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Abstract
Mining and analysing streaming data is crucial for many applications, and this area of research has gained extensive 
attention over the past decade. However, there are several inherent problems that continue to challenge the hardware 
and the state-of-the art algorithmic solutions. Examples of such problems include the unbound size, varying speed and 
unknown data characteristics of arriving instances from a data stream. The aim of this research is to portray key challenges 
faced by algorithmic solutions for stream mining, particularly focusing on the prevalent issue of concept drift. A compre-
hensive discussion of concept drift and its inherent data challenges in the context of stream mining is presented, as is a 
critical, in-depth review of relevant literature. Current issues with the evaluative procedure for concept drift detectors is 
also explored, highlighting problems such as a lack of established base datasets and the impact of temporal dependence 
on concept drift detection. By exposing gaps in the current literature, this study suggests recommendations for future 
research which should aid in the progression of stream mining and concept drift detection algorithms.
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1 Introduction

The global datasphere is a notional environment in which 
data produced worldwide is contained. According to Rein-
sel et al. [62], the global datasphere contained over 20 ZB 
of data (20 billion TB) in 2017. Its growth is expected to 
continue rapidly, and by 2025 it is hypothesised to contain 
160 ZB of data. Such exponential growth is due, in part, 
to hardware developments and an increase in user avail-
ability and accessibility.

Data is now generated at a near constant and limitless 
rate, resulting from an array of devices, networks and eve-
ryday tasks such as credit card transactions and mobile 
phones [1]. Data arriving online and in a sequential, con-
tinuous fashion is known as a data stream. These data 
streams provide a potential source of valuable quantita-
tive and qualitative data, providing it can be extracted in 
a timely manner.

Adapted machine learning techniques can be used 
to harvest interesting information from the stream in a 
process known as stream mining. However, the volume, 
velocity and temporal nature of the arriving data can cause 
complex challenges for stream mining. Unlike stationary 
data in traditional batch learning scenarios, streaming data 
can be looked at only once and is unbound in size. This is 
an inherent problem for streaming data and poses a chal-
lenge for real time processing.

Concept drift is another inherent problem, caused by 
streaming data changing, or evolving, over time. Concept 
drift also occurs at varying rates of severity. A shift in the 
underlying distribution can result in the feature vectors of 
arriving instances no longer reflecting the class label. This 
causes a negative impact upon the reliability and accu-
racy of classifiers that make predictions using the current 
distribution.
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This paper provides a critical review of stream mining 
with a focus on stream mining challenges, concept drift 
detection algorithms and problems with their evaluative 
process such as a lack of established datasets. This research 
is primarily concerned with supervised data stream min-
ing and drift detection methods. Literature and techniques 
involving unsupervised approaches, such as Sethi and 
Kantardzic [64] and de Mello et al. [23], are not reviewed. 
Unlike existing reviews such as Gama et al. [36], this paper 
reviews modern, recent approaches to handling concept 
drift, as well as established methods covered in earlier 
reviews. Ditzler et al. [26] provides a summary of the chal-
lenges and approaches for learning in both static and 
evolving data streams. However, their review lacks detail 
and depth in their explanation of techniques and instead. 
Similarly, the recent review by Krawczyk et al. [48] primarily 
focuses on ensemble methods, and only briefly highlights 
the most popular non-ensemble based techniques. The 
timeliness of this review is of particular interest. Success-
ful mining of data streams can potentially provide rich 
quantitative and qualitative information. Such informa-
tion could have a tremendous impact on business prac-
tices across various industries, such as oil and gas where 
streaming data is abundant. However, because of the chal-
lenges posed by stream mining it is relatively unharnessed. 
This research suggests that the reason for stream mining 
not be fully harnessed is that the domain of concept drift 
detection is not progressing at a quick enough pace. For 
example, the domain of imbalanced data, in the context 
of stream mining, has produced various adaptations for 
algorithms to handle class imbalance, such as DDM-OCI 
[69], LFR [67], Learn++.NIE [24] and Learn++.CDS [25]. The 
field of class imbalance in stream mining has also pub-
lished recent reviews that provide timely suggestions for 
future research [47], whereas in contrast the reviews for 
concept drift are several years old [36] and do not encap-
sulate recent advancements.

The main contributions of this paper are outlined as 
follows:

1. Critically and extensively review existing literature, dis-
cussing both well established and recent concept drift 
detection techniques.

2. Categorise existing methods for concept drift detec-
tion based on their underlying model. Existing meth-
ods are categorised as either statistical based, window 
based or ensemble based.

3. Identify and discuss clear gaps in the literature areas 
for improvement, particularly relating to current evalu-
ative measures and the availability of public datasets 
for benchmarking.

4. Provide possible avenues for future research that 
address current research gaps in the existing literature.

This paper is structured as follows. Section 2 provides a 
general overview of stream mining, its key differences 
from traditional batch learning and design requirements 
for stream mining algorithms. Section 3 focuses on con-
cept drift, providing definitions and discussing algorithmic 
requirements. Section 4 categorises and critically reviews 
existing concept drift detection techniques. Section 5 
discusses evaluation methods, as well as highlighting the 
concept of temporal dependence. Section 6 concludes the 
paper and offers suggestion for future research direction.

2  Stream mining overview

Data streams posess specific and unique characteristics 
that differentiate them from other forms of data. In tradi-
tional machine learning contexts, the data is often referred 
to as “batch” data. That is, all of the data is immediately 
available in its entirety and is stored in memory. This is 
of stark contrast to stream mining, where data streams 
produce elements in a sequential, continuous fashion, 
and may also be impermanent, or transient, in nature [2, 
33]. This means stream data may only be available for a 
short time. The difference between traditional methods 
and data streams is described by Babcock et al. [2] in the 
following ways:

1. Data elements in the stream arrive online.
2. The system has no control over the order in which data 

elements arrive to be processed, either within a data 
stream or across data streams.

3. Data streams are potentially unbound in size.
4. Once an element from a data stream has been pro-

cessed, it is discarded or archived. It cannot be 
retrieved easily unless it is explicitly stored in memory, 
which is small relative to the size of data streams.

The unique characteristics of a data stream contribute to 
the challenges in processing its arriving elements. Since 
batch data is persistent, it can be queried once in its 
entirety and individual data elements can be accessed at 
random. Data streams however, since transient, must be 
queried continuously by the algorithm. The data elements 
in the stream cannot be accessed at random; they can only 
be accessed in the sequence in which they arrive from the 
stream. The key differences between processing traditional 
batch data and stream data are shown Table 1.

Data streams are either static (sometimes referred to as 
stationary) or evolving, and are classified depending on the 
condition of their core distribution.

Static data has an underlying distribution that does not 
shift over time. That is, the features that define the target 
label for learning remain constant and consistent. Static 
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datasets are frequent in traditional machine learning con-
texts where features defining ground truth labels do not 
change [18].

Unlike static data, the distribution for an evolving data 
stream may change over time. Feature vectors may change 
over a time period t such that they no longer reflect the 
class label. Aggarwal [1] describes how data streams pos-
sess an inherent temporal component that causes them to 
be time dependent by nature. Consider customer purchas-
ing behaviour as an example. A model trained to predict 
weekly sales for a clothing store might use attributes such 
as advertising costs, promotions and customer footfall. 
However, this model may become less accurate over time, 
perhaps due to seasonality. The shift in distribution over 
time is commonly known as concept drift.

In the domain of machine learning, traditional appli-
cations implement batch learning techniques on static 
datasets. Batch learning approaches involve having the 
entirety of the training data available at any given time. 
The data can be processed once or multiple times before 
an algorithm produces an output decision.

Data streams by nature are incompatible to batch learn-
ing for a number of reasons. Most obviously where tradi-
tional applications have all of the data available immedi-
ately, data streams must be mined in a distributed fashion 
since examples arrive continuously and in a sequential 
manner. In contrast to batch and multi-pass learning, 
stream mining algorithms must be designed to work with 
one pass of the data only [1].

A solution to the ineffectiveness of batch learning may 
at first seem obvious; translate batch learning algorithms 
into one-pass variants. However, the innate temporal 
nature of data streams may render this solution redun-
dant as a one-pass conversion approach may not consider 
the evolution of the underlying distribution. Concept drift 
is something stream mining algorithms simply must take 
into consideration.

Since data streams are unbound in size, the volume and 
velocity can result in the imposition of hardware limita-
tions. The most obvious of which is memory; it is not fea-
sible to continuously explicitly store stream elements since 
their maximum size is almost always unknown. A second 
hardware limitation is processing resource. The speed at 
which elements arrive from a stream, as well as the stream 
size, can quickly consume available resources. As such, 
stream mining algorithms should be both computation-
ally fast and lightweight [18].

3  Concept drift

Traditional machine learning algorithms operate with the 
assumption that the data distribution is static. For data 
streams, the distribution of arriving examples may change 
over time due to the stream’s innate temporal nature. This 
renders traditional batch learning algorithms unsuitable 
for applications that learn from data streams.

In reality, data streams produce copious amounts of 
data at a near constant rate. Gama [33] provides examples 
of such streams, including surveillance systems, sensor 
networks and telecommunication systems. However, with 
recent modern hardware developments these streams are 
produced by new devices such as smart household appli-
ances and car navigation systems. Algorithms that seek to 
learn from data streams must be able to accurately model 
the underlying distribution. The ability to detect and adapt 
to changes in the distribution of examples is paramount 
for data stream mining algorithms.

The shift in the underlying distribution of examples 
arriving from a data stream is referred to as concept drift. 
Concept drift occurs over time and the rate at which the 
drifts occurs varies. It can be responsible for various symp-
toms, including previous examples to become irrelevant; 
their distribution no longer accurately reflects their cor-
responding class label. This is reflected in the clothing 
store sales prediction example previously mentioned. If 
seasonality causes clothing sales to be higher in the sum-
mer months, then examples from winter months may not 
accurately reflect class labels. It may be the case that the 
model predicts low sales, but due to seasonality there are 
less people shopping and the sales are in fact high for a 
winter season. As such, models must be capable of forget-
ting previous examples once concept drift has occurred.

3.1  Definition

A learning algorithm observing examples with a sta-
tionary distribution would observe training examples 
in the form (𝐱i , yi) , where 𝐱i is the feature vector and 
yi𝜖{c1, c2,… , cn} for the ith example. A class prediction 

Table 1  Batch data versus streaming data

Batch data Stream data

Offline Real time
Slow data generation Rapid data generation
Persistent data Transient data
Process entire data Process samples of data
Constant availability Limited availability
Complex techniques used if 

required
Linear techniques widely used

Fixed size Unbound in size
Random access Sequential access
Known data characteristics Unpredictable data charac-

teristics
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at a particular time stamp t would be given as ŷt based 
on the feature vector 𝐱t.

In contrast, a data stream may produce examples with 
a non-stationary distribution. The stream may initially 
consist of examples ei = (𝐱i , yi) , similar to that of a static 
distribution. However, if the distribution should shift at 
some point in time then this may no longer hold true. 
According to Gama et al.  [36], concept drift between 
time t0 and t1 can be defined as:

where pt is the joint distribution at time t between the 
feature vector 𝐱i and the target class label yi.

Kelly et al. [45] states that concept drift may occur in 
three distinct ways. Firstly, the class prior probabilities 
p(y) may change over time. Secondly, the class distri-
butions p(𝐱 ∣ y) may change over time. And thirdly the 
class posterior distribution p(y ∣ 𝐱) may change. From 
the point of view of classification, only p(𝐱 ∣ y) changes 
would affect the prediction and therefore require an 
algorithmic response.

The rate at which concept drift occurs can be catego-
rised as one of three distinct forms; sudden drifts, grad-
ual drifts and recurring drifts. Brzezinski and Stefanow-
ski [15] concisely describes these three types of concept 
drift; sudden drifts occur when the source distribution 
is suddenly replaced by another distribution entirely, 
gradual drift occur at a much slower rate, and recurring 
drifts occur when older concepts reappear after some 
time period. Drifts can also be described as incremental 
where the drift consists of many intermediate changes, 
for example a network sensor deteriorates and becomes 
less accurate [36].

Similarly to categorising the rate of change, concept 
drift itself can be defined as either real or virtual [36, 
71, 74]. Real concept drift refers to changes in p(y ∣ 𝐱) , a 
change in the probability of a class label y given feature 
vector 𝐱 . This can result in classifier decision boundaries 
becoming affected. Alternatively, virtual drift refers to 
changes in p(𝐱) but not in p(y ∣ 𝐱) . The result in this case is 
that the distribution has changed but the decision bound-
aries of the classifier are unaffected. Figure 1 illustrates the 
differences between real and virtual drift.

As is described by Zliobaite [74], it is not important if 
the drift is real or virtual since p(y ∣ 𝐱) is dependant on 
p(𝐱 ∣ y) . Explicit characterisation of various types of con-
cept drift is effectively illustrated by Webb et al. [70]. This 
paper will not make any further differentiation between 
real or virtual drifts.

Where stream mining algorithms bring with them their 
own set of challenging algorithmic requirements, algorithms 

(1)pt0(𝐱i , yi) ≠ pt1(𝐱i , yi),

for concept drift detection must also meet certain demands. 
The following points are considered to be critical challenges 
that concept drift detection algorithms should overcome 
[35, 36]:

1. Detect as soon as possible the point at which the dis-
tribution has changed.

2. The crossover period during a shift in concept can pro-
duce noise. For example as distribution D0 shifts to D1 , 
examples produced by D0 will act as noise for D1.

3. Algorithms should be computationally faster than the 
arrival time of examples from the stream. They should 
also be lightweight enough to not consume more than 
some fixed amount of memory for storage.

Any classifier operating with stream data must contain 
mechanisms to meet these requirements, otherwise their 
predictive performance will diminish over time. The predic-
tive model will likely have to be capable of updating with 
new data as it arrives, or even replacing itself entirely.

4  Concept drift detection

This section critically reviews existing concept drift detec-
tion techniques by categorising drift detection methods as 
either statistical based, window based or ensemble based. 
Table 2 provides a full illustration of the categorisation and 
techniques covered by this paper.

4.1  Statistical methods

The Sequential Probability Ratio Test (SPRT) [66] is the back-
bone to a number of algorithms for concept drift detection. 
Given two distributions P0 and P1 for time period w, should 
the underlying distribution shift from P0 to P1 then the prob-
ability of observing elements from P1 should be higher than 

Fig. 1  Types of drifts. Classes represented circles
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the probability of observing elements from P0 . The statistical 
test is given as:

Introduced by Page [57], the Cumulative Sum (CUSUM) is a 
statistical technique based on the SPRT and is commonly 
adopted for concept drift detection. It receives as an input 
the residual of any filter, for example a Kalman filter, and 
outputs an alarm when the mean of the input data differs 
greatly from zero. Bifet [7] gives CUSUM as

(2)

Tn
w
= log

P(xw … xn ∣ P1)

P(xw … xn ∣ P0)
=

n∑

i=w

log
P1[xi]

P0[xi]

= Tn−1
w

+ log
P1[xn]

P0[xn]

where 𝜖t is the current observed value, v is the allowed 
magnitude of change, t is the current time and h is a 
parameter defined threshold. This expressions functions 
for detecting changes that occur in a positive direction. If 
changes in a negative direction are required for detection 
then the min() function should be used in place of max().

CUSUM is memoryless in the sense that the probability 
of a drift being detected is not related to a drift having 
already been detected. It is also worth noting that the 
accuracy of CUSUM is dependant on the parameters v and 

(3)

g0 = 0

gt = max(0, gt−1 + 𝜖t − v)

if gt > h then alarm and gt = 0,

Table 2  Summary of concept drift detection techniques

Type Algorithm Acronym Reference

Statistical based Cumulative sum CUSUM Page [57]
Page-Hinckley test PH Page [57]
Drift detection method DDM Gama et al. [34]
Early drift detection method EDDM Baena-Garcia et al. [3]
Reactive drift detection method RDDM Barros et al. [4]
Linear four rates LFR Wang and Abraham [67]
Hierarchical linear four rates HLFR Yu and Abraham [73]
Statistical test of equal proportions STEPD Nishida and Yamauchi [56]
Fisher proportions drift detector FPDD de Lima Cabral and de Barros [22]
Fisher-based statistical drift detector FSDD de Lima Cabral and de Barros [22]
Fisher test drift detector FTDD de Lima Cabral and de Barros [22]
McDiarmid drift detection methods MDDMs Pesaranghader et al. [58]

MDDM-A Pesaranghader et al. [58]
MDDM-G Pesaranghader et al. [58]
MDDM-E Pesaranghader et al. [58]

Window-based Concept-adapting very fast decision tree CVFDT Domingos and Hulten [27]
Efficient concept-adapting very fast decision tree E-CVFDT Liu et al. [51]
Adaptive sliding window ADWIN Bifet and Gavalda [8]

Block-based ensembles Streaming ensemble algorithm SEA Street and Kim [65]
Accuracy weighted ensemble AWE Wang et al. [68]
Accuracy updated ensemble AUE Brzeziński and Stefanowski [14]
Semi-supervised adaptive novel class detection and 

classification over data stream
SAND Haque et al. [38]

Efficient concept drift and concept evolution han-
dling over stream data

ECHO Haque et al. [39]

Incremental-based ensembles Dynamic weighted majority DWM Kolter and Maloof [46]
Learn++ Polikar et al. [59]
Learn++.MT Muhlbaier et al. [53]
Learn++.NC Muhlbaier et al. [55]
Learn++.NSE Muhlbaier and Polikar [54]
Learn++.NIE Ditzler and Polikar [24]
Learn++.CDS Ditzler and Polikar [25]
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h. Low values of v enable faster detection rates but at the 
cost of an increased rate in false positives.

The Page-Hinckley (PH) test, also proposed by Page [57], 
is a variant of the previously mentioned CUSUM test. The 
PH test can detect changes in the average behaviour of a 
process. The PH test for an increasing signal can be given 
as [7]:

where 𝜖t is the current observed value, v is the allowed 
magnitude of change, t is the current time and h is a 
parameter defined threshold. If the signal is decreasing 
then Gt = max(gt ,Gt−1) and Gt − gt > h should be utilised 
as the stopping rule instead. Similarly to CUSUM, the PH 
test is memoryless but its accuracy is again parameter 
dependent on the values of v and h. Larger values of h will 
result in a lower false alarm rate, but some changes may 
also be missed altogether.

While the two algorithms are similar, they do offer solu-
tions for different data streaming scenarios. Since CUSUM 
uses the residual from any predictor as an input is well 
suited for various applications of stream mining, and has 
been recently used for anomaly detection in video streams 
by Yang et al. [72]. PH is instead ideally suited for detecting 
abrupt changes in signal processing environments, but has 
also been adopted recently for the development of a rule 
learning algorithm for regression [29].

The performance of drift detection algorithms based 
on SPRT is often reliant on their false alarm and missed 
detection rates, as noted by Gama et al. [36]. However, 
during evaluative procedures such measures are usually 
overlooked as metrics to evaluate drift detector perfor-
mance. This is explained fully in Sect. 5 of this research. 
The primary drawback and impact on performance is 
both algorithms’ reliance on the parameters v and h. Both 
CUSUM and Page-Hinckley are considered state-of-the-art 
drift detectors in this category.

Another statistical method for detecting concept drift 
is based around monitoring the class distribution’s con-
stancy over time, as described by Brzezinski and Stefanow-
ski [15]. This is undertaken by adopting various statistical 
techniques that produce “alarms” when the class distribu-
tion begins to change as time passes.

Drift Detection Method (DDM) [34] is a method that sta-
tistically compares two windows and controls the errors 
produced by a learning model during prediction. One win-
dow contains all of the data, and the second window con-
sists of only data from the start of the stream to the point 

(4)

g0 = 0

gt = gt−1 + (𝜖t − v)

Gt = min(gt ,Gt−1)

if gt − Gt > h then alarm and gt = 0,

at which the error rate of the prediction model increases. 
The windows are not kept in memory, only statistical infor-
mation and recent errors are stored.

It is assumed that the error rate will decrease as the 
number of examples for observation increases, so long 
as the distribution is stationary. It is therefore suggested 
that a significant increase in the error rate of some learn-
ing model would indicate a change in the class distribu-
tion. DDM involves two principle variables in the form of 
pt and st , where p is the probability of misclassification, s 
is the standard deviation and t is some timestamp. The 
standard deviation st is given as st =

√
pt(1 − pt)∕t . When 

pt + st reaches its minimum value the following conditions 
are checked:

• pt + st ≥ pmin + 2 ⋅ smin as a warning level. Examples are 
stored in preparation of contextual drift.

• pt + st ≥ pmin + 3 ⋅ smin as drift level. Concept drift is 
assumed to exist, the learning model is reset and a new 
model is trained using examples stored since the warn-
ing level was triggered. pmin and smin are also reset.

DDM is almost memoryless, only statistics pt and st are 
stored alongside the necessity of some available memory 
to store examples for retraining. A major flaw with DDM 
is that is only suitable for the detection of abrupt drifts. 
Gradual drifts can cause examples to be stored in memory 
for lengthy time periods which has the potential to cause 
catastrophic memory overflows.

A number of algorithms have built upon DDM and have 
aimed to improve its performance. The most famous of 
these is the Early Drift Detection Method (EDDM) [3]. 
EDDM uses the same approach and heuristics as DDM, 
however, rather than monitoring error rates, the distances 
between errors is measured. As predictions improve, the 
distance between two misclassification errors should 
increase. The window resizing follows the same proce-
dure as DDM. The fundamental drawback to EDDM is 
that at least 30 errors are required for calculation which 
causes issues when applying this to imbalanced datasets. 
A more modern proposal to improve DDM is that of Bar-
ros et al.  [4], who suggest the Reactive Drift Detection 
Method (RDDM) which discards older instances of par-
ticularly gradually occurring drifts in order to overcome 
potential memory overflows.

The DDM-OCI algorithm [69] was developed to solve 
the problem with using EDDM and imbalanced datasets. 
DDM-OCI makes the assumption that for imbalanced data-
sets, drifts only occur when there is a change in the minor-
ity class recall during classification. However it is entirely 
possible that a drift can occur without affecting the minor-
ity class recall, for example a drift from data that has an 
unbalanced class distribution to one which is balanced. 
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DDM-OCI also suffers from an issue where a number of 
false positives can be triggered due to a weakness in its 
test statistic R̂t

TPR
.

With DDM-OCI falling short of overcoming the class 
imbalance problems present in EDDM, the Linear Four 
Rates framework (LFR), was proposed by Wang and Abra-
ham [67]. It is designed as a direct improvement over the 
DDM-OCI algorithm. LFR monitors the four values, or rates, 
given by a typical confusion matrix; precision and recall for 
both minority and majority classes. Statistical bounds are 
set as thresholds and should any of the four rates exceed 
the threshold then a drift is assumed to have occurred.

The current, most recent advancement in these algo-
rithms is the Hierarchical Linear Four Rates method (HLFR) 
proposed by Yu and Abraham [73], given in Algorithm 1. 
HLFR operates using a two layer, hierarchical structure 
wherein the first layer is responsible for detecting potential 
drifts, and the second layer validates said drift and com-
municates this information back to the first layer. Layer 
one monitors the same four rates of the confusion matrix 
as was introduced by LFR. When a drift is detected, layer 
two applies a permutation test to confirm if the detected 
drift is true or a false positive. In the occurrence of a false 
positive the testing process restarts.

Experimental results using real datasets indicate that 
HLFR outperforms DDM, EDDM and LFR in terms of not 
only accuracy but also in terms of its time to detection 
(detection delay). The framework presented with HLFR 
symbolises a move away from the traditional “concept drift 
detector plus classifier” approach. This current method suf-
fers from various evaluation problems, discussed in depth 
in Sect. 5. The proposed framework of HLFR is a concrete 
starting point for future research that aims to address such 
issues.

DDM and EDDM are considered state-of-the-art statisti-
cal based detectors [7], even though they have drawbacks 
in relation to imbalanced data. Algorithms that have aimed 
to address this, such as DDM-OCI and LFR have fallen short. 
The result of which is that two, aged drift detectors that 
are sub-par in terms of performance are still considered 

state-of-the-art. A second reason is due to the datasets 
used in concept drift experimentation. This is explained 
fully in Sect. 5, but a lack of benchmark datasets means 
that many experiments used simulated data in which 
parameters can be defined to avoid class imbalance, thus 
artificially avoiding the drawbacks of DDM and EDDM.

STEPD [56], or Statistical Test of Equal Proportions, mon-
itors the predictions of a base classifier for drift detection 
in a similar manner to that of DDM and EDDM. However, 
STEPD also uses two parameters as significance levels to 
distinguish between detected drifts and warnings. These 
are 𝛼d = 0.003 and 𝛼w = 0.05 respectively. STEPD uses two 
windows to compare the result of the classifier. The first 
window is a “recent” window, of which its size if defined 
by a parameter with a default value of 30 instances. The 
second window is the “older” window which contains all 
instances observed since the last detected drift. STEPD 
compares the accuracies of these windows through a 
hypothesis test of equal proportions, given as

where ro is the number of correct predictions from exam-
ples within the no “older window”, rr is the correct predic-
tions from examples within the nr “recent” window and 
P̂ = (ro + rr)∕(no + nr) . The result is used to calculate the 
p-value from the standard normal distribution table and 
is then compared against to 𝛼d and 𝛼w to determine if a 
drift or warning alarm must be issued. If p-value < 𝛼d then 
a drift is detected, similarly if p-value < 𝛼w then a warning 
is signalled.

The authors recognised that for small sample sizes the 
statistical test of equal proportions was ineffective, admit-
ting that Fisher’s Exact test [32] should have been used but 
was ignored due to its high computational cost. Recent 
work by de Lima Cabral and de Barros [22] proposes three 
new methods using the Fisher’s Exact test, Fisher Propor-
tions Drift Detector (FPDD), Fisher-based Statistical Drift 
Detectors (FSDD) and Fisher Test Drift Detector (FTDD). 
All three methods use the same approach as STEPD in 
regards to the two windows and the significance thresh-
olds. However, these approaches use different statistical 
tests and measure the difference in errors rather than cor-
rect predictions.

FPDD uses the Fisher’s Exact test when the number of 
errors or correct predictions in either window is smaller 
than five, otherwise it operates exactly like STEPD. FSDD 
extends FPDD such that instead of using the test of equal 
proportions in situations where the number of errors or 
correct predictions in either window is smaller than five, 
the chi-square test for homogeneity of proportions is 

(5)

T (ro, rr , no, nr) =
|ro∕no − rr∕nr| − 0.5 × (1∕no + 1∕nr)√

P̂ × (1 − P̂) × (1∕no + 1∕nr)
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applied [17] FTDD explicitly uses the Fisher’s Exact test for 
drift detection. Experimental results showed that all three 
proposed methods outperformed STEPD, with very little 
difference between themselves.

The McDiarmid Drift Detection Methods (MDDMs) 
proposed by Pesaranghader et al. [58] uses a weighting 
scheme to give substance to elements of a sliding win-
dow to enable faster concept drift detection. MDDM 
applied McDiarmid’s inequality [52] to detect drifts in 
evolving streams. The algorithms uses a sliding window 
of size n which stores prediction results. If the prediction 
is correct, a 1 is inserted into the window, otherwise a 0 is 
inserted. Each element in the window is weighted such 
that wi < wi+1 . This means that elements at the head of 
the window have larger weights than that of the tail. Three 
methods based on different weighting schemes are pre-
sented. MDDM-A which uses the arithmetic weighting 
scheme, MDDM-G which uses the geometric weighting 
scheme and MDDM-E which uses the Euler weighting 
scheme. The arithmetic weighting scheme for MDDM-A 
is given as

where d ≥ 0 is the difference between two consecutive 
weights. The geometric scheme used by MDDM-G is given 
as

where r ≥ 1 is the ratio of two consecutive weights. Finally, 
the Euler scheme adopted for MDDM-E is given by the 
authors as

where 𝜆 ≥ 0 . Prediction results are processed sequen-
tially and the weighted average of all elements within the 
window is calculated alongside each arriving prediction 
result. This is used to update two variables, 𝜇t

w
 the current 

weighted average and 𝜇m
w

 the maximum weighted average 
observed thus far. A drift is detected if there is a significant 
difference between 𝜇m

w
 and 𝜇t

w
 . The significance is deter-

mined by McDiarmid’s inequality. The authors selected 
popular concept drift datasets for experimental testing, 
including Elec2, Forest Covertype and Poker Hand. These 

(6)wi = 1 + (i − 1) × d

(7)wi = r(i−1)

(8)r = e𝜆

are explained in Sect. 5 of this paper. Their results found 
that MDDMs outperformed existing methods including 
EDDM, CUSUM and Page-Hinckley in terms of drift detec-
tion delay and classification accuracy.

4.2  Window-based detectors

Concept drift detection algorithms that are window-based 
operate in a unique way. Rather than monitoring arriving 
instances from a stream individually, sliding windows of 
varying sizes, widths, are instead statistically monitored. 
Larger windows correlate with higher performance accu-
racy, however they may also contain concept drift within 
themselves that could escape unnoticed. Smaller windows 
tend to facilitate better concept drift detection. The sizing 
of a window is a fundamental problem when designing 
any stream mining algorithm that utilises sliding windows. 
Figure 2 provides an illustration of how a sliding window 
operates.

The Hoeffding Tree is a mathematically justified algo-
rithm used to construct decision trees. The Very Fast Deci-
sion Tree (VFDT) is a heuristic algorithm proposed by 
Domingos and Hulten [27] that is based on the Hoeffding 
Tree. The VFDT is an algorithm which incrementally con-
structs a decision tree of incoming examples from a data 
stream, without the need to store examples in memory. 
A critical difference between the Hoeffding tree and tra-
ditional classification trees lies in the selection of which 
node is used for splitting. Where traditional trees adopt 
techniques such as Information Gain [60] to determine the 
best node for splitting, VFDTs use the Hoeffding bound to 
determine how many examples are necessary to identify 
the best splitting node based on a user defined confidence 
threshold. The Hoeffding bound states that, for a random 
variable r in range R and where r̄ is the mean of n observa-
tions, with probability 1 − 𝛿 the true mean is at least r̄ − 𝜖 
where 𝜖 is given as

It is also worth noting that the Hoeffding bound has been 
suggested to be statistically inappropriate for constructing 

(9)𝜖 =

√
R2ln(1∕𝛿)

2n

Fig. 2  Sliding window. Borders 
identify two different windows
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decision trees for data stream mining [21, 44, 63]. VFDTs 
are, however, only suitable for static streams and include 
no method for forgetting or restarting learning in the pres-
ence of concept drift. In order to enable VFDTs to account 
for concept drift, Hulten et al. [41] introduced Concept-
adapting Very Fast Decision Tree (CVFDT). CVFDT monitors 
a sliding window of examples. As new examples arrive, 
CVFDT updates its node statistics by incrementing counts 
of the new, arriving, examples. Counts that relate to the 
oldest example in the window, which must be forgot-
ten, are decremented. If necessary, older examples are 
removed from the window. Hulten et al. [41] states that if 
the concept is changing then nodes that previously passed 
the Hoeffding test may no longer pass. In this case, CVFDT 
grows a second sub-tree with the new best attribute, 
according to the Hoeffding bound, at its root. If the new 
sub-tree’s accuracy outperforms that of the older tree then 
it replaces it completely.

Criticising CVFDT for not offering mechanisms which 
handle specific types of drift, such as gradual or abrupt, 
Liu et al. [51] proposed the E-CVFDT algorithm which 
utilises a caching mechanism. Their results show that 
E-CVFDT yields a higher classification accuracy for grad-
ual concept drifts, but does not make any improvements 
during sudden drifts.

The Adaptive Sliding Window (ADWIN) algorithm [8] is 
another popular, window-based detector for coping with 
concept drift. Assuming a stream of examples x1, x2,… , xn , 
produced by some distribution at time t, these serve as 
inputs to ADWIN to produce sliding window W. Let 𝜇w 
denote the average of examples contained within W and 
𝜇w represent the unknown average of 𝜇t such that t ∈ W  . 
Let n be the length of W and n0 and n1 be the lengths of 
W0 and W1 respectively, such that n = n0 + n1 . Algorithm 2 
provides the algorithm for ADWIN.

Whenever two “large enough” subwindows of W dis-
play “distinct enough” averages, a drift is assumed to 
have occurred, and the older of the two subwindows is 
dropped. The terms “large enough” and “distinct enough” 
are defined by the Hoeffding bound statistic. The average 

of the two subwindows are tested to determine if they are 
larger than 𝜖cut , given as |𝜇w0 − 𝜇w1| > 2𝜖cut where

This was considered computationally expensive since all 
“large enough” subwindows are checked for potential cuts. 
The window contents are also explicitly stored and mem-
ory requirements scale linearly with the window size. This 
has the obvious drawback of potentially large memory and 
processing requirements.

A solution to the resource demands of ADWIN is pro-
posed in the form of ADWIN2, provided in Algorithm 3.

In order to reduce the computational time when deter-
mining the best cutting point in the window, buckets are 
adopted as a means for grouping data within the window. 
Such buckets have two core elements; capacity and con-
tent. Each time a new example arrives from the stream, if 
the element is “1” then a new bucket is created of content 
1 and capacity equal to the number of elements arrived 
since the last observed “1”. The remaining buckets are then 
compressed.

In order to eliminate the problems of high memory 
demands caused by the explicit storing of all window con-
tents, a variation of the exponential histogram [20] is used. 
The performance of ADWIN2 is given by the authors in Big 
O notation as O(logW) memory and cutpoints, with the 
worst case per example equating to O(log2 W).

ADWIN2 is usually referred to directly as ADWIN in pub-
lished work and is considered one of the state-of-the-art 
concept drift detectors. A common problem with sliding 
windows is that the width usually needs to be predefined. 
Varying the width of the window has an impact on per-
formance, thus applying the correct width value is impor-
tant. Typically this is done by means of some user-defined 

(10)

m =
1

1∕n0 + 1∕n1

𝛿′ =
𝛿

n

𝜖cut =

√
1

2m
⋅ ln

4

𝛿′
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parameter. ADWIN, however, is parameterless and the slid-
ing window is sized dynamically by the algorithm itself. 
It also provides excellent performance due to the use of 
buckets and the adaptation of the exponential histogram 
to for compression.

4.3  Block-based ensemble detectors

In machine learning, an ensemble refers to a group or col-
lection of classifiers that work together to achieve greater 
predictive performance. Block-based ensembles process 
data in blocks, or chunks, of some specified size. The per-
formance of block-based ensemble methods is based 
heavily on the chunk size. Similarly to that of sliding win-
dows, larger chunks tend to produce more accurate clas-
sifiers but may contain concept drift within themselves. 
Alternatively, smaller based chunk sizes are typically more 
effective at drift detection but produce inferior perform-
ing classifiers.

The Streaming Ensemble Algorithm (SEA) was first pro-
posed by Street and Kim [65] and is a block-based ensem-
ble learning algorithm. Individual classifiers are constructed 
from examples read in sequential blocks (chunks), which are 
then added to a fixed size ensemble. If the ensemble is full, 
then the worst performing classifier is removed from the 
ensemble entirely.

In their experiments, C4.5 [61] classifiers are used for 
building the ensemble. The output prediction is given as 
the simple majority voting of the entire ensemble. Results 
for testing with concept drift showed that the algorithm 
was capable of recovering quickly by discarding classifiers 
trained on the outdated data.

A notable drawback to SEA is the way in which classifiers 
are replaced. Merely replacing the worst performing classi-
fier with the most recently trained has the potential to still 
leave several, outdated and poorly performing classifiers in 
the ensemble, depending on the predetermined ensemble 
size.

This is improved upon by Wang et al.  [68]’s Accuracy 
Weighted Ensemble (AWE), a block-based algorithm which 
trains a new learning model with each new chunk of data in 
a similar fashion to that of SEA. Where AWE improves upon 
SEA is in the model replacement. AWE uses a version of the 
mean square error to select n best classifiers to construct an 
entirely new ensemble, thus removing all other outdated 
and poorly performing classifiers. The algorithm for AWE is 
given in Algorithm 4.

Let S denote a data stream in chunks S1, S2,… , Sn where 
each chunk is of equal size and Ci represent some classifier 
for Si . The weight of classifier Ci is the estimated prediction 
error using the most recent data Sn . Since Sn is a data stream 
and will produce examples in the form (𝐱, c) where 𝐱 is the 
feature vector and c is the class label, the classification error 
of Ci is 1 − f i

c
(x) where f i

c
(x) is the probability that x is an 

example of class c. As such, the mean square error of Ci is 
given by

Should a classifier predict randomly then the mean square 
error can be given as:

A random classifier contains no meaningful knowledge of 
the data, it makes predictions simply at random. Therefore 
MSEr is used as a threshold for weighting and classifiers 
whose error rate is at least equal to MSEr are discarded. The 
weight of a classifier Ci is given as:

One drawback to AWE is the issue of chunk-size optimisa-
tion, however it should be noted that this is common in 
all block-based ensemble methods. A second drawback 
is the weighting function of AWE, in particular the MSEr 
threshold. In environments with sudden concept drift it 
can have a silencing effect on the entire ensemble result-
ing in no class prediction [14].

Brzeziński and Stefanowski [14] proposed the Accuracy 
Updated Ensemble (AUE) algorithm as an improvement to 
that of AWE. The algorithm for AUE is given in Algorithm 5.

(11)MSEi =
1

Sn

∑

(x,c)∈Sn

(
1 − f i

c
(x)

)2

(12)MSEr =
∑

c

p(c)(1 − p(c))2

(13)wi = MSEr −MSEi
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AUE implements online classifiers enabling the indi-
vidual learning models to be updated directly rather than 
only adjusting weights as per AWE. If no concept drift were 
to occur between a series of chunks then the classifiers 
would improve as if they were trained on one large chunk. 
This means the block size can be reduced without risking 
the performance accuracy of the ensemble classifiers. The 
weighting function in AUE is a simplified version of that used 
in AWE, and is given as

where MSEi is calculated identically as it is in AWE and 𝜖 is a 
small constant value to allow weighting calculations when 
MSEi is equal to 0.

Experimental results showed that AUE performed more 
accurately than AWE on all similar datasets apart from one 
where the performance accuracy was equal. A second 
implementation of this algorithm, AUE2, was suggested 
by Brzezinski and Stefanowski [15] which improves on the 
memory usage and accuracy of AUE by implementing a 
new weighting function and pruning base learners.

AUE overcomes the problems present in AWE. The 
weighting function is redesign to cope with sudden con-
cept drifts, and the use of online classifiers allows smaller 
chunk sizes to be used without a severe reduction in classi-
fier accuracy. However when no concept drift is occurring, 
all classifiers are updated with arriving chunks. Should this 
continue over multiple chunks then the outcome is that 
ensemble classifiers lose their uniqueness.

Recent advances in concept drift detection using 
block-based ensembles have introduced new algorithms 
entirely. The Semi-supervised Adaptive Novel Class Detec-
tion and Classification over Data Stream (SAND) framework 
is proposed by Haque et al. [38]. SAND consists of four 

(14)wi =
1

MSEi + 𝜖
,

independent modules; Classification, Novel Class Detec-
tion, Change Detection and Update.

The framework maintains an ensemble of classifiers 
based on k-nearest neighbour, using algorithms such as 
k-means. The ensemble is initially trained on some training 
data. When an instance arrives from some stream it is clas-
sified using majority voting. It also produces a confidence 
value which indicates the ensemble’s confidence in the 
prediction. These confidence values are stored in a sliding 
window.

The Change Detection module monitors the distribu-
tion of confidence values within the sliding window. Any 
significant change in the distribution is assumed to be 
caused by the existence of concept drift. Once change 
has been detected, a new chunk of data is used to update 
the ensemble and the chunk boundaries are determined 
dynamically. Updating is undertaken by requesting only 
class labels for instances in the current chunk where 
the confidence values were weak. The ensemble is then 
updated with the new model and the sliding window is 
reset.

Experimental results showed that SAND was capable of 
achieving good prediction accuracy using limited labelled 
data, however its execution time was inefficient due to the 
high resource cost of the Change Detection module being 
executed after the calculation of individual confidence 
scores.

In order to attempt to remedy the poor execution time 
of SAND, the Efficient Concept Drift and Concept Evolu-
tion Handling over Stream Data (ECHO) was proposed by 
Haque et al. [39]. ECHO operates in the same manner as 
SAND, however, the execution of the Change Detection 
module is selective rather than at each calculation of the 
confidence threshold. Two methods of selectively invoking 
the Change Detection module. The first is to use a fixed 
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threshold 𝛾 , such as the classifier confidence threshold. 
If the confidence of a test instance Cx is less than 𝛾 , the 
Change Detection module is invoked. The second pro-
posed approach is to calculate the probability of invoca-
tion based on the Cx . A high confidence value would result 
in a low probability of invocation.

ECHO performs competitively and is suitable for use in 
environments which generate a low level of labelled data. 
However, in stream mining there is an innate assump-
tion that class labels are always available with arriving 
instances. Whilst this may not be the case in real world 
scenarios, since concept drift detection is still in its infancy 
it follows that this assumption can continue to be made. 
Classifiers are only updated by labels for which there was 
a low confidence value. While this does aid in situations 
where labels are missing by lowering the demand for 
labels, there is no existing mechanism for actually deter-
mining if a label is available or not. The result is that classi-
fiers may not be updated with information when there is 
an available class label, which will negatively impact the 
potential performance of the ensemble.

4.4  Incremental ensemble detectors

Incremental, or online, ensembles are another method 
of ensemble based learning. In contrast to block-based 
ensembles, incremental ensembles process elements 
sequentially rather than in chunks.

Dynamic Weighted Majority (DWM) was first proposed 
by Kolter and Maloof [46]. DWM is an ensemble of classi-
fiers referred to as ’experts’, where each is given an asso-
ciated weight. For some test example, the experts each 
provide a prediction. This is then used in combination with 
their weights to output the overall prediction in the form 
of the class which has the largest accumulated weight 
total.

Should an individual expert provide an incorrect pre-
diction, then its corresponding weight is reduced. If the 
output prediction of DWM is incorrect then a new expert 
is created and is assigned a weighting of 1. Experts are nor-
malised by uniform scaling such that the highest weight-
ing possible is 1. Experts with a weight lower than a user-
defined threshold value are removed. Through the use of 
uniform weights and incremental learning, the authors 
state that the DWM algorithm is capable of handling con-
cept drift.

DWM is considered one of the state-of-the-art concept 
drift detection methods, and has been as a benchmark 
algorithm in recent studies reviewing concept drift [7, 
36, 76]. However, one particular problem with DWM is 
the way in which experts are added. Rather than adding 

a new expert when the ensemble prediction is incorrect, 
the age of experts and historical prediction accuracy could 
be taken into consideration. The base learner also explicitly 
maintains examples in memory which has the potential to 
consume large amounts of resources, depending on the 
stream size. Other algorithms such as CVFDT and ADWIN 
have already solved this issue so it follows that similar 
implementations could be made to DWM.

4.4.1  Learn++ algorithms

The Learn++ algorithm family is a set of algorithms con-
sisting of an ensemble of incrementally trained classifi-
ers using batches of data and weighted majority voting. 
According to Liao et al.  [50] existing algorithms in the 
Learn++ family include Learn++, Learn++.NC, Learn++.
MT, Learn++.NSE, Learn++.NIE and Learn++.CDS. Elwell 
and Polikar [31] also mention the Learn++.MF algorithm 
as part of the family.

The original Learn++ algorithm, suggested by 
Polikar et al. [59], constructs k classifiers for a single batch 
of incoming data. Examples from this batch are used to 
train a single, first classifier. Prediction errors are used to 
produce a weighted distribution of all examples, with 
misclassified examples possessing a higher probability 
of being sampled. Training the second classifier through 
to the k classifier for the ensemble, training examples are 
selected based on the weighted distribution of all exam-
ples. Classification errors are then used to update the 
weighted distribution.

One problem with Learn++ is that all base classifiers are 
persisted over time T, resulting in old data never being for-
gotten by the ensemble. This can cause a problem known 
as ’outvoting’. Older classifiers in the ensemble may pro-
duce incorrect predictions due to the aged examples they 
are trained on. If the outdated classifiers make up the 
majority of the ensemble, even if their weights are small, 
they can ’outvote’ the classifiers trained on newer data. 
Thus through the majority weighted voting procedure, 
produce incorrect predictions. Another problem is that 
without forgetting old information, concept drift cannot 
be accounted for.

Older algorithms in the Learn++ family sought to pro-
vide solutions to the concept drift problem. Learn++.MT 
[53] solves the outvoting problem by using a dynamic 
weighted voting technqiue. Learn++.NC (New Class), 
proposed by Muhlbaier et al. [55], furthers this concept 
and introduces a Dynamically Weighted Consult and 
Vote (DW-CAV) mechanism which enables incremental 
learning of new classes. Learn++.NC enabled base classi-
fiers within the ensemble to consult among themselves 
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when classifying a given example, and weights the deci-
sion of each base classifier. Classifiers check their predic-
tions against classes which they are trained and, based 
on the decision of other classifiers, check if their pre-
diction is in-line with others. If a classifier’s decision is 
an outlier compared to the majority, the classifier may 
either reduce it’s voting weighting or withdraw from pre-
dicting altogether. These algorithms, however, are only 
suitable for static, stationary, environments where the 
distribution does not change.

Learn++.NSE, proposed by Muhlbaier and Polikar [54], 
aims to account for various forms of concept drift. An 
ensemble of classifiers is trained on the current data dis-
tribution D at time t. Change is monitored by examining 
the performance of the ensemble over time. Learn++.
NSE will generate a new classifier and combine it with 
the ensemble when the prediction error of the current 
ensemble falls below some threshold. Classifiers are 
weighted according to the time t they were instantiated, 
such that newer classifiers have a larger weighting than 
older classifiers during prediction.

Whilst Learn++.NSE aimed to address the issue of 
evolving data, none of the existing Learn++ algorithms 
accounted for class imbalance at this stage. Learn++.NIE 
[24] extends Learn++.NSE, but incorporates evaluation 
measures for data class imbalance, such as f-measure. 
Learn++.NIE also implements sub-ensembles in place of 
individual classifiers in order to reduce stochastic errors. 
An alternative approach was proposed by Ditzler and 
Polikar [25], whose Learn++.CDS algorithm instead uses 
preprocessing with SMOTE, an oversampling method, 
rather than changing the evaluation metric to account 
for class imbalance. SMOTE adds instances to the minor-
ity class in order to create a more balanced dataset.

The comparative performance of the Learn++ algo-
rithms was reviewed by Liao et al. [50]. The performance 
of each algorithm is dependent heavily on the base clas-
sifier used. This was especially apparent in environments 
with imbalanced data and incremental learning. The cur-
rent state of the Learn++ algorithm family requires con-
siderable work to produce solutions that can cope with 
concept drift and imbalanced data, although discussion 
of the latter is out of scope for this research. Learn++.
NSE provides a starting point for using the Learn++ fam-
ily for concept drift detection. However it is outdated 
and its approach weighting favours newly created clas-
sifiers during prediction which is a flawed approach; it 
is entirely feasible that older classifiers in an ensemble 
may be better equipped to make predictions than newer 
classifiers.

5  Evaluation

In traditional machine learning scenarios, the typical 
evaluation procedure is to train a model, cross-validate 
and then test using metrics such as prediction accuracy 
or f-score. For stream mining this approach is ineffec-
tive. Since stream data arrives online in a continuous and 
sequential fashion, it is not possible to first train the model 
and then test. Instead one of two methods can be used; 
prequential evaluation, sometimes referred to as inter-
leaved-test-then-train, or holdout evaluation.

Prequential evaluation is implemented using the fol-
lowing procedure. For each arriving element from a stream 
the model is first tested by predicting the class label, after 
which the same element is used to train the model. Pre-
quential evaluation can be used in conjuction with sliding 
windows and decaying factors to improve classification 
results in evolving data streams. A full comparative assess-
ment is given by Gama et al. [35].

The holdout evaluation procedure offers an alternative 
approach. This involves with-holding a subset of data exam-
ples from the classifier to be used as a training set at specific 
time intervals, for example every one hundred thousand 
instances. Algorithm 6, adapted from Bifet and Kirkby [9], 
shows an example algorithm for holdout evaluation. The 
most obvious problem for holdout is the acquisition of 
examples for use as training data. A solution to this is to sys-
tematically store arriving samples from the stream at vary-
ing intervals. Similarly, ascertaining the adequate number 
of examples to provide accurate evaluation measurements 
also poses a challenge. It is suggested by Bifet and Kirkby [9] 
that a test set in the region of tens of thousands of examples 
is sufficient, however, this is an enormous potential range 
and doesn’t provide a concise estimate.

Krempl et al. [49] states that a problem with evaluating 
stream mining classifiers in general is a lack of benchmark 
datasets for cross comparison. Instead, datasets are often 
synthesised used tools such as MOA [10]. This is also a 
problem for evaluating concept drift detection algorithms. 
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Few benchmark datasets exist for testing concept drift 
detectors. The most popular dataset used for evaluat-
ing concept drift detection algorithms is the Electricity 
Dataset [40]. This dataset is used in various concept drift 
related research publications [7, 34, 46, 75]. This dataset 
was taken from the Australian New South Wales electric-
ity market, in which electricity prices are not statically set. 
Instead, the price fluctuates according to demand. The 
dataset is constructed of 45,312 electricity prices which 
were taken at 30 min intervals. Examples are labelled as 
either “UP” or “DOWN” which reflect their current price in 
comparison to the last 24 h. Another popular dataset is 
the Forest Covertype [13] dataset. This consists of 581,012 
instances of 54 attributes that describe various types of 
forest cover of the Roosevelt National Forest in northern 
Colorado. The KDD’99 dataset is well known and subject 
to somewhat extreme temporal dependence. This dataset 
contains information pertaining to simulated intrusions 
in a military network environment. It contains 23 class 
labels representing either normal traffic or some form of 
intrusion. The dataset contains over 494,000 records of 41 
features each. This dataset is of considerable age, but due 
to the high level of temporal dependence has been used 
in recent studies such as Zliobaite et al. [76]. The Poker 
Hand dataset from UCI Machine Learning Repository [28] 
contains one million records of 11 attributes that repre-
sent a poker hand of five cards from a standard 52 card 
deck. Each card has two corresponding attributes, the suit 
and the rank, and there is one additional attribute that 
describes the hand, e.g. royal flush or full house. A dataset 
similar to Poker Hand that contained more class labels was 
used in the work of Cattral et al. [16]. The Airlines dataset 
from Data Expo 2009 [42] contains 120 million records 
of 13 attributes relating to flight departure and arrival 
information from internal commercial flights in the USA 
between October 1987 and April 2008. The target class 
label is the arrival delay given in seconds, and the classifi-
cation goal is to determine the flight delay time given the 
arrival and departure information. This dataset has been 
used in the work of Ikonomovska et al. [43].

Another fundamental problem in evaluating drift 
detectors stems from the use of classifier accuracy as an 

evaluation metric. This has been criticised in recent litera-
ture [7, 12, 76] where it has been suggested that classifier 
accuracy doesn’t reflect the performance of the concept 
drift detector. Bifet [7] explains that drift detectors should 
be evaluated in terms of their ability to handle false alarms, 
their true detection rate and the time taken to correctly 
identify an occuring drift. This is reflected in evaluation 
criteria proposed by Basseville et al. [5] and Gustafsson 
and Gustafsson [37], which are given in Table 3. These are 
existing, historic metrics which capture properties of con-
cept drift detectors, however, at the time of writing there 
appears only the work of Bifet et al. [11] utilises these met-
rics for evaluation.

These metrics have existed for over a decade, yet are 
not used in published work. One possible reason for this 
is a lack of frameworks which support these metrics. Each 
must be independently calculated when implementing 
models, which is time consuming and can increase com-
plexity. Since prediction accuracy is readily available in vir-
tually all machine learning frameworks, it’s of no surprise 
that this metric is used to evaluate the impact of change 
detectors. This is only bolstered by the idea that in most 
instances the performance of the change detector itself 
may be viewed as unimportant; only the performance of 
the classifier truly matters.

The lack of an existing evaluation framework was an 
issue that was addressed by Bifet et al.  [11] where the 
authors propose CD-MOA, a GUI extension to MOA (Mas-
sive Online Analysis). CD-MOA offers an interface for 
evaluating change detectors. However, the evaluation 
measures provided are again different. CD-MOA provides 
information on time and memory resources, as well as a 
metric called RAM-Hours which merges both time and 
memory together. The most recent version of CD-MOA 
also provides a measure based on Cohen’s Kappa statistic 
[19], which compares observed accuracy with an expected 
accuracy.

A further issue with the metrics of Basseville et al. [5] 
and Gustafsson and Gustafsson [37], as given in Table 3, 
is their numerousness. Having five independent statisti-
cal measures to evaluate a drift detector obfuscates a true 
representation of performance. In order to tackle this, 

Table 3  Drift detector 
evaluation metrics

Metric Explanation Formula

MTFA Mean time to false alarms. Frequency of false alarm 
triggers

E𝜃0
(ta)

FAR False alarm rate 1/MTFA
MTD Mean time to detection. How quickly occurring drift 

is identified
E(ta − t0 + 1 ∣ ta ≥ t0)

ARL Average run length. Time to alarm after change of 
size 𝜃

E(ta − k ∣ change of size 𝜃 at time k)
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Bifet [7] proposed a new single metric, the Mean Time 
Ratio (MTR), which encapsulates the ratio between MTFA 
and MTD metrics. The motivation of this was that the MTFA 
and MTD metrics are arguably the two most important, 
thus providing a single metric representing these elimi-
nates the confusion of having five metrics. The MTR metric 
is given as follows.

Ultimately, the problem with current evaluation metrics is 
a lack of agreement and absence of gold-standard tech-
niques. The metrics presented in Table 3 represent perfor-
mance characteristics of a change detector, but numer-
ousness and a lack of frameworks has left them virtually 
unused. The MTR metric aims to eliminate the problem of 
numerousness by providing a single metric which com-
bines both the mean time to false alarms and the mean 
time to detection. CD-MOA provides a framework for 
evaluation, but provides a different set of metrics within 
its GUI for evaluating drift detectors. The result is that drift 
detectors are evaluated based on their impact to classifier 
accuracy, however this doesn’t truly evaluate the concept 
drift detector itself. Further research should aim to estab-
lish a standardised set of statistical evaluation metrics that 
encapsulate the various performance characteristics of a 
drift detector, as well as its impact on classifier accuracy.

Existing statistical measures focus on the evaluation 
of baseline classifiers. The Kappa statistic proposed by 
Cohen [19] is a statistical measure for evaluating clas-
sification results when using imbalanced data, both in 
the context of streaming data and in traditional batch 
learning. The Kappa statistic is defined as

where P is the accuracy of some base classifier and Pran is 
the accuracy of a classifier that predicts labels at random.

The Kappa statistic, however, is not a suitable metric 
when temporal dependence exists within the data, as 
shown by Zliobaite et al. [76]. Instead, the authors pro-
pose a new statistic called Kappa Temporal, defined as

where Pper is the probability of a Persistent classifier, a 
classifier that simply predicts that the next class label 
will the same as the immediately previously known class 
label. Using this measure, trained classifiers performing 
correctly will achieve a kper score of 1, or if performing 

(15)
MTR(𝜃) =

MTFA

MTD
× (1 −MDR) =

ARL(0)

ARL()

× (1 −MDR)

(16)k =
P − Pran

1 − Pran
,

(17)kper =
P − Pper

1 − Pper
,

worse than the Persistent classifier Pper , a score of 0. The 
substantial drawback to the Kappa Temporal measure is 
the direct inverse to the Cohen’s Kappa statistic described 
above. Kappa Temporal is ineffective for imbalanced data-
sets since a Majority class classifier, a classifier that simply 
predicts the class with the largest prior probabilities, will 
outperform that of a Persistent classifier.

Zliobaite et al. [76] offer a solution to this problem by 
combining both Cohen’s Kappa statistic and the Kappa 
Temporal statistic together, forming the Combined Meas-
ure [76]. This is given as

This Combined Measure will provide a statistical evalua-
tion score of 0 if either the Kappa or the Kappa Temporal 
metrics fail. This provides a single evaluation metric that 
encapsulates a classifier’s ability to cope with both tempo-
ral dependence and imbalanced data. However, it is only 
a statistical metric and does not offer any mechanism for 
base classifiers to handle temporal dependence during the 
classification process.

Further evidence of the need for additional evalua-
tion criteria outwith of classifier performance is shown by 
Bifet [7]. A “No Change” detector is compared to state-of-
the-art drift detectors using a Naive Bayes classifier with 
both the Electricity and Forest Covertype datasets. The No 
Change detector is a drift detector that performs no sta-
tistical monitoring of the stream data but instead outputs 
a false positive change every 60 instances. The results of 
this show that the No Change detector outperforms state-
of-the-art detectors in terms of accuracy on both datasets. 
This reinforces the concept that the use of accuracy as a 
metric for the performance of concept drift detectors is 
insufficient.

A possible direction for future research is to design 
and produce new statistical evaluation criteria. Krawc-
zyk et al. [48] suggests that metrics such as memory con-
sumption, update time and decision time of drift detectors 
should be taken into account for evaluation. New metrics 
should not focus solely on the predictive accuracy of the 
base classifier but incorporate performance factors of the 
drift detector. A potential start would be to find a suitable 
statistical combination to incorporate classifier accuracy 
with the metrics given in Table 3. This would provide a 
new, harmonious statistical measure that represents both 
the drift detector and classifier performance.

The work of Bifet [7] not only suggests that accuracy 
is a poor metric for evaluating drift detectors, but also 
that the existence of temporal dependence within data-
sets that contain concept drift is the cause the false alarm 
phenomenon found with the superior performance of the 
No Change detector.

(18)K+ =
√

max(0, k)max(o, kper)
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Te m p o r a l  d e p e n d e n c e  i s  d e f i n e d  b y 
Zliobaite et al. [76] as “observations that are not inde-
pendent from each other with respect to time of arrival” 
[76, p. 459]. In other words, an arriving stream element is 
not independent from the preceding element in regards 
to its time of arrival. Temporal dependence itself is not a 
new issue, and is a known problem in the field of time-
series analysis [6]. However, its effects upon stream clas-
sification and concept drift are relatively unexplored. 
At the time of writing there exists very little work in 
the context of handling temporal dependence during 
stream mining and concept drift detection. The emer-
gence of temporal dependence in streaming data has 
started to spawn new research, such as using temporal 
dependence in streaming data to assist in change detec-
tion using a Candidate Change Point model [30].

In a typical streaming scenario, arriving elements are 
assumed to be independent such that the class labels yt 
are dependent on the features vectors xt . When temporal 
dependence exists, the class labels are not independent 
and therefore are likely to be dependent on the previ-
ously seen labels. Temporal dependence is given math-
ematically by Zliobaite et al. [76] as:

where t is some timestamp and y are class labels. The 
authors note that this is known as first order temporal 
dependence, since only the immediately previous label 
is used for observation. Temporal dependence of the lth 
order observes the previous l labels. Temporal dependence 
for a class label is positive if

or negative if the inverse is true.
Zliobaite  et  al.  [76] propose two approaches to 

account for temporal dependence in the context of 
stream classification. The first approach, labelled as 
the Temporal Correction classifier, assumes a model of 
temporal dependence which is used to formulate an 
expression for estimating the posterior probabilities. The 
authors consider only first order dependence in this pro-
posal, and give the expression for estimating the maxi-
mum posterior probability as:

(19)P(yt , yt−1) ≠ P(yt)P(yt−1),

(20)P(yt , yt−1) < P(yt)P(yt−1)

(21)
P(yt = i ∣ yt−1)

P(yt = i)
P(yt = i ∣ Xt)

While this approach is simplistic, it only accounts for first 
order temporal dependence. While the assumption that 
the previous label will be known is commonly made in 
stream classification, any delay or error in the arrival of 
labels will negatively impact the performance of this 
method.

The second method proposed by the authors is 
described as Temporally Augmented classifier. In con-
trast to the Temporal Correction classifier, this method 
relies solely on preprocessing techniques. The approach 
involves augmenting the observation feature vector X 
with previously seen labels. A classification model is then 
trained using these augmented vectors. The prediction 
ŷt is then given as:

where ht is a classification model that estimates the poste-
rior probabilities and l is the length of temporal depend-
ence orders. This approach is not limited to the assump-
tion of first order dependence, as with the first proposed 
model. However there still exists the assumption that the 
previous labels will always be known.

As noted by Zliobaite et al.  [76], their approach to 
handling temporal dependence with the Temporally 
Augmented classifier is simplistic, and that it is often 
outperformed by a Persistent classifier; a classifier that 
predicts that the next arriving class label is the same 
as the previously seen class label. This finding was also 
stated by Bifet [7].

Table 4 shows the results of a trained Persistent clas-
sifier on both the Electricity and Forest Covertype data-
sets. It both cases, particularly in the Forest Covertype 
dataset, the Persistent classifier outperforms the state-
of-the-art classifiers using Temporally Augmented clas-
sifier to account for temporal dependence, according to 
the results of Bifet [7]. Simply predicting the next label 
will be the same as the last seen label produces higher 
predictive accuracy than handling temporal dependence 
using the Temporally Augmented approach.

The proposed Temporally Augmented approach for 
handling temporal dependence also only aids the base-
line classifier. It does nothing to allow the drift detec-
tor itself to account for temporal dependence. The false 
alarm phenomenon occurs when drift detectors are 
subject to temporal dependence within the data, as 
described by Bifet [7]. As such, it should be accounted for 
at the drift detection level. The current state-of-the-art 
technique for handling temporal dependence provides 
no mechanisms for coping at drift detector level, it only 
offers a basic wrapper for baseline classifiers. Further 
research is required to investigate the development of 
new drift detection techniques, or augmentations to 

(22)ŷt = ht(Xt , yt−1,… , yt−l),

Table 4  Persistent classifier performance

Dataset Persistent clas-
sifier accuracy 
(%)

Electricity 85.33
Forest covertype 95.06
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existing drift detection solutions, that can account for 
temporal dependence in streaming data.

6  Conclusions and future research

Stream mining is a challenging problem but has valuable 
potential yields, especially in industry and commercial 
applications. Data streams offer an untapped source of 
qualitative and quantitative information that could be 
used in a multitude of different ways to boost businesses 
in terms of profit and efficiency. However the unbound 
size, unknown speed and varying characteristics of data 
streams make applying machine learning techniques a 
complex task. Whilst online classifiers capable of pro-
cessing streaming data have been proposed, the task 
is further obfuscated by concept drift. Evolving data 
streams with concept drift have a distribution that shifts 
over time, and at varying rates of severity. Classifiers 
must be capable of handling concept drift by forgetting 
outdated information when a shift in distribution occurs.

The in-depth literature review provided in this 
research shows that multiple approaches for handling 
concept drift are available. Statistical methods monitor 
the underlying distribution over time, signalling alarms 
when a drift has been detected. Window based meth-
ods use sliding windows to detect occurring drifts rather 
than monitoring the whole distribution. Ensemble based 
detectors handle concept drift by replacing outdated 
classifiers within ensembles through some form of a 
weighted voting mechanism.

Through an in-depth, critical review of existing 
literature, this paper has identified the following 
shortcomings:

1. Outdated state-of-the-art drift detection methods.
2. A lack of benchmark datasets for evaluation.
3. Flawed evaluation metrics, including an over-reliance 

on classifier accuracy.
4. The inability of drift detectors to cope with additional 

data anomalies, such as temporal dependence.

In order to address these shortcomings, the following 
points address each of the identified shortfalls above in 
turn, providing direction for future research within the 
domain of stream mining and concept drift detection.

The current state-of-the-art consists of algorithms 
that are now somewhat dated, such as ADWIN [8], and 
have known flaws in them. While there have been a num-
ber of attempts to further the state-of-the-art, many 
methods still suffer from substantial drawbacks. Statisti-
cal based methods such as DDM and EDDM have known 
issues in terms of their ability to handle varying types of 

drifts and in producing high rates of false alarms. Recent 
approaches such as DDM-OCI and LFR have aimed to 
solve these problems, but have fallen short. Window-
based approaches like E-CVFDT still falter under sudden 
concept drifts. Block-based ensemble methods such as 
AWE and AUE are subject to dependency on the chunk 
size and weighting mechanisms. Incremental-based 
algorithms such as DWM could be improved by not 
explicitly storing instances and changing the statistical 
requirements for adding new classifiers to also consider 
classifier age and performance history.

A lack of benchmark datasets for evaluating is another 
crucial shortfall. As a result of a lack of benchmark datasets, 
it is common for datasets to be simulated using generators 
to account for the lack of benchmark datasets. While simu-
lating data does work, the number of available generators 
is substantial and each often relies on various user speci-
fied parameters. The selection of the most suitable genera-
tor and corresponding parameters for a particular problem 
is open to interpretation. Future research should aim to 
produce gold-standard datasets, which would provide a 
collection of agreeable, accepted datasets to be used for 
experimentation.

Existing literature has exposed drawbacks in the metrics 
commonly used for evaluation drift detectors [7, 12, 76]. 
Some existing proposed metrics are given in Table 3, but 
these are particularly historic and are virtually unused in 
published work. This study suggests the reason for this is 
an issue of numerousness coupled with a lack of existing 
frameworks which incorporate these metrics. This research 
proposes that future research should aim to develop new 
statistical measures that capture performance properties 
of the drift detector and also potentially combine these 
with performance attributes of the baseline classifier to 
provide harmonious, statistically relevant metrics. An 
example of this is the Mean Time Ratio metric proposed by 
Bifet et al. [11], however this only represents the trade off 
between the average time to false alarms and true change 
detection.

The final suggestion for future research is concerned 
with enabling drift detection algorithms to cope with 
other data anomalies such as temporal dependence. This 
paper has discussed and portrayed the problem of tem-
poral dependence and its impact of drift detectors. The 
current-state-of-the-art for handling this is merely a wrap-
per for the baseline classifier that augments the feature 
vector of arriving instances. However, temporal depend-
ence should be handled at the drift detector level. The 
role of the classifier is well established in machine learn-
ing contexts; it is not classifier’s responsibility to handle 
anomalies in the data stream. Concept drift is an anomaly 
that occurs in real-time data streams, and as such concept 
drift detection algorithms have been developed to work in 
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conjunction with classifiers. It follows that since temporal 
dependence is also a data anomaly, this should be han-
dled by specifically designed algorithmic solutions that 
can cope with both temporal dependence and concept 
drift. The structural framework proposed by Yu and Abra-
ham [73] in HLFR is of particular interest in this context and 
forms a good starting point for future research in this field.
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