.576038 0.629741 0.576025
0 3 0.995008 0.953895 0.954654 0.955414 0.926641 0.993377 0.990841 0.995837 0.992556 0.817996

10 3 0.929839 0.911854 0.914634 0.918836 0.884304 0.938053 0.939702 0.932318 0.937198 0.771225
20 3 0.872322 0.860215 0.867052 0.872727 0.842697 0.895613 0.884304 0.874788 0.898396 0.739158
30 3 0.823529 0.816327 0.824742 0.827016 0.794702 0.845152 0.847242 0.821369 0.851186 0.725697
40 3 0.764407 0.77821 0.782269 0.791035 0.759494 0.802495 0.807848 0.773878 0.806319 0.706813
50 3 0.703412 0.745342 0.756144 0.756144 0.72904 0.768512 0.773817 0.726104 0.766578 0.697281
60 3 0.654867 0.720288 0.729927 0.730816 0.705467 0.739936 0.744879 0.667808 0.739464 0.674542
70 3 0.585366 0.695652 0.7034 0.706714 0.679117 0.714462 0.724305 0.626566 0.717351 0.649828
80 3 0.502483 0.673023 0.679887 0.680658 0.658256 0.690107 0.692082 0.572856 0.692988 0.626749
90 3 0.443137 0.652174 0.659703 0.660066 0.634585 0.668205 0.673154 0.554779 0.666282 0.603609

100 3 0.469869 0.631912 0.637281 0.638638 0.61665 0.650643 0.648468 0.487805 0.646102 0.594505
0 12 0.989967 0.925466 0.934169 0.925466 0.887574 1 0.986755 0.989967 0.943396 0.680272

10 12 0.946309 0.889552 0.892216 0.892216 0.862069 0.929936 0.906344 0.943144 0.90303 0.652174
20 12 0.888889 0.849003 0.863768 0.871345 0.810811 0.878338 0.866279 0.883721 0.866279 0.625
30 12 0.798587 0.807588 0.807588 0.834734 0.78534 0.850575 0.835655 0.805556 0.805405 0.598802
40 12 0.732601 0.776042 0.790451 0.790451 0.742574 0.809783 0.794667 0.744681 0.780105 0.571429
50 12 0.676471 0.737624 0.75443 0.75063 0.712919 0.766067 0.752525 0.688406 0.746867 0.556586
60 12 0.613636 0.714628 0.72155 0.723301 0.680365 0.73399 0.729927 0.649635 0.707838 0.536673
70 12 0.537549 0.678815 0.685057 0.693023 0.647826 0.704492 0.699531 0.621622 0.686636 0.521739
80 12 0.43038 0.653509 0.663697 0.665179 0.627368 0.685057 0.683486 0.58147 0.669663 0.498339
90 12 0.524138 0.632696 0.64086 0.638116 0.603239 0.653509 0.647826 0.552381 0.634043 0.490196

100 12 0.415094 0.603239 0.61191 0.613169 0.580271 0.624738 0.618257 0.47651 0.599598 0.473186
0 30 0.991597 0.930233 0.930233 0.930233 0.882353 0.97561 0.991597 0.983333 0.916031 0.655738

10 30 0.966667 0.902256 0.902256 0.909091 0.875912 0.944 0.9375 0.958678 0.888889 0.628272
20 30 0.942149 0.888889 0.888889 0.888889 0.84507 0.899225 0.902256 0.942149 0.839161 0.603015
30 30 0.905983 0.851064 0.857143 0.863309 0.784314 0.859259 0.875912 0.916667 0.810811 0.582524
40 30 0.733945 0.794702 0.810811 0.839161 0.759494 0.857143 0.827586 0.728972 0.779221 0.55814
50 30 0.698113 0.754717 0.764331 0.764331 0.731707 0.776316 0.780822 0.732143 0.759494 0.535714
60 30 0.647619 0.722892 0.725 0.736196 0.697674 0.759494 0.75 0.641509 0.714286 0.515021
70 30 0.609524 0.705882 0.698795 0.707317 0.697674 0.731707 0.727273 0.622642 0.681818 0.495868
80 30 0.510204 0.689655 0.690058 0.686047 0.670391 0.701754 0.697674 0.554455 0.689655 0.470588
90 30 0.528302 0.662921 0.662857 0.67052 0.655738 0.693642 0.678363 0.453608 0.655738 0.458015

100 30 0.422018 0.652174 0.659218 0.666667 0.618557 0.681818 0.686047 0.537313 0.628272 0.43956
0 60 1 0.84507 0.84507 0.84507 0.75 0.909091 1 1 0.705882 0.526316

10 60 0.90625 0.8 0.810811 0.821918 0.722892 0.869565 0.869565 0.920635 0.740741 0.508475
20 60 0.857143 0.75 0.759494 0.779221 0.674157 0.810811 0.810811 0.857143 0.705882 0.487805
30 60 0.83871 0.75 0.75 0.75 0.638298 0.789474 0.779221 0.819672 0.540541 0.487805
40 60 0.786885 0.666667 0.722892 0.722892 0.631579 0.759494 0.731707 0.774194 0.512821 0.46875
50 60 0.705882 0.659341 0.666667 0.674157 0.606061 0.714286 0.731707 0.705882 0.495868 0.458015
60 60 0.676923 0.638298 0.638298 0.631579 0.588235 0.674157 0.659341 0.686567 0.487805 0.447761
70 60 0.65625 0.625 0.631579 0.631579 0.566038 0.631579 0.652174 0.666667 0.487805 0.441176
80 60 0.59375 0.588235 0.6 0.585859 0.555556 0.625 0.618557 0.617647 0.48 0.431655
90 60 0.611111 0.576923 0.568627 0.582524 0.540541 0.6 0.5 0.47619 0.472441 0.416667

100 60 0 0.560748 0.563107 0.557692 0.521739 0.576923 0.576923 0.444444 0.46875 0.394737
0 120 1 0.769231 0.769231 0.769231 0.681818 0.909091 0.857143 1 0.576923 1

10 120 1 0.75 0.75 0.75 0.652174 0.909091 0.731707 0.967742 0.555556 1
20 120 0.928571 0.697674 0.681818 0.714286 0.612245 0.75 0.697674 0.928571 0.526316 0.405405
30 120 0.866667 0.681818 0.681818 0.681818 0.612245 0.714286 0.652174 0.866667 0.588235 0.4
40 120 0.866667 0.625 0.652174 0.652174 0.612245 0.652174 0.638298 0.823529 0.576923 0.38961
50 120 0.866667 0.612245 0.612245 0.6 0.6 0.638298 0.638298 0.866667 0.576923 0.365854
60 120 0.827586 0.612245 0.6 0.6 0.6 0.6 0.612245 0.827586 0.361446 0.361446
70 120 0.787879 0.588235 0.6 0.588235 0.555556 0.625 0.6 0.75 0.344828 0.357143
80 120 0.235294 0.576923 0.566038 0.576923 0.526316 0.6 0.588235 0.702703 0.32967 0.340909
90 120 0 0.545455 0.566038 0.566038 0.5 0.588235 0.588235 0.347826 0.3125 0.337079

100 120 0 0.508475 0.526316 0.576923 0.483871 0.6 0.545455 0 0.309278 0.326087
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