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Abstract: The power state evaluation plays a decisive influence on the safety implication of the lithium battery 

packs, and there is no effective online evaluation method so far due to the imbalance phenomenon among the 

internal connected battery cells, which cannot be abstained by the advancement of the materials and techniques. 

A novel power state description method is proposed in this paper by investigating the improved external 

parameter coupling treatment, in which the mutual relationship description is conducted by the parameter 

information feature decomposition together with the Bayesian sequential decision algorithm. The complicated 

power state evaluation model constructing problem of the coupling relationship decomposition is solved by 

investigating the non-convex optimization under complex working conditions for the lithium battery packs. The 

evidence combination is realized by introducing the information fusion strategy, according to which the multi 

criteria decision is realized by using the evidence theory. As can be seen from the experimental results, the 

voltage difference is within 10 mV in both of the first phase and the second phase, which increases rapidly in the 

third phase and reaches a maximum of 120mV. Meanwhile, its power state evaluation accuracy is 95.00% and 

has a good output voltage tracking effect in the complex working conditions. The power state evaluation 

problem can be solved by the proposed model constructing method, which is suitable for the complex battery 

cell combination structures and environment influences, realizing the reliable and hierarchical power state 

evaluation of the lithium battery packs. It provides a safety reference value and the energy management basis for 

the reliable power supply in the cleaner production of the power lithium battery packs. 
Key words: data modeling; coupling relationship model; lithium battery pack; multi-parameter optimization; power state 

evaluation 
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1. Introduction 

The power lithium battery pack plays an important role 

in optimizing the energy structure, ensuring the power 

supply and promoting the pollution reduction. It is an 

important technical feature and development direction in 

the new energy field [1], which promotes the economic 

and social development effectively. However, the safety 

problem caused by the inability of the power state has 

become a major hidden danger to the battery security. 

The complex series-parallel combination structure is 

used in the lithium battery pack to break through the 

limitation of the cell voltage and capacity [2]. Due to the 

inevitable battery cell difference in the manufacturing [3] 

and application process, the imbalance phenomenon exist 

between its internal battery cells [4], making a great 

technical problem in the practical applications [5]. The 

local overheating of the lithium battery leads to the safety 

accidents such as spontaneous combustion and thermal 

imbalance between modules [6], which will bring the 

catastrophic consequences into society [7]. Meanwhile, 

the problem cannot be solved completely by the material 

improvement [8].  

The safety accidents caused by the cell-to-cell 

imbalances pose a great threat to the battery security, 

which is the cornerstone of the social stability and 

economic development [9]. At this stage, the public 

security faces severe challenges and puts forward a major 

strategic demand for the science and technology [10]. The 

online power state evaluation is an effective means to 

avoid the safety accidents, making it to be another 

important way to improve the safety of the power lithium 

battery packs [11]. Under the influence of many factors 

such as complex working conditions, cell combination 

structure and environments [4], there are more 

interference information in the parameters [12] such as 

voltage, current and temperature which are measured 

during the working process in real-time, making the 

online state evaluation to be quite difficult [13]. The 

problem of the false alarm rate is still unable to break 

through [14]. Therefore, the online reliable power state 
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evaluation is the key to contain the safety threat of lithium 

battery packs [15], which also attracts the international 

concern. 

The reasonable application of the lithium battery pack 

requires the online power state evaluation to judge 

whether it is safe qualitatively, which provides a reference 

value as a basis for the control decision-making purpose 

of its safety management [16]. The internal parameters in 

the lithium battery packs cannot be detected online, such 

as electrolyte concentration [17], positive-negative 

materials and diaphragm micropore changes [18]. The 

parameters such as ohmic internal resistance [19], 

polarization resistance and polarization capacitance in the 

equivalent circuit model also need to be calculated 

indirectly through offline experiments [20]. Only the 

external measurable parameters, such as voltage, current, 

and temperature, can be measured online [21]. Therefore, 

the power state evaluation can only be realized by using 

these external measurable parameters [22]. When it is 

used in the power applications such as electric vehicles, 

aerospace and mobile base stations [12], the lithium 

battery pack consists of a complex combination of 

multiple battery cell units in series-parallel structure [23], 

as well as the influence of the operating and 

environmental conditions [24]. Because of the 

interference information and complex coupling 

relationship among the internal battery cells [25], it is 

difficult to characterize the working state of each battery 

cell directly, which makes the reliable power state 

evaluation to be difficult [26] and becomes a recognized 

worldwide problem in academia and industry [27]. 

Therefore, it is necessary to construct a coupling 

relationship model among the external measurable 

parameters under the influence of complex working 

situations [28], aiming to provide a qualitative judgment 

on whether the power state meets the requirements online 

[29]. At the same time, the power state should be 

evaluated accurately and make it to be safe along with the 

parameter acquisition time increasement [30], which 

provides early warning and decision-making information 

and becomes the research focus of the lithium battery 

pack security [31].  

The difficulty in the coupling mechanism description  is 

that the complex external measurable parameters have a 

great influence on the battery output characteristics [32], 

which are composed of a variety of information, such as 

characteristic information [33], working condition, etc. 

[34]. It makes the interference information exist in the 

original parameter sequence [35], according to which it is 

difficult to obtain the general time domain spectrum and 

realize the effective extraction of the feature information 

and the accurate coupling relationship of the external 

measurable parameters [36]. Because of the complexity 

and combined structure constraints [37], the detected 

parameter signals are ambiguous [38] along with the 

environmental condition influence [39] such as 

temperature and humidity. As a reslut, it is difficult to 

realize the effective online power state evaluation by the 

conventional methods. 

The coupling measurable parameter relationship is an 

important part for the power state evaluation of the 

lithium battery pack [40]. The statistical characteristics, 

information redundancy representation and parameter 

coupling relationship from the complex working 

conditions can be obtained by investigating the battery 

cell combination structure [41]. As can be known from 

the simulated working condition experiments and the 

mathematical modeling process, the influence of the 

interference information is eliminated and the information 

is used to construct the parameter coupling relationship 

model [42] by conducting the power state evaluation [43]. 

On the one hand, the feature decomposition is divided 

into two types: structured and unstructured [44]. The prior 

information of the external measurable parameters is used 

to perform the Bayesian sequential decision treatment and 

the power state parameters can be obtained under 

complex working conditions [45]. The coupling 

relationship coordinates the decomposition by using the 

alternate direction multiplier [46], which reduces the 

computational complexity in the evaluation modeling 

process and corrects the coupling relationship description 

error [47]. Under the complex perspective information 

fusion, the power state evaluation model is constructed 

along with the volume combination structure [48], and the 

environmental influence on the power state evaluation 

process is improved by the correction knowledge base 

and the iterate calculation algorithm design [49], which 

improves the online power state evaluation accuracy 

effectively. 

2. Mathematical analysis 

The relationship decoupling and identification of the 

external measurable and coupling parameters are the key 

to the accurate power state evaluation of the lithium 

battery packs. This manuscript mainly studies how to 

construct the coupling relationship model between 

parameters under complex  working conditions by 

investigating the parameter information feature 

decomposition and the Bayesian sequential decision-

making treatment. The alternating direction multiplier is 

introduced to coordinate the decomposition process of the 

non-convex optimization model, aiming to provide the 

data foundation and combination for the iterate 

calculation process. The characteristic information of each 

parameter under the complex single-combination 
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structure is combined and the multi-criteria decision-

making strategy is carried out. Combined with the 

environmental influence, the modified strategy is studied 

and the grading power state evaluation is investigated 

online. 

2.1. Parameter coupling 

The working condition simulation experiment is carried 

out accordingly under different power supply scenarios to 

study the variation law of the external measurable 

parameters such as the output voltage and the temperature 

rise under different working conditions. Combined with it, 

the influence mechanism of the measured parameters can 

be obtained together with the working characteristics of 

the lithium battery pack, which provides a prior 

knowledge basis for the coupling relationship modeling 

process under complex environmental conditions. The 

feature decomposition is carried out for the external 

measurable parameter time series information, according 

to which the mutual influence law between these 

parameters can be obtained.  

The charge-discharge process of the lithium battery 

complicates its nonlinear characteristics, so that it is 

especially important to estimate the remaining capacity 

accurately. It is especially important to establish a suitable 

battery performance model. The equivalent circuit model 

has good nonlinearity and can simulate the battery 

terminal voltage when the current is abrupt. Considering 

the electro-chemical polarization phenomenon, the RC 

circuit network connected in parallel with large time 

constant is introduced to indicate the concentration 

polarization. The Thevenin model is insufficient in 

describing the polarization characteristics of lithium 

battery cells. The improved circuit is proposed to increase 

the accuracy of the one-order RC loop, and the two-order 

links are simulated with better precision. As a result, the 

dynamic characteristics are not too complicated and the 

model structure is shown in Fig. 1. 
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Fig. 1. The equivalent circuit model structure 

According to the combined structural analysis of the 

lithium battery cells, the external measurable parameters 

can be obtained under different packing structures along 

with their time series characteristics. On the basis of 

obtaining the consistent description of the tested objects, 

the correlation is realized between a different battery cell 

combination structures and power state evaluation process. 

The power state evaluation is realized by investigating the 

multi-criteria decision-making treatment, in which the 

credibility calculation and evidence combination with the 

information fusion strategy are used to construct the 

power state evaluation model that is suitable for the 

complex single-combination structure.  

As can be known from the perspective information 

fusion, the constraint conditions can be obtained for the 

prior knowledge of the power state evaluation, and the 

influence degree of each input parameter is analyzed and 

its weight is investigated for the iterate calculation process. 

The parameter information is fused by the combination 

rule, in which the model parameters and weight factors 

are corrected to conduct a more reliable judgment on the 

balance state level of the internal battery cells. The state 

space equation of the battery equivalent circuit model is 

described as shown in Equation (1). 

( ) ( )=

;

OC O S L

S S L L

S S S L L L

u V SOC i t R V V

dV V i dV V i

dt R C C dt R C C

− − −



= − + = − +


 
(1) 

Wherein, Τs=−RsCs, τL=−RLCL, which represent the time 

response constants of the two RC parallel circuit 

respectively. Taking SOC, Us, Up as the state variable and 

terminal voltage UL as the output variable, the state-space 

equation and the spatialized system measurement 

equation of the battery equivalent model can be obtained 

by investigating  the discretization and linearization 

treatment as shown in Equation (2). 
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(2) 

The mathematical rigor of the parameter coupling 

relationship is obtained, according to which the multi-

factor evaluation criteria of the designed model is used to 

improve the adaptability, stability and robustness of the 

multi-sequence coupling model. The joint solution of 

these time-varying signals can be obtained by using this 

coupling method. As the non-convex optimization model 

is easy to fall into the local minimum and high 

complexity risks, the efficient parameter coupling 

relationship model is explored aiming at solving this 

problem. The experimental data foundation and 

combined decision reference basis are provided for the 

model construction of its power state evaluation. The 

recursive least square method has high precision and 

robustness advantages for the parameter identification. As 

a result, it is used to identify the parameters of Ro, Rp, Rs, 

Cp and Cs in the equivalent circuit model, according to 

which the calculation formula can be obtained as shown 

in Equation (3). 

( ) ( )/ 1 / 1OC O P P P e S S SU U u R R C s R R R C s− = + + + +  
 (3) 
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Combined with the sequential probability ratio test 

method, the feature information screening algorithm is 

constructed. In order to build the coupling relationship 

model with the feature information discriminating process, 

the priori information of the external measurable signal is 

used and the non-convex optimization is investigated by 

alternating the direction multiplier method, which is used 

to reduce the computational complexity in the model 

solving process. The calculation error can be corrected 

simultaneously, which is caused by the discrete signal 

sampling and complex operating conditions. The 

alternating direction multiplier is introduced to coordinate 

the decomposition of the model solution process, 

according to which the qualitative identification is 

realized for its completed model parameters. The 

linearization treatment is performed  using the above 

formula, the parameter relationship of which is y(k)=UOC-

UO. Then, the parameter relationship equations can be 

obtained as shown in Equation (4). 
( ) ( ) ( ) ( )
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The parameter relationship in the above equation is 

shown in  Equation (5). 
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(5) 

In the above Equation, T is the sampling time period 

and its least square expression is shown in Equation (6). 
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Wherein, e(k) is the error function, in which the 

Bayesian sequential decision treatment is introduced into 

the calculation process to construct its coupling 

relationship model. It is difficult to extract the feature 

information under complex working conditions, so the 

discriminating strategy is introduced for the time-varying 

signal of its external measurable parameters. The prior 

knowledge constraints are obtained in the model 

parameter identification process, in which the coupling 

relationship is characterized by optimizing the 

combination description. The least square recursion 

formula can be obtained as shown in Equation (7). 
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The environmental affecting factors are obtained in the 

power state evaluation process through the experimental 

research, in which the complex environmental condition 

influence can be characterized by the power state 

evaluation. The parameter correlation treatment is 

investigated between the influencing factors and the 

evaluation process, according to which the knowledge 

base of the power state evaluation can be built under 

complex environmental conditions. The optimal 

expression and parametric eigenvalue description 

methods are introduced for the time-varying signals, 

according to which an effective correction algorithm is 

designed to eliminate the evaluation errors introduced by 

the environmental conditions and further improves the 

calculation speed and accuracy of the power state 

evaluation. 

2.2. Interference information 

The type of the interference information is analyzed by 

investigating the complex working condition analysis, 

and the coupling relationship model of the external 

measurable parameters can be constructed by combining 

the information feature decomposition. The typical 

working conditions are analyzed, such as electric vehicles, 

aviation and mobile base stations. Then, the types of the 

interference information are studied that can be 

introduced in the parameter detection, filtering and state 

evaluation process, which determines the statistical model 

of the interference information: impulse, Rayleigh 

distributed and Gaussian signals.  

The regular term in the model consists of two parts: one 

is the regularization term reflecting the coupling 

relationship between the external measurable parameters, 

and the other is the decision item reflecting the useful 

feature information to eliminate the interference. The 

Sequential Probability Ratio Test (SPRT) is conducted to 

solve the non-convex optimization and investigate the 

relation model. Combined with feature information 

discriminating algorithm of the external measurable 

parameters, it is used to optimize the dynamic description 

of the coupling relationship and suppress the influence of 

the working conditions. The range values are expressed 

for the discrete random variable X as shown in Equation 

(8). 
 1 2 1X k k= −

 (8) 

Each value in Equation (8) corresponds to the fault 

condition of the system time point k, and the output of the 

diagnostic network is a probability distribution of the 

random variable X. Considering the principle that the 

various faults are diagnosed by the SPRT algorithm, a 

type of fault f(k) is taken as the convenience description 

example by considering the hypothesis test model at the 

time point t. The log likelihood probability ratio statistic at 

time point t+l can be established as shown in Equation (9). 
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By conducting the feature decomposition, the external 

measurable parameter signal is decomposed into three 

parts: feature information data fidelity, structured and 

unstructured items. Among them, the feature information 

can be obtained through the offline experiments, and the 

structural items are obtained by means of the analytical 

modeling and signal fitting treatment. Then, the 

unstructured items are eliminated by the signal 

transformation by representing the measurement noise 

[50]. According to the coupling problem between these 

external measurable parameters, the variation and 

coupling law of each parameters are analyzed [51], which 

is shown in Equation (10). 

( ) ( ) 0 1inf | 1, ln , lnt ll l LR T H T H +=    
 (10) 

Aiming at the coupling problem between the external 

measurable parameters of lithium battery packs under 

complex working conditions, a parameter coupling 

relationship model is built by conducting the signal 

feature decomposition and Bayesian sequential decision-

making treatment. Using the prior information of the 

parameter signal under the typical working conditions, the 

coupling relationship between the external measurable 

time-varying parameters can be decomposed into two 

types: structured and unstructured.  

The structured information is used to characterize the 

coupling relationship between the external measurable 

parameters hidden in the working condition signals. 

According to the influence relationship of the working 

feature information, the interference linear/nonlinear and 

additive/multiplicative types can be determined that are 

introduced by the complex working conditions. Then, the 

feature information screening decision items are 

constructed by using the prior interference information to 

realize its effective feature extraction. The recursive 

formula of which is shown in Equation (11). 
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Furthermore, the symbol PF can be used to indicate the 

allowed false alarm probability, according to which H0 is 

established instead of being denied. PM indicates the 

allowable leakage alarm probability, according to which 

H1 is established instead of accepting H0. And then, the 

SPRT threshold is obtained as shown in Equation (12). 
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The multi-criteria decision-making and information 

fusion strategies are introduced to solve the hierarchical 

power state evaluation problem because of the complex 

battery cell combination structure and environmental 

conditions. Combining the advantages of the evidence 

theory and the information fusion, the power state 

evaluation accuracy is improved for the lithium battery 

packs. This method is made up for the defect that the 

power state evaluation efficiency and the false alarm rate 

do not meet the requirements by using the traditional state 

evaluation method, which will bring new solutions and 

techniques to the safety guarantee of the lithium battery 

pack inevitably. The mathematical description of the 

influencing factors can be established by means of the 

experimental modeling treatment, and the correction 

algorithm is constructed to eliminate the power state 

evaluation error caused by the environmental condition 

factors, which is used to improve its evaluation accuracy.  

According to the characteristic information, the time-

domain waveform shape is invariant under the expansion 

transformation, and the observed time-varying signal 

sequence Φ(t) is decomposed into a mixed superposition 

in the coupling relationship model. The delay-expanded 

copy of the feature information data fidelity term φ(t), the 

structured term ψ(t), and the unstructured term η(t) can be 

obtained over a finite time period of [0, T], such as Linear, 

nonlinear, additive, multiplicative and so on. The 

calculation process of which is shown in Equation (13). 
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(13) 

Among them, Φ(t) is a time-varying parameter, which is 

also the coupling relationship description matrix of the 

lithium battery pack. The function f{*} is the relational 

model, in which Vi(t) is the voltage of the i-th single 

battery cell and Ii(t) indicates the current flowing through 

the i-th single battery cell at time point t. In addition,  And 

Ti(t) indicates the temperature value of the i-th single 

battery cell at time point t corresponding to the feature 

information. k is the amplitude corresponding to the 

feature information, and kv is the number of the feature 

information within the structured items. 

2.3. Bayesian sequential decision 

Aiming at the influence of complex working conditions 

on the coupling relationship model, the screening process 

is added to achieve the effective of parameter feature 

information extraction based on the Bayesian Sequential 

Decision (BSD) treatment [52]. The interference 

superposition type is analyzed  for the typical working 

conditions, such as linear-nonlinear, additive-

multiplicative and so on. The influence relationship of the 

working situation is obtained on the characteristic 

information, which is then determined by its statistical 
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model, such as impulse, Rayleigh distribution and 

Gaussian signals [53]. According to the BSD method, the 

characteristic information discriminating model is 

constructed for the lithium battery packs, and the coupling 

relationship model is integrated into the regularization 

term to improve the feature information representation 

accuracy, thus improving the coupling relationship 

description accuracy and efficiency. According to the 

fusion decision of the state evaluation purpose, the 

structure of the power state evaluation system is obtained 

as shown in Fig. 2. 
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Fig. 2. The power state evaluation structure 

According to the structural framework of the established 

parameter coupling relationship model, the regularized 

term composition structure is determined and the 

coupling relationship model is built by using the SPRT 

method. The form of the data fidelity term depends on the 

statistical signal properties, while the regularization term 

consists of two parts: one is the regularization term that 

reflects the signal coupling relationship characteristics, 

and the other is the decision item that reflects the 

parameter feature information. Since the coupling 

relationship model contains the feature information in the 

regularization term, the solution of the model parameters 

degenerates into the non-convex optimization process 

[19]. As a result, it is very difficult to solve the non-

convex optimization problem directly, which not only 

consumes a lot of computing resources but also easily 

falls into the local extremum risks. 

The main calculation parameters are initialized to solve 

this problem, and the interaction is considered in the 

group working process of the internal connected battery 

cells [54]. The comprehensive power state and 

measurement values are obtained for the battery packs, 

which are used as the main basis of the evaluation process. 

According to the comprehensive value calculation of the 

battery cells and the application of the best priority search 

algorithm, the hierarchical description is determined in the 

power state evaluation process. The calculation process of 

the cell balance degree CF (φi(t)) is shown in Equation 

(14). 
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As can be seen in Equation (14), CF(x, y) represents the 

confidence factor that is obtained according to the 

inference rule, and CFa(φi(t)) and CFb(φi(t)) represent the 

pair balance parameter φ respectively for the i-th battery 

cell in the packs, that is, the influence degree of the state 

weight function. The power state evaluation is 

investigated by the model parameters and weighting 

factors, and then the evaluation result difference are 

explored under different working modes to improve the 

evaluation accuracy. Furthermore, the experimental 

samples of different lithium battery packs are established, 

which are used to analyze the working process changes 

and evaluation results under different initial conditions. 

By incorporating the influencing factors into the power 

state evaluation process, the model parameters and 

weighting factors are corrected in the power state 

evaluation model. Furthermore, through multi-evidence 

source information fusion, the hypothesis set is reduced 

gradually according to the evidence accumulation, in 

which the inference decision process is realized by the 

evidence combination rule as shown in Equation (15). 

( )
( ) ( )

( ) ( )

1 2

1 2

1 2

1
X Y Z

X Y

m X m Y
m m Z

K

K m X m Y

 =

 =


 =

−
 =



  

(15) 

Wherein, m1(X) and m2(X) are the basic credibility 

functions of X and Y, respectively. According to the 

power state evaluation framework based on the evidence 

theory, the factor analysis is conducted and the index 

system is established. And then, the influencing factors 

are determined, which are all subordinated to the 

functional Gaussian membership calculation framework 

to gain the degree of different evaluation levels. As the 

basic probability distribution is required by the DS 

evidence theory, the fusion weight distribution matrix is 

introduced. Then, the evidence combination rule selection 

is used to combine multiple membership functions to 

realize the power state classification.  

Aiming at the fuzziness problem in the fusion process of 

external measurable parameter information under the 

complex internal battery cell combination structure, the 
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multi-criteria decision method is introduced into the 

power state evaluation model of the lithium battery pack. 

The Dempster Shafer (DS) evidence theory is used to deal 

with the complex cell combination structure problems, in 

which the reasoning treatment is investigated to describe 

the power state evaluation level, so that the evaluation 

results can better reflect the actual state situation for each 

single battery cells [55]. The data correlation relationship 

is obtained by predicting the sampled signal, and the 

associated membership degree is calculated by the 

processing of the feature information between the sample 

points at the same time. It is then converted into the basic 

probability assignment in the evidence theory, according 

to which the evidence information is combined with the 

real-time detected parameters to obtain the time varying 

state values [56]. Meanwhile, the correlation result is 

obtained according to the association judgment of the 

sample points in the continuous duration process.  

2.4. UKF-EKF composite calculation 

The Kalman Filter (KF) algorithm is mainly used to 

predict and filter the state variables in the linear 

systems[57], which is not applicable for the nonlinear 

equations, and promotes its further development [58]. 

Combined the working situation analysis with the 

optimization description method, the model design theory 

is improved and optimized. Combining the impact 

analysis of different working conditions, the modeling 

and improvement methods are explored. Based on the 

combination of composition and structural changes [59], 

the model structure is modified to achieve an accurate 

description for the coupling treatment of the operating 

characteristics and parameters. The coupling expression is 

analyzed by using the EKF and UKF algorithms, which 

are emerged as the main idea. As a result, the nonlinear 

state equation is approximated linearly, and then the linear 

KF module is used for the power state estimation. 

Combined with the previous EKF-based calculation 

process, the UKF-based estimation is investigated by 

taking the test results into the correction stage. Therefore, 

the relative UKF and EKF algorithms require high initial 

state relatively, in which the state equation is described as 

shown in Equation (16). 

( )1k k k kx f x ,u w+ = +  (16) 

When the given initial value and the true initial value 

differ greatly, the EKF-based calculation converges 

slowly or does not converge. Combined with the EKF-

based calculation result, the UKF algorithm performs two 

matrix decompositions in each iteration step, which 

calculates multiple sigma points with more computational 

complexity. Therefore, both of the EKF and UKF 

algorithms have special advantages for the real-time 

online power state evaluation, according to which the 

UKF-EKF combined method is proposed for the SOC 

estimation method. The measurement equation is 

described as shown in Equation (17). 

( )k k k ky g x ,u v= +  (17) 

As can be known from Equation (17), the initialized 

state variable and the error covariance matrix can be 

calculated directly when k=0, and the sum of 2n+1 points 

can be obtained as well. The Thresh loop performs 

according to the following steps and the Thresh is the 

threshold, which affects the prediction result obviously 

and its selection range is generally set as a varying value 

between 50 and 100. The equation for calculating the 

predicted state variable is shown in Equation (18). 

1
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+ +

− −
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 = + =



 

(18) 

In the case of a regularization term, the decision item is 

enabled for the feature information, and the overall power 

state evaluation problem is transformed into a local 

optimization problem of finding the feature information in 

the time series signals. The convex and local optimization 

problems are solved by the typical gradient optimization 

and fast search methods. Then, the UKF algorithm is used 

to estimate the initial state and solve the convergence 

problem. Meanwhile, the EKF algorithm is used for the 

online estimation in real-time to reduce the computational 

complexity, in which the covariance error is calculated 

according to Equation (19). 

( ) ( )1 1

1

pN
T

K i i k k i k k W

i

ˆ ˆP W f ,u x f ,u x p − − −

− −

=

   = − − +     (19) 

The effects of environmental conditions on the power 

state evaluation are studied experimentally, in which the 

state data correction is constructed to describe the 

influence of the environmental conditions. Different 

factors affect the parameter characteristics, such as 

environmental condition differences, sampling 

fluctuations, and working condition changes (land, deep 

sea, high altitude, etc.). Furthermore, The Kalman gain is 

obtained as shown in Equation (20). 
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(20) 

In order to further reduce the measurable deterministic 

influence of the operating environmental factors, it is 
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supposed to obtain the influence law of the environmental 

conditions through the experimental research and data 

training methods. The mathematical description is 

established for the influence relationship of the 

environmental conditions, such as temperature and 

humidity. The corrected state prediction step is shown in 

Equation (21). 

( )k k k k k
ˆ ˆ ˆx x L y y+ −= + −  (21) 

The non-convex optimization problem is solved by the 

alternating direction multiplier, which is translated into 

two sub-optimization problems: convex optimization and 

local optimization. In the case that the fixed feature 

information discriminates the regularization term, the 

solution process can extract the mutual coupling 

relationship from the external measurable parameter in 

time series. And then, the problem is degenerated into a 

convex optimization process by using the time-varying 

vectors. The repeated experiment is conducted to obtain 

the influence law of the environmental conditions under 

the specific working scenarios, according to which the 

state data correction knowledge base is established and 

the error covariance is corrected as shown in Equation 

(22). 
T

K K k xyP P L P+ −= −
 (22) 

The correction strategy is selected according to the 

ambient temperature and humidity conditions in the 

power state evaluation process, in which the actual 

correction amount of the power state evaluation is 

calculated by conducting the mathematical description of 

the environmental influence relationship. As for k 

equaling to Thresh + 1 ~ End, the following iterate 

calculation steps can be investigated accordingly, and the 

environmental condition influence law is analyzed to 

obtain the correction strategy. Combined with the 

application of the multivariate parameter estimation 

theory, the power state evaluation model structure is 

optimized to improve the environmental applicability of 

the evaluation results. And then, the state variables can be 

forecasted according to Equation (23). 

( )1 1k k k
ˆ ˆx f x ,u− +

− −=  (23) 

The influence on the evaluation effect is analyzed for  

the complex environmental conditions, according to 

which the influencing factor correction strategy is 

obtained. The theoretical and experimental research is 

conducted on the influencing factors such as charge-

discharge current, temperature, humidity change and self-

discharge rate, according to which the error covariance 

can be obtained by Equation (24). 

1 1 1

T

k k k k w
ˆ ˆP A P A P− +

− − −= +  (24) 

The multi-parameter estimation theory is introduced to 

realize the model parameter identification, in which a 

mathematical description of the working characteristics 

can be obtained for the lithium battery packs under 

different environmental conditions, in which the Kalman 

can be gained by Equation (25). 
1

T T

k k k k k k v
ˆ ˆ ˆL P C C P C P

−
− − = + 

 (25) 

According to the correlation and multivariate nonlinear 

parameter identification, the dynamic description of the 

coupling relationship is realized between the external 

measurable parameters. Considering the working 

characteristics of the lithium battery pack, the coupling 

relationship description effect is studied between its 

parameters. The corrected state prediction is obtained as 

shown in Equation (26). 

( )

( )

k k k

k k k k k

ˆ ˆy g x ,u

ˆ ˆ ˆx x L y y

−

+ −

 =


= + −

 
(26) 

The multi-linear estimation is investigated to study the 

parameter identification method of the time varying 

model parameters [60]. Based on the experimental 

exploration together with its improved methods, the 

coefficient verification is completed, together with its 

error model parameter identification. And then, the 

accuracy and the computational complexity are 

coordinated, which lays a foundation for the critical 

breakthrough of the power state evaluation, in which the 

covariance error can be corrected by Equation (27). 

( )1k k k k
ˆP L C P+ −= −

 
(27) 

The environmental condition change influence is 

considered in the evaluation results, and the revised 

strategy is proposed to realize the optimization of the 

power state evaluation model structure. 

3. Experimental analysis 

The variation law of the lithium battery pack is studied 

under different working conditions, together with the 

battery voltage and the unbalanced state between its 

internal  connected battery cells. The performance of the 

lithium battery pack is studied through the experiments, in 

which the power state provides a theoretical basis, and 

further expresses the characteristics of the group working 

lithium battery cells, which provides a basis for the safety 

protection of the lithium battery pack. 

3.1. Experimental platform design 

In the experiments, 7 sets of series-connected lithium 

cobalt oxide lithium battery cells with a rated capacity of 

4Ah and a rated voltage of 3.7V are selected as the 

experimental samples. The lithium battery pack is tested 

by using the battery test system, and its working voltage 

and remaining power state data can be collected by using 

the experimental platform as shown in Fig. 3. 
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Fig. 3. The experimental platform 

This experiment simulates the working state of the 

lithium battery pack during the flight. The lithium battery 

cells used in this experiment are mainly tested for the 

instrument inspection, ignition and emergency output on 

the aircraft, which also supplements the battery through 

the engine during the flight. The capacity of the lithium 

battery is maintained within a predetermined range, 

according to which three different working conditions are 

designed and the parameter settings are shown in Tab. 1. 
Tab.1 Parameter settings under different conditions 

Condition a(s) b(s) c(s) d(s) e(s) 

1 60 5 20 10 50 

2 30 5 20 10 80 

3 100 5 20 10 200 

Wherein, a is the time to check the control sub-systems, 

b is the aircraft ignition discharge time, c is the 

supplementary power time, d is the time for the simulated 

self-discharge, and e is the emergency output time. And 

then, the experimental steps designed are shown as 

follows. 

(1) It should be determined whether the cell voltage and 

the terminal voltage of the battery pack are greater than 

the minimum voltage of 3V and 21V. If it satisfies this 

condition, it should turn to step (2), otherwise it should 

jump to step (10). 

(2) The battery cells should be set aside for 10s to 

proceed to step (3). 

(3) The experiment should amplify the instrument with 

0.3C discharging current rate for one second, aiming to 

judge whether the cell voltage and total terminal voltage 

are greater than the minimum voltage levels. If it satisfies 

the condition, it will turn to step (4), otherwise it should 

jump to step (10). 

(4) The experiment simulates the aircraft ignition with 

0.6C discharging current rate for b seconds, and then it 

should be judged whether the cell voltage and the 

terminal voltage are greater than the minimum voltage. If 

it satisfies the condition, it will turn to step (5), otherwise 

it will jump to step (10). 

(5) After charging with 0.1 C for c seconds, the analog 

power is added and then turn to step (6). 

(6) The self-discharge of the lithium battery is simulated 

by discharging at 0.01 C for d seconds, and then it 

proceeds to step (7). 

(7) After charging with 0.1C current for c seconds, the 

experimental process should enter the 8th step. 

(8) The emergency output is simulated with 1C 

discharging current rate for few seconds, and then it 

should be judged whether the cell voltage and terminal 

voltage are greater than the minimum voltages. If it 

satisfies the condition, it turns to enter step (9), otherwise 

it jumps to step (10). 

(9) The steps (2)~(8) should be repeated until it jumps to 

step (10). 

(10) End. 

3.2. Different magnifications test 

Seven 4Ah aviation lithium battery cells are connected 

in series, which are charged and discharged by using the 

charge-discharge current rates of 0.2, 0.3, 0.5, 1, 1.2 

respectively. Based on the test data, the time varying 

voltage data during charging and discharging process can 

be plotted at different current rates. The battery voltage 

changing law can be obtained along with the 

magnification during the charging process, according to 

which the variation curve is shown in Fig. 4. 
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Fig. 4. Charging Voltage changes with magnification 

By analyzing the voltage variation curve in Fig. 4, it can 

be known that the voltage of the charging battery platform 

region changes greatly under the high-rate discharging 

current conditions under the same constant-current 

charging precondition treatment. The voltage change of 

the lithium battery can be roughly divided into the 

following two stages. (1) The battery voltage rises rapidly 
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at the initial stage of the charging process. (2) The battery 

voltage rises slowly after a certain period of the charging 

treatment. After that, the different discharging current rate 

maintenance experiments are investigated, according to 

which the discharging characteristics are obtained as 

shown in Fig. 5. 
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Fig. 5. Discharging voltage change with magnification 

As can be known from the voltage curve of Fig. 5, the 

voltage of the discharging platform area changes greatly 

under high-rate discharging conditions. However, a 

sudden voltage drop occurs at the beginning of the 

discharging process with 0.3C current rate. The voltage 

change of the lithium battery can be roughly divided into 

the following three stages. (1) The battery voltage drops 

rapidly at the initial stage of the discharge process. (2) 

The battery voltage reduction rate is relatively gentle, 

which enters the platform area after a certain time period 

of discharge. (3) The battery voltage drop rate is faster 

than the initial stage after a certain time period of 

discharge. 

3.3. Voltage variation Influence 

The terminal voltage of the lithium battery pack varies 

along as time goes by under different operating conditions, 

which drops rapidly at the initial stage of the operating 

conditions, slowly in the middle section, and rapidly at the 

end stage. However, due to the experimental frequency 

difference in the various operating conditions, the voltage 

curve of the battery pack exhibits different characteristics 

over time. Comparing the battery voltage curve towards 

time under these three working conditions,  the voltage 

varying rate is bigger when the operating condition 

change rate is greater, the experimental result of which 

can be obtained as shown in Fig. 6. 
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Fig. 6. Packing voltage change under different conditions 

As shown in Fig. 6, U1, U2, and U3 represent the 

battery voltage curves towards time under the working 

conditions of 1, 2 and 3 respectively. 

3.4. Working state filtering result 

In order to verify the feasibility of the above power state 

evaluation algorithm, the mathematical iterate calculation 

model is established to realize the difficult on-line power 

state evaluation between cells under the influence of the 

complex working conditions, according to which the 

multi-criteria decision making treatment of the evidence 

theory is proposed. Based on the characteristic 

exploration of the different working conditions, the 

coupling relationship model related to the parameter 

acquisition time is established, by which the non-convex 

optimization problem is solved using the alternating 

direction multiplier. The experimental data is obtained by 

the test, which can be brought into the model as the input 

parameters together with the constant-current working 

conditions. And then, the simulation results are obtained 

and analyzed, which are shown in Fig. 7. 
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Fig. 7. Working state filtering result 
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As can be known from Fig. 7, one curve is obtained by 

filtering with the combined UKF-EKF algorithm and the 

other is not filtered, which has better experimental results 

obviously. Therefore, the established power state 

estimation model can realize the real-time working state 

monitoring, in which the estimation error is less than 0.05. 

Based on the second-order Thevenin equivalent circuit, 

the working state and output characteristics of the lithium 

battery pack can be described effectively, in which the 

HPPC test is investigated by using the above parameter 

identification treatment and the recursive least square 

method. The charging characteristics are also obtained 

through the charge-discharge test of the aviation lithium 

battery pack under different magnifications, based on 

which the joint UKF-EKF algorithm is proposed for the 

online power state evaluation. The comparison between 

the simulation and the experimental test results show that 

the estimation accuracy is higher than 95% under the 

scheme, which has high precision and tracking 

advantages. The key to use the battery rationally and 

improve its life span is to estimate its power state 

accurately, the estimated effect of which will directly 

determine the power and economy of the packing lithium 

battery cells. 

Through the experiment of aeronautical lithium battery 

pack under different working conditions, the battery 

voltage curve and its variation law can be obtained [61]. 

The characteristics of aeronautical lithium battery pack 

under different working conditions are analyzed and 

compared with the related references [62]. The following 

conclusions can be drawn accordingly. (1) The voltage 

variation of the aviation lithium battery pack is large 

under the working conditions, and the more frequent the 

change of the working condition, the greater the battery 

voltage change rate is [63]. (2) The individual battery cell 

voltage is almost the same as the voltage change of the 

battery pack. The cell voltage difference increases rapidly 

in the third stage of the voltage drop [64]. The imbalance 

state between the battery cells will be deeper when the 

discharge depth is greater in a single charge-discharge 

cycle. When, the  inconsistency is manifested, the battery 

should be used to avoid long-time discharge at a large rate. 

On the other hand, the lithium battery pack needs to be 

maintained regularly and a battery equalization system 

should be used to realize the balance treatment under 

complicated conditions. 

3.5. Battery cell inconsistency analysis 

During the working time period of the lithium battery 

pack, the voltage change is still divided into three stages. 

According to the standard experimental process, the SOC 

is reduced from 100% to 80% at the first stage and the 

voltage drops rapidly in this stage. The second stage is 

reduced from 80% to 30%, in which the voltage curve of 

this stage is relatively flat. The SOC value is set from 

30% to 0 for the third stage, which is also the voltage 

decline phase. Because the voltage difference between the 

internal connected battery cells of the lithium battery pack 

is the main parameter for characterizing the inconsistency 

of the internal cells, the service life of the battery pack and 

the full utilization of its power can be affected seriously. 

Therefore, it is especially important to study the 

inconsistency of the lithium battery under the working 

conditions. As a result, the absolute value of the voltage 

difference between the battery cells and the mean voltage 

value are used to characterize the inconsistency degree of 

the voltage between the lithium battery cells. Through the 

data collected by the experiment, the cell voltage variation 

graph towards time under these  three working conditions 

and the curve of the voltage difference between the 

battery cells are plotted, which are shown in Fig. 8. 
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Fig. 8. Voltage difference under working condition 1  

The signals of U1-1, U1-2, U1-3, U1-4, U1-5, U1-6, 

U1-7 in Fig. 8 represent the voltage of  the 7 single cells 

under the working condition 1. The Ud1, Ud2, Ud3, Ud4, 

Ud5, Ud6, and Ud7 represent the voltage difference 

curves of the seven battery cells as time goes by at the 

experimental working conditions. As can be seen from 

the experimental results, that the difference voltage of the 

seven single cells exists from the beginning, and the 

voltage difference in both of the first phase and the second 

phase is within 10 mV. The cell voltage decreases 

gradually in the third phase, in which the voltage 

difference increases rapidly, reaching a maximum of 

120mV.  The voltage difference under working condition 

2 is shown in Fig. 9. 



12 

-1000 0 1000 2000 3000 4000 5000 6000 7000

3.0

3.2

3.4

3.6

3.8

4.0

4.2

-1000 0 1000 2000 3000 4000 5000 6000 7000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Third stateSecond stateFirst state

U
2

(V
)

t(s)

 U2-1

 U2-2

 U2-3

 U2-4

 U2-5

 U2-6

 U2-7

U
2

'(
V

)

t(s)

 Ud1

 Ud2

 Ud3

 Ud4

 Ud5

 Ud6

 Ud7

 
Fig. 9. Voltage difference under working condition 2 

As can be known from Fig. 9, the signals of U2-1, U2-2, 

U2-3, U2-4, U2-5, U2-6, U2-7 represent the terminal 

voltage of 7 single cells under the working condition 2. 

The signals of Ud1, Ud2, Ud3, Ud4, Ud5, Ud6, Ud7 in 

the second part of the figure represent the voltage 

difference curves of the seven battery cells under the 

experimental working condition 2 towards time. As can 

be seen from experimental results, the discharge depth of 

the single-cycle of the operating condition 2 is greater 

than the single-mode cycling discharge depth of the 

operating condition 1, and the voltage difference of the 

seven single cells is greater in the first stage. The voltage 

difference of the two stages is still within 10mV. 

However, the battery cell difference increases in the 

overall discharging process in the third stage, as the 

battery cell voltage drops rapidly. Meanwhile, the battery 

cell voltage difference under the working condition 3 is 

shown in Fig. 10. 
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Fig. 10. Voltage difference under working condition 3 

The signals of U3-1, U3-2, U3-3, U3-4, U3-5, U3-6, 

U3-7 in Fig. 10 represents the seven single battery cell 

voltages under the experimental working condition 3. 

Ud1, Ud2, Ud3, Ud4, Ud5, Ud6, Ud7 in the second part 

of the figure represent the voltage difference curves of the 

seven battery cells under the working condition 3. As can 

be seen from the experimental results, the single-cycle 

discharge depth of the operating condition 3 is the largest 

compared with the first two operating conditions, and the 

voltage difference of the seven single cells does not 

change in the first phase and the second phase, which has 

the similar changing laws compared with other researches 

[65][66]. In the third stage, the voltage difference increase 

is greater than the first two working conditions with the 

rapid decline of the cell voltages. Comparing the analysis 

of working condition 1, 2 and  3, there is a voltage 

difference increase for the first and then for the second 

phase decreases gradually. The rising trend of the 

difference curve is increased gradually for the overall 

voltage of the third phase. The voltage difference between 

the cells increases along with the voltage drop at the end 

of the traditional working conditions. The battery cell 

inconsistency degree is proportional to the discharge 

depth of the charge-discharge  cycle.  

4. Conclusions 

Aiming at the online power state evaluation of the 

lithium battery packs, the coupling relationship 

description of the external measurable parameters and the 

reliable grading power state evaluation are carried out to 

construct the coupling relationship model between the 

parameters under complex working conditions. As for the 

power state evaluation of the complex internal structure, 

the credibility calculation and combination rule selection 

are investigated to construct the equilibrium evaluation 

model by using the information fusion strategy. The 

knowledge base construction and the correction algorithm 

design eliminates the estimation errors caused by the 

environmental conditions. Based on the previous research 

work, this research is focused on the differences and 

mathematical characterization between the battery cells in 

the lithium battery pack, which provides state monitoring 

theory support for the subsequent battery packing work 

safety. Furthermore, the power state evaluation model is 

constructed by using the evidence theory by using the 

combined structure, in which the environmental influence 

factor and correction strategy are merged together to 

realize the complementary effect. The power state 

evaluation accuracy is improved for the lithium battery 

packs, which also  provide new ideas for solving its safety 

problems in the automotive, aerospace and mobile base 

stations. The proposed power state evaluation method is 

verified by using the typical seven battery cell 

experimental samples. Subsequent verification 

experiments and method improvements for more 
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complex cascades of battery cells will be carried out in the 

follow-up research process. 
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