
WARES, S., ISAACS, J. and ELYAN, E. 2019. Data stream mining: methods and challenges for handling concept drift.
SN applied sciences [online], 1(11), article ID 1412. Available from: https://doi.org/10.1007/s42452-019-1433-0

Data stream mining: methods and challenges for
handling concept drift.

WARES, S., ISAACS, J. and ELYAN, E.

2019

This document was downloaded from
https://openair.rgu.ac.uk

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

Review Paper

Data stream mining: methods and challenges for handling concept
drift

Scott Wares1 · John Isaacs1 · Eyad Elyan1

© The Author(s) 2019 OPEN

Abstract
Mining and analysing streaming data is crucial for many applications, and this area of research has gained extensive
attention over the past decade. However, there are several inherent problems that continue to challenge the hardware
and the state-of-the art algorithmic solutions. Examples of such problems include the unbound size, varying speed and
unknown data characteristics of arriving instances from a data stream. The aim of this research is to portray key challenges
faced by algorithmic solutions for stream mining, particularly focusing on the prevalent issue of concept drift. A compre-
hensive discussion of concept drift and its inherent data challenges in the context of stream mining is presented, as is a
critical, in-depth review of relevant literature. Current issues with the evaluative procedure for concept drift detectors is
also explored, highlighting problems such as a lack of established base datasets and the impact of temporal dependence
on concept drift detection. By exposing gaps in the current literature, this study suggests recommendations for future
research which should aid in the progression of stream mining and concept drift detection algorithms.

Keywords Stream · Data · Mining · Concept drift

1 Introduction

The global datasphere is a notional environment in which
data produced worldwide is contained. According to Rein-
sel et al. [62], the global datasphere contained over 20 ZB
of data (20 billion TB) in 2017. Its growth is expected to
continue rapidly, and by 2025 it is hypothesised to contain
160 ZB of data. Such exponential growth is due, in part,
to hardware developments and an increase in user avail-
ability and accessibility.

Data is now generated at a near constant and limitless
rate, resulting from an array of devices, networks and eve-
ryday tasks such as credit card transactions and mobile
phones [1]. Data arriving online and in a sequential, con-
tinuous fashion is known as a data stream. These data
streams provide a potential source of valuable quantita-
tive and qualitative data, providing it can be extracted in
a timely manner.

Adapted machine learning techniques can be used
to harvest interesting information from the stream in a
process known as stream mining. However, the volume,
velocity and temporal nature of the arriving data can cause
complex challenges for stream mining. Unlike stationary
data in traditional batch learning scenarios, streaming data
can be looked at only once and is unbound in size. This is
an inherent problem for streaming data and poses a chal-
lenge for real time processing.

Concept drift is another inherent problem, caused by
streaming data changing, or evolving, over time. Concept
drift also occurs at varying rates of severity. A shift in the
underlying distribution can result in the feature vectors of
arriving instances no longer reflecting the class label. This
causes a negative impact upon the reliability and accu-
racy of classifiers that make predictions using the current
distribution.

Received: 10 July 2019 / Accepted: 9 October 2019

 * Scott Wares, s.wares1@rgu.ac.uk; John Isaacs, j.p.isaacs@rgu.ac.uk; Eyad Elyan, e.elyan@rgu.ac.uk | 1The Sir Ian Wood Building, Robert
Gordon University, Garthdee Road, Aberdeen, Scotland, UK.

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

This paper provides a critical review of stream mining
with a focus on stream mining challenges, concept drift
detection algorithms and problems with their evaluative
process such as a lack of established datasets. This research
is primarily concerned with supervised data stream min-
ing and drift detection methods. Literature and techniques
involving unsupervised approaches, such as Sethi and
Kantardzic [64] and de Mello et al. [23], are not reviewed.
Unlike existing reviews such as Gama et al. [36], this paper
reviews modern, recent approaches to handling concept
drift, as well as established methods covered in earlier
reviews. Ditzler et al. [26] provides a summary of the chal-
lenges and approaches for learning in both static and
evolving data streams. However, their review lacks detail
and depth in their explanation of techniques and instead.
Similarly, the recent review by Krawczyk et al. [48] primarily
focuses on ensemble methods, and only briefly highlights
the most popular non-ensemble based techniques. The
timeliness of this review is of particular interest. Success-
ful mining of data streams can potentially provide rich
quantitative and qualitative information. Such informa-
tion could have a tremendous impact on business prac-
tices across various industries, such as oil and gas where
streaming data is abundant. However, because of the chal-
lenges posed by stream mining it is relatively unharnessed.
This research suggests that the reason for stream mining
not be fully harnessed is that the domain of concept drift
detection is not progressing at a quick enough pace. For
example, the domain of imbalanced data, in the context
of stream mining, has produced various adaptations for
algorithms to handle class imbalance, such as DDM-OCI
[69], LFR [67], Learn++.NIE [24] and Learn++.CDS [25]. The
field of class imbalance in stream mining has also pub-
lished recent reviews that provide timely suggestions for
future research [47], whereas in contrast the reviews for
concept drift are several years old [36] and do not encap-
sulate recent advancements.

The main contributions of this paper are outlined as
follows:

1. Critically and extensively review existing literature, dis-
cussing both well established and recent concept drift
detection techniques.

2. Categorise existing methods for concept drift detec-
tion based on their underlying model. Existing meth-
ods are categorised as either statistical based, window
based or ensemble based.

3. Identify and discuss clear gaps in the literature areas
for improvement, particularly relating to current evalu-
ative measures and the availability of public datasets
for benchmarking.

4. Provide possible avenues for future research that
address current research gaps in the existing literature.

This paper is structured as follows. Section 2 provides a
general overview of stream mining, its key differences
from traditional batch learning and design requirements
for stream mining algorithms. Section 3 focuses on con-
cept drift, providing definitions and discussing algorithmic
requirements. Section 4 categorises and critically reviews
existing concept drift detection techniques. Section 5
discusses evaluation methods, as well as highlighting the
concept of temporal dependence. Section 6 concludes the
paper and offers suggestion for future research direction.

2 Stream mining overview

Data streams posess specific and unique characteristics
that differentiate them from other forms of data. In tradi-
tional machine learning contexts, the data is often referred
to as “batch” data. That is, all of the data is immediately
available in its entirety and is stored in memory. This is
of stark contrast to stream mining, where data streams
produce elements in a sequential, continuous fashion,
and may also be impermanent, or transient, in nature [2,
33]. This means stream data may only be available for a
short time. The difference between traditional methods
and data streams is described by Babcock et al. [2] in the
following ways:

1. Data elements in the stream arrive online.
2. The system has no control over the order in which data

elements arrive to be processed, either within a data
stream or across data streams.

3. Data streams are potentially unbound in size.
4. Once an element from a data stream has been pro-

cessed, it is discarded or archived. It cannot be
retrieved easily unless it is explicitly stored in memory,
which is small relative to the size of data streams.

The unique characteristics of a data stream contribute to
the challenges in processing its arriving elements. Since
batch data is persistent, it can be queried once in its
entirety and individual data elements can be accessed at
random. Data streams however, since transient, must be
queried continuously by the algorithm. The data elements
in the stream cannot be accessed at random; they can only
be accessed in the sequence in which they arrive from the
stream. The key differences between processing traditional
batch data and stream data are shown Table 1.

Data streams are either static (sometimes referred to as
stationary) or evolving, and are classified depending on the
condition of their core distribution.

Static data has an underlying distribution that does not
shift over time. That is, the features that define the target
label for learning remain constant and consistent. Static

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

datasets are frequent in traditional machine learning con-
texts where features defining ground truth labels do not
change [18].

Unlike static data, the distribution for an evolving data
stream may change over time. Feature vectors may change
over a time period t such that they no longer reflect the
class label. Aggarwal [1] describes how data streams pos-
sess an inherent temporal component that causes them to
be time dependent by nature. Consider customer purchas-
ing behaviour as an example. A model trained to predict
weekly sales for a clothing store might use attributes such
as advertising costs, promotions and customer footfall.
However, this model may become less accurate over time,
perhaps due to seasonality. The shift in distribution over
time is commonly known as concept drift.

In the domain of machine learning, traditional appli-
cations implement batch learning techniques on static
datasets. Batch learning approaches involve having the
entirety of the training data available at any given time.
The data can be processed once or multiple times before
an algorithm produces an output decision.

Data streams by nature are incompatible to batch learn-
ing for a number of reasons. Most obviously where tradi-
tional applications have all of the data available immedi-
ately, data streams must be mined in a distributed fashion
since examples arrive continuously and in a sequential
manner. In contrast to batch and multi-pass learning,
stream mining algorithms must be designed to work with
one pass of the data only [1].

A solution to the ineffectiveness of batch learning may
at first seem obvious; translate batch learning algorithms
into one-pass variants. However, the innate temporal
nature of data streams may render this solution redun-
dant as a one-pass conversion approach may not consider
the evolution of the underlying distribution. Concept drift
is something stream mining algorithms simply must take
into consideration.

Since data streams are unbound in size, the volume and
velocity can result in the imposition of hardware limita-
tions. The most obvious of which is memory; it is not fea-
sible to continuously explicitly store stream elements since
their maximum size is almost always unknown. A second
hardware limitation is processing resource. The speed at
which elements arrive from a stream, as well as the stream
size, can quickly consume available resources. As such,
stream mining algorithms should be both computation-
ally fast and lightweight [18].

3 Concept drift

Traditional machine learning algorithms operate with the
assumption that the data distribution is static. For data
streams, the distribution of arriving examples may change
over time due to the stream’s innate temporal nature. This
renders traditional batch learning algorithms unsuitable
for applications that learn from data streams.

In reality, data streams produce copious amounts of
data at a near constant rate. Gama [33] provides examples
of such streams, including surveillance systems, sensor
networks and telecommunication systems. However, with
recent modern hardware developments these streams are
produced by new devices such as smart household appli-
ances and car navigation systems. Algorithms that seek to
learn from data streams must be able to accurately model
the underlying distribution. The ability to detect and adapt
to changes in the distribution of examples is paramount
for data stream mining algorithms.

The shift in the underlying distribution of examples
arriving from a data stream is referred to as concept drift.
Concept drift occurs over time and the rate at which the
drifts occurs varies. It can be responsible for various symp-
toms, including previous examples to become irrelevant;
their distribution no longer accurately reflects their cor-
responding class label. This is reflected in the clothing
store sales prediction example previously mentioned. If
seasonality causes clothing sales to be higher in the sum-
mer months, then examples from winter months may not
accurately reflect class labels. It may be the case that the
model predicts low sales, but due to seasonality there are
less people shopping and the sales are in fact high for a
winter season. As such, models must be capable of forget-
ting previous examples once concept drift has occurred.

3.1 Definition

A learning algorithm observing examples with a sta-
tionary distribution would observe training examples
in the form (𝐱i , yi) , where 𝐱i is the feature vector and
yi𝜖{c1, c2,… , cn} for the ith example. A class prediction

Table 1 Batch data versus streaming data

Batch data Stream data

Offline Real time
Slow data generation Rapid data generation
Persistent data Transient data
Process entire data Process samples of data
Constant availability Limited availability
Complex techniques used if

required
Linear techniques widely used

Fixed size Unbound in size
Random access Sequential access
Known data characteristics Unpredictable data charac-

teristics

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

at a particular time stamp t would be given as ŷt based
on the feature vector 𝐱t.

In contrast, a data stream may produce examples with
a non-stationary distribution. The stream may initially
consist of examples ei = (𝐱i , yi) , similar to that of a static
distribution. However, if the distribution should shift at
some point in time then this may no longer hold true.
According to Gama et al. [36], concept drift between
time t0 and t1 can be defined as:

where pt is the joint distribution at time t between the
feature vector 𝐱i and the target class label yi.

Kelly et al. [45] states that concept drift may occur in
three distinct ways. Firstly, the class prior probabilities
p(y) may change over time. Secondly, the class distri-
butions p(𝐱 ∣ y) may change over time. And thirdly the
class posterior distribution p(y ∣ 𝐱) may change. From
the point of view of classification, only p(𝐱 ∣ y) changes
would affect the prediction and therefore require an
algorithmic response.

The rate at which concept drift occurs can be catego-
rised as one of three distinct forms; sudden drifts, grad-
ual drifts and recurring drifts. Brzezinski and Stefanow-
ski [15] concisely describes these three types of concept
drift; sudden drifts occur when the source distribution
is suddenly replaced by another distribution entirely,
gradual drift occur at a much slower rate, and recurring
drifts occur when older concepts reappear after some
time period. Drifts can also be described as incremental
where the drift consists of many intermediate changes,
for example a network sensor deteriorates and becomes
less accurate [36].

Similarly to categorising the rate of change, concept
drift itself can be defined as either real or virtual [36,
71, 74]. Real concept drift refers to changes in p(y ∣ 𝐱) , a
change in the probability of a class label y given feature
vector 𝐱 . This can result in classifier decision boundaries
becoming affected. Alternatively, virtual drift refers to
changes in p(𝐱) but not in p(y ∣ 𝐱) . The result in this case is
that the distribution has changed but the decision bound-
aries of the classifier are unaffected. Figure 1 illustrates the
differences between real and virtual drift.

As is described by Zliobaite [74], it is not important if
the drift is real or virtual since p(y ∣ 𝐱) is dependant on
p(𝐱 ∣ y) . Explicit characterisation of various types of con-
cept drift is effectively illustrated by Webb et al. [70]. This
paper will not make any further differentiation between
real or virtual drifts.

Where stream mining algorithms bring with them their
own set of challenging algorithmic requirements, algorithms

(1)pt0(𝐱i , yi) ≠ pt1(𝐱i , yi),

for concept drift detection must also meet certain demands.
The following points are considered to be critical challenges
that concept drift detection algorithms should overcome
[35, 36]:

1. Detect as soon as possible the point at which the dis-
tribution has changed.

2. The crossover period during a shift in concept can pro-
duce noise. For example as distribution D0 shifts to D1 ,
examples produced by D0 will act as noise for D1.

3. Algorithms should be computationally faster than the
arrival time of examples from the stream. They should
also be lightweight enough to not consume more than
some fixed amount of memory for storage.

Any classifier operating with stream data must contain
mechanisms to meet these requirements, otherwise their
predictive performance will diminish over time. The predic-
tive model will likely have to be capable of updating with
new data as it arrives, or even replacing itself entirely.

4 Concept drift detection

This section critically reviews existing concept drift detec-
tion techniques by categorising drift detection methods as
either statistical based, window based or ensemble based.
Table 2 provides a full illustration of the categorisation and
techniques covered by this paper.

4.1 Statistical methods

The Sequential Probability Ratio Test (SPRT) [66] is the back-
bone to a number of algorithms for concept drift detection.
Given two distributions P0 and P1 for time period w, should
the underlying distribution shift from P0 to P1 then the prob-
ability of observing elements from P1 should be higher than

Fig. 1 Types of drifts. Classes represented circles

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

the probability of observing elements from P0 . The statistical
test is given as:

Introduced by Page [57], the Cumulative Sum (CUSUM) is a
statistical technique based on the SPRT and is commonly
adopted for concept drift detection. It receives as an input
the residual of any filter, for example a Kalman filter, and
outputs an alarm when the mean of the input data differs
greatly from zero. Bifet [7] gives CUSUM as

(2)

Tn
w
= log

P(xw … xn ∣ P1)

P(xw … xn ∣ P0)
=

n∑

i=w

log
P1[xi]

P0[xi]

= Tn−1
w

+ log
P1[xn]

P0[xn]

where 𝜖t is the current observed value, v is the allowed
magnitude of change, t is the current time and h is a
parameter defined threshold. This expressions functions
for detecting changes that occur in a positive direction. If
changes in a negative direction are required for detection
then the min() function should be used in place of max().

CUSUM is memoryless in the sense that the probability
of a drift being detected is not related to a drift having
already been detected. It is also worth noting that the
accuracy of CUSUM is dependant on the parameters v and

(3)

g0 = 0

gt = max(0, gt−1 + 𝜖t − v)

if gt > h then alarm and gt = 0,

Table 2 Summary of concept drift detection techniques

Type Algorithm Acronym Reference

Statistical based Cumulative sum CUSUM Page [57]
Page-Hinckley test PH Page [57]
Drift detection method DDM Gama et al. [34]
Early drift detection method EDDM Baena-Garcia et al. [3]
Reactive drift detection method RDDM Barros et al. [4]
Linear four rates LFR Wang and Abraham [67]
Hierarchical linear four rates HLFR Yu and Abraham [73]
Statistical test of equal proportions STEPD Nishida and Yamauchi [56]
Fisher proportions drift detector FPDD de Lima Cabral and de Barros [22]
Fisher-based statistical drift detector FSDD de Lima Cabral and de Barros [22]
Fisher test drift detector FTDD de Lima Cabral and de Barros [22]
McDiarmid drift detection methods MDDMs Pesaranghader et al. [58]

MDDM-A Pesaranghader et al. [58]
MDDM-G Pesaranghader et al. [58]
MDDM-E Pesaranghader et al. [58]

Window-based Concept-adapting very fast decision tree CVFDT Domingos and Hulten [27]
Efficient concept-adapting very fast decision tree E-CVFDT Liu et al. [51]
Adaptive sliding window ADWIN Bifet and Gavalda [8]

Block-based ensembles Streaming ensemble algorithm SEA Street and Kim [65]
Accuracy weighted ensemble AWE Wang et al. [68]
Accuracy updated ensemble AUE Brzeziński and Stefanowski [14]
Semi-supervised adaptive novel class detection and

classification over data stream
SAND Haque et al. [38]

Efficient concept drift and concept evolution han-
dling over stream data

ECHO Haque et al. [39]

Incremental-based ensembles Dynamic weighted majority DWM Kolter and Maloof [46]
Learn++ Polikar et al. [59]
Learn++.MT Muhlbaier et al. [53]
Learn++.NC Muhlbaier et al. [55]
Learn++.NSE Muhlbaier and Polikar [54]
Learn++.NIE Ditzler and Polikar [24]
Learn++.CDS Ditzler and Polikar [25]

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

h. Low values of v enable faster detection rates but at the
cost of an increased rate in false positives.

The Page-Hinckley (PH) test, also proposed by Page [57],
is a variant of the previously mentioned CUSUM test. The
PH test can detect changes in the average behaviour of a
process. The PH test for an increasing signal can be given
as [7]:

where 𝜖t is the current observed value, v is the allowed
magnitude of change, t is the current time and h is a
parameter defined threshold. If the signal is decreasing
then Gt = max(gt ,Gt−1) and Gt − gt > h should be utilised
as the stopping rule instead. Similarly to CUSUM, the PH
test is memoryless but its accuracy is again parameter
dependent on the values of v and h. Larger values of h will
result in a lower false alarm rate, but some changes may
also be missed altogether.

While the two algorithms are similar, they do offer solu-
tions for different data streaming scenarios. Since CUSUM
uses the residual from any predictor as an input is well
suited for various applications of stream mining, and has
been recently used for anomaly detection in video streams
by Yang et al. [72]. PH is instead ideally suited for detecting
abrupt changes in signal processing environments, but has
also been adopted recently for the development of a rule
learning algorithm for regression [29].

The performance of drift detection algorithms based
on SPRT is often reliant on their false alarm and missed
detection rates, as noted by Gama et al. [36]. However,
during evaluative procedures such measures are usually
overlooked as metrics to evaluate drift detector perfor-
mance. This is explained fully in Sect. 5 of this research.
The primary drawback and impact on performance is
both algorithms’ reliance on the parameters v and h. Both
CUSUM and Page-Hinckley are considered state-of-the-art
drift detectors in this category.

Another statistical method for detecting concept drift
is based around monitoring the class distribution’s con-
stancy over time, as described by Brzezinski and Stefanow-
ski [15]. This is undertaken by adopting various statistical
techniques that produce “alarms” when the class distribu-
tion begins to change as time passes.

Drift Detection Method (DDM) [34] is a method that sta-
tistically compares two windows and controls the errors
produced by a learning model during prediction. One win-
dow contains all of the data, and the second window con-
sists of only data from the start of the stream to the point

(4)

g0 = 0

gt = gt−1 + (𝜖t − v)

Gt = min(gt ,Gt−1)

if gt − Gt > h then alarm and gt = 0,

at which the error rate of the prediction model increases.
The windows are not kept in memory, only statistical infor-
mation and recent errors are stored.

It is assumed that the error rate will decrease as the
number of examples for observation increases, so long
as the distribution is stationary. It is therefore suggested
that a significant increase in the error rate of some learn-
ing model would indicate a change in the class distribu-
tion. DDM involves two principle variables in the form of
pt and st , where p is the probability of misclassification, s
is the standard deviation and t is some timestamp. The
standard deviation st is given as st =

√
pt(1 − pt)∕t . When

pt + st reaches its minimum value the following conditions
are checked:

• pt + st ≥ pmin + 2 ⋅ smin as a warning level. Examples are
stored in preparation of contextual drift.

• pt + st ≥ pmin + 3 ⋅ smin as drift level. Concept drift is
assumed to exist, the learning model is reset and a new
model is trained using examples stored since the warn-
ing level was triggered. pmin and smin are also reset.

DDM is almost memoryless, only statistics pt and st are
stored alongside the necessity of some available memory
to store examples for retraining. A major flaw with DDM
is that is only suitable for the detection of abrupt drifts.
Gradual drifts can cause examples to be stored in memory
for lengthy time periods which has the potential to cause
catastrophic memory overflows.

A number of algorithms have built upon DDM and have
aimed to improve its performance. The most famous of
these is the Early Drift Detection Method (EDDM) [3].
EDDM uses the same approach and heuristics as DDM,
however, rather than monitoring error rates, the distances
between errors is measured. As predictions improve, the
distance between two misclassification errors should
increase. The window resizing follows the same proce-
dure as DDM. The fundamental drawback to EDDM is
that at least 30 errors are required for calculation which
causes issues when applying this to imbalanced datasets.
A more modern proposal to improve DDM is that of Bar-
ros et al. [4], who suggest the Reactive Drift Detection
Method (RDDM) which discards older instances of par-
ticularly gradually occurring drifts in order to overcome
potential memory overflows.

The DDM-OCI algorithm [69] was developed to solve
the problem with using EDDM and imbalanced datasets.
DDM-OCI makes the assumption that for imbalanced data-
sets, drifts only occur when there is a change in the minor-
ity class recall during classification. However it is entirely
possible that a drift can occur without affecting the minor-
ity class recall, for example a drift from data that has an
unbalanced class distribution to one which is balanced.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

DDM-OCI also suffers from an issue where a number of
false positives can be triggered due to a weakness in its
test statistic R̂t

TPR
.

With DDM-OCI falling short of overcoming the class
imbalance problems present in EDDM, the Linear Four
Rates framework (LFR), was proposed by Wang and Abra-
ham [67]. It is designed as a direct improvement over the
DDM-OCI algorithm. LFR monitors the four values, or rates,
given by a typical confusion matrix; precision and recall for
both minority and majority classes. Statistical bounds are
set as thresholds and should any of the four rates exceed
the threshold then a drift is assumed to have occurred.

The current, most recent advancement in these algo-
rithms is the Hierarchical Linear Four Rates method (HLFR)
proposed by Yu and Abraham [73], given in Algorithm 1.
HLFR operates using a two layer, hierarchical structure
wherein the first layer is responsible for detecting potential
drifts, and the second layer validates said drift and com-
municates this information back to the first layer. Layer
one monitors the same four rates of the confusion matrix
as was introduced by LFR. When a drift is detected, layer
two applies a permutation test to confirm if the detected
drift is true or a false positive. In the occurrence of a false
positive the testing process restarts.

Experimental results using real datasets indicate that
HLFR outperforms DDM, EDDM and LFR in terms of not
only accuracy but also in terms of its time to detection
(detection delay). The framework presented with HLFR
symbolises a move away from the traditional “concept drift
detector plus classifier” approach. This current method suf-
fers from various evaluation problems, discussed in depth
in Sect. 5. The proposed framework of HLFR is a concrete
starting point for future research that aims to address such
issues.

DDM and EDDM are considered state-of-the-art statisti-
cal based detectors [7], even though they have drawbacks
in relation to imbalanced data. Algorithms that have aimed
to address this, such as DDM-OCI and LFR have fallen short.
The result of which is that two, aged drift detectors that
are sub-par in terms of performance are still considered

state-of-the-art. A second reason is due to the datasets
used in concept drift experimentation. This is explained
fully in Sect. 5, but a lack of benchmark datasets means
that many experiments used simulated data in which
parameters can be defined to avoid class imbalance, thus
artificially avoiding the drawbacks of DDM and EDDM.

STEPD [56], or Statistical Test of Equal Proportions, mon-
itors the predictions of a base classifier for drift detection
in a similar manner to that of DDM and EDDM. However,
STEPD also uses two parameters as significance levels to
distinguish between detected drifts and warnings. These
are 𝛼d = 0.003 and 𝛼w = 0.05 respectively. STEPD uses two
windows to compare the result of the classifier. The first
window is a “recent” window, of which its size if defined
by a parameter with a default value of 30 instances. The
second window is the “older” window which contains all
instances observed since the last detected drift. STEPD
compares the accuracies of these windows through a
hypothesis test of equal proportions, given as

where ro is the number of correct predictions from exam-
ples within the no “older window”, rr is the correct predic-
tions from examples within the nr “recent” window and
P̂ = (ro + rr)∕(no + nr) . The result is used to calculate the
p-value from the standard normal distribution table and
is then compared against to 𝛼d and 𝛼w to determine if a
drift or warning alarm must be issued. If p-value < 𝛼d then
a drift is detected, similarly if p-value < 𝛼w then a warning
is signalled.

The authors recognised that for small sample sizes the
statistical test of equal proportions was ineffective, admit-
ting that Fisher’s Exact test [32] should have been used but
was ignored due to its high computational cost. Recent
work by de Lima Cabral and de Barros [22] proposes three
new methods using the Fisher’s Exact test, Fisher Propor-
tions Drift Detector (FPDD), Fisher-based Statistical Drift
Detectors (FSDD) and Fisher Test Drift Detector (FTDD).
All three methods use the same approach as STEPD in
regards to the two windows and the significance thresh-
olds. However, these approaches use different statistical
tests and measure the difference in errors rather than cor-
rect predictions.

FPDD uses the Fisher’s Exact test when the number of
errors or correct predictions in either window is smaller
than five, otherwise it operates exactly like STEPD. FSDD
extends FPDD such that instead of using the test of equal
proportions in situations where the number of errors or
correct predictions in either window is smaller than five,
the chi-square test for homogeneity of proportions is

(5)

T (ro, rr , no, nr) =
|ro∕no − rr∕nr| − 0.5 × (1∕no + 1∕nr)√

P̂ × (1 − P̂) × (1∕no + 1∕nr)

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

applied [17] FTDD explicitly uses the Fisher’s Exact test for
drift detection. Experimental results showed that all three
proposed methods outperformed STEPD, with very little
difference between themselves.

The McDiarmid Drift Detection Methods (MDDMs)
proposed by Pesaranghader et al. [58] uses a weighting
scheme to give substance to elements of a sliding win-
dow to enable faster concept drift detection. MDDM
applied McDiarmid’s inequality [52] to detect drifts in
evolving streams. The algorithms uses a sliding window
of size n which stores prediction results. If the prediction
is correct, a 1 is inserted into the window, otherwise a 0 is
inserted. Each element in the window is weighted such
that wi < wi+1 . This means that elements at the head of
the window have larger weights than that of the tail. Three
methods based on different weighting schemes are pre-
sented. MDDM-A which uses the arithmetic weighting
scheme, MDDM-G which uses the geometric weighting
scheme and MDDM-E which uses the Euler weighting
scheme. The arithmetic weighting scheme for MDDM-A
is given as

where d ≥ 0 is the difference between two consecutive
weights. The geometric scheme used by MDDM-G is given
as

where r ≥ 1 is the ratio of two consecutive weights. Finally,
the Euler scheme adopted for MDDM-E is given by the
authors as

where 𝜆 ≥ 0 . Prediction results are processed sequen-
tially and the weighted average of all elements within the
window is calculated alongside each arriving prediction
result. This is used to update two variables, 𝜇t

w
 the current

weighted average and 𝜇m
w

 the maximum weighted average
observed thus far. A drift is detected if there is a significant
difference between 𝜇m

w
 and 𝜇t

w
 . The significance is deter-

mined by McDiarmid’s inequality. The authors selected
popular concept drift datasets for experimental testing,
including Elec2, Forest Covertype and Poker Hand. These

(6)wi = 1 + (i − 1) × d

(7)wi = r(i−1)

(8)r = e𝜆

are explained in Sect. 5 of this paper. Their results found
that MDDMs outperformed existing methods including
EDDM, CUSUM and Page-Hinckley in terms of drift detec-
tion delay and classification accuracy.

4.2 Window-based detectors

Concept drift detection algorithms that are window-based
operate in a unique way. Rather than monitoring arriving
instances from a stream individually, sliding windows of
varying sizes, widths, are instead statistically monitored.
Larger windows correlate with higher performance accu-
racy, however they may also contain concept drift within
themselves that could escape unnoticed. Smaller windows
tend to facilitate better concept drift detection. The sizing
of a window is a fundamental problem when designing
any stream mining algorithm that utilises sliding windows.
Figure 2 provides an illustration of how a sliding window
operates.

The Hoeffding Tree is a mathematically justified algo-
rithm used to construct decision trees. The Very Fast Deci-
sion Tree (VFDT) is a heuristic algorithm proposed by
Domingos and Hulten [27] that is based on the Hoeffding
Tree. The VFDT is an algorithm which incrementally con-
structs a decision tree of incoming examples from a data
stream, without the need to store examples in memory.
A critical difference between the Hoeffding tree and tra-
ditional classification trees lies in the selection of which
node is used for splitting. Where traditional trees adopt
techniques such as Information Gain [60] to determine the
best node for splitting, VFDTs use the Hoeffding bound to
determine how many examples are necessary to identify
the best splitting node based on a user defined confidence
threshold. The Hoeffding bound states that, for a random
variable r in range R and where r̄ is the mean of n observa-
tions, with probability 1 − 𝛿 the true mean is at least r̄ − 𝜖
where 𝜖 is given as

It is also worth noting that the Hoeffding bound has been
suggested to be statistically inappropriate for constructing

(9)𝜖 =

√
R2ln(1∕𝛿)

2n

Fig. 2 Sliding window. Borders
identify two different windows

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

decision trees for data stream mining [21, 44, 63]. VFDTs
are, however, only suitable for static streams and include
no method for forgetting or restarting learning in the pres-
ence of concept drift. In order to enable VFDTs to account
for concept drift, Hulten et al. [41] introduced Concept-
adapting Very Fast Decision Tree (CVFDT). CVFDT monitors
a sliding window of examples. As new examples arrive,
CVFDT updates its node statistics by incrementing counts
of the new, arriving, examples. Counts that relate to the
oldest example in the window, which must be forgot-
ten, are decremented. If necessary, older examples are
removed from the window. Hulten et al. [41] states that if
the concept is changing then nodes that previously passed
the Hoeffding test may no longer pass. In this case, CVFDT
grows a second sub-tree with the new best attribute,
according to the Hoeffding bound, at its root. If the new
sub-tree’s accuracy outperforms that of the older tree then
it replaces it completely.

Criticising CVFDT for not offering mechanisms which
handle specific types of drift, such as gradual or abrupt,
Liu et al. [51] proposed the E-CVFDT algorithm which
utilises a caching mechanism. Their results show that
E-CVFDT yields a higher classification accuracy for grad-
ual concept drifts, but does not make any improvements
during sudden drifts.

The Adaptive Sliding Window (ADWIN) algorithm [8] is
another popular, window-based detector for coping with
concept drift. Assuming a stream of examples x1, x2,… , xn ,
produced by some distribution at time t, these serve as
inputs to ADWIN to produce sliding window W. Let 𝜇w
denote the average of examples contained within W and
𝜇w represent the unknown average of 𝜇t such that t ∈ W .
Let n be the length of W and n0 and n1 be the lengths of
W0 and W1 respectively, such that n = n0 + n1 . Algorithm 2
provides the algorithm for ADWIN.

Whenever two “large enough” subwindows of W dis-
play “distinct enough” averages, a drift is assumed to
have occurred, and the older of the two subwindows is
dropped. The terms “large enough” and “distinct enough”
are defined by the Hoeffding bound statistic. The average

of the two subwindows are tested to determine if they are
larger than 𝜖cut , given as |𝜇w0 − 𝜇w1| > 2𝜖cut where

This was considered computationally expensive since all
“large enough” subwindows are checked for potential cuts.
The window contents are also explicitly stored and mem-
ory requirements scale linearly with the window size. This
has the obvious drawback of potentially large memory and
processing requirements.

A solution to the resource demands of ADWIN is pro-
posed in the form of ADWIN2, provided in Algorithm 3.

In order to reduce the computational time when deter-
mining the best cutting point in the window, buckets are
adopted as a means for grouping data within the window.
Such buckets have two core elements; capacity and con-
tent. Each time a new example arrives from the stream, if
the element is “1” then a new bucket is created of content
1 and capacity equal to the number of elements arrived
since the last observed “1”. The remaining buckets are then
compressed.

In order to eliminate the problems of high memory
demands caused by the explicit storing of all window con-
tents, a variation of the exponential histogram [20] is used.
The performance of ADWIN2 is given by the authors in Big
O notation as O(logW) memory and cutpoints, with the
worst case per example equating to O(log2 W).

ADWIN2 is usually referred to directly as ADWIN in pub-
lished work and is considered one of the state-of-the-art
concept drift detectors. A common problem with sliding
windows is that the width usually needs to be predefined.
Varying the width of the window has an impact on per-
formance, thus applying the correct width value is impor-
tant. Typically this is done by means of some user-defined

(10)

m =
1

1∕n0 + 1∕n1

𝛿′ =
𝛿

n

𝜖cut =

√
1

2m
⋅ ln

4

𝛿′

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

parameter. ADWIN, however, is parameterless and the slid-
ing window is sized dynamically by the algorithm itself.
It also provides excellent performance due to the use of
buckets and the adaptation of the exponential histogram
to for compression.

4.3 Block-based ensemble detectors

In machine learning, an ensemble refers to a group or col-
lection of classifiers that work together to achieve greater
predictive performance. Block-based ensembles process
data in blocks, or chunks, of some specified size. The per-
formance of block-based ensemble methods is based
heavily on the chunk size. Similarly to that of sliding win-
dows, larger chunks tend to produce more accurate clas-
sifiers but may contain concept drift within themselves.
Alternatively, smaller based chunk sizes are typically more
effective at drift detection but produce inferior perform-
ing classifiers.

The Streaming Ensemble Algorithm (SEA) was first pro-
posed by Street and Kim [65] and is a block-based ensem-
ble learning algorithm. Individual classifiers are constructed
from examples read in sequential blocks (chunks), which are
then added to a fixed size ensemble. If the ensemble is full,
then the worst performing classifier is removed from the
ensemble entirely.

In their experiments, C4.5 [61] classifiers are used for
building the ensemble. The output prediction is given as
the simple majority voting of the entire ensemble. Results
for testing with concept drift showed that the algorithm
was capable of recovering quickly by discarding classifiers
trained on the outdated data.

A notable drawback to SEA is the way in which classifiers
are replaced. Merely replacing the worst performing classi-
fier with the most recently trained has the potential to still
leave several, outdated and poorly performing classifiers in
the ensemble, depending on the predetermined ensemble
size.

This is improved upon by Wang et al. [68]’s Accuracy
Weighted Ensemble (AWE), a block-based algorithm which
trains a new learning model with each new chunk of data in
a similar fashion to that of SEA. Where AWE improves upon
SEA is in the model replacement. AWE uses a version of the
mean square error to select n best classifiers to construct an
entirely new ensemble, thus removing all other outdated
and poorly performing classifiers. The algorithm for AWE is
given in Algorithm 4.

Let S denote a data stream in chunks S1, S2,… , Sn where
each chunk is of equal size and Ci represent some classifier
for Si . The weight of classifier Ci is the estimated prediction
error using the most recent data Sn . Since Sn is a data stream
and will produce examples in the form (𝐱, c) where 𝐱 is the
feature vector and c is the class label, the classification error
of Ci is 1 − f i

c
(x) where f i

c
(x) is the probability that x is an

example of class c. As such, the mean square error of Ci is
given by

Should a classifier predict randomly then the mean square
error can be given as:

A random classifier contains no meaningful knowledge of
the data, it makes predictions simply at random. Therefore
MSEr is used as a threshold for weighting and classifiers
whose error rate is at least equal to MSEr are discarded. The
weight of a classifier Ci is given as:

One drawback to AWE is the issue of chunk-size optimisa-
tion, however it should be noted that this is common in
all block-based ensemble methods. A second drawback
is the weighting function of AWE, in particular the MSEr
threshold. In environments with sudden concept drift it
can have a silencing effect on the entire ensemble result-
ing in no class prediction [14].

Brzeziński and Stefanowski [14] proposed the Accuracy
Updated Ensemble (AUE) algorithm as an improvement to
that of AWE. The algorithm for AUE is given in Algorithm 5.

(11)MSEi =
1

Sn

∑

(x,c)∈Sn

(
1 − f i

c
(x)

)2

(12)MSEr =
∑

c

p(c)(1 − p(c))2

(13)wi = MSEr −MSEi

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

AUE implements online classifiers enabling the indi-
vidual learning models to be updated directly rather than
only adjusting weights as per AWE. If no concept drift were
to occur between a series of chunks then the classifiers
would improve as if they were trained on one large chunk.
This means the block size can be reduced without risking
the performance accuracy of the ensemble classifiers. The
weighting function in AUE is a simplified version of that used
in AWE, and is given as

where MSEi is calculated identically as it is in AWE and 𝜖 is a
small constant value to allow weighting calculations when
MSEi is equal to 0.

Experimental results showed that AUE performed more
accurately than AWE on all similar datasets apart from one
where the performance accuracy was equal. A second
implementation of this algorithm, AUE2, was suggested
by Brzezinski and Stefanowski [15] which improves on the
memory usage and accuracy of AUE by implementing a
new weighting function and pruning base learners.

AUE overcomes the problems present in AWE. The
weighting function is redesign to cope with sudden con-
cept drifts, and the use of online classifiers allows smaller
chunk sizes to be used without a severe reduction in classi-
fier accuracy. However when no concept drift is occurring,
all classifiers are updated with arriving chunks. Should this
continue over multiple chunks then the outcome is that
ensemble classifiers lose their uniqueness.

Recent advances in concept drift detection using
block-based ensembles have introduced new algorithms
entirely. The Semi-supervised Adaptive Novel Class Detec-
tion and Classification over Data Stream (SAND) framework
is proposed by Haque et al. [38]. SAND consists of four

(14)wi =
1

MSEi + 𝜖
,

independent modules; Classification, Novel Class Detec-
tion, Change Detection and Update.

The framework maintains an ensemble of classifiers
based on k-nearest neighbour, using algorithms such as
k-means. The ensemble is initially trained on some training
data. When an instance arrives from some stream it is clas-
sified using majority voting. It also produces a confidence
value which indicates the ensemble’s confidence in the
prediction. These confidence values are stored in a sliding
window.

The Change Detection module monitors the distribu-
tion of confidence values within the sliding window. Any
significant change in the distribution is assumed to be
caused by the existence of concept drift. Once change
has been detected, a new chunk of data is used to update
the ensemble and the chunk boundaries are determined
dynamically. Updating is undertaken by requesting only
class labels for instances in the current chunk where
the confidence values were weak. The ensemble is then
updated with the new model and the sliding window is
reset.

Experimental results showed that SAND was capable of
achieving good prediction accuracy using limited labelled
data, however its execution time was inefficient due to the
high resource cost of the Change Detection module being
executed after the calculation of individual confidence
scores.

In order to attempt to remedy the poor execution time
of SAND, the Efficient Concept Drift and Concept Evolu-
tion Handling over Stream Data (ECHO) was proposed by
Haque et al. [39]. ECHO operates in the same manner as
SAND, however, the execution of the Change Detection
module is selective rather than at each calculation of the
confidence threshold. Two methods of selectively invoking
the Change Detection module. The first is to use a fixed

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

threshold 𝛾 , such as the classifier confidence threshold.
If the confidence of a test instance Cx is less than 𝛾 , the
Change Detection module is invoked. The second pro-
posed approach is to calculate the probability of invoca-
tion based on the Cx . A high confidence value would result
in a low probability of invocation.

ECHO performs competitively and is suitable for use in
environments which generate a low level of labelled data.
However, in stream mining there is an innate assump-
tion that class labels are always available with arriving
instances. Whilst this may not be the case in real world
scenarios, since concept drift detection is still in its infancy
it follows that this assumption can continue to be made.
Classifiers are only updated by labels for which there was
a low confidence value. While this does aid in situations
where labels are missing by lowering the demand for
labels, there is no existing mechanism for actually deter-
mining if a label is available or not. The result is that classi-
fiers may not be updated with information when there is
an available class label, which will negatively impact the
potential performance of the ensemble.

4.4 Incremental ensemble detectors

Incremental, or online, ensembles are another method
of ensemble based learning. In contrast to block-based
ensembles, incremental ensembles process elements
sequentially rather than in chunks.

Dynamic Weighted Majority (DWM) was first proposed
by Kolter and Maloof [46]. DWM is an ensemble of classi-
fiers referred to as ’experts’, where each is given an asso-
ciated weight. For some test example, the experts each
provide a prediction. This is then used in combination with
their weights to output the overall prediction in the form
of the class which has the largest accumulated weight
total.

Should an individual expert provide an incorrect pre-
diction, then its corresponding weight is reduced. If the
output prediction of DWM is incorrect then a new expert
is created and is assigned a weighting of 1. Experts are nor-
malised by uniform scaling such that the highest weight-
ing possible is 1. Experts with a weight lower than a user-
defined threshold value are removed. Through the use of
uniform weights and incremental learning, the authors
state that the DWM algorithm is capable of handling con-
cept drift.

DWM is considered one of the state-of-the-art concept
drift detection methods, and has been as a benchmark
algorithm in recent studies reviewing concept drift [7,
36, 76]. However, one particular problem with DWM is
the way in which experts are added. Rather than adding

a new expert when the ensemble prediction is incorrect,
the age of experts and historical prediction accuracy could
be taken into consideration. The base learner also explicitly
maintains examples in memory which has the potential to
consume large amounts of resources, depending on the
stream size. Other algorithms such as CVFDT and ADWIN
have already solved this issue so it follows that similar
implementations could be made to DWM.

4.4.1 Learn++ algorithms

The Learn++ algorithm family is a set of algorithms con-
sisting of an ensemble of incrementally trained classifi-
ers using batches of data and weighted majority voting.
According to Liao et al. [50] existing algorithms in the
Learn++ family include Learn++, Learn++.NC, Learn++.
MT, Learn++.NSE, Learn++.NIE and Learn++.CDS. Elwell
and Polikar [31] also mention the Learn++.MF algorithm
as part of the family.

The original Learn++ algorithm, suggested by
Polikar et al. [59], constructs k classifiers for a single batch
of incoming data. Examples from this batch are used to
train a single, first classifier. Prediction errors are used to
produce a weighted distribution of all examples, with
misclassified examples possessing a higher probability
of being sampled. Training the second classifier through
to the k classifier for the ensemble, training examples are
selected based on the weighted distribution of all exam-
ples. Classification errors are then used to update the
weighted distribution.

One problem with Learn++ is that all base classifiers are
persisted over time T, resulting in old data never being for-
gotten by the ensemble. This can cause a problem known
as ’outvoting’. Older classifiers in the ensemble may pro-
duce incorrect predictions due to the aged examples they
are trained on. If the outdated classifiers make up the
majority of the ensemble, even if their weights are small,
they can ’outvote’ the classifiers trained on newer data.
Thus through the majority weighted voting procedure,
produce incorrect predictions. Another problem is that
without forgetting old information, concept drift cannot
be accounted for.

Older algorithms in the Learn++ family sought to pro-
vide solutions to the concept drift problem. Learn++.MT
[53] solves the outvoting problem by using a dynamic
weighted voting technqiue. Learn++.NC (New Class),
proposed by Muhlbaier et al. [55], furthers this concept
and introduces a Dynamically Weighted Consult and
Vote (DW-CAV) mechanism which enables incremental
learning of new classes. Learn++.NC enabled base classi-
fiers within the ensemble to consult among themselves

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

when classifying a given example, and weights the deci-
sion of each base classifier. Classifiers check their predic-
tions against classes which they are trained and, based
on the decision of other classifiers, check if their pre-
diction is in-line with others. If a classifier’s decision is
an outlier compared to the majority, the classifier may
either reduce it’s voting weighting or withdraw from pre-
dicting altogether. These algorithms, however, are only
suitable for static, stationary, environments where the
distribution does not change.

Learn++.NSE, proposed by Muhlbaier and Polikar [54],
aims to account for various forms of concept drift. An
ensemble of classifiers is trained on the current data dis-
tribution D at time t. Change is monitored by examining
the performance of the ensemble over time. Learn++.
NSE will generate a new classifier and combine it with
the ensemble when the prediction error of the current
ensemble falls below some threshold. Classifiers are
weighted according to the time t they were instantiated,
such that newer classifiers have a larger weighting than
older classifiers during prediction.

Whilst Learn++.NSE aimed to address the issue of
evolving data, none of the existing Learn++ algorithms
accounted for class imbalance at this stage. Learn++.NIE
[24] extends Learn++.NSE, but incorporates evaluation
measures for data class imbalance, such as f-measure.
Learn++.NIE also implements sub-ensembles in place of
individual classifiers in order to reduce stochastic errors.
An alternative approach was proposed by Ditzler and
Polikar [25], whose Learn++.CDS algorithm instead uses
preprocessing with SMOTE, an oversampling method,
rather than changing the evaluation metric to account
for class imbalance. SMOTE adds instances to the minor-
ity class in order to create a more balanced dataset.

The comparative performance of the Learn++ algo-
rithms was reviewed by Liao et al. [50]. The performance
of each algorithm is dependent heavily on the base clas-
sifier used. This was especially apparent in environments
with imbalanced data and incremental learning. The cur-
rent state of the Learn++ algorithm family requires con-
siderable work to produce solutions that can cope with
concept drift and imbalanced data, although discussion
of the latter is out of scope for this research. Learn++.
NSE provides a starting point for using the Learn++ fam-
ily for concept drift detection. However it is outdated
and its approach weighting favours newly created clas-
sifiers during prediction which is a flawed approach; it
is entirely feasible that older classifiers in an ensemble
may be better equipped to make predictions than newer
classifiers.

5 Evaluation

In traditional machine learning scenarios, the typical
evaluation procedure is to train a model, cross-validate
and then test using metrics such as prediction accuracy
or f-score. For stream mining this approach is ineffec-
tive. Since stream data arrives online in a continuous and
sequential fashion, it is not possible to first train the model
and then test. Instead one of two methods can be used;
prequential evaluation, sometimes referred to as inter-
leaved-test-then-train, or holdout evaluation.

Prequential evaluation is implemented using the fol-
lowing procedure. For each arriving element from a stream
the model is first tested by predicting the class label, after
which the same element is used to train the model. Pre-
quential evaluation can be used in conjuction with sliding
windows and decaying factors to improve classification
results in evolving data streams. A full comparative assess-
ment is given by Gama et al. [35].

The holdout evaluation procedure offers an alternative
approach. This involves with-holding a subset of data exam-
ples from the classifier to be used as a training set at specific
time intervals, for example every one hundred thousand
instances. Algorithm 6, adapted from Bifet and Kirkby [9],
shows an example algorithm for holdout evaluation. The
most obvious problem for holdout is the acquisition of
examples for use as training data. A solution to this is to sys-
tematically store arriving samples from the stream at vary-
ing intervals. Similarly, ascertaining the adequate number
of examples to provide accurate evaluation measurements
also poses a challenge. It is suggested by Bifet and Kirkby [9]
that a test set in the region of tens of thousands of examples
is sufficient, however, this is an enormous potential range
and doesn’t provide a concise estimate.

Krempl et al. [49] states that a problem with evaluating
stream mining classifiers in general is a lack of benchmark
datasets for cross comparison. Instead, datasets are often
synthesised used tools such as MOA [10]. This is also a
problem for evaluating concept drift detection algorithms.

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

Few benchmark datasets exist for testing concept drift
detectors. The most popular dataset used for evaluat-
ing concept drift detection algorithms is the Electricity
Dataset [40]. This dataset is used in various concept drift
related research publications [7, 34, 46, 75]. This dataset
was taken from the Australian New South Wales electric-
ity market, in which electricity prices are not statically set.
Instead, the price fluctuates according to demand. The
dataset is constructed of 45,312 electricity prices which
were taken at 30 min intervals. Examples are labelled as
either “UP” or “DOWN” which reflect their current price in
comparison to the last 24 h. Another popular dataset is
the Forest Covertype [13] dataset. This consists of 581,012
instances of 54 attributes that describe various types of
forest cover of the Roosevelt National Forest in northern
Colorado. The KDD’99 dataset is well known and subject
to somewhat extreme temporal dependence. This dataset
contains information pertaining to simulated intrusions
in a military network environment. It contains 23 class
labels representing either normal traffic or some form of
intrusion. The dataset contains over 494,000 records of 41
features each. This dataset is of considerable age, but due
to the high level of temporal dependence has been used
in recent studies such as Zliobaite et al. [76]. The Poker
Hand dataset from UCI Machine Learning Repository [28]
contains one million records of 11 attributes that repre-
sent a poker hand of five cards from a standard 52 card
deck. Each card has two corresponding attributes, the suit
and the rank, and there is one additional attribute that
describes the hand, e.g. royal flush or full house. A dataset
similar to Poker Hand that contained more class labels was
used in the work of Cattral et al. [16]. The Airlines dataset
from Data Expo 2009 [42] contains 120 million records
of 13 attributes relating to flight departure and arrival
information from internal commercial flights in the USA
between October 1987 and April 2008. The target class
label is the arrival delay given in seconds, and the classifi-
cation goal is to determine the flight delay time given the
arrival and departure information. This dataset has been
used in the work of Ikonomovska et al. [43].

Another fundamental problem in evaluating drift
detectors stems from the use of classifier accuracy as an

evaluation metric. This has been criticised in recent litera-
ture [7, 12, 76] where it has been suggested that classifier
accuracy doesn’t reflect the performance of the concept
drift detector. Bifet [7] explains that drift detectors should
be evaluated in terms of their ability to handle false alarms,
their true detection rate and the time taken to correctly
identify an occuring drift. This is reflected in evaluation
criteria proposed by Basseville et al. [5] and Gustafsson
and Gustafsson [37], which are given in Table 3. These are
existing, historic metrics which capture properties of con-
cept drift detectors, however, at the time of writing there
appears only the work of Bifet et al. [11] utilises these met-
rics for evaluation.

These metrics have existed for over a decade, yet are
not used in published work. One possible reason for this
is a lack of frameworks which support these metrics. Each
must be independently calculated when implementing
models, which is time consuming and can increase com-
plexity. Since prediction accuracy is readily available in vir-
tually all machine learning frameworks, it’s of no surprise
that this metric is used to evaluate the impact of change
detectors. This is only bolstered by the idea that in most
instances the performance of the change detector itself
may be viewed as unimportant; only the performance of
the classifier truly matters.

The lack of an existing evaluation framework was an
issue that was addressed by Bifet et al. [11] where the
authors propose CD-MOA, a GUI extension to MOA (Mas-
sive Online Analysis). CD-MOA offers an interface for
evaluating change detectors. However, the evaluation
measures provided are again different. CD-MOA provides
information on time and memory resources, as well as a
metric called RAM-Hours which merges both time and
memory together. The most recent version of CD-MOA
also provides a measure based on Cohen’s Kappa statistic
[19], which compares observed accuracy with an expected
accuracy.

A further issue with the metrics of Basseville et al. [5]
and Gustafsson and Gustafsson [37], as given in Table 3,
is their numerousness. Having five independent statisti-
cal measures to evaluate a drift detector obfuscates a true
representation of performance. In order to tackle this,

Table 3 Drift detector
evaluation metrics

Metric Explanation Formula

MTFA Mean time to false alarms. Frequency of false alarm
triggers

E𝜃0
(ta)

FAR False alarm rate 1/MTFA
MTD Mean time to detection. How quickly occurring drift

is identified
E(ta − t0 + 1 ∣ ta ≥ t0)

ARL Average run length. Time to alarm after change of
size 𝜃

E(ta − k ∣ change of size 𝜃 at time k)

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

Bifet [7] proposed a new single metric, the Mean Time
Ratio (MTR), which encapsulates the ratio between MTFA
and MTD metrics. The motivation of this was that the MTFA
and MTD metrics are arguably the two most important,
thus providing a single metric representing these elimi-
nates the confusion of having five metrics. The MTR metric
is given as follows.

Ultimately, the problem with current evaluation metrics is
a lack of agreement and absence of gold-standard tech-
niques. The metrics presented in Table 3 represent perfor-
mance characteristics of a change detector, but numer-
ousness and a lack of frameworks has left them virtually
unused. The MTR metric aims to eliminate the problem of
numerousness by providing a single metric which com-
bines both the mean time to false alarms and the mean
time to detection. CD-MOA provides a framework for
evaluation, but provides a different set of metrics within
its GUI for evaluating drift detectors. The result is that drift
detectors are evaluated based on their impact to classifier
accuracy, however this doesn’t truly evaluate the concept
drift detector itself. Further research should aim to estab-
lish a standardised set of statistical evaluation metrics that
encapsulate the various performance characteristics of a
drift detector, as well as its impact on classifier accuracy.

Existing statistical measures focus on the evaluation
of baseline classifiers. The Kappa statistic proposed by
Cohen [19] is a statistical measure for evaluating clas-
sification results when using imbalanced data, both in
the context of streaming data and in traditional batch
learning. The Kappa statistic is defined as

where P is the accuracy of some base classifier and Pran is
the accuracy of a classifier that predicts labels at random.

The Kappa statistic, however, is not a suitable metric
when temporal dependence exists within the data, as
shown by Zliobaite et al. [76]. Instead, the authors pro-
pose a new statistic called Kappa Temporal, defined as

where Pper is the probability of a Persistent classifier, a
classifier that simply predicts that the next class label
will the same as the immediately previously known class
label. Using this measure, trained classifiers performing
correctly will achieve a kper score of 1, or if performing

(15)
MTR(𝜃) =

MTFA

MTD
× (1 −MDR) =

ARL(0)

ARL()

× (1 −MDR)

(16)k =
P − Pran

1 − Pran
,

(17)kper =
P − Pper

1 − Pper
,

worse than the Persistent classifier Pper , a score of 0. The
substantial drawback to the Kappa Temporal measure is
the direct inverse to the Cohen’s Kappa statistic described
above. Kappa Temporal is ineffective for imbalanced data-
sets since a Majority class classifier, a classifier that simply
predicts the class with the largest prior probabilities, will
outperform that of a Persistent classifier.

Zliobaite et al. [76] offer a solution to this problem by
combining both Cohen’s Kappa statistic and the Kappa
Temporal statistic together, forming the Combined Meas-
ure [76]. This is given as

This Combined Measure will provide a statistical evalua-
tion score of 0 if either the Kappa or the Kappa Temporal
metrics fail. This provides a single evaluation metric that
encapsulates a classifier’s ability to cope with both tempo-
ral dependence and imbalanced data. However, it is only
a statistical metric and does not offer any mechanism for
base classifiers to handle temporal dependence during the
classification process.

Further evidence of the need for additional evalua-
tion criteria outwith of classifier performance is shown by
Bifet [7]. A “No Change” detector is compared to state-of-
the-art drift detectors using a Naive Bayes classifier with
both the Electricity and Forest Covertype datasets. The No
Change detector is a drift detector that performs no sta-
tistical monitoring of the stream data but instead outputs
a false positive change every 60 instances. The results of
this show that the No Change detector outperforms state-
of-the-art detectors in terms of accuracy on both datasets.
This reinforces the concept that the use of accuracy as a
metric for the performance of concept drift detectors is
insufficient.

A possible direction for future research is to design
and produce new statistical evaluation criteria. Krawc-
zyk et al. [48] suggests that metrics such as memory con-
sumption, update time and decision time of drift detectors
should be taken into account for evaluation. New metrics
should not focus solely on the predictive accuracy of the
base classifier but incorporate performance factors of the
drift detector. A potential start would be to find a suitable
statistical combination to incorporate classifier accuracy
with the metrics given in Table 3. This would provide a
new, harmonious statistical measure that represents both
the drift detector and classifier performance.

The work of Bifet [7] not only suggests that accuracy
is a poor metric for evaluating drift detectors, but also
that the existence of temporal dependence within data-
sets that contain concept drift is the cause the false alarm
phenomenon found with the superior performance of the
No Change detector.

(18)K+ =
√

max(0, k)max(o, kper)

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

Te m p o r a l d e p e n d e n c e i s d e f i n e d b y
Zliobaite et al. [76] as “observations that are not inde-
pendent from each other with respect to time of arrival”
[76, p. 459]. In other words, an arriving stream element is
not independent from the preceding element in regards
to its time of arrival. Temporal dependence itself is not a
new issue, and is a known problem in the field of time-
series analysis [6]. However, its effects upon stream clas-
sification and concept drift are relatively unexplored.
At the time of writing there exists very little work in
the context of handling temporal dependence during
stream mining and concept drift detection. The emer-
gence of temporal dependence in streaming data has
started to spawn new research, such as using temporal
dependence in streaming data to assist in change detec-
tion using a Candidate Change Point model [30].

In a typical streaming scenario, arriving elements are
assumed to be independent such that the class labels yt
are dependent on the features vectors xt . When temporal
dependence exists, the class labels are not independent
and therefore are likely to be dependent on the previ-
ously seen labels. Temporal dependence is given math-
ematically by Zliobaite et al. [76] as:

where t is some timestamp and y are class labels. The
authors note that this is known as first order temporal
dependence, since only the immediately previous label
is used for observation. Temporal dependence of the lth
order observes the previous l labels. Temporal dependence
for a class label is positive if

or negative if the inverse is true.
Zliobaite et al. [76] propose two approaches to

account for temporal dependence in the context of
stream classification. The first approach, labelled as
the Temporal Correction classifier, assumes a model of
temporal dependence which is used to formulate an
expression for estimating the posterior probabilities. The
authors consider only first order dependence in this pro-
posal, and give the expression for estimating the maxi-
mum posterior probability as:

(19)P(yt , yt−1) ≠ P(yt)P(yt−1),

(20)P(yt , yt−1) < P(yt)P(yt−1)

(21)
P(yt = i ∣ yt−1)

P(yt = i)
P(yt = i ∣ Xt)

While this approach is simplistic, it only accounts for first
order temporal dependence. While the assumption that
the previous label will be known is commonly made in
stream classification, any delay or error in the arrival of
labels will negatively impact the performance of this
method.

The second method proposed by the authors is
described as Temporally Augmented classifier. In con-
trast to the Temporal Correction classifier, this method
relies solely on preprocessing techniques. The approach
involves augmenting the observation feature vector X
with previously seen labels. A classification model is then
trained using these augmented vectors. The prediction
ŷt is then given as:

where ht is a classification model that estimates the poste-
rior probabilities and l is the length of temporal depend-
ence orders. This approach is not limited to the assump-
tion of first order dependence, as with the first proposed
model. However there still exists the assumption that the
previous labels will always be known.

As noted by Zliobaite et al. [76], their approach to
handling temporal dependence with the Temporally
Augmented classifier is simplistic, and that it is often
outperformed by a Persistent classifier; a classifier that
predicts that the next arriving class label is the same
as the previously seen class label. This finding was also
stated by Bifet [7].

Table 4 shows the results of a trained Persistent clas-
sifier on both the Electricity and Forest Covertype data-
sets. It both cases, particularly in the Forest Covertype
dataset, the Persistent classifier outperforms the state-
of-the-art classifiers using Temporally Augmented clas-
sifier to account for temporal dependence, according to
the results of Bifet [7]. Simply predicting the next label
will be the same as the last seen label produces higher
predictive accuracy than handling temporal dependence
using the Temporally Augmented approach.

The proposed Temporally Augmented approach for
handling temporal dependence also only aids the base-
line classifier. It does nothing to allow the drift detec-
tor itself to account for temporal dependence. The false
alarm phenomenon occurs when drift detectors are
subject to temporal dependence within the data, as
described by Bifet [7]. As such, it should be accounted for
at the drift detection level. The current state-of-the-art
technique for handling temporal dependence provides
no mechanisms for coping at drift detector level, it only
offers a basic wrapper for baseline classifiers. Further
research is required to investigate the development of
new drift detection techniques, or augmentations to

(22)ŷt = ht(Xt , yt−1,… , yt−l),

Table 4 Persistent classifier performance

Dataset Persistent clas-
sifier accuracy
(%)

Electricity 85.33
Forest covertype 95.06

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

existing drift detection solutions, that can account for
temporal dependence in streaming data.

6 Conclusions and future research

Stream mining is a challenging problem but has valuable
potential yields, especially in industry and commercial
applications. Data streams offer an untapped source of
qualitative and quantitative information that could be
used in a multitude of different ways to boost businesses
in terms of profit and efficiency. However the unbound
size, unknown speed and varying characteristics of data
streams make applying machine learning techniques a
complex task. Whilst online classifiers capable of pro-
cessing streaming data have been proposed, the task
is further obfuscated by concept drift. Evolving data
streams with concept drift have a distribution that shifts
over time, and at varying rates of severity. Classifiers
must be capable of handling concept drift by forgetting
outdated information when a shift in distribution occurs.

The in-depth literature review provided in this
research shows that multiple approaches for handling
concept drift are available. Statistical methods monitor
the underlying distribution over time, signalling alarms
when a drift has been detected. Window based meth-
ods use sliding windows to detect occurring drifts rather
than monitoring the whole distribution. Ensemble based
detectors handle concept drift by replacing outdated
classifiers within ensembles through some form of a
weighted voting mechanism.

Through an in-depth, critical review of existing
literature, this paper has identified the following
shortcomings:

1. Outdated state-of-the-art drift detection methods.
2. A lack of benchmark datasets for evaluation.
3. Flawed evaluation metrics, including an over-reliance

on classifier accuracy.
4. The inability of drift detectors to cope with additional

data anomalies, such as temporal dependence.

In order to address these shortcomings, the following
points address each of the identified shortfalls above in
turn, providing direction for future research within the
domain of stream mining and concept drift detection.

The current state-of-the-art consists of algorithms
that are now somewhat dated, such as ADWIN [8], and
have known flaws in them. While there have been a num-
ber of attempts to further the state-of-the-art, many
methods still suffer from substantial drawbacks. Statisti-
cal based methods such as DDM and EDDM have known
issues in terms of their ability to handle varying types of

drifts and in producing high rates of false alarms. Recent
approaches such as DDM-OCI and LFR have aimed to
solve these problems, but have fallen short. Window-
based approaches like E-CVFDT still falter under sudden
concept drifts. Block-based ensemble methods such as
AWE and AUE are subject to dependency on the chunk
size and weighting mechanisms. Incremental-based
algorithms such as DWM could be improved by not
explicitly storing instances and changing the statistical
requirements for adding new classifiers to also consider
classifier age and performance history.

A lack of benchmark datasets for evaluating is another
crucial shortfall. As a result of a lack of benchmark datasets,
it is common for datasets to be simulated using generators
to account for the lack of benchmark datasets. While simu-
lating data does work, the number of available generators
is substantial and each often relies on various user speci-
fied parameters. The selection of the most suitable genera-
tor and corresponding parameters for a particular problem
is open to interpretation. Future research should aim to
produce gold-standard datasets, which would provide a
collection of agreeable, accepted datasets to be used for
experimentation.

Existing literature has exposed drawbacks in the metrics
commonly used for evaluation drift detectors [7, 12, 76].
Some existing proposed metrics are given in Table 3, but
these are particularly historic and are virtually unused in
published work. This study suggests the reason for this is
an issue of numerousness coupled with a lack of existing
frameworks which incorporate these metrics. This research
proposes that future research should aim to develop new
statistical measures that capture performance properties
of the drift detector and also potentially combine these
with performance attributes of the baseline classifier to
provide harmonious, statistically relevant metrics. An
example of this is the Mean Time Ratio metric proposed by
Bifet et al. [11], however this only represents the trade off
between the average time to false alarms and true change
detection.

The final suggestion for future research is concerned
with enabling drift detection algorithms to cope with
other data anomalies such as temporal dependence. This
paper has discussed and portrayed the problem of tem-
poral dependence and its impact of drift detectors. The
current-state-of-the-art for handling this is merely a wrap-
per for the baseline classifier that augments the feature
vector of arriving instances. However, temporal depend-
ence should be handled at the drift detector level. The
role of the classifier is well established in machine learn-
ing contexts; it is not classifier’s responsibility to handle
anomalies in the data stream. Concept drift is an anomaly
that occurs in real-time data streams, and as such concept
drift detection algorithms have been developed to work in

Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0

conjunction with classifiers. It follows that since temporal
dependence is also a data anomaly, this should be han-
dled by specifically designed algorithmic solutions that
can cope with both temporal dependence and concept
drift. The structural framework proposed by Yu and Abra-
ham [73] in HLFR is of particular interest in this context and
forms a good starting point for future research in this field.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of
interest regarding the publication of this research work.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distri-
bution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

References

 1. Aggarwal CC (2007) Data streams: models and algorithms, vol
31. Springer, Berlin

 2. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Mod-
els and issues in data stream systems. In: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on prin-
ciples of database systems. ACM, pp 1–16

 3. Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda
R, Morales-Bueno R (2006) Early drift detection method. In:
Fourth international workshop on knowledge discovery from
data streams, vol 6. pp 77–86

 4. Barros RS, Cabral DR, Gonçalves PM Jr, Santos SG (2017) RDDM:
Reactive drift detection method. Expert Syst Appl 90:344–355

 5. Basseville M, Nikiforov IV et al (1993) Detection of abrupt
changes: theory and application, vol 104. Prentice Hall, Engle-
wood Cliffs

 6. Beck N, Katz JN, Tucker R (1998) Taking time seriously: time-
series-cross-section analysis with a binary dependent variable.
Am J Polit Sci 42(4):1260–1288

 7. Bifet A (2017) Classifier concept drift detection and the illusion
of progress. In: International conference on artificial intelligence
and soft computing. Springer, pp 715–725

 8. Bifet A, Gavalda R (2007) Learning from time-changing data with
adaptive windowing. In: Proceedings of the 2007 SIAM interna-
tional conference on data mining. SIAM, pp 443–448

 9. Bifet A, Kirkby R (2009) Data stream mining a practical approach,
University of WAIKATO, Technical report

 10. Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: Massive
online analysis. J Mach Learn Res 11:1601–1604

 11. Bifet A, Read J, Pfahringer B, Holmes G, Zliobaite I (2013a) CD-
MOA: change detection framework for massive online analy-
sis. In: International symposium on intelligent data analysis.
Springer, pp 92–103

 12. Bifet A, Read J, Zliobaite I, Pfahringer B, Holmes G (2013b) Pitfalls
in benchmarking data stream classification and how to avoid
them. In: Joint European conference on machine learning and
knowledge discovery in databases. Springer, pp 465–479

 13. Blackard JA, Dean DJ (1998) Comparative accuracies of neural
networks and discriminant analysis in predicting forest cover

types from cartographic variables. In: Proceedings of the second
southern forestry GIS conference. pp 189–199

 14. Brzeziński D, Stefanowski J (2011) Accuracy updated ensemble
for data streams with concept drift. In: International conference
on hybrid artificial intelligence systems. Springer, pp 155–163

 15. Brzezinski D, Stefanowski J (2014) Reacting to different types of
concept drift: the accuracy updated ensemble algorithm. IEEE
Trans Neural Netw Learn Syst 25(1):81–94

 16. Cattral R, Oppacher F, Deugo D (2002) Evolutionary data mining
with automatic rule generalization. Recent Adv Comput Comput
Commun 1(1):296–300

 17. Chernoff H, Lehmann EL (1954) The use of maximum likeli-
hood estimates in 𝜒2 tests for goodness of fit. Ann Math Stat
25(3):579–586. https ://doi.org/10.1214/aoms/11777 28726

 18. Chu F, Zaniolo C (2004) Fast and light boosting for adaptive min-
ing of data streams. In: Pacific-Asia conference on knowledge
discovery and data mining. Springer, pp 282–292

 19. Cohen J (1960) A coefficient of agreement for nominal scales.
Educ Psychol Meas 20(1):37–46. https ://doi.org/10.1177/00131
64460 02000 104

 20. Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream
statistics over sliding windows. SIAM J Comput 31(6):1794–1813

 21. De Rosa R, Cesa-Bianchi N (2015) Splitting with confidence in
decision trees with application to stream mining. In: 2015 Inter-
national joint conference on neural networks (IJCNN). IEEE, pp 1–8

 22. de Lima Cabral DR, de Barros RSM (2018) Concept drift detection
based on Fisher’s exact test. Inf Sci 442:220–234

 23. de Mello RF, Vaz Y, Grossi CH, Bifet A (2019) On learning guaran-
tees to unsupervised concept drift detection on data streams.
Expert Syst Appl 117:90–102

 24. Ditzler G, Polikar R (2010) An ensemble based incremental
learning framework for concept drift and class imbalance. In:
The 2010 international joint conference on neural networks
(IJCNN). IEEE, pp 1–8

 25. Ditzler G, Polikar R (2013) Incremental learning of concept drift
from streaming imbalanced data. IEEE Trans Knowl Data Eng
25(10):2283–2301

 26. Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in nonstation-
ary environments: a survey. IEEE Comput Intell Mag 10(4):12–25

 27. Domingos P, Hulten G (2000) Mining high-speed data streams.
In: Proceedings of the sixth ACM SIGKDD international confer-
ence on knowledge discovery and data mining. ACM, pp 71–80

 28. Dua D, Graff C (2017) UCI machine learning repository. http://
archi ve.ics.uci.edu/ml. Accessed 14 Oct 2019

 29. Duarte J, Gama J, Bifet A (2016) Adaptive model rules from
high-speed data streams. ACM Trans Knowl Discov Data (TKDD)
10(3):30

 30. Duong QH, Ramampiaro H, Nørvåg K (2018) Applying temporal
dependence to detect changes in streaming data. Appl Intell
48:4805–4823

 31. Elwell R, Polikar R (2011) Incremental learning of concept
drift in nonstationary environments. IEEE Trans Neural Netw
22(10):1517–1531

 32. Fisher RA (1992) Statistical methods for research workers. In:
Breakthroughs in statistics. Springer, pp 66–70

 33. Gama J (2010) Knowledge discovery from data streams. CRC
Press, Boca Raton

 34. Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with
drift detection. In: Brazilian symposium on artificial intelligence.
Springer, pp 286–295

 35. Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream
learning algorithms. Mach Learn 90(3):317–346

 36. Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014)
A survey on concept drift adaptation. ACM Comput Surv (CSUR)
46(4):44

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1412 | https://doi.org/10.1007/s42452-019-1433-0 Review Paper

 37. Gustafsson F, Gustafsson F (2000) Adaptive filtering and change
detection, vol 1. CiteSeer, Princeton

 38. Haque A, Khan L, Baron M (2016a) Sand: semi-supervised adap-
tive novel class detection and classification over data stream. In:
AAAI, pp 1652–1658

 39. Haque A, Khan L, Baron M, Thuraisingham B, Aggarwal C (2016b)
Efficient handling of concept drift and concept evolution over
stream data. In: 2016 IEEE 32nd international conference on data
engineering (ICDE). IEEE, pp 481–492

 40. Harries M (1999) Splice-2 comparative evaluation: electricity
pricing. Technical report, The University of South Wales

 41. Hulten G, Spencer L, Domingos P (2001) Mining time-changing
data streams. In: Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data mining.
ACM, pp 97–106

 42. Ikonomovska E (2008) Data Expo 2009: airline on time data.
https ://doi.org/10.7910/DVN/HG7NV 7

 43. Ikonomovska E, Gama J, Džeroski S (2011) Learning model trees
from evolving data streams. Data Min Knowl Discov 23:128–168.
https ://doi.org/10.1007/s1061 8-010-0201-y

 44. Jaworski M, Duda P, Rutkowski L (2017) New splitting criteria for
decision trees in stationary data streams. IEEE Trans Neural Netw
Learn Syst 29(6):2516–2529

 45. Kelly MG, Hand DJ, Adams NM (1999) The impact of changing
populations on classifier performance. In: Proceedings of the
fifth ACM SIGKDD international conference on knowledge dis-
covery and data mining. ACM, pp 367–371

 46. Kolter JZ, Maloof MA (2003) Dynamic weighted majority: a new
ensemble method for tracking concept drift. In: Third IEEE inter-
national conference on data mining, 2003, ICDM. IEEE, pp 123–130

 47. Krawczyk B (2016) Learning from imbalanced data: open chal-
lenges and future directions. Prog Artif Intell 5(4):221–232

 48. Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M (2017)
Ensemble learning for data stream analysis: a survey. Inf Fusion
37:132–156

 49. Krempl G, Zliobaite I, Brzeziński D, Hüllermeier E, Last M, Lemaire
V, Noack T, Shaker A, Sievi S, Spiliopoulou M et al (2014) Open
challenges for data stream mining research. ACM SIGKDD Explor
Newsl 16(1):1–10

 50. Liao J, Zhang J, Ng WW (2016) Effects of different base classifiers
to learn++ family algorithms for concept drifting and imbal-
anced pattern classification problems. In: 2016 International
conference on machine learning and cybernetics (ICMLC), vol 1.
IEEE, pp 99–104

 51. Liu G, Cheng H, Qin Z, Liu Q, Liu C (2013) E-CVFDT: An improv-
ing CVFDT method for concept drift data stream. In: 2013 Inter-
national conference on communications, circuits and systems
(ICCCAS), vol 1. IEEE, pp 315–318

 52. McDiarmid C (1989) On the method of bounded differences. In:
London mathematical society lecture note series. Cambridge
University Press, pp 148–188. https ://doi.org/10.1017/CBO97
81107 35994 9.008

 53. Muhlbaier M, Topalis A, Polikar R (2004) Learn++.MT: a new
approach to incremental learning. In: International workshop
on multiple classifier systems. Springer, pp 52–61

 54. Muhlbaier MD, Polikar R (2007) Multiple classifiers based incre-
mental learning algorithm for learning in non-stationary envi-
ronments. In: 2007 International conference on machine learn-
ing and cybernetics, vol 6. IEEE, pp 3618–3623

 55. Muhlbaier MD, Topalis A, Polikar R (2009) Learn++.NC: Combin-
ing ensemble of classifiers with dynamically weighted consult
and vote for efficient incremental learning of new classes. IEEE
Trans Neural Netw 20(1):152–168

 56. Nishida K, Yamauchi K (2007) Detecting concept drift using sta-
tistical testing. In: International conference on discovery science.
Springer, pp 264–269

 57. Page ES (1954) Continuous inspection schemes. Biometrika
41(1/2):100–115

 58. Pesaranghader A, Viktor HL, Paquet E (2018) Mcdiarmid drift
detection methods for evolving data streams. In: 2018 Interna-
tional joint conference on neural networks (IJCNN). IEEE, pp 1–9

 59. Polikar R, Upda L, Upda SS, Honavar V (2001) Learn++: an incre-
mental learning algorithm for supervised neural networks. IEEE
Trans Syst Man Cybern Part C (Appl Rev) 31(4):497–508

 60. Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81–106

 61. Quinlan JR (1993) C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco

 62. Reinsel D, Gantz J, Rydning J (2017) Data age 2025: the evolution
of data to life-critical don’t focus on big data; focus on the data
that’s big. Technical reports on IDC. https ://www.seaga te.com/
www-conte nt/our-story /trend s/files /Seaga te-WP-DataA ge202
5-March -2017.pdf. Accessed 14 Oct 2019

 63. Rutkowski L, Pietruczuk L, Duda P, Jaworski M (2012) Decision
trees for mining data streams based on the McDiarmid’s bound.
IEEE Trans Knowl Data Eng 25(6):1272–1279

 64. Sethi TS, Kantardzic M (2017) On the reliable detection of con-
cept drift from streaming unlabeled data. Expert Syst Appl
82:77–99

 65. Street WN, Kim Y (2001) A streaming ensemble algorithm (sea)
for large-scale classification. In: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM, pp 377–382

 66. Wald A (1973) Sequential analysis. Courier Corporation, North
Chelmsford

 67. Wang H, Abraham Z (2015) Concept drift detection for stream-
ing data. In: 2015 International joint conference on neural net-
works (IJCNN). IEEE, pp 1–9

 68. Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data
streams using ensemble classifiers. In: Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, pp 226–235

 69. Wang S, Minku LL, Ghezzi D, Caltabiano D, Tino P, Yao X (2013)
Concept drift detection for online class imbalance learning. In:
The 2013 international joint conference on neural networks
(IJCNN). IEEE, pp 1–10

 70. Webb GI, Hyde R, Cao H, Nguyen HL, Petitjean F (2016) Charac-
terizing concept drift. Data Min Knowl Discov 30(4):964–994

 71. Widmer G, Kubat M (1993) Effective learning in dynamic envi-
ronments by explicit context tracking. In: European conference
on machine learning. Springer, pp 227–243

 72. Yang M, Rashidi L, Rajasegarar S, Leckie C, Rao AS, Palaniswami
M (2018) Crowd activity change point detection in videos via
graph stream mining. In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops. pp
215–223

 73. Yu S, Abraham Z (2017) Concept drift detection with hierarchical
hypothesis testing. In: Proceedings of the 2017 SIAM interna-
tional conference on data mining. SIAM, pp 768–776

 74. Zliobaite I (2010) Learning under concept drift: an overview.
ArXiv preprint arXiv :10104 784

 75. Zliobaite I (2013) How good is the electricity benchmark for
evaluating concept drift adaptation. ArXiv preprint arXiv :13013
524

 76. Zliobaite I, Bifet A, Read J, Pfahringer B, Holmes G (2015) Evalua-
tion methods and decision theory for classification of streaming
data with temporal dependence. Mach Learn 98(3):455–482

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Wares 2019 Coversheet.pdf
	10.1007%2Fs42452-019-1433-0.pdf

