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Abstract

Argumentation is a key part of human interaction. Used introspectively, it searches for the truth

by laying down argument for and against positions. As a mediation tool, it can be used to search

for compromise between multiple human agents. For this purpose, theories of argumentation have

been in development since the Ancient Greeks in order to formalise the process and therefore

remove the human imprecision from it. From this practice the process of argument mining has

emerged. As human interaction has moved from the small scale of one-to-one (or few-to-few)

debates to large scale discussions where tens of thousands of participants can express their

opinion in real time, the importance of argument mining has grown while its feasibility in a

manual annotation setting has diminished and relied mainly on a human-defined heuristics to

process the data. This underlines the importance of a new generation of computational tools that

can automate this process on a larger scale.

In this thesis we study argument stance detection, one of the steps involved in the argument

mining workflow. We demonstrate how we can use data of varying reliability in order to mine

argument stance in social media data. We investigate a spectrum of techniques, from completely

unsupervised classification of stance using a sentiment lexicon, automated computation of a

regularised stance lexicon, automated computation of a lexicon with modifiers, and the use of a

lexicon with modifiers as a temporal feature model for more complex classification algorithms.

We find that the addition of contextual information enhances unsupervised stance classification,

within reason, and that multi-strategy algorithms that combine multiple heuristics by ordering

them from the precise to the general tend to outperform other approaches by a large margin.

Focusing then on building a stance lexicon, we find that optimising such lexicons using a

empirical risk minimisation framework allows us to regularise them to a higher degree than

competing probabilistic techniques, which helps us learn better lexicons from noisy data. We

also conclude that adding local context (neighbouring words) information during the learning

phase of the lexicons tends to produce more accurate results at the cost of robustness, since part

of the weights is distributed from the words with a class valence to the contextual words. Finally,

when investigating the use of lexicons to build feature models for traditional machine learning

techniques, simple lexicons (without context) seem to perform overall as well as more complex

ones, and better than purely semantic representations. We also find that word-level feature models

tend to outperform sentence and instance-level representations, but that they do not benefit as

much from being augmented by lexicon knowledge.

Keywords: Argument Stance Mining ; Natural Language Processing ; Social Media Mining ;

Lexicon-Based Methods
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Chapter 1

Introduction

The advent of the social web has transformed the way we communicate on the Internet. While the

World Wide Web was created as a mean to disseminate knowledge so as to prevent information

loss in CERN (Berners-Lee, 1989) ; the several improvements in networking infrastructure and

the invention of web technologies that were able to make use of the faster speed paved the way

for complex web platforms that allowed for not only producer-to-consumer communication,

but also for user-to-user interaction. With the popularisation of social websites, the richness of

human interactions soon were adapted to their virtual equivalent, bringing casual discussions,

debates, and all out profanity-rich "shouting matches" to the comment sections of many websites.

However, the architecture of the World Wide Web allowed for bringing these activities to scales

that were never explored before, with sometimes tens of thousands communicating with each

other on a common topic of interest. For example, the social link aggregator Reddit.com held an

informal interview (AMA, for Ask Me Anything, in the Reddit terminology) with Barack Obama

which contained more than 20,000 comments (figure 1.1).

This increase in communication has consequentially led to an increase in the data generated by

these interactions, which has made it more and more difficult for both human users and algorithms

to make use of such data. This had led to a significant amount of research effort being dedicated

at automated techniques that are able to make sense of these quantities of data, whether it is

mining the political opinions of Twitter users (Pak and Paroubek, 2010), detecting customer

tastes to improve product recommendation using Amazon reviews (Chen et al., 2014) or trying to

predict the emotional reaction to Facebook posts (Clos et al., 2017).

1
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FIGURE 1.1: Barack Obama’s AMA (Ask Me Anything) on Reddit contained more than 20,000
comments over the few hours of the event.

FIGURE 1.2: A discussion tree from Reddit where users discuss United Kingdom politics.

Online discussion forums (Figure 1.2) typically manifest into tree-like structures that are reminis-

cent of argument trees. Whilst these discussion forums contain a wealth of information related

to people’s opinions they also include implicit argumentation information. However unlike

argument trees any relationship between posts in a discussion tree remains implicit. In recent

years there has been considerable interest in harnessing opinionated knowledge that is buried in

discussion forums in a variety of domains (e. g., retail, health and politics).

However to-date the main focus of opinion mining has been on mining raw opinion, sentiment and

emotion without paying much regard to some of the relational characteristics of user comments.

Consider the discussion excerpt presented in Figure 1.2. We consider the outcome of applying the

SMARTSA state-of-the-art sentiment analysis system (Muhammad et al., 2013) to argumentative

content. The aggregated sentiment of comment 1 (circled in green) is positive with a value of

0.18, while the aggregated sentiment of comment 2 (circled in red) is negative with a value of
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−0.23. A casual observation would suggest that the opinion expressed in both comments are not

opposed but aligned.

However, a closer examination shows us that there is indeed a discrepancy between the actual

opinions expressed, which are similar, and what a sentiment analysis algorithm tells us, which is

that comment 1 is positive while comment 2 is negative. This is due to the fact that sentiment

analysis algorithms, such as SMARTSA, generally rely only on the aggregated sentiment mined

from the terms contained in the sentences, thus considering user comments in a vacuum.

In this thesis, we tackle the challenge of argument stance mining by exploring the use of

argumentation constructs for argumentative stance mining in social media. We explore a series of

techniques that make a progressively heavier use of context and machine supervision, drawing

from unsupervised heuristics to recurrent neural networks.

1.1 Applications of argumentative stance mining

Debating and arguing has always been a fundamental process of human cognition and interaction.

Only recently have those debates moved from the small scale of panel discussions and expert-

driven arguments to the large-scale, comparatively messy process of online argumentation.

Traditionally, when a user seeks to understand a debate, it is a trivial matter for them to simply ask

multiple participants of the debate for their point of view, and the facts they are basing them on,

before synthesising their own conclusion. That process does not work when the participants are

counted in the thousands and the facts, reasoning patterns and opinions in the tens of thousands.

Considering that online user discussions are already structured as interaction graphs, being able to

instantly know how much and where people are agreeing and disagreeing would provide systems

with valuable information to summarise a debate. One could, for instance, use the average number

of agreement and average number of disagreement as a social signal that allows the system to

rank and organise user comments by level of controversiality. Conversely, it would allow, given

enough data to begin with, for a user to know the likely response of a community to a given idea,

argument or statement by simply looking at similar cases from the recent past.
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Finally, being able to provide an argumentative stance between pairs of argument would simply

allow experts to better understand the finer points of a debates. This has led to the creation

of multiple software tools to analyse arguments in different types of text in a guided way:

Araucaria (Reed and Rowe, 2004), OVA+ (Reed et al., 2014) and the Argument Analysis

Wall (Bex et al., 2013), both as a way to study argumentation in the wild and to build better

systems able to analyse arguments in more standard documents.

1.2 Related research fields

Argument stance mining draws upon the research of many neighbouring fields that have dealt

with data of the same nature, such as argumentation mining, sentiment analysis, text classification

(supervised and unsupervised) and information retrieval. This section focuses on relating all

these fields to argument stance mining and contextualising them with respect to this thesis.

Argument mining Argument mining as a field tends to focus on detecting the presence of

arguments in formal or informal text. As such it is often used as a precursor of argument

stance mining. Traditional approaches pioneered by Palau and Moens (2009) make heavy use of

supervised classifiers such as the Maximum Entropy Classifier (detailed in Jaakkola et al. (2000)

and Support Vector Machines (detailed in Hearst et al. (1998)) trained on legal documents, as

well as context-free grammars (detailed in Figures 1.3 and 1.4) to detect the internal structure of

arguments before classifying them.

In this thesis we focus on informal arguments. In order to make the task feasible, and because

informal argumentation does not tend to focus on following a strict representation, we make the

simplifying assumption of considering the entire posts as potential arguments, and then attempt

to detect their argumentative stance with respect to their parent post.

Sentiment analysis Sentiment analysis is the field focusing on detecting the strength and

polarity of sentiment in informal or formal text. It is often used in social media analysis in

order to provide a high level overview of what users think about a topic, whether it is a political

topic/idea, a product, or an event. Sentiment and stance are two highly related topics, with
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FIGURE 1.3: Rules of the Con-
text Free Grammars in Palau and

Moens (2009).

FIGURE 1.4: Symbols of the Context Free
Grammars in Palau and Moens (2009).

sentiment being often seen as a proxy for stance towards a global topic. In this thesis, we explore

the use of sentiment as a proxy for stance using a series of heuristics. We also use sentiment as a

feature model for supervised stance classification.

Supervised text classification Supervised text classification focuses on building a supervised

model that is able to learn from data and classify new data. Its main drawback is the need

for a lot of training data. Its advantage is how powerful and accurate it can be given the right

representation and the right algorithm. In this thesis we explore supervised classifiers to classify

the argument stance of informal posts and focus on representation schemes in order to enhance

argument stance classification.

Unsupervised text classification Unsupervised text classification is similar to supervised text

classification but replaces the training data with heuristic rules that have been designed by humans.

Its advantage is that it is not affected by the absence of data, and its drawback is that human

heuristics are plagued by human bias and are never as powerful as statistical correlations. In
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this thesis we explore unsupervised classifiers to classify the argument stance of informal posts,

particularly unsupervised techniques that make use of heuristics to detect the target of local

sentiment such as the Sentiment Surface algorithm.

Information retrieval Information Retrieval (IR) focuses on the storage, indexing and retrieval

of documents given an information need formulated by a user (implicitly or explicitly). A large

part of the focus of information retrieval as a field is term weighting, in order to represent

documents not by all of their terms in an equal manner, which would give an unwarranted

over-importance to documents which are very long, but by their most representative terms

(both representative at a document level and at a corpus level). In this thesis we investigate

IR-inspired term weighting techniques used to enhance supervised and unsupervised classification

of argument stance in social media posts.

1.3 Scope of the research

In this section we detail the scope of our research, first by detailing our research motivation and

how it fits in the scientific landscape of social media mining and debate analysis, and then moving

on to the research objectives that stem from this motivation.

1.3.1 Research motivation

The classification pipeline (illustrated in figure 1.5) is a multi-step process. First, the complete

dataset is split into two datasets: a hold-out evaluation dataset, typically composed of 20% of the

data (using a stratified sampling strategy to not bias the evaluation), and a training dataset that is

used for tuning model parameters. We then use K−Fold cross-validation (with K typically being

5 or 10) to select the optimal parameters for our model. This process works on the following

steps: first, the training dataset is split into Kpartitions using a stratified sampling strategy. Then,

every one of these partitions is used as a test set with a model that is trained on the remaining

K − 1 partitions. This process produces K performance scores, which are averaged to produce

an overall score for the given hyperparameters. Then, either the parameters which are issued from

the fold that produced the best performance score or a weighted combination of the parameters of
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all folds using the performance metrics as weights is used to produce the optimal model, which is

finally evaluated against the hold-out evaluation dataset that was held out in the first step.

This process requires that the data be represented in a way that allows the learning algorithm to

perform the training stage in an efficient and effective way. This is typically called the feature

engineering phase.

Traditional stance classification feature engineering techniques lean in either one of the following

extremes: on one hand, a complex representation model that uses up to a few hundreds manually

crafted features in order to enhance the learning process using human common sense, and on the

other hand an overly simplistic feature model that is built only on raw term frequencies (bag of

word models) which are fed to a complex classifier. Both of those approaches present crucial

flaws:

• Complex feature models are highly platform specific, and thus any knowledge learned

from them is specific to the data on which is it used and cannot be ported to alternative

platforms.

• Bag of word models fed into complex classifiers are turned into black boxes in which it is

virtually impossible to inspect a classification a posteriori and justify it by looking at the

model (explanation by transparency).

In this thesis we aim to bridge that gap by developing a model that is simple, knowledge-light (in

that it doesn’t require specially hand-crafted features) and competitive with common black box

models.

1.3.2 Research questions

In order to bridge this gap, we derive a list of research questions that will guide our investigation

throughout this thesis. Each of those research questions builds upon the potential findings of the

previous one.

RQ1. Can we use the direct conversational context to improve classification accuracy by helping

a naive classifier focus on relevant terms? Concretely, can we use our knowledge of the
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FIGURE 1.5: The supervised classification process

direct context of a conversation to improve the performance of a naive classifier? This

research question is addressed in chapter 5.

RQ2. Can we use empirical risk minimisation techniques to learn a regularised stance classifica-

tion lexicon? This research question is addressed in chapter 6.

RQ3. Can we leverage the neighbourhood of words to learn a context-sensitive classification

lexicon? This research question is also addressed in chapter 6.

RQ4. Can class-sensitive features learned on a corpus enrich an existing term representation and

allow it to better represent argumentative content? This is addressed in chapter 7.

RQ5. At what level of granularity (words, sentences, or entire instance) does lexicon enhancement

performs better when applied to standard representation schemes? This question is also

answered in chapter 7.

These research questions lead us to formulate a set of research objectives which are detailed in

the following section.
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1.3.3 Research objectives

We formulate the following four research objectives in order to answer our research questions.

� To develop an unsupervised classification algorithm that leverages conversational context

and existing resources from the field of opinion mining.

� To develop a novel approach to learn an argument lexicon from weakly labelled data.

� To develop a novel learning algorithm to jointly learn an argument lexicon and its modifiers.

� To develop a representation scheme using the argument lexicon as a feature extractor that

can leverage the temporal nature of text.

1.4 Contributions

The contributions in this thesis are multiple, and target different research questions and research

objectives mentioned in the previous sections.

Firstly, we contribute a novel stance classification dataset built on a large scale mining of the

Reddit social link aggregation website, and a distant labelling strategy. This dataset is used to

experiment on the transfer learning capabilities of regularised lexicons and lexicon-enhanced

representations.

Secondly, we contribute a series of unsupervised stance classification algorithms. Those

algorithms allow us to investigate the use of complex heuristics in order to approximate stance

classification using approaches inspired from the already well explored field of opinion mining.

We explore a set of techniques that make use of opinion as a way to approximate stance by

augmenting it with additional heuristics, either by using simple lexicon classification or by

utilising natural language processing heuristics.

Thirdly, we contribute two approaches to learn regularised lexicons from data of varying quality.

LEXICNET is the first of those approaches, using a regularised gradient-based optimisation

process in order to learn a lexicon that is robust to errors in the training data. It is then extended
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in the form of RELEXNET, which adds contextual terms in order to offer a richer way to model

argumentative language.

Finally, we offer a series of representation schemes that use the argument stance lexicons

previously computed (LEXICNET and RELEXNET) in order to enrich semantic and/or statistical

representations of the data, before feeding it into traditional machine learning algorithms. Those

representation schemes operate at multiple levels of granularity (representing words, representing

sentences, and representing the whole instance) and use different lexicons, in order to provide a

comparative study of those effects.

1.5 Overview of the thesis

In this section we will detail an overview of the thesis and the mapping between each chapter and

the corresponding contributions.

In chapter 2, we present a review of the literature in argument stance mining, starting with

argumentation in social media, algorithms to detect and process arguments and modern methods

for stance classification. The first part of this chapter is dedicated to explaining the main theories

of argumentation and how they relate to stance detection. The second part of this chapter is

divided into two sections. The first section focuses on the different corpora built by the stance

detection and social media mining communities; the second section gives a detailed overview of

the literature in methods for stance classification, separating the related works into unsupervised,

supervised shallow, and supervised deep methods to illustrate the evolution of the field from

heuristic-based approaches to deep neural networks.

In chapter 3, we introduce the background knowledge necessary for the rest of the thesis.

We begin with a detailed explanation of the general field of text classification by explaining

its theoretical underpinnings, the standard methodologies for evaluating its algorithms, and an

explanation of two types of methods popular in the social media mining literature: supervised

classifiers and lexicon-based methods. We finally present standard evaluation methodologies that

will be used to validate our research objectives against the state of the art.



Chapter 1. Introduction 11

In chapter 4 we present our evaluation methodology, starting with the datasets collected for this

research and finishing with the statistical testing procedure used to formally test the significance

of our results.

In chapter 5, we present our first contribution: three novel unsupervised argument stance mining

algorithms using sentiment-as-a-proxy heuristic-based methods. The first one, SP-ADAPT, relies

on existing sentiment analysis resources along with adaptive thresholding to approximate the

stance of the user. The second one, USS+, extends the existing Unsupervised Sentiment Surface

with different failure modes to account for malformed data that is typical of social media corpora.

Finally the third one, SP-COSTS, uses relational knowledge between a post and its parent post

to perform term selection and improve the classification stage, while relying on different failure

modes for when the heuristics do not apply.

In chapter 6, we present our second contribution: an approach to learning lexicons, which

we extend to joint learning of lexicon and modifier terms. We formalise lexicon learning in an

empirical risk minimisation framework, and then apply gradient-based optimisation in order to

induce optimal lexicon weights from very small datasets (the LEXICNET algorithm). This allows

us to apply different regularisation methods that make our lexicon more robust to overfitting. We

extend our lexicon learning method to take into account modifier terms using a simple additive

gating model (the RELEXNET algorithm) along with a recurrent network-inspired architecture.

In chapter 7, we present our third and final contribution: a representation scheme that preserves

the temporal structure of posts using lexicons as feature extractors. Our representation models

the temporal nature of posts by keeping the structure of discourse, which allows us to train

a supervised classification algorithm not only on the semantic vectors of terms (traditional

embeddings) but also on class vectors of terms. We build a set of representations at multiple

levels of granularity in order to evaluate its usefulness on a diverse class of datasets.

Finally in chapter 8, we present the conclusion to this thesis. We re-state our research

questions and the interpretation of our experimental results and use them to outline potential

future directions of our research.



Chapter 2

Literature Review

Argumentation theory is a highly interdisciplinary domain, spanning a period of time starting

with the study of rhetoric in ancient Greece to, more recently, the use of abstract argumentation

for collaborative decision-making systems. This multidisciplinary status allows us to examine it

under multiple lenses. Philosophers, linguists, and computer scientists have all built their own

theories of argumentation with the goal of modelling specific phenomena (e. g., multi-agent

negotiation). In this thesis we focus on the role of argumentation as a formalisation of the

interaction between multiple users in a social media context, and therefore select Pragmatic

Argumentation Theory (van Eemeren, 1993, Hutchby, 2013) as our underlying target.

Pragmatic Argumentation Theory defines an argument as an opinionated piece of text which

can arise in the presence of two elements: (1) a target, being some other action by another

actor, has been called out as being problematic ; (2) a stance, i.e. whether it is supporting or

attacking the target regarding the problematic element, has been stated. This simplification of

the argumentation representation helps with applying those mappings to social media content,

by relaxing the definition of an argument. Indeed, users of social media tend to prefer a highly

informal language and as such are less likely to worry about formulating a well-formed argument.

We thus study the classification of argument stance in a Pragmatic Argumentation Theory setting,

where the dialogue between users can be viewed as a graph, and more specifically a tree, and the

stance of each contribution can be seen as an edge that is present between two vertices of that

graph (local stance), an edge that is present between one vertex and the root of the tree (global

12
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FIGURE 2.1: Graphical example of a debate graph. The vertices are arguments, while the
arcs are interactions between arguments, where a crossed arc between an argument ai and
an argument aj means that argument ai attacks argument aj , and therefore an observer who

believes ai to be true must believe aj to be false in order to maintain consistency.

stance). Argument stance detection thus consists in the classification of such edges, and lies on

existing research in stance detection, sentiment analysis, and general text classification.

A detailed analysis of the relevant theories can be found in appendix B.

2.1 Methods for Argument stance detection

In this section we will detail datasets and methods for stance classification, both in the context of

argument mining and in more general terms as it relates to this thesis. Being bound to the study

of dialogical argumentation, the task of stance classification has multiple definitions, according

to the use case it is attached to. We can broadly divide them into two different cases: (1) global

stance classification, and (2) local stance classification.

Global stance classification is the study of the stance of a claim with respect to an overarching

topic. While it is possible that global stance can be inferred from the network of local stances,

the difference in granularity makes it almost impossible: the root topic can contain a multitude

of details, and any further comment can agree or disagree with any arbitrary subset of those
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details. For example, in Figure 2.1 depicting a graphical example of a debate where a1 is the root

argument, which can be thought of as the core topic of the discussion (e. g., , "I am for LGBTQ

rights" is both an argument in favour of LGBTQ rights and a topic of discussion), the global

stance of argument a5 is the stance of a5 with respect to the argument a1. Because a5 attacks

argument a2, which itself is attacking argument a1, we can infer that it is likely that a5 has a

positive stance towards a1 and therefore the topic at hand.

Local stance classification is the study of the stance of a claim with respect to the claim it is

responding to. For example, in figure 2.1 depicting a graphical example of a debate where a1 is

the core topic of the discussion, the local stance of argument a5 is the stance of a5 with respect to

the its most immediate parent a2, and is therefore a negative stance.

In this section we will go into more details about the methods that have been used in the literature

to perform stance classification. This section is organised in the following way: first, we will

give an overview of unsupervised approaches that can be applied to stance classification. We will

then give more details on supervised approaches to stance classification, starting with shallow

classifiers and feature engineering-based approaches and ending with newer deep learning-based

methods.

2.1.1 Unsupervised approaches to stance classification

Because resources for unsupervised stance classification are scarce, this section will merge both

original approaches from the stance classification literature as well as methods adapted from the

closely related field of sentiment analysis.

Unsupervised stance classifiers The sentiment surface feature representation was built as a

baseline algorithm to extract significant features in Wang and Cardie (2014), based on previous

work by Hassan et al. (2010) where the feature extractor extracts the minimum, mean and

maximum distance (in number of words) between words of negative polarity and second person

pronouns. Those features are then fed into a support vector machine to provide the classification.

Wang and Cardie (2014) find that the sentiment surface representation is a strong baseline,

especially in identifying the neutral class where it is barely significantly beaten by the approaches
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of the authors. Because of the scarcity of unsupervised stance classification algorithms, we

leverage the sentiment surface heuristic as a baseline algorithm along with sentiment analysis-

inspired methods.

Ghosh et al. (2018) take a different approach to detect the stance of a statement, focusing on

syntactic rules and aspect extraction in order to provide a representation for each person’s position.

Once they have determined the positions with respect to each aspect of the conversation, they

formulate the classification of the overall stance as an integer linear programming problem and

optimise an objective function in order to provide a consistent stance classification for the entire

set of statements. Their final approach, which combines an improved lexicon, a co-reference

resolution, an aspect importance weighting and a negation handling procedure outperforms

several baselines on the MPQA political debate dataset (Somasundaran and Wiebe, 2010a).

Adapting sentiment analysis for stance classification Sentiment analysis is the computa-

tional task of determining the underlying sentiment (positive, negative, or neutral) within an

extract of text (Pang and Lee, 2008). Unsupervised approaches to sentiment analysis focus on

the use of sentiment lexicons. Due to the relatedness between sentiment and stance, they can be

adapted to the context of stance classification. Lexicons are a classification model where instead

of using every word as a feature, only certain words which are deemed to be sentiment-bearing are

considered. A list of those words is called a sentiment lexicon. After detecting sentiment-bearing

words within an arbitrary textual content, a computational aggregation rule is used to determined

whether the overall content is deemed positive or negative.

There are a number of freely available sentiment lexicons, the three most popular being:

• The General Inquirer lexicon (Stone et al., 1966) is composed of 1,915 positive words

and 2,291 negative words.

• The MPQA Subjectivity lexicon (Wilson et al., 2005) is composed of 2,718 positive

and 4,912 negative words from multiple sources such as the General Inquirer lexicon, a

list of sentiment-bearing adjectives (Hatzivassiloglou and McKeown, 1997), and a list of

hand-labelled subjective words and phrases (Riloff and Wiebe, 2003).
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• The SentiWordNet lexicon (Baccianella et al., 2010) is a lexicon induced from the Word-

Net (Miller, 1995) ontology. It contains over 38,000 words from WordNet to which it

assigns a positive, negative and objective score.

Several additional works focus on optimising the use of such lexicons, either by fine-tuning them,

or by modifying their scores based on contextual clues. For example, Muhammad et al. (2016)

enhance an existing general purpose lexicon (SentiWordNet) for a domain-specific application by

adding additional vocabulary and sentiment scores.

Sentiment lexicons typically output scores based on which the classification is made, they can be

trivially adapted to stance classification by changing the threshold at which the classification is

made.

2.1.1.1 Conclusions from the unsupervised stance classification literature

We can see that there is no clear unsupervised stance classification literature to speak of, where

most of the unsupervised techniques are either built from external resources such as the graphical

structure of the discussion, or directly ported from the sentiment analysis literature. This points

towards a need for more robust and specialised approaches that can deal with a variety of datasets

without requiring a learning phase, which we will develop in chapter 4.

2.1.2 Supervised approaches to stance classification

Supervised text classification is the process of automatically discovering a function that maps a

piece of text, formally represented as a set of numerical features, to one or more classes. It does so

by observing a dataset composed of a set of training instances X and a set of their corresponding

labels Y , and iteratively refining its model (the mapping function) by minimising its propensity

to commit classification errors. Supervised approaches to stance classification can be put into

two broad categories, which we will discuss in this section: a) feature engineering and shallow

classifier-based stance classifiers focus on manually extracting an enormous number of relevant

features and using state-of-the-art shallow classifiers such as Support Vector Machines and the

Maximum Entropy Classifier in order to build a model ; b) deep learning-based classifiers focus

on jointly learning features and a classifier from the data itself using deep neural networks.
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2.1.2.1 Feature engineering and shallow stance classifiers

Because of the novelty of deep learning models, most of the literature of the past decade has

focused on traditional shallow models for stance classification, which will be explored in this

section. Early work has been focused on structured debates (Janin et al., 2003, Carletta et al.,

2005, McCowan et al., 2005), which have the distinct advantage of being easy to label. However,

such data does not easily map to modern social media conversations, in two ways:

• Transcribed structured debates typically involve a reduced set of participants in a long-form

debate on a pre-chosen topic of discussion. Conversely, social media debates typically

involve a large number of participants who often do not follow up on their statements,

which creates a large number of branches for each argument.

• Transcribed structured debates typically use a more formal vocabulary than social media

debates.

Later work on stance classification involved more and more use of social media as a source of

data, from Twitter and Weibo debates Mohammad et al. (2016), Xu et al. (2016) to debate-focused

internet forums Walker et al. (2012a), Ferreira and Vlachos (2016), Rosenthal and McKeown

(2015). This has shifted the focus on the research from static techniques that rely on mining the

correct structure of arguments to a pervasive use of feature models, natural language processing

techniques, and machine learning.

Anand et al. (2011) use a set of arbitrary text-focused features (unigrams, bigrams, punctuation

marks, syntactic dependencies and dialogic structure) to build a rule-based classifier. However the

difference between systems using only unigrams and systems using more complex features such

as generalised dependencies was not found to be significant. Walker et al. (2012b) propose the

use of dialogic relations in order to enrich the content-based features using the MaxCut algorithm,

which is used to exploit the structure of the reply graph. While the core of their approach is

feature engineering-based, they show a significant improvement over a purely content-based

approach by exploiting this graphical structure.

Somasundaran and Wiebe (2010a) and Faulkner (2014) focus on detecting stance-taking language

as a way of generating features for their classifiers. While Somasundaran and Wiebe (2010a) take
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the route of pairing stance-taking expressions to expressions of sentiment (positive or negative)

using a lexicon of argument trigger expressions in order to build a feature model for their Support

Vector Classifier, Faulkner (2014) feed the stance language directly into their classifier (Support

Vector Machines and Multinomial Naive Bayes).

Ahmed and Xing (2010) use a Latent Dirichlet Allocation inspired approach to model the

generative process that generated each word as mixture of two distributions: a distribution over

topics and a distribution over ideologies. They then use collapsed Gibbs sampling to infer the

parameters of the mixture, leading to discover the most likely ideological stance with respect to

the subject at hand.

Some works, such as Hasan and Ng (2013a), put constraints on consecutive posts in order to

transform the problem from a classification task to a sequence labelling task. This approach

is similar to Rosenthal and McKeown (2015), who choose to study the role of conversational

structure using a set of features related to the thread structure: whether the post is the root of the

discussion (Boolean feature), whether the reply was by the same author (Boolean feature), the

distance in number of posts from the root of the discussion (numerical feature) and the number

of sentences in the post (numerical features).

Because of the SemEval Task 6 challenge on stance detection (Mohammad et al., 2016), a

spike of works on the topic of stance detection on a Twitter corpus appeared in 2016. In those

approaches, the most successful used complex deep learning models, which we will discuss in

section 2.1.2.2, while other high performing ones focused on clever feature engineering along with

very diverse classifiers such as Logistic Regression, Multinomial Naive Bayes, Decision Trees,

Maximum Entropy classification, Support Vector Machines, and Ensemble learners. Most of those

approaches relied on Twitter specific-features such as hashtags (Zhang and Lan, 2016, Tutek et al.,

2016, Krejzl and Steinberger, 2016), social media-specific features such as emoticons (Zhang

and Lan, 2016, Tutek et al., 2016), but also on more complex features such as latent topics

discovered through Brown clustering (Zhang and Lan, 2016), matrix factorisation (Elfardy and

Diab, 2016) or frequency analysis (Wojatzki and Zesch, 2016a) and features derived from popular

word embedding approaches such as Word2Vec (Zhang and Lan, 2016, Tutek et al., 2016),

Sentiment2Vec (Zhang and Lan, 2016) and GloVe (Igarashi et al., 2016, Bøhler et al., 2016).

In the case of Igarashi et al. (2016), the authors found that a Support Vector Machine model
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N-grams/
tokens

Unigrams Hillard et al. (2003) ; Moens et al. (2007) ; Germesin and
Wilson (2009) ; Palau and Moens (2009) ; Wang et al. (2011)
; Abbott et al. (2011) ; Hassan et al. (2012) ; Walker et al.
(2012b) ; Yin et al. (2012a) ; Hasan and Ng (2013b) ; Hasan
and Ng (2013a) ; Misra and Walker (2017) ; Wang and Cardie
(2014) ; Rosenthal and McKeown (2015) ; Walker et al. (2012c)
; Sridhar et al. (2015) ; Elfardy and Diab (2016) ; Zhang and
Lan (2016) ; Sun et al. (2016) ; Liu et al. (2016) ; Patra et al.
(2016) ; Misra et al. (2016) ; Li et al. (2016) ; Mohammad et al.
(2017) ; Tutek et al. (2016) ; Igarashi et al. (2016) ; Krejzl and
Steinberger (2016)

Bigrams Moens et al. (2007) ; Palau and Moens (2009) ; Abbott et al.
(2011) ; Hassan et al. (2012) ; Walker et al. (2012b) ; Yin et al.
(2012a) ; Hasan and Ng (2013b) ; Hasan and Ng (2013a) ;
Misra and Walker (2017) ; Wang and Cardie (2014) ; Rosenthal
and McKeown (2015) ; Walker et al. (2012c) ; Sridhar et al.
(2015) ; Elfardy and Diab (2016) ; Zhang and Lan (2016) ; Sun
et al. (2016) ; Bøhler et al. (2016) ; Wojatzki and Zesch (2016a)
; Misra et al. (2016) ; Li et al. (2016) ; Mohammad et al. (2017)
; Tutek et al. (2016)

Trigrams Moens et al. (2007) ; Palau and Moens (2009) ; Misra and
Walker (2017) ; Rosenthal and McKeown (2015) ; Elfardy
and Diab (2016) ; Zhang and Lan (2016) ; Sun et al. (2016) ;
Wojatzki and Zesch (2016a) ; Mohammad et al. (2017) ; Tutek
et al. (2016)

4-grams Zhang and Lan (2016)
2-char Mohammad et al. (2017) ; Tutek et al. (2016)
3-char Bøhler et al. (2016) ; Tutek et al. (2016)

{3,4,5}-char Zhang and Lan (2016) ; Mohammad et al. (2017)
Word pairings Moens et al. (2007) ; Palau and Moens (2009)
Punctuation Moens et al. (2007) ; Abbott et al. (2011) ; Yin et al. (2012a) ;

Misra and Walker (2017) ; Rosenthal and McKeown (2015) ;
Zhang and Lan (2016) ; Wojatzki and Zesch (2016a) ; Moham-
mad et al. (2017)

Language model
perplexity

Hillard et al. (2003) ; Hahn et al. (2006)

TABLE 2.1: Features from the stance classification literature: n-grams and tokens

provided with a carefully crafted feature model could perform extremely close to a Convolutional

Neural Network. However, considering the amount of work in crafting such feature models and

then removing a significant portion of them through feature selection, it could be argued that the

computational advantages of a shallow algorithm are not that significant.

For the sake of completeness, we illustrate the set of features that were the most used in the

literature in tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7, categorising them along 13 different themes:

• N-grams/tokens (Table 2.1) refers to features which are extracted by an analysis of the

raw text. They are often followed by a feature selection step which trims the least used
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Hashtags
Hashtag unigrams Zhang and Lan (2016) ; Mohammad et al. (2017) ; Tutek et al.

(2016) ; Krejzl and Steinberger (2016)

Hashtag bigrams Zhang and Lan (2016) ; Krejzl and Steinberger (2016)

Initial
n-gram

First unigram Hillard et al. (2003) ; Abbott et al. (2011) ; Hasan and Ng
(2013a) ; Walker et al. (2012c) ; Sridhar et al. (2015) ; Krejzl
and Steinberger (2016)

First bigram Abbott et al. (2011) ; Hasan and Ng (2013a) ; Walker et al.
(2012c) ; Sridhar et al. (2015) ; Krejzl and Steinberger (2016)

First trigram Abbott et al. (2011) ; Hasan and Ng (2013a) ; Walker et al.
(2012c) ; Sridhar et al. (2015) ; Krejzl and Steinberger (2016)

Final
n-gram

Last unigram Germesin and Wilson (2009) ; Wang and Cardie (2014)

Last bigram Germesin and Wilson (2009) ; Wang and Cardie (2014)

Last trigram Germesin and Wilson (2009) ; Wang and Cardie (2014)

TABLE 2.2: Features from the stance classification literature: hashtags and positional markers.

Syntactic
parsing

Dependencies Moens et al. (2007) ; Palau and Moens (2009) ; Abbott et al.
(2011) ; Hassan et al. (2012) ; Walker et al. (2012b) ; Hasan
and Ng (2013b) ; Hasan and Ng (2013a) ; Wang and Cardie
(2014) ; Walker et al. (2012c) ; Sridhar et al. (2015) ; Zhang
and Lan (2016) ; Sun et al. (2016) ; Patra et al. (2016) ; Misra
et al. (2016) ; Igarashi et al. (2016)

Part of speech
tagging

Wang and Cardie (2014) ; Rosenthal and McKeown (2015) ;
Zhang and Lan (2016) ; Sun et al. (2016) ; Misra et al. (2016) ;
Mohammad et al. (2017) ; Igarashi et al. (2016)

POS-generalised
dependencies

Abbott et al. (2011) ; Hassan et al. (2012) ; Walker et al. (2012b)
; Hasan and Ng (2013b) ; Hasan and Ng (2013a) ; Walker et al.
(2012c) ; Sridhar et al. (2015)

Durational
# sentences Misra and Walker (2017) ; Rosenthal and McKeown (2015) ;

Walker et al. (2012c) ; Sridhar et al. (2015)

# words/tokens Hillard et al. (2003) ; Galley et al. (2004) ; Hahn et al. (2006) ;
Germesin and Wilson (2009) ; Wang et al. (2011) ; Yin et al.
(2012a) ; Misra and Walker (2017) ; Wang and Cardie (2014) ;
Walker et al. (2012c) ; Sridhar et al. (2015) ; Sun et al. (2016) ;
Bøhler et al. (2016) ; Krejzl and Steinberger (2016)

# characters Walker et al. (2012b) ; Yin et al. (2012a) ; Misra and Walker
(2017) ; Walker et al. (2012c) ; Sridhar et al. (2015) ; Bøhler
et al. (2016)

TABLE 2.3: Features from the stance classification literature: dependency-parsing-based and
durational features
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Counts

Repeated
punctuation

Walker et al. (2012b) ; Hasan and Ng (2013b) ; Wang and
Cardie (2014) ; Walker et al. (2012c) ; Sridhar et al. (2015) ;
Bøhler et al. (2016)

# Repeated
words

Germesin and Wilson (2009)

# Punctuation
marks

Palau and Moens (2009) ; Wang et al. (2011)

Word
lengthening

Rosenthal and McKeown (2015) ; Zhang and Lan (2016) ;
Bøhler et al. (2016) ; Mohammad et al. (2017)

# Misspelled
words

Tutek et al. (2016)

Repeated
vowels

Tutek et al. (2016)

Upper-case
words

Wang and Cardie (2014) ; Zhang and Lan (2016) ; Bøhler et al.
(2016) ; Mohammad et al. (2017) ; Tutek et al. (2016)

Average word
length

Palau and Moens (2009) ; Walker et al. (2012b) ; Walker et al.
(2012c) ; Tutek et al. (2016)

Sentence
length

Palau and Moens (2009) ; Wang et al. (2011) ; Walker et al.
(2012c)

TABLE 2.4: Features from the stance classification literature: specific counts and text statistics

n-grams in order to reduce the dimensionality of the classification problem. It also contains

character-based n-grams, such as 2-char (sequences of 2 characters), 3-char (sequences of

3 characters) and {2,3,4}-char (sequences of 2, 3 or 4 characters), as well as exhaustive

word pairings (an exhaustive combination of all possible bigrams, followed by feature

selection), treatment of punctuation signs as special tokens, and statistics derived from the

language model derived from the text.

• Hashtags (Table 2.2) refers to special n-grams which are marked by the user/debater as

being topical, using a specific symbol (#). They are treated either as unigrams (the entire

hashtag is a token) or as bigrams (if multiple hashtags follow each other).

• Initial n-grams (Table 2.2) is a positional n-gram, where the first 1, 2 or 3 terms are

extracted and given special importance. It is built on the assumption that some indicators

of the argumentative stance can be found in the beginning of the text.



Chapter 2. Literature Review 22

Lexicons
and patterns

Generic lexicon,
keywords

Hillard et al. (2003) ; Moens et al. (2007) ; Germesin and
Wilson (2009) ; Palau and Moens (2009) ; Walker et al. (2012b)
; Hasan and Ng (2013b) ; Misra and Walker (2017)

Negation Wang et al. (2011) ; Walker et al. (2012b) ; Wang and Cardie
(2014) ; Rosenthal and McKeown (2015) ; Zhang and Lan
(2016) ; Bøhler et al. (2016) ; Wojatzki and Zesch (2016a)

Acquiescence Wang et al. (2011)

Subjectivity lexicon Misra and Walker (2017)

Stance lexicon Rosenthal and McKeown (2015) ; Wojatzki and Zesch (2016a)
; Krejzl and Steinberger (2016)

Modal verbs Wojatzki and Zesch (2016a)

Emoticons Yin et al. (2012a) ; Rosenthal and McKeown (2015) ; Zhang
and Lan (2016) ; Mohammad et al. (2017) ; Tutek et al. (2016)

Foul words Yin et al. (2012a)

Hedging {1,2,3}-grams Misra and Walker (2017) ; Wang and Cardie (2014)

LIWC lexicon Abbott et al. (2011) ; Walker et al. (2012b) ; Hasan and Ng
(2013b) ; Rosenthal and McKeown (2015) ; Walker et al.
(2012c) ; Sridhar et al. (2015) ; Elfardy and Diab (2016) ;
Misra et al. (2016)

Adverbs Moens et al. (2007) ; Palau and Moens (2009)

Verbs Moens et al. (2007) ; Palau and Moens (2009)

Main verb tense/type Palau and Moens (2009)

Sentence patterns Palau and Moens (2009) ; Wang et al. (2011)

Subject type Palau and Moens (2009)

Accommodation Rosenthal and McKeown (2015)

Ends in question mark Rosenthal and McKeown (2015)

Ends in exclamation mark Bøhler et al. (2016)

TABLE 2.5: Features from the stance classification literature: extracted from lexicons and lists
of patterns

• Final n-grams (Table 2.2) is the converse of initial n-grams, where we assume that the

last 1, 2 or 3 terms are more indicative of the stance than the rest of the text, and therefore

we extract them as specific features.

• Syntactic parsing (Table 2.3) are features which can be extracted by using a depen-

dency parser, such as the Stanford parser (Chen and Manning, 2014). It contains special

annotations such as dependencies, part-of-speech tags, and generalised dependencies.

• Durational features (Table 2.3) are features indicative of the length of the text. It can be

measured in different ways, e. g., characters, terms or sentences.

• Counts-based features (Table 2.4) are features which depend on the triggering of specific

patterns, such as repeated punctuation, abuse of upper-case, or use of word lengthening
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Citation
Reference to

scripture
Tutek et al. (2016) ; Krejzl and Steinberger (2016)

Reference to
scientific article

Palau and Moens (2009)

Word vectors
Word2Vec-based

features
Zhang and Lan (2016) ; Tutek et al. (2016)

GloVe-based
features

Bøhler et al. (2016) ; Liu et al. (2016)

Sentiment

Sentiment of subject (I, we) Igarashi et al. (2016)

Sentiment
of target

Igarashi et al. (2016)

Sentiment2Vec-based
feature

Zhang and Lan (2016)

Opinion-generalised
dependencies

Abbott et al. (2011) ; Hassan et al. (2012) ; Walker et al. (2012b)
; Hasan and Ng (2013a) ; Wang and Cardie (2014) ; Walker
et al. (2012c) ; Sridhar et al. (2015) ; Misra et al. (2016)

Sentiment lexicon-based
features

Hillard et al. (2003) ; Hahn et al. (2006) ; Germesin and Wilson
(2009) ; Wang et al. (2011) ; Hassan et al. (2012) ; Yin et al.
(2012a) ; Hasan and Ng (2013a) ; Misra and Walker (2017) ;
Wang and Cardie (2014) ; Rosenthal and McKeown (2015) ;
Elfardy and Diab (2016) ; Zhang and Lan (2016) ; Sun et al.
(2016) ; Bøhler et al. (2016) ; Patra et al. (2016) ; Mohammad
et al. (2017) ; Igarashi et al. (2016) ; Krejzl and Steinberger
(2016)

TABLE 2.6: Features from the stance classification literature: references, word vectors and
sentiment-based features

(e. g., “terrrrrrible”). It also contains some text statistics such as average word length and

average sentence length.

• Lexicons and patterns-based features (Table 2.5) are features which are triggered by

lexicons, which are predefined lists of terms or patterns. They include sentiment lexicons

(positive or negative), subjectivity lexicons (objective or subjective), argument/stance

lexicons (argumentative or non-argumentative) but also different markers such as modal

verbs, emoticons, presence of negation or acquiescence, marks of accommodation, etc.

• Citation-based features (Table 2.6) are features based on the text citing external resources,

which can be evidence of a specific stance. For instance, making references to scripture in

a debate on abortion could be very indicative of a negative stance towards the subject.

• Word vectors-based features (Table 2.6) are features extracted from pre-computed word

embeddings using Word2Vec (Mikolov et al., 2013a) or GloVe (Pennington et al., 2014).
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Context

Child-Parent matching Galley et al. (2004) ; Abbott et al. (2011) ; Hasan and Ng
(2013a) ; Wang and Cardie (2014) ; Rosenthal and McKeown
(2015) ; Sridhar et al. (2015) ; Walker et al. (2012c) ; Zhang
and Lan (2016)

Conversational
structure constraints

Hassan et al. (2012) ; Rosenthal and McKeown (2015)

Strict reference
to target

Galley et al. (2004) ; Wang et al. (2011) ; Hassan et al. (2012) ;
Walker et al. (2012b) ; Wang and Cardie (2014) ; Mohammad
et al. (2017)

Time between posts Abbott et al. (2011) ; Yin et al. (2012a)

Author constraints Hasan and Ng (2013b)

User-interaction
constraints

Galley et al. (2004) ; Hasan and Ng (2013b)

Ideology constraints Hasan and Ng (2013b)

Distance from
root post

Rosenthal and McKeown (2015)

Number of debaters Galley et al. (2004)

Topics
and concepts

Latent semantics
from matrix factorisation

Elfardy and Diab (2016)

Latent semantics
from Brown clustering

Zhang and Lan (2016)

Latent concepts
from frequency analysis

Wojatzki and Zesch (2016a)

Topic features
(word, sentence, instance level)

Li et al. (2016) ; Zhang and Lan (2016)

Frame-semantic
features

Hasan and Ng (2013a) ; Elfardy and Diab (2016)

TABLE 2.7: Features from the stance classification literature: features extracted from conversa-
tional context and topic analysis

• Sentiment-based features (Table 2.6) are extracted using a sentiment lexicon, such as

opinion-generalised dependencies or average sentiment as a single numerical feature.

• Context-based features (Table 2.7) are extracted by observing the context of the current

text. For example, strict references to the target of the stance, distance from the beginning

of the conversation in number of posts, number of debaters involved in the discussion, or

some measure of similarity between the current stance-bearing text being analysed and the

one that it is directly replying to.

• Topics and concepts (Table 2.7) are features which are computed by analysing latent

topics in the text. Such analysis can be done for example with Brown clustering over a

collection of stance-bearing items, or simply by using an external resource to analyse the

frame semantics of the terminology used.
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FIGURE 2.2: Evolution of shallow versus deep learning approaches for stance classification

We can see from Tables 2.1 to 2.7 that besides some generic text features such as n-grams,

features extracted from sentiment lexicons and word vectors and features extracted from topic

analysis, most of the literature has not focused on the production of robust features but instead

on the production of as many features as possible in order to obtain an edge in classification

accuracy.

Learning algorithms While there are some exceptions, most of the work done with shallow

algorithms and feature models in stance classification revolves around a handful of key algorithms:

Support Vector Machines, Logistic Regression, Decision Trees, and Maximum Entropy. We

list them in Table 2.8, where it is easy to see that a majority of works focus on Support Vector

Machines, and illustrate in Figure 2.2 the evolution of shallow versus deep classifiers. We can

see that from 2016 onward, a significant percentage of the works on stance classifiers focused on

the use of deep neural networks in order to forego the difficult part of feature engineering and

build more robust algorithms. We also note that at the time of the redaction of this thesis,
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Algorithm Papers

Support Vector Machines Hahn et al. (2006) ; Somasundaran and Wiebe (2010a) ; Hassan
et al. (2012) ; Hasan and Ng (2013b) ; Sridhar et al. (2014) ;
Boltuzic and Šnajder (2014) ; Sobhani et al. (2015) ; Patra et al.
(2016) ; Wojatzki and Zesch (2016a) ; Elfardy and Diab (2016) ;
Dias and Becker (2016) ; Patra et al. (2016) ; Sun et al. (2016) ;
Mohammad et al. (2017) ; Grčar et al. (2017) ; Wang and Cardie
(2016)

Logistic Regression Yin et al. (2012b) ; Sridhar et al. (2015) ; Zhang and Lan (2016) ;
Augenstein et al. (2016a)

Decision Tree Hillard et al. (2003) ; Germesin and Wilson (2009) ; Wojatzki and
Zesch (2016b) ; Misra and Walker (2017)

Maximum Entropy Galley et al. (2004) ; Palau and Moens (2009) ; Rosenthal and
McKeown (2015) ; Krejzl and Steinberger (2016)

Ensemble Bøhler et al. (2016) ; Liu et al. (2016) ; Tutek et al. (2016) ;
Mourad et al. (2018)

TABLE 2.8: Learning algorithms used in the literature

2.1.2.2 Deep learning methods for stance classification

Recent trends in machine learning have been leaning towards deep learning algorithms, i. e.,

neural network architectures which use a stack of successive hidden layers to simultaneously

learn a better representation of the data and a better linear classifier on the transformed version of

this data. We qualify as deep learning algorithms any neural network with a depth of 3 or more

layers. In the context of stance classification, two types of architectures have emerged as the

dominant ones in their respective specialized tasks: convolutional neural networks, and gated

recurrent neural networks.

• Convolutional neural networks (CNN) are neural networks containing at least one con-

volution layer. A convolution layer is a neural network layer that is bound by specific

constraints, and is usually followed by either a fully-connected layer, a pooling layer

or another convolution layer. The goal of convolutions and pooling layers is to achieve

specific invariances towards certain transformations that make them invaluable in the fields

of image and signal processing: translation invariance, rotation invariance, colour shift

invariance, and distortion invariance. Unlike traditional fully-connected layers, convolution

layers are not connected to every unit in the previous layer, but only to the ones within
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their receptive field, which allows them to focus on specific local features and specialize in

the detection of hierarchically organized features.

• Recurrent neural networks (RNN), unlike convolutional neural networks which use a

more conventional structure of layers stacked on top of each others, achieve depth by

parsing the input by timestep and using a recurrent relationship that links the hidden

layer of the network to itself in the next timestep. By doing this, the output at each

timestep becomes dependent on the processing that was done on the previous timestep, and

during the backpropagation phase the error signal can be distributed over all timesteps in a

weighted manner. Recurrent neural networks are explored in more depth in section 3.4.4.1.

Two popular RNN architectures are Long Short-Term Memory (LSTM) networks and

Gated Recurrent Units (GRU) networks.

Zubiaga et al. (2018) evaluate multiple sequential classifiers on a rumour stance classification

task, where they attempt to classify whether a rumour is pro or against a specific target opinion.

As part of their evaluation, Long Short Term Memory networks are shown to outperform other

kinds of classifiers (Hawkes Processes, Linear-Chain Conditional Random Fields, and Tree-

Structured Conditional Random Fields) with a reduced set of features. Another outcome of their

research is that sequential classifiers that make use of discourse properties (the conversational

threads) outperform non-sequential classifiers, which only consider one specific item at a time.

The specific implementation used in this paper, called branch-LSTM, uses a mean embedding

representation as discussed in 3.3.2.2, which allow for representing each item as a fixed size

embedding vector, and therefore to represent each conversational thread, which is composed

of multiple items, as a variable size matrix. The branch-LSTM can then focus on tagging each

timestep (which represents one item) with its stance. Sequential classifiers are a promising area

of research and can be thought of as a special case of collective classifiers, which consider a

collection of items to enhance the classification of every one of them. Previous work on collective

inference in the context of stance classification has been done by Sridhar et al. (2014), where

Support Vector Machines were used as the base classifier and the collective inference part of their

approach was done using probabilistic soft logic to encode, in a probabilistically well-founded

way, possible interaction rules between the users of a forum as edges in a graphical model.
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Zhang et al. (2017) investigate stance classification in the context of alternative medicine debates

in social media. They used a Long Short-Term Memory network stacked over a Convolutional

Neural Network in order to first identify the debates, and then a Convolutional Neural Network to

identify the stance of those social media posts with respect to alternative medicines. Interestingly,

no significant difference was found between Convolutional Neural Networks and one of their

simpler baselines, a logistic regression. Since the actual classification layer of a Convolutional

Neural Network is or behaves similarly to a logistic regression, this would tend to lend evidence

to the fact that the representation learning layers of the networks were unnecessary, and the data

was as separable as it could be. Another explanation would be that the architectural details of the

network were ill-fitted for the problem they were trying to solve.

Augenstein et al. (2016b) focus on using conditional bidirectional encoding of the stance-bearing

text along with the stance target in order to take such target into account during the representation

step, using a bidirectional LSTM network.

Similarly, Du et al. (2017) go further than examining only one piece of text and instead develop a

target-specific neural attention network. Neural attention networks are recurrent neural networks

which are concurrently learning where to focus their attention as well as how to process the

information they are focusing on, instead of exploring the content linearly in a step-by-step

manner. In this case, the neural attention networks are primed with a target, which allows them to

focus on the parts of the text which are topically related to the argumentative stance we seek to

detect. They report significant improvement over the SemEval-2016 and the NLPCC datasets,

showing the portability of their techniques to multiple languages.

Hiray and Duppada (2017) take a different approach by processing in parallel the text input that

is to be classified and the target text using two sub-networks that are eventually concatenated

and fed into a bigger one. Both target and response are represented through two sets of features:

an embedding representation and a lexicon representation. The embedding representation is fed

into a bidirectional GRU layer, while the lexicon representation is fed into a dense layer. Those

four representations (2 for target and 2 for response) are then concatenated and fed into a more

conventional stack of dense layers, leading to the final softmax output layer. The authors report

significant improvement over all datasets using their complex representation and learning scheme,

both for traditional supervised learning and for a transfer learning task (with partial retraining).
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Yu et al. (2016) build their model more conventionally by first learning features through an

embedding and a convolutional layer, before feeding its output into a bidirectional LSTM. They

report difficulty in achieving high levels of classification accuracy because of ambiguity in the

data, which causes issues at the word embedding level.

Vijayaraghavan et al. (2016) train a different model for each dataset, using a combination of

character-level and word-level convolutional networks. One particularity of their work is their use

of Word2Vec embeddings to augment textual data, by randomly replacing terms with other terms

whose word vector is similar. The authors report unequal results, ranging from state-of-the-art

on some datasets to very poor on others. They hypothesise that the poor performance might be

linked to the amount of training data, and that further work on augmentation is needed.

Igarashi et al. (2016) do a comparative study between a convolutional neural network and a feature-

based model. One of the main outputs from their work is that a shallow model with properly

engineered features can outperform a deep learning model trained on naive features. However,

the feature set they propose requires a significant amount of pre-training and preparation.

Wei et al. (2016) propose a convolutional architecture based on a voting scheme, where a snapshot

of the network is kept for each of the 10 epochs of training. A majority vote between those 10

networks is then used at testing time. This strategy, associated to a divide-and-conquer strategy

where they learned specific models for each of the target topics, led them to state-of-the-art

results, ranking them first on SemEval-2016 Task 6B and second on SemEval-2016 Task 6A.

Zarrella and Marsh (2016) train a more conventional model where the words of the responses to

be classified are one-hot encoded (each word is encoded as its own dimension, see section 3.3.1.1

for more details). They are then fed one word at a time into an embedding layer, which transforms

the very sparse and high dimensional one-hot representation into a dense non-sparse vector.

The output of the embedding layer is then fed into a recurrent layer, which produces the final

prediction.

2.1.2.3 Conclusions from the stance classification literature

In this section we reviewed the supervised stance classification literature along two axes: shallow

methods, which make use of feature engineering techniques to represent instances in a way that
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makes them separable by conventional classifiers ; and deep methods, which learn those features

from the data itself in an end-to-end fashion (or close to it). We note that while deep learning

methods overall outperform feature engineering-based methods, they usually require significant

architecture engineering to do so, with some naive deep learning approaches being outperformed

by carefully crafted feature models (Igarashi et al., 2016). We also note that through this extensive

work on feature representation, whether it is designed or learned, there is a large part of these

features sets which are not intelligible from a user perspective, and thus cannot be interpreted.

2.2 Corpora for stance classification

Multiple corpora collected from diverse sources (social media, transcribed meetings, etc.) have

been made public for the task of stance classification. We list the major ones in this section

and give details on their composition because the field of natural language processing research

inherently ties novel datasets and the applied techniques that are developed for it. Therefore, this

section needs to be considered as part of the literature review. Further details about the datasets

that we selected to use in this thesis can be found further in chapter 4, which is dedicated to our

evaluation methodology.

Stance classification datasets can be categorised in one of three categories: (1) transcribed

media are video or audio debates which have been transcribed by human labellers, (2) social

media corpora are online debates which can be separated in two sub-categories: (2a) free-form

social media corpora on which no restriction was put in terms of content or length, (2b) short-

text social media corpora where a length restriction (in terms of number of characters) forces

the debaters to be concise, and (3) non-standard argumentation corpora contain corpora which

are more structured and longer, in the forms of essays or news articles.

2.2.1 Transcribed media corpora

Two datasets, the ICSI corpus and the AMI corpus, compose most of this category. They are

of limited size but contain long interactions, meaning that the same actors stay in the debates

(unlike social media data, where it is frequent that a user posts a few comments and that another
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Dataset Post count Agreement Disagreement None

ICSI 9,854 886 591 8,377
AMI 706 636 70 0

TABLE 2.9: Descriptive statistics of two transcribed media stance detection datasets.

user picks up the debate and moves it further). Because the content of those datasets has been

transcribed, they are devoid of slang, mistakes and typos. However, they also contain metadata

which is particular to audio content and might not be present in other applications. Statistics on

the datasets can be found in Table 2.9.

We can observe that the classes are not particularly balanced, with a ratio of Agreement to

Disagreement going from 3 : 2 (ICSI) to 9 : 1 (AMI) and a ratio of stance-bearing to non

stance-bearing going from 1 : 6 (ICSI) to no non stance-bearing at all (AMI).

ICSI corpus The ICSI corpus Janin et al. (2003) was collected from natural meetings occurring

at the International Computer Science Institute (ICSI). First recorded in audio, from highly

accurate source (head-worn and table-top microphones), it was then transcribed on a text format

along with task-specific metadata such as the gender of the speaker as well as an identifier number

for each speaker, their qualification (Undergrad, Grad, PhD, Professor or other), their age, and

their main language. The dataset was partially automatically labeled with only a seed of 1,800

instances passing through manual inspection. It is also notable that prior to labeling, trivial

instances (e.g. spurts only containing “Yeah!” or “yep”) were removed from the positive class

and put as backchannel (classified as None in Table 2.9).

AMI corpus The AMI corpus Carletta et al. (2005), McCowan et al. (2005) is built on 100

hours of recorded meetings in the context of the AMI (Augmented Multi-party Interaction)

project. It is composed of both real meetings as well as scenario-driven meetings, which are

annotated with dialogue acts and summaries.
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Dataset Post count Agreement Disagreement None

ABCD 185,479 38,195 60,991 86,293
IAC 5,940 428 1,236 4,276
AWTP 822 38 148 636

TABLE 2.10: Descriptive statistics of three social media stance detection datasets.

Dataset
Class

Agreement Disagreement

Livejournal 379 80
Wikipedia 141 210

TABLE 2.11: Class distribution in the AWTP dataset.

2.2.2 Free-form social media corpora

Free form social media corpora are extracted from forums and are characterised by the absence

of space or form restriction in user-to-user interactions. Unlike transcribed media corpora, they

do not contain any information besides the actual text content and some forum-specific metadata

(username, dates, times, etc.). They also have the particular feature of being written by the users

themselves, which leaves a lot more room for typos, grammatical mistakes and internet slang.

Inspection of the statistics for the datasets givens in Table 2.10 indicates a clear class imbalance

in all the datasets, with the most balanced of them having a 2 : 3 class ratio between Agreement

and Disagreement. Such imbalance is large enough to affect the quality of learning and require

specific data treatment before application of a classifier. However it may be representative of

natural argumentation patterns since we notice a similar imbalance in transcribed datasets.

AWTP The AWTP (Agreement in Wikipedia Talk Pages) corpus Andreas et al. (2012) was

built from Wikipedia threads and Livejournal blogs. Sentences were extracted and labeled as

agreement and disagreement, along with a set of meta information about the annotation process

in order to judge the quality of the label. The classes are distributed as illustrated in Table 2.11.

ABCD The ABCD (Agreement By Create-Debaters) corpus Rosenthal and McKeown (2015)

was collected on a specialised debating forum called CreateDebate1. Debates on this platform
1https://www.createdebate.com

https://www.createdebate.com
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can be of three types: open-ended (no side), for/against (two sides), multiple sides (three or more

sides). The authors only collected debates of the for/against kind in order to make the task more

tractable.

IAC The IAC (Internet Argument Corpus) Walker et al. (2012a) was built from posts collected

from the 4forums2 discussion platform. It was annotated using Amazon Mechanical Turk3 on a

-5 to 5 disagreement to agreement scale.

2.2.3 Short text social media corpora

Short text corpora are social media corpora which have been selected for short form argumentation

mining. While proper argumentation requires the formulation of well-formed arguments such

as ones defined under the Toulmin model, and social media argumentation bypasses this format

by allowing its participants to omit crucial parts of their arguments by relying on common

knowledge, short form argumentation compresses social media argumentation even further by

limiting it to a specific number of characters per contribution.

SemEval (Twitter) The SemEval corpus Mohammad et al. (2016) was built to provide a

platform to study short form argumentation on. It was crawled from Twitter4 using some specific

topical keywords (Atheism, Climate Change is a Real Concern, Feminist Movement, Hillary

Clinton, Legalization of Abortion, Donald Trump) and labeled using CrowdFlower5.

NLPCC-ICCPOL The NLPCC-ICCPOL corpus Xu et al. (2016) was built on the Chinese

social media platform Sina Weibo6 which allows its users to express their opinion towards

multiple topics of interest in an explicit or implicit way, similar to the Twitter corpus used for

SemEval. Much like SemEval, this dataset was released as part of a shared evaluation task on

different text mining fields, one of them being stance detection expressed as a Pro/Against/None
2https://4forums.com
3https://www.mturk.com/mturk/welcome
4https://twitter.com
5https://www.crowdflower.com
6http://weibo.com

https://4forums.com
https://www.mturk.com/mturk/welcome
https://twitter.com
https://www.crowdflower.com
http://weibo.com
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classification problem. Unlike SemEval, this dataset is encoded in Mandarin Chinese except for

the labels. An excerpt from the dataset is provided in the example below.

2.2.4 Non-standard argumentation corpora

Non-standard corpora are corpora which are not necessarily built from direct interaction of users.

Emergent Emergent Ferreira and Vlachos (2016) is a dataset composed of news pages. Claims

are gathered by journalists from multiple sources and Twitter accounts, on topics such as world

news, U.S. news and technology-centered stories. After selecting a claim, articles that mention it

are collected and their stance (pro, against, or just observing) is specified and labelled.

2.3 Chapter summary

In this chapter we reviewed the literature related to stance classification from multiple perspectives.

We started with the methods for stance classification, analysing unsupervised, supervised shallow

and supervised deep approaches for classifying stance in multiple types of environment (forums,

long-form social media, Twitter). We then described the different datasets used in the stance

classification literature and how they relate to our research. Of the datasets presented, our work

focuses on free-form and short text social media corpora, with the exception of the NLPCC-

ICCPOL which presents a list of challenges inherent to its language (Mandarin Chinese).

We note from studying the literature that there has been little work done on advancing the state

of stance lexicons. Lexicons are useful tools for computational linguistics because of their high

degree of interpretability, which makes them ideal for building explainable models. We note that

a significant part of the literature was done after our own work, and as such the state of the art

has been advanced beyond the scope of what is presented in this thesis.
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Background

The process of supervised learning (illustrated in figure 3.1) contains specific steps which are

common to all (or most) problem domains and techniques. Because we make reference to this

process throughout the rest of this thesis, we detail that process in this section before going deeper

into each step in the following sections. In this chapter we present a background on the machine

learning tasks associated to social media mining, their theoretical underpinnings and a discussion

of methodologies to evaluate them. We start by giving an overview of the supervised learning

process, before going into more detail on each step of that process.

We first address text pre-processing and its multiple steps: tokenisation, annotation, standardisa-

tion and filtering. We then move on to text representation, which focuses on taking the output

from the pre-processing step and building a representation that can be algorithmically processed.

We address both sequential representations (one-hot encoding and word embeddings) and non-

sequential representations (bag-of-words and mean embeddings). The next step is model building

and consists in using the data output by the representation step in order to build a model of the

data with respect to a specific task, e. g., classifying them into specific categories. We explain in

sufficient details multiple methods that are used in the context of this thesis: lexicon methods,

support vector machines, and neural networks. We leave the final step of model evaluation to its

own chapter. It is briefly mentioned in this chapter, but explained in details in chapter 4.

35
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FIGURE 3.1: The machine learning pipeline

3.1 The supervised learning process

The first step is the preprocessing and splitting of the original dataset. The preprocessing consists

in turning the text into a format that can be efficiently parsed by a machine learning algorithm,

including tokenisation (recognising individual units of interest within the text, whether they are

unigrams, bigrams or more complex structures), annotation (adding contextual information to

those tokens in order to disambiguate or enrich the text), vocabulariy standardisation (replacing

terms with their roots or stems in order to not have to deal with variations of the same words), and

finally filtering (removal of stopwords which are deemed to not be useful for the classification

process due to their omnipresence. Once that preprocessing is done, the dataset is split into a

training set and a test set. The training set will be used for feature selection and model building,

while the test test is kept aside in order to evaluate the generalisation capabilities of the model

that we learned.

The second step of the process is text representation. Most non-symbolic machine learning
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algorithms require their input data to be numerical in order to perform model inference. Two

common schemes for text data are sequential representation, where text is represented as a tensor

of variable length depending on the length of the input, and non-sequential representation, where

text is represented as a tensor of fixed size. Representation is a key step in that it defines the

vector space in which the learning algorithms will have to learn, and therefore having a few key

features can make or break the performance of a machine learning algorithm.

The third step is model building. During this step, the machine learning algorithm uses the

processed training set in order to build a model of the data that can be used to produce predictions

over unseen data.

Finally, the fourth and final step is the model validation phase. During this step, the model learned

in the previous step is used in conjunction with the processed testing set in order to compute

performance metrics. Typical performance metrics include the average misclassification rate

(when the dependent variable is categorical), the average distance from prediction to ground

truth (when the dependent variable is numerical), and probabilistic distance metrics (when the

dependent variable is a probability distribution).

In the next sections we will go over each of these steps in more detail.

3.2 Text preprocessing

Pre-processing text is an essential step in all natural language processing tasks due to the

mismatch between the state in which text data is typically present, a list of characters, and the

state that it needs to be in in order to be a valid input for an algorithm. In addition to that,

some of the heuristic pre-processing rules that can be applied during this step of the algorithm

can improve the performance of the algorithm by reducing dimensionality of the input (e. g.,

stemming, lemmatisation, etc.) or transforming the input so that it maintains specific statistical

properties (e. g., normalisation, standardisation, etc.). In this section we detail the nature of text

pre-processing and the ways it can be done in a text classification setting.

We can see in Figure 3.2 the overall text pre-processing workflow, which we then detail in this

section.
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TOKENISATION

Text

ANNOTATION LEMMATISATION/ 
STEMMING 

STOP-WORD
FILTERING 

Processed 
text 

Example input

The Porter stemming algorithm
is a process for removing the
commoner morphological and
inflectional endings from words
in English.

Tokenised input

The Porter stemming algorithm is
a process for removing the
commoner morphological and
inflectional endings from words
in English .

Part­of­speech
annotated input

TheDT PorterNNP stemmingVBG
algorithmNN isVBZ aDT processNN
forIN removingVBG theDT
commonerNN morphologicalJJ
andCC inflectionalJJ endingsNNS
fromIN wordsNNS inIN EnglishNNP
.. 

Stemmed input

TheDT PorterNNP stemVBG
algorithmNN isVBZ aDT processNN
forIN removVBG theDT commonNN
morphologJJ andCC inflexionJJ
endNNS fromIN wordNNS inIN
EnglishNNP .. 

Filtered input

PorterNNP stemVBG algorithmNN
processNN removVBG commonNN
morphologJJ  inflexionJJ endNNS
wordNNS EnglishNNP .. 

Example output

PorterNNP stemVBG
algorithmNN processNN
removVBG commonNN
morphologJJ  inflexionJJ
endNNS wordNNS EnglishNNP
.. 

FIGURE 3.2: The pre-processing workflow

3.2.1 Tokenisation

Given a character sequence and a defined document unit, tokenisation is the task of chopping it

up into pieces, called tokens Manning et al. (2008). Here is an example of tokenisation:

Input: Seneca was born in Cordoba in Hispania, and raised in Rome, where he was trained

in rhetoric and philosophy.

Output: Seneca | was | born | in | Cordoba | in | Hispania | , | and | raised | in | Rome | , |

where | he | was | trained | in | rhetoric | and | philosophy | .

The key role of tokenisation is to break down the document into pieces that can be processed

by the rest of the pre-processing workflow. It is important for instance to process whether

hyphenated words, e. g., “state-of-the-art”, are one or multiple tokens and should be treated as

such. Conversely, some sets of words separated by spaces, e. g., “New York”, ought to be treated

as one singular token.
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3.2.2 Annotation

The step of annotation is a sometimes optional one in that its main focus is not to prepare text into

a form that can be processed by the main algorithm, but to enrich it in such a way that the rest of

the pre-processing is made easier and the sense of each term can be disambiguated. Two common

forms of annotation in argument stance mining are part-of-speech and sentiment tagging.

Part-of-speech tagging Part-of-speech tagging focuses on tagging each term with their gram-

matical role in the sentence (their part of speech). A part of speech is a category of words which

have similar grammatical properties. Words that are assigned to the same part of speech generally

display similar syntactic behaviour and play a similar role within the grammatical structure

of sentences. In English, the most common parts of speech are noun, verb, adjective, adverb,

pronoun, preposition, conjunction, interjection, and sometimes numeral, article or determiner.

Part-of-speech tagging has multiple uses:

• It helps disambiguate terms which have homonyms if their part-of-speech is different, e. g.,

lead (verb)/lead (noun).

• It provides a generalised representation of the sentence to the algorithm. For instance,

“The cat in the hat” would yield the annotation “determiner noun preposition determiner

noun” which is a more general representation of the structure of the sentence. This can be

powerful when some sentence structures are more correlated to some class of interest, in

the classification case.

Sentiment tagging Sentiment tagging focuses on annotating each term with a vector of numer-

ical values or a string representing the sentiment of that term. For instance, “I hate spaghetti”

would yield the annotation “neutral negative neutral”. This can have profound effects in the

context of stance classification, with for example sentiment structures which are indicative of a

user’s outlook towards another user.
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3.2.3 Standardisation of the vocabulary

A crucial step in the preprocessing workflow is the standardisation of the vocabulary. Words tend

to appear as inflected forms of a canonical word. For example, the verb “to teach” could appear

as “taught”, “teach”, “teaches”, or “teaching” and refer to the same action. Text representation

schemes such as bag of words operate at a shallow level and therefore would have “teach” and

“taught” as far from each other in the representation space as “teach” and “dog”. Lemmatisation

and stemming are two techniques that help alleviate this problem by transforming words into a

common root that is shared with other words that are semantically related.

Lemmatisation Lemmatisation works by doing a look-up of inflected forms into a dictionary

and replacing the forms present in the text by the canonical form. Its main drawback is that it

is sensitive to infrequent typos and small variations that a dictionary might not account for, and

therefore has a low recall. Its strength is that terms that share a semantic root will be matched

systematically, making the vector space in which documents are represented less sparse. We

illustrate a concrete example of lemmatisation in Example 1.

Example 1. Original sentence: “I think that cats are nicer than dogs.”

Lemmatised sentence: “I think that cat be nice than dog”

Stemming Stemming works by applying a set of unsupervised transformation rules to each term

in order to recover their stem. It is highly imprecise and produces stems which are not necessarily

identical to the morphological root of the words, but is more efficient than lemmatisation. The

most popular and best known stemming algorithm is issued from the information retrieval

community and is the Porter Stemmer Porter (1980). We illustrate a concrete example of

stemming in example 2.

Example 2. Original sentence: “I think that cats are nicer than dogs.”

Stemmed sentence: “I think that cat ar nicer than dog”

In this example, cats is stemmed as cat, are is stemmed as ar, and dogs is stemmed as dog. The

resulting sentence is not grammatically correct but it ensures that references to the same nouns
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(e. g., , cats) match throughout the entire document, because they will be reduced to the same

stem.

3.2.4 Filtering

A stop list is a list of terms that should be ignored by a text processing algorithm. Stop word

removal, or filtering, is the step in the text classification pre-processing workflow where terms

which are not discriminative enough are removed from the text for the sake of computational

efficiency. The stop list is determined by sorting all the terms present in the dataset by increasing

inverse document frequency, which can be determined as log(Nn ) where N is the number of

documents in the dataset and n the number of documents containing a specific term, and selecting

the lowest ranked terms.

3.3 Text representation

In order for an algorithm to process text, such text needs to be in a format that the algorithm can

take as input. For example, most supervised machine learning algorithms exclusively work with

numerical values, which means that any text input needs to be transformed into a vector (or more

generally a tensor) of numerical values. We separate two types of representation and detail the

most common techniques belonging to them: sequential representations, where word order is

preserved, and non-sequential representations, where word order is not preserved.

3.3.1 Sequential representations

Sequential representations of text are representation schemes that do not remove the inherent

structure of the text. Because of this, the resulting instances end up having different length,

and the learning algorithms need to accommodate this feature in order to fully leverage this

representation scheme. The two most common sequential representation schemes are one-hot

encodings and word embeddings.
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FIGURE 3.3: One hot representation of text. Each dimension can either take the value 0 or 1.

3.3.1.1 One-hot encoding

A one-hot encoding of a text instance encodes each term of the vocabulary on a different

dimension of a common vector space. As such, an instance X of length L and a vocabulary of

size V would yield a L×V matrix representation where for each column i, all components would

be 0 with the exception of the one corresponding term present at Xi, as illustrated in Figure 3.3,

where {0, 1}i,j means that dimensions (i, j) can either take value 0 or 1.

We present an example of one-hot encoding on a toy dataset of three small documents.

Example 3. Let us assume that the training dataset D contains the following documents:

• D1 = “I do not like cats, they are mean.”

• D2 = “That film was wonderful.”

• D3 = “Presidents are not as honourable as they used to be.”

The complete vocabulary Vc of the training set would be:

I, do, not, like, cats, they, are, mean, that, film, was, wonderful, presidents, as, honourable,

used, to, be
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A one-hot encoded version of the training dataset would end up being:

D1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



D2 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



D3 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



Advantages and drawbacks of one-hot encoding The main advantage of one-hot encoding is

that it makes no assumption about the dimensions of the vocabulary. Since all terms are modelled

on separate dimensions, this representation does not take the risk in erroneously considering two

terms as being semantically related.

The main drawback of one-hot encoding is the same as its strength: it does not make any

assumption about the vocabulary. All terms being modelled as separate dimensions, it does not

take the risk of potentially erroneously assuming that two terms are closer than they actually

are. This lack of nuance in the way terms are represented is also its biggest flaw. Because each

term of the vocabulary is represented as its own dimension in the vector space, there is as much

difference between any two terms of the vocabulary and thus no way of representing that, for

instance, “cat” is closer to “dog” than to “car”.
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FIGURE 3.4: Embedding representation of size W × L where W is the size of the embedding
(chosen arbitrarily) and L is the size of the instance being represented.

3.3.1.2 Word embeddings

Word embedding methods are a set of language modelling techniques where words, phrases or

documents are mapped to vectors of real numbers of fixed size. Their name comes from the

fact that it is technically a mathematical embedding from a high dimensional and sparse space

where each word is represented by one dimension that is orthogonal to all other words’ to a

more compact and less sparse space where each word is represented by a smaller set of latent

dimensions, illustrated in Figure 3.4 where W represents the set of latent dimensions while L

represents the length of the sentence/document being represented. Word embeddings can be

computed using a variety of techniques that can extract represent text in a latent space, including

probabilistic models Globerson et al. (2007), factorisation of word co-occurrence matrices Lebret

and Collobert (2013), Levy and Goldberg (2014), Li et al. (2015), and neural networks Mikolov

et al. (2013b).

Example 4. In this example we will compute the word embedding representations of the three

documents of Example 3. Let us assume that the training dataset D contains the following

documents:

• D1 = “I do not like cats, they are mean.”

• D2 = “That film was wonderful.”
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TABLE 3.1: Example of word embedding representation over a latent space of 5 dimensions

Term dimension 1 dimension 2 dimension 3 dimension 4 dimension 5
I -0.0055 0.1148 -0.0595 -0.0035 0.0299
do -0.0945 0.0239 -0.0391 -0.0925 -0.0812
not -0.0818 0.0009 -0.0425 -0.0979 0.0140
like 0.0431 -0.0705 -0.0258 0.0427 0.0162
cats, 0.0497 -0.0161 0.0425 0.0602 -0.0399
they -0.0046 -0.0185 0.0038 0.0756 0.0383
are -0.0352 -0.04362 -0.0339 -0.0158 -0.0472
mean -0.0427 -0.0224 -0.0046 -0.0211 -0.0224
That -0.0259 0.0037 0.0353 -0.0368 0.0101
film 0.0031 -0.0404 -0.0165 -0.0069 -0.0167
was -0.0587 0.0288 -0.0066 -0.0161 0.0119
wonderful 0.0547 -0.0401 -0.0032 0.0321 -0.0042
Presidents 0.0023 -0.0110 -0.0501 -0.0190 0.0201
as 0.0079 0.0485 0.0540 -0.0127 -0.0378
honourable 0.0034 0.0069 -0.0024 -0.0484 0.0199
used -0.0517 0.0621 -0.0185 -0.0399 -0.0254
to -0.0438 0.0316 0.0099 0.0130 -0.1125
be 0.0567 0.0457 0.1122 0.0049 -0.0462

• D3 = “Presidents are not as honourable as they used to be.”

We compute a word embedding representation of this vocabulary using 5 latent dimensions and

the Word2Vec algorithm in Table 3.1.

We can see in this example that each term is represented by a vector of 5 values, which allows us

to represent D1, D2 and D3 as the following matrices:

D1 =


−0.0055 −0.0945 −0.0818 0.0431 0.0497 −0.0046 −0.0352 −0.0427

0.1148 0.0239 0.0009 −0.0705 −0.0161 −0.0185 −0.0436 −0.0224

−0.0595 −0.0391 −0.0425 −0.0258 0.0425 0.0038 −0.0339 −0.0046

−0.0035 −0.0925 −0.0979 0.0427 0.0602 0.0756 −0.0158 −0.0211

0.0299 −0.0812 0.0140 0.0162 −0.0399 0.0383 −0.0472 −0.0224



D2 =


−0.0259 0.0031 −0.0587 0.0547

0.0037 −0.0404 0.0288 −0.0401

0.0353 −0.0165 −0.0066 −0.0032

−0.0368 −0.0069 −0.0161 0.0321

0.0101 −0.0167 0.0119 −0.0042


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D3 =


0.0023 −0.0352 −0.0818 0.0079 0.0034 −0.0046 −0.0517 −0.0438 0.0567

−0.0110 −0.0436 0.0009 0.0485 0.0069 −0.0185 0.0621 0.0316 0.0457

−0.0501 −0.0339 −0.0425 0.0540 −0.0024 0.0038 −0.0185 0.0099 0.1122

−0.0190 −0.0158 −0.0979 −0.0127 −0.0484 0.0756 −0.0399 0.0130 0.0049

0.0201 −0.0472 0.0140 −0.0378 0.0199 0.0383 −0.0254 −0.1125 −0.0462


We can observe that the resulting representations are more compact than the one-hot encoding

seen in example 3 and less sparse, meaning that fewer dimensions are 0. However, it is not

possible to interpret the dimensions computed in a word embedding in the same way as a one-hot

encoding.

3.3.2 Non-sequential representations

In this section, we review non-sequential representation schemes for text mining. Non sequential

representations remove word order, making it impossible to recover the structure of the original

text, before feeding an instance to a supervised learning algorithm. Removing this structure has

advantages and drawbacks. Its main advantage is that it enforces some form of location-invariance

in the resulting features: the learning algorithm is forced to learn how to deal with words without

caring about where they are located in the text. The main drawback is that this location can

sometimes change the meaning or the class valence of a word, e. g., “I am happy” vs. “I am not

happy”, where “happy” being placed after a negation changes its meaning to its opposite.

3.3.2.1 Bag-of-words

The bag-of-words model is a representation of documents as vectors in a high dimensional vector

space induced by a vocabulary. In order to represent documents in a common representation, the

vector space is induced from the union of the vocabulary of all the documents post pre-processing,

each dimension of the vector space being one of the terms of that vocabulary and its numerical

value being a function of the frequency of that term in the document in question. It is quite

common to keep that vocabulary voluntarily restricted, and the two ways to deal with unknown

terms observed at test time are to have an unknown token that absorbs all cases of new vocabulary,

or more commonly to simply ignore those cases.
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The second step of document representation once the features (terms) have been acquired is their

transformation and/or filtering in order to represent their actual importance in the training set.

This is typically known as feature weighting, or in this case term weighting. The most popular

and effective term weighting techniques are the following:

• binary weighting: each term is either present or absent from a document as shown in (3.1).

This has the advantage of putting large and small documents on the same footing, so that

two documents of marginally different size but with a common topic will be represented

close to each other in the vector space.

bw(t, d) =


1, if f(x, d) > 0

0, otherwise
(3.1)

• frequency weighting: each term is weighted by its raw frequency in the document as

shown in (3.2). The main appeal of this weighting technique is that it creates more

nuance when representing large documents, where terms which are very frequent in such

documents will end up being a lot more important than less frequent terms. Conversely, its

main drawback is that this frequency difference can be overstated, where a frequent term

might be hundreds of times more frequent than the least frequent term.

fw(t, d) = f(t, d) (3.2)

• log frequency weighting: each term is weighted by a function of the raw frequency in the

document as shown in (3.3). This solves the main drawback of frequency weighting by

logarithmically scaling term frequencies, which means that even a very frequent term will

never be more than a few times as important as a less frequent one.

lfw(t, d) = log(1 + f(t, d)) (3.3)

• tf-idf: each term is weighted using a transformation of the raw frequency multiplied to the

inverse document frequency of that term log(Nn ) where N is the number of documents and

n the number of documents that contain that term, as shown in (3.4). The inverse document
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I not like cat they (to) be mean film wonderful president honourable
D1 1 1 1 1 1 1 1 0 0 0 0
D2 0 0 0 0 0 1 0 1 1 0 0
D3 0 0 0 0 1 2 0 0 0 1 1

TABLE 3.2: Table of logarithmically scaled frequencies

frequency (idf) represents the discriminative power of a term, so that a term that is present

in almost every single document will be pulled toward 0. The tf-idf weighting scheme

overcomes some of the limitations of log frequency weighting, such as the fact that terms

which appear in every single document might have a higher score than terms which only

appear in a few despite the fact that appearing in every document means that those terms

cannot be used to discriminate between documents, and are thus of no use for text mining.

tf-idf(t, d, n,N) = log(1 + f(t, d)) · log(N
n

) (3.4)

Example 5. We illustrate this using a tf-idf weighting on the three documents of Example 3. Let

us assume that the training dataset D contains the following documents:

• D1 = “I do not like cats, they are mean.”

• D2 = “That film was wonderful.”

• D3 = “Presidents are not as honourable as they used to be.”

The complete vocabulary V of the training set, after lemmatising and removing stopwords would

be:

I, not, like, cat, they, (to) be, mean, film, wonderful, president, honourable

Now, we can use V to represent all of the documents in D as follows, where the log frequencies

are shown in Table 3.2.

We then compute the idf of each term in Table 3.3, where df refers to document frequency.

Finally, using Tables 3.2 and 3.3, we can compute the tf-idf scores for the final document

representation in Table 3.4.
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df N
n

idf

I 1 3 1.0986
not 1 3 1.0986
like 1 3 1.0986
cat 1 3 1.0986
they 2 1.5 0.4054
(to) be 3 1 0
mean 1 3 1.0986
film 1 3 1.0986
wonderful 1 3 1.0986
president 1 3 1.0986
honourable 1 3 1.0986

TABLE 3.3: Table of inverse document frequencies

I not like cat they (to) be mean film wonderful president honourable
D1 0.33 0.33 0.33 0.33 0.122 0 0.33 0 0 0 0
D2 0 0 0 0 0 0 0 0.33 0.33 0 0
D3 0 0 0 0 0.122 0 0 0 0 0.33 0.33

TABLE 3.4: Table of tf-idf scores

We observe that some terms end up having a weight of 0, due to being penalised by the inverse

document frequency, even though we could have expected that they would have been considered

more important by the term frequency heuristic due to them being more frequent than the other

terms.

3.3.2.2 Mean embeddings

Mean embeddings are a compact representation of documents which are built by averaging a word

embedding representation, as seen in subsection 3.3.1.2, along the axis of its latent dimensions.

It allows us to represent a document using the centroid of the terms present in that document,

and is a special case of aggregated embeddings, which were found by De Boom et al. (2016) to

perform well at representing short text.

Example 6. In this example we will compute the mean embedding representations of the three

documents of Example 3. Let us assume that the training dataset D contains the following

documents:

• D1 = “I do not like cats, they are mean.”

• D2 = “That film was wonderful.”

• D3 = “Presidents are not as honourable as they used to be.”
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FIGURE 3.5: Mean embedding representation.

D1 = mean(


−0.0055 −0.0945 −0.0818 . . . −0.0046 −0.0352 −0.0427

0.1148 0.0239 0.0009 . . . −0.0185 −0.0436 −0.0224

−0.0595 −0.0391 −0.0425 . . . 0.0038 −0.0339 −0.0046

−0.0035 −0.0925 −0.0979 . . . 0.0756 −0.0158 −0.0211

0.0299 −0.0812 0.0140 . . . 0.0383 −0.0472 −0.0224

) =


−0.0214

−0.0039

−0.0199

−0.0065

−0.0115



D2 = mean(


−0.0259 0.0031 −0.0587 0.0547

0.0037 −0.0404 0.0288 −0.0401

0.0353 −0.0165 −0.0066 −0.0032

−0.0368 −0.0069 −0.0161 0.0321

0.0101 −0.0167 0.0119 −0.0042

) =


−0.0067

−0.0120

0.0022

−0.0069

0.0002



D3 = mean(


0.0023 −0.0352 −0.0818 . . . −0.0517 −0.0438 0.0567

−0.0110 −0.0436 0.0009 . . . 0.0621 0.0316 0.0457

−0.0501 −0.0339 −0.0425 . . . −0.0185 0.0099 0.1122

−0.0190 −0.0158 −0.0979 . . . −0.0399 0.0130 0.0049

0.0201 −0.0472 0.0140 . . . −0.0254 −0.1125 −0.0462

) =


−0.0163

0.0136

0.0036

−0.0155

−0.0196



3.4 Model building

Model building (also referred to as model fitting, training or learning) is the phase during which

the learning algorithm creates a model from the observed training data that is able to generalise

to unseen data. We note that this section only makes sense in the context of supervised learning,

since unsupervised algorithms are typically not trained on labelled data. In this section we review

argument stance mining from a model building perspective.

We start by giving a small taxonomy of machine learning algorithms that allows us to describe

each algorithm in terms of degree of supervision and in terms of degree of parametrisation. We
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then move on to a description of the three main families of algorithms used in the context of

this thesis. We start by describing lexicon-based methods, their representation and their learning

strategies. We then move on to support vector machines and explain how it is derived from

maximum margin classification. Finally, we explain neural networks and more specifically

recurrent neural networks, which have been shown to work particularly well with text data.

Under the empirical risk minimisation paradigm, the training process consists of the minimisation

of a loss function over a training set, with the assumption that this training set is representative of

naturally occurring data. Stance classification is a classification problem and is linked to our

main research objective. Typically, two classification schemes are used: 1. a binary classification

scheme such as agreement/disagreement 2. a multi-class classification scheme such as agreemen-

t/disagreement/neutral or agreement/disagreement/backchannel, where neutral/backchannel are

defined as text which does not take an active stance towards the topic of discussion.

3.4.1 Taxonomy of machine learning algorithms

We consider both unsupervised and supervised techniques in the context of this thesis.

Supervised approaches perform their inference by induction from existing data and require

no participation from human experts aside from labelling the data and setting up the

hyperparameters of the algorithm;

Unsupervised approaches perform their inference by manual model building from domain

experts, requiring those experts to set up heuristics in order for the algorithm to perform

well.

Another dimension onto which it is useful to place learning algorithms is their degree of parametri-

sation. The spectrum of parametrisation considers how strong the assumptions the models are

making about the data are, and is in practice determined by the number of parameters required to

describe a model. The basic assumptions of a parametric model are the following: 1. We have

some knowledge of the probability distribution that the data is drawn from. 2. That probability

distribution can be described with some parameters. 3. This number of parameters is finite.
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4. There is a procedure that we can use to discover the parameters that were used to generate the

data.

The core difference of non-parametric models lies in assumption 3: parametric models can

be described using a finite set of parameters, while non-parametric models such as decision

trees, k-nearest neighbours or support vector machines cannot due to their ability to shrink or

grow their number of parameters with the amount of data available. This has an influence on

the inference step of those machine learning algorithms: leaving a non-parametric algorithm to

minimise an error function will automatically lead them to overfit on the training data unless some

form of regularisation is used. This leads us to distinguish the following classes of supervised

classification algorithms:

Non-parametric algorithms are algorithms with a non-finite number of parameters used to

describe the model. For example, a support vector machine with a non-linear kernel which

has been trained in the dual potentially has a maximum number of parameters that is

positively correlated with the number of data points.

Shallow learning algorithms are algorithms with a finite but large enough number of param-

eters that it would not be reasonable for a human expert to assign them meaningfully.

Therefore we require computational procedures such as gradient descent in order to obtain

from the data itself the parameters that we deem more likely to generalise well to unseen

data. However, we expect to have fewer parameters than training instances. For example,

logistic regression has a finite number of parameters that can be found computationally

either by optimisation or solved in closed form.

Deep learning algorithms are parametric algorithms with a very high number of parameters,

often exceeding the number of data points, making them more likely to suffer from

overfitting and requiring special procedures to regularize the resulting models.

3.4.2 Lexicon methods

Lexicons are linguistic tools for the automated analysis of text. Their best known uses are

classification and feature extraction Clos et al. (2017), Bandhakavi et al. (2016). They can take



Chapter 3. Background 53

many forms, the most common of which is a simple list of terms associated to a certain class

of interest. Classification is done by counting the number of terms belonging to each list in a

given unlabeled instance, and returning the class associated to the list with the most occurrences.

Optionally, the terms can be weighted according to their strength of association with a given

class. Some lexicons also contain additional contextual information in order to help their users

build more complex models Muhammad et al. (2016), but they all share the same architecture:

Definition 3.1 (formal classification lexicon). A classification lexicon Lex is a tuple Lex =

〈L,A,D〉 where:

L : T × C 7→ IR

A : IRn 7→ IR

D : IRn 7→ IR

For a given dictionary of terms T and set of classes of interest C, L is a mapping function that

assigns an unbounded value to each pair (t, c) where term t ∈ T and class c ∈ C. The function

A is an aggregation function that accumulates scores and returns one value, and D is a decision

function that selects and returns a single one of these aggregated values. Concretely, the mapping

determines an evidence score for each term using a look-up list (the lexicon), propagates it to the

aggregation function which aggregates the evidence into one cumulative score per class. Finally,

the decision function evaluates each score to select the one that is the most likely.

A core challenge in lexicon-based classification is the lexicon induction problem. The next

section reviews techniques traditionally used to solve the lexicon induction problem.

Definition 3.2 (lexicon induction problem). The lexicon induction problem is the estimation,

given aggregation function A and decision function D, of the optimal function L so that the

resulting lexicon Lex = 〈L,A,D〉 minimizes its classification errors on unseen data.

Lexicon induction techniques Research in lexicon induction outlines multiple families of

techniques that can be used to produce a computational lexicon. Those techniques are either built

on an extensive lexical resource such as an ontology, or on an estimation of strength of association

between each term and a class in a reference corpus. Research has shown that merging multiple

lexicons produces a reliable feature extractor to augment an existing classifier Wang and Cardie

(2014), but using those lexicons for direct classification was not explored.
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Traditional hand-crafted lexicons (HCL) Due to the computational cost of building a lexicon

from text, early lexicons were hand-crafted by domain experts Stone et al. (1966) and while

higher performance in automated classification tasks has been shown using modern techniques,

there still exist hand-crafted lexicons in use to this day such as the Linguistic Inquiry and Word

Count lexicon Pennebaker et al. (2001). The strengths of these approaches are that they generalize

well and are highly interpretable due to their human (and not algorithmic) origin. Conversely

their weakness are that they tend to be small due to the human labour involved in generating them,

and less effective than other methods due to their focus on human interpretability. However they

can provide a common-sense knowledge back-up in hybrid lexicons Muhammad et al. (2014)

with some degree of success.

Ontology-based lexicons (OBL) OBL learning techniques use a few human-provided seed

words for which the class is known, and leverage some external relationship (typically synonymy,

antonymy and hypernymy) in a semantic graph such as WordNet Miller (1995) to propagate

class values along that graph Esuli and Sebastiani (2006). Because this family of techniques is

extremely foreign to the one we are proposing, we do not evaluate against it and only refer to it

for the sake of exhaustiveness.

Corpus-based lexicons (CBL) CBL learning techniques use a labelled corpus of interest in

order to learn a domain-specific lexicon. The two main statistics used for this purpose are the

conditional probability (equation 3.5) of observing a term given a class, and the point-wise mutual

information (PMI, equation 3.6) between the observation of a term and the observation of a

class. These approaches are flawed in that they can overemphasize spurious correlations between

terms and classes. For example, if a non-class specific term such as “Monday” accidentally

co-occurs too often within one class, it will be misconstrued as being indicative of that class,

and the lexicon will overfit. Bandhakavi et al. Bandhakavi et al. (2014) describe a method for

building conditional probability-based lexicons and Turney Turney (2002) an approach using

PMI and an external search engine to compute lexicon scores. Other works Clos et al. (2016)

have shown some improvement using the normalized PMI measure (NPMI, equation 3.7) on a

stance classification task.
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P (t; c) = p(t|c)∑|C|
i=0 p(t|ci)

(3.5)

PMI(t; c) = log(p(t; c))
p(t)p(c) (3.6)

NPMI(t; c) =
log(p(t;c))
p(t)p(c)

− log [p(t; c)] (3.7)

3.4.3 Support vector machines

Support vector machines Hearst et al. (1998) are a powerful family of algorithms built around

the notion of simultaneously finding a hyperplane that separates the data from each class as

accurately as possible while maximising the distance from this hyperplane to the data points

which are closest to it (the support vectors). We illustrate the principle in figure 3.6, where the

thick blue line is the separating hyperplane and the thinner light blue lines are the limits of the

margin. We can see that on this example the (+) class possesses 2 support vectors which lie on

the limits of the margin while the (o) class only possess 1. Because the algorithm attempts to

maximise the margin, the data points which are not support vectors are irrelevant to the shape of

the separating hyperplane: moving them within their own class boundaries would not change the

hyperplane at all. We attempt to build the mathematical intuition of the support vector machine

in the rest of this section by giving a quick overview of its different components.

Classification and separating hyperplanes The first step to understand support vector ma-

chines is to understand the principles of classifying data using hyperplanes. Hyperplanes are a

generalisation of a plane in an arbitrary dimension, and are thus used to classify data in arbitrary

dimensions. For instance, a hyperplane in a 3 dimensional space would be a 2 dimensional

object (a plane), while a hyperplane in a 4 dimensional space would be a 3 dimensional object (a

volume). Hyperplanes are defined in Equation 3.8 for p dimensions.

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (3.8)

From Equation 3.8 we can see whether a data point falls within one side or the other or the

hyperplane, as seen in Equations 3.9, 3.10 and 3.11, which gives us the basis for a binary classifier.
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FIGURE 3.6: Example of a binary classification task on a linearly separable dataset with a linear
support vector machine. The thick blue line represents the separating hyperplane while the thin
blue lines on each side of it represent the limits of the margin which has been maximised during
the training process. Objects which appear on the left side of the hyperplane are categorised as
the first class (+) and objects appearing on the right side of the hyperplane are categorised as the

second class (o).

β0 + β1X1 + β2X2 + · · ·+ βpXp < 0 if X is on one side, (3.9)

β0 + β1X1 + β2X2 + · · ·+ βpXp > 0 if X is on the other side, (3.10)

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 if X is on the hyperplane. (3.11)

The β parameter vector which defines the hyperplane can be learned in a variety of ways, which

are out of the scope of this thesis. If we encode one class as +1 and the other as −1 and consider

(xi, yi) as one training instance being classified, the following property of a separating hyperplane

emerges:

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (3.12)
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This means that for an instance (xi, yi) (3.12) will be positive if and only if it is on the correct

side of the hyperplane (whichever this side is).

Maximum margin classification The maximum margin classifier can be defined as the hyper-

plane classifier that maximises the distance between every point and the hyperplane as defined

in (3.8). Finding the maximal margin hyperplane consists in solving the following maximisation

problem:

Maximise β1,β2,...,βpM (3.13)

Subject to
p∑
j=1

β2
j = 1, (3.14)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > M, ∀i = 1, . . . , n (3.15)

In this set of equations, Equation 3.13 refers to the maximisation of the margin M which is the

distance from the hyperplane to the data points, while Equations 3.14 and 3.15 refer to classifying

data points on the correct side of the hyperplane. However, this only works if there is a separating

hyperplane that can classify every point correctly as otherwise Equation 3.15 would be violated.

In order to overcome this limitation, the support vector classifier is introduced.

Support vector classification In order to overcome the limitation of potentially having data

points which cannot be classified properly, support vector classifiers introduce the slack variable

ε along with the regularisation parameter C. We show the transformed optimisation problem in

equations (3.16) to (3.19).
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Maximise β1,β2,...,βp,ε1,ε2,...,εnM (3.16)

Subject to
p∑
j=1

β2
j = 1, (3.17)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > M(1− εi), ∀i = 1, . . . , n (3.18)

ε ≥ 0,
n∑
i=1

εi ≤ C (3.19)

In those equations, εi refers to the position of observation i with respect to the hyperplane1, while

C refers to the total amount of slack allowed over the entire training set, i. e., the total amount

of classification error that is tolerated in order to obtain a large enough margin M . Intuitively,

we can see that allowing C to become very large will lead to an increase in classification errors

over the training set but will allow the optimisation algorithm to maximise M to a larger degree,

while keeping a very low C will lead the algorithm to tolerate fewer mistakes during training

but will in consequence of that have less room to maximise the margin M . C is thus a trade-off

hyperparameter that needs to be carefully selected depending on the degree of separability of the

problem being studied.

Equations 3.16 to 3.19 have the interesting property that the hyperplane is only influenced by a

specific subset of data points which are located on the margin. Those data points are called the

support vectors and gave their name to the algorithm. Support vector classifiers however are still

linear classifiers and are thus plagued with the same limited representation power. Support vector

machines use the kernel trick in order to overcome this problem.

Support vector machines A common way to overcome the limitations of linear classifiers is to

map the feature into a higher dimensional feature space that allows the classifier to learn a better

separating hyperplane. That mapping can be done by building interaction terms (features built

from groups of existing features) or transforming each feature individually (e. g., by squaring

their value). The kernel trick Hofmann et al. (2008) is a way to do that transformation implicitly

by replacing an operation of the solution to support vector classification, the inner product
1if ε > 1, then the observation is on the wrong side of the hyperplane, if 0 < ε < 1, then the observation is on the

right side of the hyperplane but on the wrong side of the margin, and if ε = 0, then the observation is on the right side
of the margin.
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FIGURE 3.7: Example of the influence of 2 support vectors on the shape of the separating
hyperplane of a support vector machine.

between data points, by a kernel function that approximates it2. Doing so allows us to express

the classification rule no more as the sign of the signed distance to the hyperplane but as the sign

of a weighted contribution of all support vectors using the kernel function as a similarity metric.

We illustrate in Figure 3.7 the influence of two support vectors on the shape of the decision

boundary represented by the separating hyperplane based on such a kernel function. We can

intuitively observe that the kernel function induces a non-linearity, which gives kernelised support

vector machines their discriminative power.

Support vector machines forN classes Support vector machines are inherently built to handle

binary classification problems, but they can be generalised to a multi-class problem. A typical

way of handling a multi-class problem is to transform it into a one-vs-all classification, where a

N class classification problem is turned into N binary classification problems with one class of

interest and one class representing all other classes. We illustrate this process in figure 3.8, where

each hyperplane is labelled next to the class it was generated from. The final classification can be

done using a weighted vote using the distance to each hyperplane.
2In theory such kernel function needs only to satisfy a few specific conditions to be usable in the SVM classifier,

known as the Karush-Kuhn-Tucker conditions (Kuhn and Tucker, 1951).
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Hyperplane 3

Hyperplane 1

Hyperplane 2

FIGURE 3.8: Example of the different hyperplanes generated by a one-vs-all multi-class SVM.

3.4.4 Neural networks

Neural networks are a family of machine learning algorithms loosely inspired from biological

networks of neurons. First popularised by the computational model of nervous activity developed

by McCulloch and Pitts (1943), they were developed and extended under the form of the

perceptron algorithm Rosenblatt (1958) for supervised machine learning and then the multilayer

perceptron (illustrated in Figure 3.9 with 4 input features and 2 layers of 3 neural units), which

was trained using the backpropagation algorithm (popularised in the context of neural networks

by Rumelhart et al. (1986)). While a single perceptron/neural unit is a linear classifier, the

superposition of layers of units creates a non-linear decision boundary where each consecutive

layer maps the output of a previous layer into an intermediate space in which the data becomes

closer to being linearly separable. The final layer of a neural network is typically a simple linear

classifier working on the transformed data of the previous layers.

Deep neural networks Recent advances in hardware have given rise to the use of neural

networks with increasing depth. Because the modelling power of neural networks scales exponen-

tially with their depth, it has become more common to use networks of hundreds of layers such

as deep residual networks He et al. (2016) for complex classification tasks. This trend towards
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FIGURE 3.9: Example of a 2 layer neural network.

deeper and deeper networks has led to the popularisation of new neural network architectures

directed at specific kinds of input, such as recurrent neural networks for sequential data. We

introduce recurrent neural networks in the following section, along with their most common

implementations: the Elman/Jordan networks and the LSTM/GRU networks.

3.4.4.1 Recurrent neural networks

Recurrent neural networks are neural networks of any shape or form that contain a recurrent

relation. This architectural detail means that they are able to parse inputs as sequences, where

each step of the sequence is called a timestep. Parsing timesteps one by one, while having a

recurrent relationship, means that each timestep has an influence on the following one during

forward propagation, and that during the backpropagation step the error signal is propagated

through all the timesteps (a process called backpropagation through time, introduced by Mozer

(1995)) in order to assign the correct error to each of them. In this section we will give an

overview of recurrent networks.

Simple recurrent networks Elman networks and Jordan networks are simple recurrent models

popular in signal processing for their simplicity and are sometimes called simple recurrent
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networks (SRN). Their main distinction lies in the place and form of their recurrent relation.

• Elman networks. The Elman network was conceived by Jeff Elman Elman (1990). The

main characteristic of Elman networks was that they were the first model that did not

commit to a specific linguistic unit of meaning like phonemes, words, or sentences but

instead focused on the smallest potential granularity in order to explore the possibility

that these units of meaning could be a simple consequence of a learning process over the

latent structure of the input. Elman networks are three-layer neural networks that possess

context units, which are units built to contain the context of the current input timestep. The

middle layer is connected to those context units with a fixed weight of one in order for

backpropagation to not cancel them during the learning process. At each timestep during

the parsing of the input, the input is fed-forward, generating an output for that specific

timestep. Once the final timestep is parsed, the final output is generated by the network and

it can be compared to the real output, allowing us to backpropagate the error through all

the different timesteps in a process called backpropagation through time. The connection

from contextual units to the middle layer allow the network to maintain an internal state,

which make it powerful for modelling sequences such as speech, text, or sensor data. We

show an example of Elman network architecture in Figure 3.10, where we can see that m

context units have been added as input to the existing n input units. Those context units

receive information from the recurrence relation that is formed from the output of the last

hidden layer. This architectural feature is not required: the recurrent signal can be fed from

the middle or the beginning of the hidden layers.

• Jordan networks. Jordan networks Jordan (1997) are identical to Elman networks with the

exception that the context units are fed from the output layer instead of the hidden layer.

Gated recurrent networks Long Short-Term Memory (LSTM) networks are gated architec-

tures, i. e., neural architectures that make use of a gating mechanism in order to control the error

propagation and direct it towards the relevant neural units, so that it does not fall prey to vanishing

and exploding gradient issues. LSTM networks use a complex 3 gate architecture for each LSTM

unit: a forget gate which decides whether the current state of the long-term memory should be
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FIGURE 3.10: Example of an Elman network architecture.

reset, an input gate that does the transformation of the current timestep into a potential update

to the long-term memory, and an output gate that takes the long-term memory as well as the

transformation of the current timestep as inputs and produces a temporary output corresponding

to this timestep.

We can see in Figure 3.113 the multiplicative and additive gates controlling the information flow

within the LSTM unit. The higher horizontal line, called the cell state, can only be accessed

through the additive and multiplicative gates, which makes it easy for information to be propagated

through several timesteps without being modified. The lower horizontal line is a more common

recurrence relation similar to the one that can be observed in Elman networks.
3Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs
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3.5 Model evaluation

The final phase of the supervised learning process if the evaluation of the model built and trained

during the model building phase. The evaluation is handled in details in the first section of

chapter 4.

3.6 Chapter Summary

In this chapter we established the background knowledge necessary to understand the rest of this

thesis. We introduced text processing techniques necessary for those tasks, before moving on to

representation schemes and machine learning models that will be used throughout this thesis.
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Evaluation methodology

In this chapter, we focus on presenting the evaluation methodology that will be used throughout

our thesis. We begin by explaining the task of evaluating supervised learning algorithms in a

general sense, before moving on to the datasets that will be used in our evaluation. We then

discuss the statistical testing procedure that is used to test for statistical significance in our work.

Finally, we highlight and discuss the flaws of our procedure, their reason, and the ways they may

be remedied in future work.

4.1 Evaluating classifiers

In this section we give an overview of a machine learning evaluation methodology, starting with

the K-fold cross-validation methodology before detailing the evaluation metrics that will be used

throughout this thesis.

4.1.1 Machine learning evaluation methodology

We perform our evaluation using a procedure called k-fold cross-validation. K-fold cross-

validation is a procedure meant to provide an accurate estimate of the generalisation error as

follows: 1. if we consider the dataset to be fairly sampled, compute the class proportions in the

entire dataset ; 2. divide the original dataset into K partitions where the proportions of each class

as previously calculated are respected ; 3. for each of the K partitions, use it as a test set while

65
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training the algorithm on the union of the remaining K − 1 datasets ; 4. average the accuracy or

arbitrary metric of goodness for those K trials.

Figure 4.1 illustrates a 4-fold cross-validation. In this example fold 1 would be used for testing,

while folds 2, 3, and 4 would be used for training. The roles are then rotated so that each fold is

used at least once for testing.

FIGURE 4.1: Standard 4-fold cross-validation split

This procedure allows us to gather an accurate estimate of the generalisation error, which allows us

to accurately judge the quality of the hyperparameters used during the training process. However,

cross-validation also allows us to obtain an accurate estimate of the performance of an algorithm

after tuning its hyperparameters by using the process of nested cross-validation, illustrated in

Figure 4.2.

FIGURE 4.2: Nested 4-fold crossvalidation split
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Actual class

Total Class A Class B

Predicted
class

Class A True Positives (TP) False Positives (FP)
Accuracy = TP+TN

Total

Class B False Negatives (FN) True Negatives (TN)

TP Rate = TP
Class A FP Rate = FP

Class B

FN Rate = FN
Class A TN Rate = TN

Class B

TABLE 4.1: An example of confusion matrix for binary classification with classes A and B

When using a nested cross-validation, the inner cross-validation is done in order to tune hyperpa-

rameters, while the outer cross-validation is done in order to obtain an estimate of the true error

of the algorithm on the data. In this example, fold A would be the first one to be used for testing,

so folds B, C and D would be used for the inner cross-validation. In the inner cross-validation,

folds B1, C1, and D1 would be used for testing while the other 9 folds would be used for training.

Then, folds B2, C2, and D2 would be used for testing while the other 9 folds would be used for

training. Then, folds B3, C3, and D3 would be used for testing while the other 9 folds would

be used for training. Finally, folds B4, C4, and D4 would be used for testing while the other 9

folds would be used for training. The accuracy of the inner cross-validation is then used to assess

the quality of the hyperparameters and tune them accordingly, either manually (using arbitrarily

chosen values) or programmatically (using hyperparameter search).

4.1.2 Evaluating classification algorithms

In this section we will discuss the evaluation of classification algorithms. There are multiple

metrics that can be used to evaluate classification. Classification results are reported using a

confusion matrix, from which those metrics are calculated. We present in Table 4.1 an example

of a confusion matrix for a binary classifier. This example shows the way the main evaluation

metrics are computed from their core elements: true/false positives, and true/false negatives.

In the case of single class binary classification, the following metrics are typically reported:
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Precision is calculated as TP
TP+FP . It indicates, for a given class, the ability of the algorithm of

not making mistakes when it identifies it, i. e., minimise the false positive rate ;

Recall , or TPR (True Positive Rate), is calculated as TP
ClassA . It indicates, for a given class, the

ability of the algorithm of not making mistakes when identifying that an object is of a

different class, i. e., minimise the false negative rate ;

Accuracy is the inverse of the misclassification rate, and is calculated as tp+tn
tp+tn+fp+fn . It

is typically calculated as an aggregated measure of goodness for a classifier since it

corresponds to the ability of the classifier of not making any mistakes. For certain datasets,

weighted accuracy (accuracy which is weighted by the number of instances for each class)

can be preferable to accuracy.

Fβ-Score is a score that aims to balance precision and recall to overcome cases where classes

are not balanced, and is calculated as (1 + β2) · (precision·recall)
(β2+precision)·recall . The most common form

of F-Score uses a balancing parameter β of 1, which puts an equal weight on both classes,

becoming 2 · precision·recall
precision+recall .

For classification involving more than two classes, accuracy and F1-Score are usually reported in

order to account for potential class imbalances. Accuracy allows us to have a general idea of how

well the algorithm is performing, while F1-Score allows us to know whether a class is favoured

over the others since having a high accuracy in one class and a very low accuracy in another will

penalise that score.

The task at hand is the classification of a set of items, called the test set, by a classifier which has

been trained using a set of labelled items, called the training set. The predictions produced by the

classifier are then compared to the actual labels of the test set, also called the ground truth, to

measure a few performance metrics.

• Precision (or specificity) is computed as number of true positives
number of true positives+false positives

• Recall (or sensitivity) is computed as number of true positives
number of true positives+false negatives

• Accuracy is computed as number of true positives+number of true negatives
number of true positives+number of true negatives+false negatives+false positives

These three basic metrics are used to compare classifiers on similar training and test sets.
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Dataset Post count Agreement Disagreement None

ABCD 185,479 38,195 60,991 86,293

IAC 5,940 428 1,236 4,276

SETC 4,163 1,055 2,112 996

RNLC 59,458 39,984 19,474 0

TABLE 4.2: Descriptive statistics of our selected four stance detection datasets.

4.2 Datasets

In this section we present the datasets that are used for the purpose of our evaluation. We show in

Table 4.2 descriptive statistics of those datasets.

Free form social media corpora are extracted from forums and are characterised by the absence

of restriction in user-to-user interactions. Unlike transcribed media corpora, they do not contain

any information besides the actual text content and some forum metadata (username, dates, times,

etc.). They also have the particular feature of being written by the users themselves, which leaves

a lot more room for typos, grammatical mistakes, and internet slang.

4.2.1 Internet Argument Corpus (IAC)

The IAC (Internet Argument Corpus) (Walker et al., 2012a) was built from posts collected from

the 4forums1 discussion platform. It was annotated using Amazon Mechanical Turk2 on a -5 to 5

disagreement to agreement scale. The details of the dataset are described in Section 2.2.2.

4.2.2 Agreement By Create-Debaters (ABCD)

The ABCD (Agreement By Create-Debaters) corpus (Rosenthal and McKeown, 2015) was

collected on a specialised debating forum called CreateDebate3. Debates on this platform can be
1https://4forums.com
2https://www.mturk.com/mturk/welcome
3https://www.createdebate.com

https://4forums.com
https://www.mturk.com/mturk/welcome
https://www.createdebate.com
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of three types: open-ended (no side), for/against (two sides), multiple sides (three or more sides).

Details on the datasets are described in Section 2.2.2.

4.2.3 SemEval Twitter Dataset (SETC)

SemEval (for Semantic Evaluation) is an ongoing series of evaluations of computational semantic

analysis systems, organized under the umbrella of SIGLEX, the Special Interest Group on the

Lexicon of the Association for Computational Linguistics. SemEval has evolved from the

SensEval word sense disambiguation evaluation series.

4.2.4 Reddit Noisy-Labelled Corpus (RNLC)

Reddit4 is a social link aggregation website which allows its users to submit posts or links to other

web pages as well as comment on them (top-level comments), or on other comments. This creates

a particular tree structure which departs from traditional flat forums in that they indicate explicitly

the target of the comment (what it is commenting on) and allow for an easier understanding and

structuring of the discussions, allowing them to branch off without polluting the main topic.

The Reddit Noisy-Labelled Corpus is a novel dataset that leverages noisy labelling in order

to build a dataset that is significantly larger than most manually labelled ones. As such, it

is extremely useful to evaluate attempts at transfer learning by using models learned on an

unreliable dataset (RNLC) to classify instances from a reliable dataset. We describe the process

of its development in the rest of this section.

Step 1: Collection The source data was collected by crawling all comments posted on Reddit

using their JSON endpoint5 and storing the resulting comments crawled in a MongoDB6 database.

We used data that was collected over 8 months, from December 2013 to July 2014.
4https://www.reddit.com
5For instance, https://www.reddit.com/r/all/.json
6https://www.mongodb.com

https://www.reddit.com
https://www.reddit.com/r/all/.json
https://www.mongodb.com
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Step 2: Filtering Reddit is one of the most visited websites7 and therefore attracts an interna-

tional audience and a very variable level of content. Because of this, we then proceeded to filter

comments that did met a certain set of criteria:

• Comments that were not written in English8 ;

• Comments that were shorter than either 200 characters or 20 words, as an arbitrary filter of

low-quality content ;

• Comments that contained an indication that they were continued over multiple comments.

Because of the technical limitations imposed by Reddit, some comments require being

posted either for structural or technical reasons in multiple “episodes”. Because of the

way the data is collected there is no way to be sure that we have access to the complete

comment and therefore it is easier to discard such content. Marks of continuation are

sentences such as “Part x of x”, or “Continued from previous comment”.

Additionally, quotes from a parent post were removed from the text in order to only keep the

child comment and not lead the automated labelling to mistakes.

Step 3: Noisy labelling Acquiring user-labelled data is a common issue in machine learning

and information retrieval tasks. The quantity and quality of data needed usually require the

labelling of large numbers of examples by multiple annotators. One way to go around the problem

of finding qualified annotators is to use crowd-sourcing (Wang et al., 2012) (outsourcing to a

crowd of anonymous workers, at a low cost), which brings its own problems in terms of quality

and consistency of labelling (discussed by Snow et al. (2008)). Another way to circumvent

the limitation of human-labelled data is the use of distant supervision (Mintz et al., 2009).

Distant supervision consists of using high-precision clues called noisy labels in the examples to

automatically label data and use them as labels, before removing them to not bias the classifiers.

Go et al. (2009) for example used distant supervision to annotate a tweet dataset using emoticons

as noisy labels. We adapt the approach used by Mintz et al. (2009), Go et al. (2009) to our dataset

by mining it for highly precise evidence of agreement and disagreement. We extract only the
7Alexa ranking
8The language detection was done using the LangDetect Python library, available at https://pypi.org/

project/langdetect/

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
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Id Agreement expression

a1 i [adverb] [agreement verb]

a2 i (don’t|do not) [adverb] [disagreement verb]

a3 i (am not|ain’t) [disagreement noun/adjective]

a4 (you are|you’re) [adverb] [agreement noun/adjective]

a5 you (are not|aren’t|ain’t) [adverb] [disagreement noun/adjective]

a6 [this is] [adverb] [agreement NAO] [EOS]

a7 [this is] not [adverb] [disagreement NAO] [EOS]

TABLE 4.3: High-precision expressions indicative of agreement class

Id Disagreement expression

d1 i [adverb] [disagreement verb]

d2 i (don’t|do not) [adverb] [agreement verb]

d3 i (am not|ain’t) of the same (mind|opinion)

d4 (you are|you’re) [adverb] [disagreement NAA]

d5 you (are not|aren’t|ain’t) [adverb] [agreement NAA]

d6 [this is] [adverb] [disagreement NAO] [EOS]

d7 [this is] not [adverb] [agreement NAO] [EOS]

TABLE 4.4: High-precision expressions indicative of disagreement class

comments which show both evidence of one class and the absence of evidence of the other class,

so as to prioritise precision over raw number of examples.

We show in Table 5.2 and 5.3 the expressions used to extract instances of the agreement and

disagreement classes (respectively) where [EOS] marks an end-of-sentence marker such as an

exclamation mark, a full stop or a comma, [] marks optional expressions or positive/intensifying

adverbs such as “extremely”, “totally”, etc, NAO marks a Noun/Adjective referring to the Object

of the discussion and NAA refers to a Noun/Adjective referring to the Author that is being replied

to. In tables 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 we detail the dictionary of words used to feed those

expressions.
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Agreement verb

agree

concur

am of the same mind

am of the same opinion

share your opinion

share this opinion

sympathise

sympathize

concede

acquiesce

TABLE 4.5: Verbs indicating
agreement

Agreement NAA

accurate

veracious

correct

bang on

dead on

on target

right on target

spot on

TABLE 4.6: Nouns/adjectives
indicative of agreement class,

targeting the author

Agreement NAO

accurate

exact

true

correct

without error

valid

bang on

dead on

on target

right on target

spot on

perfect

TABLE 4.7: Nouns/adjectives
indicative of agreement class,

targeting the object

Step 4: discussion tree building The last step once the entire dataset is reduced to labelled

instances is to filter out the ones that are orphans, i. e., only keep the user comments for which

we can retrieve a parent comment. Parent and child comments are then joined together in the

final version of the dataset. This enables us to experiment on context-sensitive classification,

by allowing algorithms to access the content of the parent comment in order to improve the

prediction of the class of the child comment.

Limitations of noisy labelling The use of distant supervision to extract noisy labels allows us

to build a large stance classification dataset, but it comes with significant drawbacks:

• confidence in the labels is low, due to the automatic nature of the task. For instance, the

automatic labelling from high-precision rules does not cover edge cases such as sarcasm.

• biased sampling of the classes, due to the absence of reliable high precision rules that cover

some classes such as neutrality. Additionally, it is sometimes more common for people
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Disagreement verb

dissent

object

oppose

differ

disagree

fail to agree

dispute this

challenge this

argue this

take issue with this

TABLE 4.8: Verbs indicating
disagreement

Disagreement NAA

incorrect

mistaken

confused

misguided

misinformed

misled

erroneous

untrue

deceived

misleading

TABLE 4.9: Nouns/adjectives
indicative of disagreement, tar-

geting the author

Disagreement NAO

incorrect

erroneous

false

inaccurate

inexact

untrue

deluded

delusional

duped

tricked

invalid

fallacious

off target

misleading

illogical

unsound

unfounded

without foundation

misconstrued

unsubstantial

unsubstantiated

TABLE 4.10: Nouns/adjec-
tives indicative of disagree-

ment, targeting the object
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expressing agreement to explicitly state their stance, which leads to highly imbalanced

classes.

4.3 Statistical testing for classification

We use a consistent evaluation methodology throughout the entire thesis. Firstly, datasets are

artificially balanced by subsampling the majority class in order to be able to use accuracy as a

reliable metric. Other metrics such as F1-Score are less sensitive to class imbalances but have less

applicability to a real-world setting: while it is trivial to set an accuracy threshold to determine

an algorithm reliable for real-world applications, doing so with an F1-Score is less obvious.

Secondly, datasets are partitioned into 10 different subsets for the purpose of 10-fold cross-

validation. We then create 10 training/testing sets pairs that will be used for evaluation. For

unsupervised algorithms, the training set is used in order to empirically decide some parameters

such as thresholds. For supervised algorithms, the training set is used to learn the optimal

classification model and no hyperparameter tuning is done, removing the need for an external

validation set. For transfer learning algorithms, the training set is discarded while the model is

learned from a separate dataset. In all cases, the test set is used to compute accuracy metrics.

Thirdly, we perform the statistical analysis of our results in two steps. We start using a one-way

ANOVA over each dataset in order to detect whether there is one algorithm that is significantly

different from the rest. We then conduct a post hoc Tukey test in order to perform pair comparison

and find which algorithm differs significantly from others, while minimising the risk of type 1

error. The tests are done using the base package of the R statistical computing environment9 (R

Core Team, 2014).

4.4 Chapter Summary

In this chapter we briefly introduced our evaluation methodology, starting with the datasets

collected for this research and finishing with the statistical testing procedure used to formally test

the significance of our results.
9https://www.r-project.org

https://www.r-project.org


Chapter 5

Unsupervised Argument Mining

Unsupervised argument mining makes use of intelligent heuristics in order to provide a classifica-

tion function that is able to distinguish between argumentative stances without being trained on

a corpus. It does so with under-parameterised models (i. e., models with a very restricted set

of parameters) which can be tuned by human experts, and therefore do not require any training

data. Due to the lack of high quality data in the domain of argument stance mining, it is a gap

that unsupervised algorithms can fill with success. In this chapter we investigate unsupervised

models for stance mining, which can be derived from existing resources and heuristic rules.

We mostly focus on the approximation of stance by the way of augmenting sentiment lexicons

with shallow natural language processing rules. Because sentiment, opinion and stance are closely

related concepts, a large part of the literature uses sentiment as a core feature to detect the polarity

and strength of argumentative stance. The research question we aim to answer is as follows: can

local context be used to improve classification accuracy by helping a naive classifier to focus on

relevant terms? Additionally, we aim to build a hierarchical model that can take advantage of the

strengths of multiple heuristics in order to improve its classification accuracy.

We introduce five different approaches in order to perform this investigation:

• Two sentiment as proxy approaches: sentiment as proxy with adaptive threshold (SP-

ADAPT), and its augmented version: sentiment as proxy with context-sensitive term

selection (SP-COSTS) ;

76



Chapter 5. Unsupervised Argument Mining 77

• Two shallow linguistic approaches: unsupervised sentiment surface (USS) and its aug-

mented version (USS+) ;

• A unified approach that organises multiple heuristics in order to improve its classification

power (MUSC).

5.1 Sentiment as proxy approaches

In this section we elaborate on computational models of sentiment as an approximation of stance.

Sentiment can be seen as a generalisation of stance, and therefore it stands to reason that it can

be used as an approximation of it in a natural language processing workflow with reasonable

accuracy.

5.1.1 Sentiment as proxy with adaptive threshold (SP-ADAPT)

Sentiment-guided methods provide a means to use emotive context to infer argument stance, by

assuming the local stance of a comment to be equivalent to its sentiment valence. We employ

a simple sentiment analysis algorithm based on a pre-existing sentiment lexicon Esuli and

Sebastiani (2006) to which we will refer as SENTLEX. It operates by looking up positive and

negative values of all the terms present in the comment and summing those two components

separately into a positive and a negative score. The classification rule is based on a simple

comparison: a larger positive strength implies a supportive comment, and a larger negative

strength implies an attacking comment. This algorithm uses an additional threshold parameter in

order to account for variations in baseline sentiment valence: some topics of discussion might

yield a higher natural threshold, meaning that even a slightly disagreeing user comment could

have a positive overall sentiment. We estimate the optimal threshold by performing a linear

search on a held out dataset, for example by computing the accuracy of the approach using a

threshold from -5 to 5 by steps of 0.1, and using the threshold for which classification accuracy

was maximised.

In our work we use the SMARTSA algorithm developed by Muhammad et al. (2013). SMARTSA

was developed as an extension of traditional lexicon-based sentiment analysis techniques in
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order to take into account additional linguistic factors such as the presence of contextual valence

shifters Polanyi and Zaenen (2006). Contextual valence shifters are terms which alter the class

values of terms in their vicinity by exaggerating them (amplifiers), reducing them (diminishers) or

inverting their polarity (negators). Example 7 illustrates those modifiers with concrete examples.

Example 7. Amplifiers: “I am very happy that you said this”, where the positive value of

“happy” is amplified by the presence of “very” ;

Diminishers: “I am mildly annoyed by advertisements”, where the negative value of

“annoyed” is hedged by the presence of “mildly” ;

Negators: “She was not satisfied by her purchase”, where the positive value of “satisfied”

is negated by the presence of “not”.

Sentiment-guided methods assume that global stance of the comment, i. e., the feelings of its

author regarding the topic at hand, can be used in place of its local stance, i. e., the feelings of its

author towards a specific target. As such, those approaches are flawed whenever (1) those two

stances do not align, (2) the stance is expressed in a sentiment-neutral way, or (3) the overall

sentiment of the sentence ends up being balanced. Example 8 illustrates those problems.

Example 8. (1) "I completely disagree with you, this movie was very good and I enjoyed every

minute of it." Here we can see that the author expresses a positive opinion by disagreeing

with the author of the parent comment, thus making an attacking statement.

(2) "There is nothing in the world that will make me see the situation your way." In this

comment there is no positive or negative terminology used, while the sentence is clearly

written with an attacking stance.

(3) "I agree that the acting was good, but I am still disappointed that the dialogues were so

poorly written." Here negative and positive sentiments are equally used, but the stance

should be supporting.

SP-ADAPT works by using a sentiment lexicon and tuning its threshold parameter on a training

set for argument stance mining. We describe the process in algorithm 1. Concretely, it takes as

input a document C and a threshold number α, sums up the positive and sentiment scores of a

specific document and applies a simple binary decision rule based on a user-specified threshold.
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Corpus Topic Optimal α

ABCD

Abortion 1.65

Gay rights -1.35

Marijuana -0.05

Obama -0.10

IAC All -0.15

TABLE 5.1: Optimal α thresholds on two datasets with SP-ADAPT

If the positive sentiment outweighs the negative sentiment by an amount superior or equal to

that threshold, the agreement class is returned as output. Otherwise, the disagreement class is

returned as output.

Algorithm 1 The SP-ADAPT algorithm for binary stance classification.

1: function SP-ADAPT(C,α) . Stance of C with threshold α
2: Sentiment← (0, 0) . Initialise the Sentiment vector as an empty vector
3: for all Term t in C do
4: Sentiment[1]← Sentiment[1] + PositiveSentiment(t)
5: Sentiment[2]← Sentiment[2] +NegativeSentiment(t)
6: end for
7: if Sentiment[1]− Sentiment[2] ≥ α then . Test whether positive sentiment

outweighs negative by a margin of α
8: Return agreement
9: else

10: Return disagreement
11: end if
12: end function

One major flaw of this approach is that a crucial parameter, the threshold α, needs to be determined

empirically. A cursory analysis on two stance classification datasets show that the optimal value

can vary widely and therefore a parameter search needs to be done for specific types of data.

Table 5.1 shows different optimal values of α with respect to classification accuracy for the

ABCD corpus (for 4 topics) and the IAC corpus. We can observe a large deviation from dataset

to dataset and from topic to topic.
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5.1.2 Sentiment as proxy with context-sensitive term selection (SP-CoSTS)

Term vector representation is a convenient way to work with text data because of its simplicity

and versatility. It is the required representation for lexicon-based classification as well as more

standard supervised classifiers and is thus a standard in text mining. In this section we use

conversational context to alter that feature vector by adding or removing some of its components

(terms) based on the terms present in the feature vector of the parent post. It is essentially an

augmented version of the SP-ADAPT algorithm based on the intuition that selecting terms can

help the algorithm know which part of the child post is referring to the parent post, which leaves

the sentiment analysis algorithm to detect the child post attitude toward the parent post.

The general methodology is described in algorithm 2. It consists in merging two bag of word

vectors by applying an aggregation function f to each dimension of those vectors. We define four

variations of the method, by varying the aggregation function f used to build the context-enriched

term vector from parent and child comment (p and c respectively). Its inputs are two bag-of-word

vectors c and p and an aggregation function f : R× R −→ R. Its output is a bag-of-word vector.

Algorithm 2 Context-based term vector enrichment algorithms with input documents c and p,
aggregation function f .

1: function GENERALCOMBINATION(c, p, f )
2: x← 〈0, 0, . . . , 0〉 . Initialise an empty bag-of-words
3: for i← |x| do
4: xi ← f (pi, ci) . element i of x is a mixture from p or c
5: end for
6: Return x
7: end function

SP-COSTS1 uses an intersection-based term vector enrichment strategy. In this approach, we

build the context-sensitive term vector as the intersection of the parent and the child posts.

More formally, the function f is defined as follow:

f (pi, ci) = min (pi, ci) (5.1)

SP-COSTS2 uses an union-based term vector enrichment strategy. We describe the algorithm

used to build the term vector as follows:
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f (pi, ci) = max (pi, ci) (5.2)

SP-COSTS3 uses an additive combination model as its term vector enrichment strategy, by

adding the frequencies.

f (pi, ci) = pi + ci (5.3)

SP-COSTS4 uses a random mixture-based term vector enrichment strategy, by randomly

sampling term frequencies from the parent and the child comments with a given probability.

We illustrate it as follows, where t is the threshold over which the term frequency is

sampled from the child comment.

f (pi, ci, t) =


ci, if ∼ B(1, t)

pi, otherwise

(5.4)

In this equation, a random number is sampled from the binomial distribution (parameterised

with t) for each term, returning 1 (sample from child comment) or 0 (sample from parent

comment).

Algorithm 3 represents the general classification algorithm of SP-COSTS, where the changing

part is the way the instance c+ is created from the child comment c and the parent comment

p. The classification is done by first combining the bag of words of both parent and child

comments, and then summing the positive and negative sentiment scores of each term of that

combination. Finally, if the positive sentiment passes or equals a specific user-specified threshold,

the agreement class is returned. Otherwise, the disagreement class is returned.

5.2 Shallow linguistic approximations

Shallow linguistic approximations are a class of methods that use linguistic heuristics to classify

text without relying on complex natural language processing techniques. While they lose accuracy
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Algorithm 3 The SP-COSTS algorithm for binary stance classification, with documents C and
P, threshold γ and aggregation function f .

1: function SP-COSTS(c, p, γ, f )
2: ContextSent← ()
3: c+ ← GeneralCombination(c, p, f)
4: for all Term t in c+ do
5: ContextSent[1]← ContextSent[1] + PositiveSentiment(t)
6: ContextSent[2]← ContextSent[2] +NegativeSentiment(t)
7: end for
8: if ContextSent[1]− ContextSent[2] ≥ γ then
9: Return agreement

10: else
11: Return disagreement
12: end if
13: end function

on properly formed text, they tend to gain on data that is not properly formatted (e. g., social

media corpora) due to being more flexible in the way they handle text. Unlike lexicon-based

methods such as the ones described in the previous section, shallow linguistic-based methods rely

on word order for inference and thus do not use the traditional bag-of-words model to represent

data. Instead, they parse text from start to finish and produce a prediction once the entire content

has been processed. We explore three methods in this section: the Unsupervised Sentiment

Surface (USS) algorithm, the Augmented Unsupervised Sentiment Surface (USS+) algorithm,

and the Multi-strategy Unsupervised Stance Classifier (MUSC) method.

5.2.1 Unsupervised sentiment surface (USS)

We explore conversational context-aware methods using the Unsupervised Sentiment Surface

algorithm (USS, shown in algorithm 4). USS is extended from Wang and Cardie (2014) and uses

a shallow linguistic analysis to compute the average distance between second person pronouns

and positive or negative terms (in a sentiment analysis sense). The algorithm parses through

the words of a document and keeps track of second person pronouns. For each second person

pronoun, it looks for the closest sentiment-bearing expression, and keeps track of the distance (in

words) to the nearest positive and the nearest negative terms. It then aggregates those two lists of

distances, and return the agreement class if positive expressions are on average closer to second

person pronouns, and disagreement otherwise. Its only input is a document C, and its output is a

class (agreement or disagreement).
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USS works on the intuition that the stance of the comment is contained within explicit references

to the parent posts: such references can be analysed by detecting second person pronouns (e.g.

“you”, “your”, etc.) and their polarity by searching their grammatical neighbourhood for polarised

(positively or negatively) terminology.

Algorithm 4 The Unsupervised Sentiment Surface algorithm.

1: function USS(C) . Stance of C
2: Distances← ((), ())
3: for all Term t in C do
4: if IsSecondPersonPronoun(t) then
5: Npos ← ClosestPositiveTerm(t)
6: Nneg ← ClosestNegativeTerm(t)
7: append(Distances[1], distance(t, Npos)
8: append(Distances[2], distance(t, Nneg)
9: end if

10: end for
11: AggregPosDistance← aggregate(Distances[1])
12: AggregNegDistance← aggregate(Distances[2])
13: if AggregPosDistance < AggregNegDistance then
14: Return agreement
15: else
16: Return disagreement
17: end if
18: end function

For example, "I don’t agree with you and I think your opinion is wrong" would be interpreted

as an attacking statement because of the overwhelming proximity of negative terms ("don’t",

"wrong") near second person pronouns ("you", "your"). This approach can also give flawed results

when there is ambiguity contained in the text in the following: (1) when a positive (respectively

negative) term is accidentally closed to a second person pronoun which is semantically linked

to a negative (respectively positive) term, (2) when sarcasm is used, (3) when a more complex

sentence structure is used where the polarity of a term is implicitly negated, or (4) whenever no

second person pronouns or sentiment-bearing terms are used. The following examples illustrate

these three cases, where d is defined as a word distance that does not take punctuation into

account:

(1) "I like you, but you are wrong." Here we can see that d(like, you) < d(you,wrong) which

would classify this instance as a supporting statement.
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(2) "You are a genius, aren’t you?" While the terminology used is positive which would

classify this instance as a supporting statement, the high likelihood of it being a sarcastic

remark should make it an attacking one.

(3) "I can barely tolerate that you believe yourself to be right." Here the sentence structure

puts yourself very close to right, which will classify the sentence as a supporting statement.

However, it is clear under a human eye that the sentence has a disapproving tone.

The USS approach is thus limited to a specific number of cases where the disagreement is

expressed as a specific attack on the parent comment. However, in order to take more cases into

account we enrich its methodology and build the Augmented unsupervised sentiment surface

approach.

5.2.2 Augmented unsupervised sentiment surface (USS+)

In order to overcome this weakness, we designed the augmented unsupervised sentiment surface

algorithm (USS+), an extension of the Sentiment Surface method from Wang and Cardie (2014)

that uses an additional fall-back heuristic to handle edge-case scenarios where the text being

classified does not use explicit attacks on the parent comment using second-person pronouns. The

fall-back heuristic uses a general purpose sentiment lexicon to determine the general sentiment

expressed within the text and use that as a proxy for stance. The process is described in the

flowchart given in Figure 5.1 and in more details in Algorithm 5.

The algorithm takes as inputs a document C, and two threshold numbers α and β, and outputs a

class (disagreement or agreement). The first part of the algorithm works exactly as USS, until

line 13. A threshold is applied to the result of the distance heuristic taken from USS. If the

difference between distances from positive expressions and distances from negative expressions

is sufficient (superior or equal to the threshold α), a classification is performed. Otherwise, the

algorithm falls back to another heuristic using raw sentiment. If the overall positive sentiment

goes over a threshold β, the agreement class is returned. Otherwise, the disagreement class is

returned.

We illustrate the process in Algorithm 5: the algorithm firstly attempts to detect explicit attacks

using the USS heuristic (lines 2 to 19). It assesses its confidence in the prediction using the
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Augmented Unsupervised
Sentiment Surface

Sentiment analysis

Start

FIGURE 5.1: The Augmented Unsupervised Sentiment Surface process.

α threshold. If the prediction has a confidence inferior to α, the USS+ algorithm goes into

failure mode (lines 20 to 29) and uses sentiment analysis to determine stance, conditioned on a

second confidence threshold β. If once again the prediction confidence falls under that confidence

threshold, the algorithm returns a randomly selected class, with the probability being weighted

by the frequency of observation of that class in the training set.

Example 9. The following illustrates an example that would be misclassified by USS but

correctly classified by USS+: “I think this is right, and I agree wholeheartedly”. The USS

heuristic would miss the stance comment due to the absence of an explicit call out to the parent

comment (e. g., “I think you are right”), while the failure mode of USS+ would allow it to catch

the general sentiment of the comment, and use it as a correct approximation of the stance of the

comment. Of course, there can be counter-examples where the sentiment would run counter to

the actual stance of the comment, but since those would generally tend to be misclassified by the

USS heuristic, there is nothing lost by applying a more general heuristic to it.
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Algorithm 5 The Augmented Unsupervised Sentiment Surface algorithm.

1: function AUSS(C,α, β) . Stance of C with respect to P with thresholds α, β
2: Distances← ((), ())
3: for all Term t in C do
4: if IsSecondPersonPronoun(t) then
5: Npos ← ClosestPositiveTerm(t)
6: Nneg ← ClosestNegativeTerm(t)
7: append(Distances[1], distance(t, Npos)
8: append(Distances[2], distance(t, Nneg)
9: end if

10: end for
11: AggregPosDistance← aggregate(Distances[1])
12: AggregNegDistance← aggregate(Distances[2])
13: if abs(AggregPosDistance−AggregNegDistance) ≥ α then
14: if AggregPosDistance < AggregNegDistance then
15: Return agreement
16: else
17: Return disagreement
18: end if
19: end if
20: Sentiment← ()
21: for all Term t in C do
22: Sentiment[1]← Sentiment[1] + PositiveSentiment(t)
23: Sentiment[2]← Sentiment[2] +NegativeSentiment(t)
24: end for
25: if Sentiment[1]− Sentiment[2] ≥ β then
26: Return agreement
27: else
28: Return disagreement
29: end if
30: end function

5.2.3 Multi-strategy Unsupervised Stance Classifier (MUSC)

The MUSC method is an extension of USS+ that uses a complex, hierarchical decision scheme,

illustrated in Figure 5.2 and in more details in Algorithm 6. It combines three strategies, going

from the most specific (high precision, low recall) to the least specific (high recall, low precision)

in order to capture the maximum number of cases. It takes as inputs two documents (parent and

child comments) and four threshold parameters, which define the level of confidence needed to

provide a classification and not fall back to a more general heuristic. The threshold α controls

whether the algorithm falls back from the high precision expressions to the USS distance heuristic.

The threshold β controls whether the algorithm falls back from the USS distance heuristic to the

contextual sentiment analysis heuristic. The threshold γ controls whether the algorithm falls back
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from the contextual sentiment analysis heuristic to the raw sentiment analysis heuristic. Finally,

the η heuristic controls the difference between positive and negative sentiment needed to push

the classification toward the agreement class. The output of the algorithm is the predicted class

of the document C.

Algorithm 6 The Multi-strategy Unsupervised Stance Classification algorithm - Part 1

function MUSC(C,P, α, β, γ, η) . Stance of C w.r.t. P ; thresholds α, β, γ, η
HPE ← (0, 0) . High Precision Evidence
for all Agreement sentence AS do

HPE[1]← HPE[1] + 1
end for
for all Disagreement sentence DS do

HPE[2]← HPE[2] + 1
end for
if abs(HPE[1]−HPE[2]) ≥ α and HPE[1] +HPE[2] ≥ 0 then

if HPE[1] > HPE[2] then
Return agreement

else
Return disagreement

end if
end if
Distances← ((), ())
for all Term t in C do

if IsSecondPersonPronoun(t) then
Npos ← ClosestPositiveTerm(t)
Nneg ← ClosestNegativeTerm(t)
append(Distances[1], distance(t, Npos)
append(Distances[2], distance(t, Nneg)

end if
end for
AggregPosDistance← aggregate(Distances[1])
AggregNegDistance← aggregate(Distances[2])
if abs(AggregPosDistance−AggregNegDistance) ≥ β then

if AggregPosDistance < AggregNegDistance then
Return agreement

else
Return disagreement

end if
end if

Each strategy is defined in order to favour less precision and more recall than its predecessor.

[A] High-precision expression analysis is the detection of specific expressions which are

highly indicative of a class. For instance, “I disagree”, “you are wrong”, “I share your
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FIGURE 5.2: The Multi-strategy Unsupervised Stance Classifier process uses 4 different strate-
gies by decreasing order of specificity in order to maximise prediction accuracy. The first two
strategies (A and B) focus on shallow linguistic rules while strategies C and D respectively use
sentiment analysis on contextual sentences (sentences with a high number of terms appearing in

the parent comment) and the entire content.
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Algorithm 7 The Multi-strategy Unsupervised Stance Classification algorithm - Part 2

ContextSent← ()
C+ ← combine(C,P )
for all Term t in C+ do

ContextSent[1]← ContextSent[1] + PositiveSentiment(t)
ContextSent[2]← ContextSent[2] +NegativeSentiment(t)

end for
if abs(ContextSent[1]− ContextSent[2]) ≥ γ then

if ContextSent[1] ≥ ContextSent[2] then
Return agreement

else
Return disagreement

end if
end if
Sentiment← ()
for all Term t in C do

Sentiment[1]← Sentiment[1] + PositiveSentiment(t)
Sentiment[2]← Sentiment[2] +NegativeSentiment(t)

end for
if Sentiment[1]− Sentiment[2] ≥ η then

Return agreement
else

Return disagreement
end if

end function

opinion”. The dictionary of expressions used is available in Tables 5.2 and 5.3, reproduced

from Chapter 4 where it was used to generate a noisy-labelled dataset ;

[B] Unsupervised Sentiment Surface, as described in Section 5.2.1, uses second-person

pronouns and negative sentiment-bearing words to identify disagreements ;

[C] Context-sensitive sentiment analysis uses sentiment analysis on sentences from the

child post which have a high degree of similarity to the sentences of the parent post, and is

controlled with a predefined threshold parameter.

[D] Sentiment analysis uses standard sentiment analysis techniques on all the sentences

of the child post.

The high precision expressions are mined using regular expressions, where [EOS] indicates an

end-of-sentence marker such as an exclamation mark, a full stop or a comma, [] marks optional

expressions or positive/intensifying adverbs such as “extremely”, “totally”, etc, NAO marks a

Noun/Adjective referring to the Object of the discussion and NAA refers to a Noun/Adjective
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Id Agreement expression

a1 i [adverb] [agreement verb]

a2 i (don’t|do not) [adverb] [disagreement verb]

a3 i (am not|ain’t) [disagreement NAA]

a4 (you are|you’re) [adverb] [agreement NAA]

a5 you (are not|aren’t|ain’t) [adverb] [disagreement NAA]

a6 [this is] [adverb] [agreement NAO] [EOS]

a7 [this is] not [adverb] [disagreement NAO] [EOS]

TABLE 5.2: High-precision regular expressions indicative of agreement class

Id Disagreement expression

d1 i [adverb] [disagreement verb]

d2 i (don’t|do not) [adverb] [agreement verb]

d3 i (am not|ain’t) of the same (mind|opinion)

d4 (you are|you’re) [adverb] [disagreement NAA]

d5 you (are not|aren’t|ain’t) [adverb] [agreement NAA]

d6 [this is] [adverb] [disagreement NAO] [EOS]

d7 [this is] not [adverb] [agreement NAO] [EOS]

TABLE 5.3: High-precision regular expressions indicative of disagreement class

referring to the Author that is being replied to. For instance, both “I completely disagree”,

“I totally disagree” and “I disagree” would trigger expression d1 and bring evidence of the

disagreement class. Similarly, “This is not totally wrong” would trigger a7 and bring evidence of

the agreement class. The goal of this approach is to be able to leverage high precision techniques

when they are applicable, and back-off to a slightly more general one when not. The list of

agreement and disagreement verbs, nouns and adverbs was collected using multiple thesauri and

recouping terms with a higher frequency of apparition in social media text. They are listed in

Tables 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 and are given in Chapter 4 where they were used to generate

the RNLC dataset.
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Example 10. The following illustrates an example that would be misclassified by USS+ and

USS but correctly classified by MUSC: “I think this is evil and pigheaded, but I totally agree.”.

While USS would fail fast by not being able to find any explicit reference to the parent comment,

USS+ would also fail in its failure mode since the overall sentiment of that comment is negative

(presence of several negative words). However, the fact that the sentence contains a linguistic

pattern that is explicitly indicative of a specific class (“I totally agree”) means that MUSC can

correctly identify it.

5.3 Evaluation

In this section we focus on evaluating the approaches developed along the course of this chapter,

with two tasks (2 and 3 class classification) based on classification without any form of conversa-

tional context and two tasks (2 and 3 class classification) based on classification with a form of

conversational context.

5.3.1 Evaluation tasks

We evaluate our approaches using two different types of tasks, context-sensitive and context-less

classification, with either 2 or 3 classes, giving us the following tasks:

CL-2. Context-less classification with 2 classes (agreement/disagreement) ;

CL-3. Context-less classification with 3 classes (agreement/disagreement/neutral) ;

CS-2 Context-sensitive classification with 2 classes (agreement/disagreement) ;

CS-3. Context-sensitive classification with 3 classes (agreement/disagreement/neutral).

Unsupervised context-less stance classification refers to the classification in 2 or 3 classes of the

stance of a user comment/post without observing the content of the parent, while context-sensitive

classification refers to the same but with observing the content of the parent comment/post. This

affects the algorithms and the datasets that will be used. Since not all datasets contain direct

reference to the context of the conversation, and not all datasets contain a neutral class, we
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CL-2 CL-3 CS-2 CS-3

IAC

ABCD x x

SETC x x

TABLE 5.4: Task vs dataset. indicates compati-
bility.

CL-2 CL-3 CS-2 CS-3

SP-ADAPT

SP-COSTS x x

USS

USS+

MUSC x x

TABLE 5.5: Task vs algorithm. indicates compat-
ibility.

summarise the datasets for each task in Table 5.4. Similarly, since some algorithms require

context, we summarise the algorithms for each task in Table 5.5.

5.3.2 Baselines

Because of the lack of existing work in the domain of corpus-based unsupervised stance classifi-

cation, we establish two baselines inspired from the field of sentiment analysis.

Sentiment baseline: the SMARTSA algorithm The sentiment baseline is computed by count-

ing the sum of positive and negative sentiments. We bound that sum between -1 and 1 using a

Softmax normalisation, and apply a predefined classification rule.

For the binary stance classification tasks, the rule is:

Class(X) =


agreement, if sum > 0.0

disagreement, otherwise
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For the 3 class stance classification task, the rule becomes:

Class(X) =



agreement, if sum > 0.33

disagreement, if sum < −0.33

neutral, otherwise

The thresholds were selected by dividing the range equally.

Lexicon baseline: Stance PMI lexicon Our second baseline is a lazy stance lexicon built from

the PMI score of any given term and a background dataset. The background dataset used for each

experiment was a fusion of all datasets not directly involved with the same classes represented

(e. g., a fusion of IAC, ABCD and RNLC for the SETC dataset on a binary task, etc.). The

scores for each term-class association were a weighted average of the PMI scores for each dataset,

weighted by the number of instances belonging to that dataset. Lexicon-based classification was

elaborated upon in Section 3.4.2.

5.3.3 Results

In this section we present the results of our evaluation with unsupervised stance classification

algorithms.

5.3.3.1 Results of task CL-2

The CL-2 task corresponds to a binary stance classification without using context.

The results are presented in Table 5.6 and indicate that USS+ consistently outperforms the rest

of the approaches on the three datasets that we are using. We illustrate the results in Figure 5.3.

We note that USS+ and PMI-LEX perform very similarly, and that while PMI-LEX displays a

higher variance in its results it is very far behind USS+.
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IAC ABCD SETC

SP-ADAPT 0.566 0.559 0.558

USS 0.610 0.612 0.554

USS+ 0.634 0.637 0.590

SMARTSA 0.498 0.491 0.513

PMI-LEX 0.627 0.623 0.577

TABLE 5.6: Accuracy results of Task CL-2

● ●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

ABCD IAC SETC

 USS PMILex SmartSA SP−AdapT USS+  USS PMILex SmartSA SP−AdapT USS+  USS PMILex SmartSA SP−AdapT USS+

0.4

0.5

0.6

0.7

Algorithm

A
cc

ur
ac

y

FIGURE 5.3: Box plot of accuracy results on Task CL-2. The white circles indicate the arithmetic
means.

Unsurprisingly, the sentiment baseline underperforms compared to the other approaches and

performs even worse than random (0.5). However, SP-ADAPT, which is built on a sentiment

baseline with a tuned threshold parameter, is relatively competitive with smarter approaches such

as PMI-LEX and USS+. We also note that the performances seem to be extremely similar on the

SETC dataset. A one-way ANOVA test shown in Table 5.7 confirms that while some algorithms

are performing differently on the IAC and ABCD datasets (p < 0.01), no such thing happens for

the SETC dataset, where the differences in our evaluation have a high chance of being due to

chance (p > 0.05).

We perform a Tukey test on the results of IAC and ABCD in order to identify the algorithms

with a significant difference in their accuracy. There is no need to pursue the analysis of the

SETC dataset due to the lack of any significant difference between algorithms, as evidenced by

the p-value of 0.3676 shown in Table 5.7.
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Dataset F-Value P-Value

IAC 9.662 9.971e-06†

ABCD 11.01 2.603e-06†

SETC 1.1015 0.3676

TABLE 5.7: Results of ANOVA on task CL-2

IAC ABCD

Difference Adjusted P-Value Difference Adjusted P-Value

USS+ / USS 0.02 0.87 0.02 0.87

PMI-LEX / USS 0.02 0.96 0.01 0.99

SMARTSA / USS -0.11 0.00† -0.12 0.00†

SP-ADAPT / USS -0.04 0.45 -0.05 0.25

PMI-LEX / USS+ -0.01 1.00 -0.01 0.98

SMARTSA / USS+ -0.14 0.00† -0.15 0.00†

SP-ADAPT / USS+ -0.07 0.08 -0.08 0.03†

SMARTSA / PMI-LEX -0.13 0.00† -0.13 0.00†

SP-ADAPT / PMI-LEX -0.06 0.15 -0.06 0.11

SP-ADAPT / SMARTSA 0.07 0.07 0.07 0.08

TABLE 5.8: Tukey test for IAC and ABCD on CL-2. † indicates statistical significance at 0.95
confidence.

The results of Tukey’s Honest Significant Difference (HSD) test, shown in table 5.8, reveal

that after adjusting the p-values for multiple hypothesis testing in order to avoid increasing

the risk of false discovery, very few of the compared pairs of algorithms actually display a

significantly different performance from each other. In the IAC dataset, only the SMARTSA

baseline underperforms significantly compared to USS+ and PMI-LEX, which are themselves

far from significantly different (p = 1.00). In the ABCD dataset, USS+ also significantly

outperforms SP-ADAPT and once again does not come close to statistical significance when

compared to PMI-LEX.
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IAC ABCD SETC

SP-ADAPT 0.502 0.466 0.480

USS 0.479 0.510 0.467

USS+ 0.549 0.552 0.514

SMARTSA 0.444 0.413 0.390

PMI-LEX 0.522 0.542 0.464

TABLE 5.9: Accuracy results of Task CL-3
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FIGURE 5.4: Box plot of accuracy results on Task CL-3. The white circles indicate the arithmetic
means.

5.3.3.2 Results of task CL-3

The CL-3 task corresponds to a three class stance classification without using context. The

classes were {Disagreement, Neutral, Agreement} and determined in the case of datasets with

numerical labels by grouping those labels uniformly. For example, on IAC which has labels from

-5 to 5, the data was separated as Disagreement with -5 to -1.66, Neutral with -1.66 to 1.66, and

Agreement with 1.66 to 5.

The results from Table 5.9 show that USS+ outperforms, once again, all other methods; but

without attaining statistical significance. We can observe that although USS+ performs better

than alternatives, the gap is much closer and baseline techniques such as PMI-LEX come within

less than 1% of USS+. We illustrate those scores in Figure 5.4.

A one-way ANOVA test shown in Table 5.10 shows that there is a need for a post hoc test in all

datasets, with SETC showing some behaviour slightly above statistical significance (p < 0.05).
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Dataset F-Value P-Value

IAC 6.988 0.0001829†

ABCD 11.262 2.041e-06†

SETC 2.6805 0.04348†

TABLE 5.10: Results of ANOVA on task CL-3. † indicates statistical significance at 0.95
confidence.

IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

USS+ / USS 0.16 0.01† 0.13 0.13 0.14 0.88

PMI-LEX / USS 0.11 0.44 0.08 0.99 0.04 0.38

SMARTSA / USS 0.06 1.00 -0.03 0.00† 0.02 0.19

SP-ADAPT / USS 0.10 0.76 0.05 0.93 0.11 1.00

PMI-LEX / USS+ 0.02 0.30 0.02 0.34 0.00 0.06

SMARTSA / USS+ -0.03 0.00† -0.09 0.00† -0.01 0.02†

SP-ADAPT / USS+ 0.01 0.11 -0.01 0.02† 0.08 0.91

SMARTSA / PMI-LEX 0.02 0.27 -0.04 0.00† 0.09 0.99

SP-ADAPT / PMI-LEX 0.06 0.99 0.04 0.69 0.18 0.33

SP-ADAPT / SMARTSA 0.10 0.56 0.15 0.02† 0.20 0.16

TABLE 5.11: Tukey test for IAC, ABCD and SETC on CL-3. † indicates statistical significance
at 0.95 confidence.

We therefore perform a Tukey test, as shown in Table 5.11 for all datasets, and see that while

a graphical examination of the box plots tends to be in favour of USS+, formal statistical tests

show that those differences are not significant and could be due to random chance.

5.3.3.3 Results of task CS-2 and CS-3

The CS-2 and CS-3 tasks refer to context sensitive binary and 3 class stance classification. It

involves two novel algorithms that take into account the content of the parent comment as well

as the content of the comment being classified, and therefore only the IAC dataset allowed for



Chapter 5. Unsupervised Argument Mining 98

CS-2 CS-3

SP-ADAPT 0.566 0.502

SP-COSTS 0.611 0.564

USS 0.610 0.479

USS+ 0.634 0.549

MUSC 0.646 0.604

SMARTSA 0.498 0.444

PMI-LEX 0.627 0.522

TABLE 5.12: Accuracy results of task CS-2 and CS-3 on the IAC dataset

enough instances to perform a proper comparison of algorithms. This lack of data limits the

generalisability of the results of this experiment.

Preliminary experiment: choosing the context-building function Preliminary experiments

on a hold out dataset were run in order to determine the context function of the SP-COSTS

algorithm by which it builds a new instance from a mixture of parent and child comment.

The optimal context building function was determined to be the additive mixture described as

SP-COSTS3. SP-COSTS3 will thus be referred as SP-COSTS for the remainder of the thesis.

In Table 5.12 we can see that MUSC outperforms the rest of the algorithms. We illustrate

those results in Figure 5.5 and Figure 5.6. SP-COSTS being no more than an extension of SP-

ADAPT using contextual information from the parent post, those results present some evidence

that knowledge of the context of the discussion, regardless of how naive it is, can improve

classification accuracy. Examination of the results of the Tukey test in Table 5.14 however shows

that this improvement does not reach statistical significance, due to the high variance of the

results corresponding to those techniques.

We show in Table 5.13 the results of an ANOVA test on the results of tasks CS-2 and CS-3, which

leads us to investigate the algorithms that display a significantly different behaviour. The results

of the Tukey test in Table 5.14 however do not show any algorithm being statistically better than
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FIGURE 5.5: Box plot of accuracy results on Task CS-2. The white circles indicate the arithmetic
means.
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FIGURE 5.6: Box plot of accuracy results on Task CS-3. The white circles indicate the arithmetic
means.



Chapter 5. Unsupervised Argument Mining 100

CS-2 CS-3

Dataset F-Value P-Value F-Value P-Value

IAC 9.792 1.313e-07† 5.3746 0.0001558†

TABLE 5.13: Results of ANOVA on tasks CS-2 and CS-3. † indicates statistical significance at
0.95 confidence.

the others, and only that one of the baselines, SMARTSA, performs consistently and significantly

worse than any other approach.

5.3.4 Discussion

We can see from the results presented above that more complex heuristics tend to do better than

simpler ones, provided they contain integrated back-up heuristics that can perform classification

in cases where the complex heuristic does not cover the content of the instances.

We can also see that context can be used to aid in classification, as evidenced by a positive

difference between context-sensitive methods such as MUSC and context-insensitive methods

such as USS+. In a binary classification setting that difference is more important, but it is not the

case when taking into account the neutral stance class. That is possibly due to the separation of

the neutral class in the IAC dataset being done by using strict boundaries, which implies that

there could be some noise in the form of edge cases (e. g., an instance with the label 1.5 being

considered as neutral because the threshold is 1.66).

Finally, a big limitation of our comparison is the poor size of the available datasets. Because

statistical tests are often bounded by the amount of data available, the effect size that would

have been necessary to achieve statistical significance would have been extremely important

and unrealistic in a text classification setting, let alone when working with manually defined

heuristics such as the ones presented in this section.
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CS-2 CS-3

Difference Adjusted P-Value Difference Adjusted P-Value

USS+/USS 0.09 0.94 0.16 0.00†

MUSC/USS 0.11 0.70 0.15 0.01†

PMI-LEX/ USS 0.09 0.99 0.11 0.55

SMARTSA/USS -0.04 0.00† 0.06 1.00

SP-ADAPT/USS 0.03 0.50 0.10 0.87

SP-COSTS/USS 0.07 1.00 0.10 0.84

MUSC/USS+ 0.08 1.00 0.06 1.00

PMI-LEX/USS+ 0.06 1.00 0.02 0.37

SMARTSA/USS+ -0.07 0.00† -0.03 0.00†

SP-ADAPT/USS+ 0.00 0.07 0.01 0.13

SP-COSTS/USS+ 0.05 0.95 0.01 0.15

PMI-LEX/MUSC 0.05 0.98 0.03 0.52

SMARTSA/MUSC -0.08 0.00† -0.02 0.00†

SP-ADAPT/MUSC -0.01 0.02† 0.01 0.21

SP-COSTS/MUSC 0.03 0.72 0.02 0.24

SMARTSA/PMI-LEX -0.06 0.00† 0.02 0.34

SP-ADAPT/PMI-LEX 0.01 0.14 0.06 1.00

SP-COSTS/PMI-LEX 0.05 0.99 0.06 1.00

SP-ADAPT/SMARTSA 0.14 0.06 0.11 0.68

SP-COSTS/SMARTSA 0.18 0.00† 0.11 0.64

SP-COSTS/SP-ADAPT 0.11 0.48 0.07 1.00

TABLE 5.14: Tukey test for IAC on CS-2 and CS-3. † indicates statistical significance at 0.95
confidence.
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FIGURE 5.7: A comparison of context-sensitive vs context-insensitive methods on the IAC
dataset.

Task 2 classes 3 classes

Context-insensitive methods 0.630 0.535

Context-sensitive methods 0.628 0.584†

TABLE 5.15: Mean accuracies when averaging over types of approaches

5.3.4.1 Using context to improve heuristics

Our initial research question was to investigate whether the use of context could potentially

help improve classification accuracy. We do so by creating two groups of algorithms: context-

insensitive (USS+, PMI-LEX) and context-sensitive (MUSC, SP-COSTS). We do not use the

naive baselines since they would necessarily lower our context-insensitive methods to worse

results by their status as naive approaches while not answering the research question.

We average out our result per family and compare them in Figure 5.7 and Table 5.15, showing that

the effect seems to differ according to the number of classes. Further testing shown in Table 5.16

confirms this statement with statistical evidence, showing that there is virtually no difference

between the overall performance of the family of class-sensitive and class-insensitive algorithms

in the binary classification settings which we used for our evaluation, but there is a statistically

significant difference at the p < 0.05 and p < 0.01 thresholds on the 3 class classification



Chapter 5. Unsupervised Argument Mining 103

2 classes 3 classes

Diff. P-Value Diff. P-Value

Context-sensitive/Context-insensitive -0.00205 0.8833585 0.0483 0.0004789981†

TABLE 5.16: Differences and p-values of a Tukey HSD test comparing class-sensitive vs
class-insensitive methods

problem. This would tend to show that context can be a differentiator on harder classification

tasks such as differentiating between 3 classes, but does not necessarily bring much improvement

on easier ones.

5.4 Chapter Summary

In this chapter we explored two types of unsupervised techniques to perform stance classification

with minimal resources and no training. The first type of technique uses sentiment as a proxy for

stance. The second type uses a shallow linguistic analysis using heuristic rules in order to favour

precision over recall. Finally, we introduced MUSC, a multi-strategy approach that combines

both types of techniques in order to maximise precision if possible and fall back on high-recall

methods when necessary. We evaluated our approaches against existing heuristics inspired from

the sentiment analysis community and found that while the proposed context-insensitive and

context-based approaches USS+ and MUSC tend to perform better, that difference was not steep

enough to draw consistent statistical significance in our multiple experiments.



Chapter 6

Supervised Lexicon-Based Methods for

Argument Stance Mining

This chapter is focused on lexicon-based argument stance mining and a method to efficiently

compute optimal stance lexicons. As a result, we produce two lexicon models, LEXICNET and

RELEXNET, as contributions to the state of the art in lexicon-based text classification. We

introduce a lexicon learning method based on the backpropagation algorithm, which allows

us to use regularisation techniques to improve the generalisation power of the lexicons and

outperform existing approaches for corpus-based lexicon learning, such as lexicons based on

expectation-maximisation (Bandhakavi et al., 2014). In addition to being competitive to standard

machine learning models, lexicon-based methods are highly interpretable on multiple levels.

Interpretability has been defined in machine learning and statistics at different scales and with

different goals in mind, but a common thread is that it relates to the degree to which a human

can understand the cause behind an algorithmic decision (Miller, 2017), and the model that

generated that decision can be understood either at a global or at a local scale (Lipton, 2018).

A lexicon model succeeds at both those interpretations, because the cause of a decision can be

easily understood by a human participant by looking at the lexicon weights of each term present

in an instance, and it is trivial to understand any set of weights in a lexicon as a measure of

association between that term and each class. Unlike models such as multilayer neural networks,

104
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this association is direct, and the learning process consists only in ensuring that it is not spurious

and the model can generalise well.

Our aim is to use a corpus of labelled documents in order to learn optimal weights in a stance

lexicon. To do so we model a lexicon as a computational graph and use the backpropagation

algorithm to perform probability density estimation using a shallow model, which is then extracted

as a lexicon.

Computational graphs A computational graph is a graph structure where nodes are tensor,

matrix, vector, or scalar values and edges are function arguments. Computational graphs are

directed and typically acyclic. Figure 6.1 shows an example of a computational graph that

performs simple operations of addition (σ) on x1 and x2 and multiplication (µ) on x3 and the

output of the addition. The two terms x1 and x2 of the addition are weighted by w1 and w2, while

x3 and the result of the multiplication are weighted by w3 and w4.

6.1 Lexicon generation by backpropagation

Backpropagation was introduced as an algorithm based on reverse-mode differentiation to train

neural networks by Rumelhart et al. (1988). It works by considering the neural network as a

computational graph and iteratively refining the weights of its edges using partial derivatives of

the error function with respect to each weight. We detail the mechanics of backpropagation in the

next section, before explaining how to apply it to learning a lexicon.

6.1.1 Differentiable architectures and backpropagation

Consider as an example the function y = (w1 · x1 + w2 · x2) · (w3 · x3), represented by the

computational graph shown in figure 6.1, and the task of learning the optimal weights (w1, w2, w3)

so that, for a given dataset (x1, x2, x3, y) the result ŷ is as close as possible from the ground truth

result y.

The backpropagation algorithm works by iterating two steps over groups of instances during the

learning phase:
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x1

x2

  

× w1

× w2

y

x3

  

× w3

FIGURE 6.1: A simple computational graph

1. Forward propagation. For a given set of weights w1, w2, w3 the output is computed as

y = (w1 ·x1 +w2 ·x2) · (w3 ·x3) and an error function J(y, ŷ) is computed. For example,

a data point x = (1, 2, 0.5) with y = 3 and a initial set of weights W = (1, 1, 1) would

yield a prediction ŷ = 1.5 and assuming an error function error(y, ŷ) = (y − ŷ)2 and a

cost function J(Y, Ŷ ) =
∑n
i=1 cost(Yi, Ŷi) we would obtain the error J(Y, Ŷ ) = 1.5

2. Update. The partial derivatives ∂J
∂w1

, ∂J
∂w2

and ∂J
∂w3

are computed. The weights w1, w2 and w3

are updated according to the update rule outlined in equation 6.1. For example:

- w1 ← w1 − η · ∂J∂w1

- w2 ← w2 − η · ∂J∂w2

- w3 ← w3 − η · ∂J∂w3

The backpropagation weight update uses a learning rate parameter η in order to make several

small steps and avoid overstepping the optimal weights while moving in parameter space. The

optimisation algorithm used in backpropagation is one of the many variations of gradient descent,

where we vary the sampling method (stochastic gradient descent, mini-batch gradient descent

or full-batch gradient descent), the update inertia (standard momentum, Nesterov acceleration,

historical mean-based learning rate) or the data ordering method (random sampling, scheduled

sampling).
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wi ← wi − η ·
∂J

∂wi
(6.1)

In the following section we will detail how to model a lexicon as a computational graph and

apply backpropagation to induce optimal weights.

6.1.2 Application of backpropagation to lexicons

Assuming Fn×1 is a n× 1 matrix containing the frequencies of each of the n terms in instance x

and W c×n is a c× n matrix indexed by a class c and containing an association score for each

term-class pair, we define the prediction step f of a classification lexicon in the following way:

f(x) = ArgMaxc (Wc · F ) (6.2)

We can observe that a standard lexicon is a computational graph, i. e., a composition of functions,

as shown in Figure 6.2 illustrating the network topology of a binary classification lexicon.

However, because ArgMax is not a differentiable function, we need to separate the lexicon

architecture in two steps: prediction phase (illustrated in Equation 6.2) and induction phase,

using a proxy output that is differentiable. We define the output of the lexicon in the induction

phase as a SoftMax-transformed vector of probabilities over the different classes, as we can

observe in Equation 6.3) where represents a vectorisation operator such as for instance
3
i=1

(
i2
)

= 〈1, 4, 9〉.

f(x) =
|c|

j=1

e−(Wj ·F )∑|c|
m=1 e

−(Wm·F )
(6.3)
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This substitution allows us to use gradient-based learning techniques, such as backpropagation,

in order to solve the lexicon induction problem. In the following sections, we explain the details

of the network topology and the training protocol.

FIGURE 6.2: The LEXICNET network topology

6.1.2.1 The Lexicon network topology

The topology of the lexicon network corresponds to a shallow network where a regression is

trained for each class and the output of each regressor (the aggregation layer in Figure 6.2) is

fed into a SoftMax normalisation layer (the decision layer in Figure 6.2) so as to produce a

probability distribution as a final output, which is necessary to backpropagate the error gradient

and find the optimal lexicon weights. The operation of each layer is summarised in Equations 6.4,

6.5, 6.6 and 6.7 respectively and reviewed in the rest of this section.
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I(t) = log(1 + RawFrequency(t)) (6.4)

L(t, c) = Wt,c · I(t) (6.5)

A(T, c) =
|T |∑
i=1

L(Ti, c) (6.6)

O(T ) =
|c|

i=1

e−A(T,Ci)∑|c|
j=1 e

−A(T,Cj)
(6.7)

The vocabulary input layer The input layer feeds term frequencies into the network. The

output of this layer is a n× 1 matrix F (see Equation 6.2) where n is the number of terms in the

lexicon. The inputs are logarithmically scaled to smooth out the differences in input length using

the ScaledFrequency function detailed in Equation 6.8, where RawFrequency corresponds to

the number of occurrences of a term in the current input.

I(t) = log(1 + RawFrequency(t)) (6.8)

The lexicon layer The lexicon layer maps a term to its respective class-dependent scores. This

layer is represented by a c× n matrix W (see Equation 6.2) where n is the number of terms in

the lexicon and c the number of classes.

L(t, c) = Wt,c · I(t) (6.9)

The aggregation layer The aggregation layer adds up evidence towards a class from the

previous layer by performing an inner product calculation between n× 1 matrix F and c× n

matrix W . The output of this layer is a 1× c row vector O containing the aggregated scores for

each of the classes.

A(T, c) =
|T |∑
i=1

L(Ti, c) (6.10)
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The decision layer The decision layer transforms the row vector O into a probability distri-

bution using the SoftMax function (described in Equation 6.11) and returns it as the output of

the network. In the prediction phase, the decision layer returns the ArgMax of the probability

distribution in the output in order to compute the accuracy of the current model. In the induction

phase, it returns a probability distribution over the classes in order for the network to learn, since

the ArgMax function is not differentiable and therefore has no error gradient to backpropagate.

Sj = eaj∑N
k=1 e

ak
∀j ∈ 1..N (6.11)

O(T ) =
|c|

i=1

e−A(T,Ci)∑|c|
j=1 e

−A(T,Cj)
(6.12)

6.1.2.2 Optimisation

We train our network using backpropagation and the full batch Gradient Descent algorithm with

Nesterov momentum (Nesterov, 2007) as described in Equation 6.13, where µ is the velocity

scaling parameter and γ is the learning rate. Nesterov momentum works by updating each weight

in two steps: firstly using a scaled version of their previous update (conditioned by a fixed velocity

parameter), followed by a course correction step using the error gradient calculated after the first

update, mimicking the effect of momentum in physical objects.

wi ← wi − µ× ui

ui ←
∂J

∂wi

wi ← wi − γ × ui

(6.13)

6.1.2.3 Example

In this section we will walk through a high level example of lexicon learning on the toy dataset

present in Table 6.1. The toy dataset only contains four examples in two different classes in an
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TABLE 6.1: Example dataset for stance classification

Agreement Disagreement

We agree! Excellent! You are wrong on ridiculously many levels
it hurts.

People like this guy happen to be right wing
republicans.... Isn’t that peculiar?

Abortion is like killing a baby. Would you
do that? It should be banned...

Term Agreement Disagreement

agree 0.846 2.293

excellent 1.440 1.108

wrong 0.192 1.685

ridiculously 1.323 0.404

many 0.158 1.814

(...)

TABLE 6.2: Example of lexicon initialisation

argument stance classification task. They are collected and slightly modified for explanation

purpose from real datasets extracted from debate forums.

A standard lexicon is initialised with weights randomly sampled on a Gaussian distribution with

parameters µ = 1 and σ = 0.67, as shown in Table 6.2. The weights are drawn randomly

from the distribution N(1, 2
(nin+nout)) where nin is the number of incoming connections, i. e., 1

(the frequency of the term), and nout is the number of outgoing connections, i. e., the number

of classes. This initialisation scheme is directly inspired by the Glorot initialisation scheme

by Glorot and Bengio (2010) to initialise weights in deep neural networks.

During the first forward pass, a batch of randomly sampled instances is fed into the lexicon.

The lexicon produces a prediction for each of these instances, which are then used to calculate

a loss. For the purpose of demonstration, we will take a mini-batch of size 1. Let us take the

following instance, "Ridiculously, all republicans agree, so abortion should be banned" from the

agreement class, represented as x0 = 〈1, 0, 0, 1, 0, . . .〉 and y0 = 〈1, 0〉 on the vector space

induced by the vocabulary of the lexicon.
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Forward pass The forward pass yields the aggregated scores of 〈4.072, 6.780〉 and the nor-

malised probabilities of 〈0.062, 0.937〉.

Cost calculation Since y0 = 〈1, 0〉 and our prediction ŷ0 = 〈0.062, 0.937〉, our cross-entropy

loss, computed as CrossEntropy(y, ŷ) = −
∑M
c=1 yo,c · log(po,c) is 1.207.

Backward pass During the backward pass, the lexicon scores of each term is updated by

subtracting the derivative of the error with respect to the current scores multiplied by a weighting

factor (γ in Equation 6.13). We compute the derivative of the error with respect to the lexicon

score using the finite difference method, described below:

1. Compute the error E1 with the current lexicon score ;

2. Compute the error E2 after increasing the lexicon score lw by a small amount h ;

3. Return E2−E1
h as the finite difference approximation of the partial derivative of E with

respect to lw.

The finite difference method has the computational advantage that for a given iteration, step 1 is

identical for all lexicon scores and as such only step 2 has to be done for each term of the lexicon.

We perform an update using h = 0.1 and γ = 0.1 for the terms “agree” and “ridiculously”,

because they are the only terms of the instance that are in our limited (for the sake of explanation)

lexicon vocabulary.

In the case of the “agree” term, the hypothetical error after updating the agreement score 0.846 to

0.946 becomes 1.175, yielding an partial derivative of 1.175−1.207
0.1 = −0.32 and therefore an up-

date of−(−0.32×0.1) = +0.032. Conversely, the hypothetical error after updating the disagree-

ment score from 2.293 to 2.393 becomes 1.285, yielding a partial derivative of 1.285−1.207
0.1 = 0.78

and therefore an update of −(0.78 × 0.1) = −0.078. Similarly for “ridiculously”, the hypo-

thetical error after updating the agreement score 1.323 to 1.423 becomes 1.227, yielding an

partial derivative of 1.227−1.207
0.1 = 0.002 and therefore an update of −(0.002× 0.1) = +0.0002.

Conversely, the hypothetical error after updating the disagreement score from 0.404 to 0.504

becomes 1.197, yielding a partial derivative of 1.197−1.207
0.1 = −0.001 and therefore an update
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TABLE 6.3: Example of lexicon after first iteration

Agreement Disagreement

Term Iteration 1 Update Iteration 2 Iteration 1 Update Iteration 2

agree 0.846 +0.032 0.878 2.293 −0.078 2.215

(...)

ridiculously 1.323 +0.0002 1.3232 0.404 −0.0001 0.4038

(...)

of −(−0.001 × 0.1) = −0.0001. We can see from the size of those updates that “agree” and

“ridiculously” become more associated with the “agreement” class as well as less associated

with the “disagreement” class due to having been observed in an instance whose label was

“agreement”.

6.2 Lexicon regularisation

In order for our lexicon to avoid overfitting, it is necessary to alter the learning process by

adding a generalisation term. In this section we will detail the need for generalisation, explain

complexity-based regularisation in the context of empirical risk minimisation-based learning, as

well as other forms of regularisation that can be applied to lexicon classifiers.

6.2.1 Complexity regularisation with p-norms

The most basic form of model regularisation comes from restricting the p-norm of its parameters,

where p is usually 1 or 2. Complexity-based regularisation is applied by adding an additional

term to the error function, typically weighted by a parameter λ, which represents the complexity

of the model.

The p-norm is defined as follows, where θ is the set of parameters of the model:

|θ|p = p

√∑
wp (6.14)
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The intuition behind restricting the norm of the parameters of a model stems an analogy with

Occam’s razor. Stopping the norm of the model parameters from growing out of control is done

by modifying the loss function J(θ) to incorporate the fitting error L as well as the complexity

of the model |θ|p, giving us an equation of the form J(θ,X, Y ) = L(θ,X, Y ) + λ · |θ|p. Such

equation being still mostly differentiable, gradient descent and backpropagation can still be

applied and the restriction propagated all the way through the weight update of the lexicon. The

ensuing optimisation process during the learning phase is thus forced to find a compromise

between a well-fitting model (low error rate) and a simple model (low p-norm), the importance

of simplicity being weighted by the mixing parameter λ. In the following subsections we detail

different norms and how they impact the learning process.

6.2.1.1 L1-norm

L1-norm minimisation consists in minimising the sum of absolute values of the parameters of

the model. The main effect of minimising the L1-norm is that it leads to erasing the weights

corresponding to the features that do not contribute enough to a good model by setting them to 0,

giving those features no importance at all when performing predictions. This has the resulting

effect of selecting features during the learning phase, by only giving a non-zero weights to those

who have enough influence on the accuracy of the model.

|θ|1 =
∣∣∣∑w

∣∣∣ (6.15)

6.2.1.2 L2-norm

L2-norm minimisation consists in minimising the sum of squared values of the parameters of

the model. Unlike L1-norm minimisation, L2-norm minimisation tends to lead to fewer features

being eliminated but instead more feature being kept with a much smaller weight, preserving the

original size of the lexicon. Intuitively, the reason for this effect is that given two features with a

similar contribution to accuracy, and given the quadratic shape of the L2-norm, a greater decrease

of the loss can be made by decrementing the weight of a feature that is high than by decrementing

the weight of a feature that is already close to 0. This is opposed to L1-norm, where the decrease
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in loss is the same regardless of the starting weight of the features. We refer to (James et al., 2013,

Chapter 6) and (Friedman et al., 2001, Chapter 3) for a more thorough treatment of the matter.

|θ|2 =
√∑

w2 (6.16)

6.2.1.3 Elastic-Net

In order to counteract the drawbacks of both L1 and L2 regularisation, Elastic-Net combines

them into a common objective that is weighted by a combination parameter λ.

|θ|en = λ×
√∑

w2 + (1− λ)×
∣∣∣∑w

∣∣∣ (6.17)

In (6.17) the λ parameter controls the importance of each norm and is typically fixed throughout

the training phase.

6.2.2 Drop-out regularisation

Another form of regularisation that can be applied to lexicons is the drop-out Srivastava et al.

(2014). The drop-out was designed to regularise deep neural networks where some computational

units tended to specialise on certain features, thus building a more fragile predictor in the learning

phase and leading to overfitting. In this section we explain the principles behind drop-out

regularisation in neural networks before exploring its application on simple computational graphs

such as lexicons. The literature suggests that analytically-motivated regularisation techniques

such as p − norm minimisation based regularisation can be combined to drop-out Srivastava

et al. (2014), but there is no definitive study of their synergistic/antagonistic effects.

6.2.2.1 Drop-out in neural networks

The basic mechanism by which neural networks avoid overfitting is by selecting a set of weights

residing between two specific layers of the network and randomly ignoring some of them at

training time. We illustrate that process in Figure 6.3, where drop-out is used between layers
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FIGURE 6.3: Visualising drop-out

1 and 2 as well as between layers 2 and 3. By forcing the neural network to restrain itself to a

subset of its weights, we force it to build redundancies and avoid specialised units, thus making it

more robust to overfitting.

We note that according to Srivastava et al. (2014), drop-out regularisation is not as effective for

text classification tasks as for computer vision tasks, but its effect is still deemed statistically

significant.

6.2.2.2 Drop-out in lexicons

Because lexicons can be expressed as simple computational graphs, we can apply the same

drop-out procedure in order to force it to not put too much emphasis on specific terms which

might be highly associated to a class in the training set, but instead be more conservative with its

parameters. Applying the drop-out procedure to lexicon learning thus consists in ignoring part of

the terms present in the text during the learning phase, and because documents can be of varying

size it is important to keep the drop-out rate to lower values than the ones recommended in neural

network training in order to not underfit the resulting model.

6.2.2.3 Conclusion on lexicon regularisation

Regularising models is an important part in order to avoid lexicons prioritising spurious corre-

lations over genuine class valence, a problem that is particularly present in lexicons built from
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simple statistical relationships in corpora, e. g., lexicons built from pointwise mutual information.

There are many ways to regularise such models, either during the optimisation phase (p− norm

minimisation, drop-out) or during the model selection phase (cross-validation).

6.3 Complex lexicon architectures

While modelling lexicons as computational graphs helps us make them more powerful using

regularisation techniques from the machine learning literature, their modelling power remains

relatively weak from a linguistic perspective. In this section we elaborate on more complex

lexicon architectures that can be used to learn lexicon terms with a class valence as well as term

modifiers. Term modifiers are terms which do not possess a class valence but instead have a

strengthening or weakening effect on other terms in their vicinity, e. g., quantitative adverbs such

as “extremely”, “barely”, or “very”. We name this class of learned models complex lexicons, as

opposed to simple lexicons which are only concerned with terms with class valence.

Complex lexicons are learned using gated computational graphs. We present the mechanism

of gating in differentiable computational architectures in the next section, before applying it to

learning a complex lexicon in the following section.

6.3.1 Gating for information flow control

Gating is based on the use of two arithmetic operations, addition and multiplication, in order

to control the flow of information through a computational graph. In a neural network, a

multiplicative gate is typically used with a sigmoid unit (see Figure 6.4) in order to control the

passage of information. As the sigmoid unit is bounded in [0, 1], it can learn to either block

information (by returning a value sufficiently close to 0) or let it pass through (by returning a

value sufficiently close to 1). During the backpropagation stage, those gates can then be used to

let the error gradient pass through or be stopped, which is a mechanism used in long short-term

memory networks (Hochreiter and Schmidhuber, 1997) and gated recurrent units (Chung et al.,

2014).
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FIGURE 6.4: The Sigmoid function

In these approaches gating is used to learn more complex architectures by creating a notion

of memory. These algorithms process inputs as sequences of timesteps, performing a forward

phase on each timestep, and use a recurrent connection in the computational graph in order to

pass information from one timestep to the next. By using a gating function to moderate this

recurrent connection, it allows these architectures to selectively pass or block information from

one timestep to another, and conversely to selectively backpropagate or not an error gradient

through those timesteps. In the rest of this section we will explore a way to use gating to enhance

our lexicon by learning lexicon terms and modifier terms concurrently.

6.3.2 Joint learning of lexicons and modifiers

We define lexicon terms as terms that possess a class valence in a classification scheme of interest

(e. g., positive/negative, agreement/disagreement, etc.). We define modifier terms as terms which

do not possess an intrinsic class valence, but have the ability of modifying the class valence of

other terms in their vicinity. For example, an adverb such as “very” would intensify the strength

of a close term such as “happy”, while “barely” would diminish it, and “not” would cancel it.

In this section we present the RELEXNET architecture, presented in Figure 6.5. The goal of

RELEXNET is to jointly learn lexicon and modifier terms. We expect modifiers to be terms which

alter the class valence of neighbouring terms to different degrees, so in order to accelerate the

learning we limited the sets of candidate terms to adverbs (e. g., very, etc.) and conjunctions

(e. g., and, or, etc.). Instead of representing instances as unordered bag of words, we represent

them as sequences of terms which are one-hot encoded, i. e., represented by a vector of size |V |
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FIGURE 6.5: The RELEXNET architecture

where V is the vocabulary and where the values are all zeroed out except for the dimension of

the corresponding term. Each instance of size M is thus represented as a matrix of size M × V .

Term are processed in their own timestep, and the current score (aggregating the current timestep

with the previous ones) is passed to the next timestep until the final term is processed and a

prediction can be output.

Figure 6.5 presents an architecture for binary classification. At the left hand side of the diagram

is the standard vocabulary layer (first layer), where each term of the instance is fed one at a

time, activating the corresponding lexicon units (second layer, marked L) before being summed

up in the aggregation unit (third layer, marked A), which is then modified by modifier terms

nearby (fourth layer, marked S) and passed on to the next timestep (next term of the instance)

via a summation gate (fifth layer, marked B). At the end of the sequence we examine the output

of the Softmax function (sixth layer, marked O) which determines the probability distribution

over classes. At the bottom of the diagram we process a context window of arbitrary size. For

a context window of size c and for timestep i, all terms from ti−c to ti+c are fed as a bag of

words as the context window (f(ti) denoting the frequency of term i in the context window). A

weighted sum of those terms is then multiplied together before being fed in the top part of the

network, to modify the score of the current term.

The forward pass of the graph can be represented in the following way:
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Li,j = wi,j × f1(ti) (6.18)

M =
|t|∏
i=1

(mi × f2(ti)) (6.19)

Aj =
|t|∑
i=1

Li,j (6.20)

Si,j = Ai ×M (6.21)

Bj,t = Bj,t−1 +
|c|∑
i=1

Si,j (6.22)

Ot =
|c|

j=1

e−Bj,t∑|c|
m=1 e

−Bm,t

(6.23)

In Equation 6.23 the function takes for input a sequence of real numbers and outputs a vector

that contains them in the provided order. The network passes on the data, and at each timestep

feeds a one-hot encoding vector of the current term. We detail each part as follows:

• Li,j receives the one-hot encoding vector of the current term i for class j. In Figure 6.5

we can observe that each term is mapped to N lexicon units, where N is the number of

classes. It is formalised in Equation 6.18.

• Aj sums the amount of evidence for class j. It is formalised in (6.20).

• M combines all modifiers present within the arbitrary word window into one modification

score. It is formalised in Equation 6.19.

• Si,j applies the modification score calculated in (6.19) to the score calculated in (6.20) for

term i and class j. It is formalised in (6.21).

• Bj,t communicates the output of Si,j at timestep t to the next timestep t+1. It is formalised

in Equation 6.22.

• Ot receives the output of Bj,t (for all classes j) and outputs a probability distribution over

the classes at timestep t. It is formalised in Equation 6.23.
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6.4 Evaluation

This section focuses on the evaluation of the shallow supervised algorithms presented during

the course of this chapter. We evaluate our approaches using two classification tasks: a standard

stance classification task (abbreviated as SSC) where a single dataset is separated into a training

and test set and therefore the classifiers learned during the process are directly applicable from

one to the other, and a transfer learning task (abbreviated as STL), where we train our models on

a noisy labelled dataset, RNLC, in order to see whether the knowledge learned on such data can

be applied outside of it. Because the RNLC dataset only possesses two classes (agreement and

disagreement), only a binary classifier is learned from it.

To summarise, the evaluation tasks are the following:

• SSC-2: stance classification with 2 classes: agreement, disagreement ;

• SSC-3: stance classification with 3 classes: agreement, neutrality, disagreement ;

• STL-2: stance classification with 2 classes from a noisy-labelled external dataset.

6.4.1 Hyperparameter setting

The lexicon models developed in this chapter, LEXICNET and RELEXNET, are subject to a

few parameters that need to be set prior to the learning phase, which are commonly called the

hyperparameters of the models. Because the goal of our evaluation is not to fine-tune models

until they work, we fixed sensible hyperparameters prior to any learning in order to make the

models comparable to the baselines described below:

The lexicon size was set to 300, which was found in the literature to be sufficient to capture

most terms with a significant class valence ;

The elastic-net regularisation mixing parameter was set to 0.5, which implies that an equally

weighted linear combination of the L1− norm and L2− norm is minimised during the

training phase ;

The drop-out rate was found to not be effective in prior experiments and was set to 0 ;
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The training duration was set to 100 epochs, where each epoch is one iteration over the training

set.

In the case of LEXICNET, the representation used for each instance was tf-idf weighting, as

described in the background section 3.3.2.1 on non-sequential representations.

For both LEXICNET and RELEXNET, the lexicon terms were pre-selected by ranking 300

terms from the training set vocabulary by normalised pointwise mutual information score after

removing terms which are known to have no stance valence (articles, determinants, punctuation

marks). Additionally for RELEXNET, a set of adverbs is extracted from the training set and

ranked by decreasing frequency, and the top 50 was selected as the set of valence modifiers. That

number was chosen from empirical observation of the distribution of adverbs in the English

language1.

6.4.2 Baselines

We use a top-performing baseline from the literature, which is a lexicon in emotion analysis from

short text (Bandhakavi et al., 2014) and which has a learning phase similar to the LEXICNET

and RELEXNET architectures discussed in the context of this thesis. We also select three

machine learning baselines: support vector machines (SVM), decision trees (DECISION TREE)

and multinomial naive Bayes (NAIVE BAYES), due to their popularity in text analysis. While

strictly speaking those machine learning baselines are outside of the scope of comparison of the

techniques developed in this chapter due to the fact that they are not lexicons and as such are not

as interpretable as lexicon-based methods, they serve as a guide indicating the difficulty of each

classification problem. The baselines and their parameters are as follows:

EM-LEX is a stance lexicon built from the expectation maximisation algorithm, as used for

emotion classification by Bandhakavi et al. (Bandhakavi et al., 2014). It was built using a

vocabulary of 300 terms, similarly to LEXICNET and RELEXNET ;

SVM is a support vector machine (described in Section 3.4.3) with a linear kernel and parameter

C = 1.0 ;
1https://www.talkenglish.com/vocabulary/top-250-adverbs.aspx

https://www.talkenglish.com/vocabulary/top-250-adverbs.aspx
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NAIVE BAYES is a multinomial naive Bayes classifier (Manning et al., 2008). Multinomial

naive Bayes is a naive Bayesian classifier that assumes a multinomial distribution over

the features, which makes it well-fitted and popular for text classification. The model was

trained with a Laplace smoothing parameter of 1 and a uniform prior distribution (due to

the rebalancing of the datasets) ;

DECISION TREE is a decision tree, built using the C5.0 algorithm, a refined version of Quinlan’s

C4.5 algorithm (Quinlan, 1990), which is a standard in decision tree learning algorithms. It

was trained using the splitting criterion based on Gini impurity metric, no maximal depth,

and a requirement of minimum 2 samples in order to split a node.

All those algorithms were used from the Scikit-learn toolkit (Pedregosa et al., 2011), with

default parameters (no hyperparameter tuning was done). Where applicable, the instances

were represented as vectors of tf-idf weighted frequencies, as described in Section 3.3.2.1 on

non-sequential representations.

6.4.3 Results of shallow approaches

In this section we present the results of the shallow approaches for each of the three tasks defined

above. We show an example of a lexicon computed on the IAC dataset and LEXICNET in

Appendix C. The example lexicon was kept small for the sake of conciseness.

6.4.3.1 Results of task SSC-2

We present the results in Table 6.4. The results are illustrated per dataset in Figure 6.6, and

averaged over all datasets in Figure 6.7. We can observe that RELEXNET outperforms the

other approaches in two of the three datasets used for testing. An examination of Figure 6.6

tends to show that besides decision trees in the ABCD and IAC datasets, all other classifiers

tend to perform very similarly. However, a one-way ANOVA (see Table 6.5) shows that there

is a difference worth investigating in all three datasets. We perform a Tukey post hoc test in

order to account for the increase in type 1 error inherent to multiple comparison (see Table 6.6)

and confirm that besides decision trees under-performing on the IAC and ABCD datasets, and
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IAC ABCD SETC

RELEXNET 0.700 0.703 0.641

LEXICNET 0.670 0.686 0.651

SVM 0.670 0.675 0.666

NAIVE BAYES 0.645 0.661 0.684

DECISION TREE 0.606 0.595 0.671

EM-LEX 0.656 0.664 0.650

TABLE 6.4: Accuracy results of Task SSC-2

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

ABCD IAC SETC

DT EMLex LexicNet MNB RelexNet SVM DT EMLex LexicNet MNB RelexNet SVM DT EMLex LexicNet MNB RelexNet SVM

0.55

0.60

0.65

0.70

Algorithm

A
cc

ur
ac

y

FIGURE 6.6: Box plot of accuracy results of task SSC-2 per dataset. The white circles indicate
the arithmetic means.

Dataset F-Value P-Value

IAC 19.147 6.538e-11†

ABCD 22.991 2.74e-12†

SETC 3.685 0.006†

TABLE 6.5: Results of ANOVA on task SSC-2. † indicates statistical significance at 0.95
confidence.

RELEXNET performing significantly better than NAIVE BAYES overall and EM-LEX in IAC

and ABCD, most other algorithms perform very similarly. While their performance is close,

it is worth emphasising that Tukey’s Honestly Significant Difference test corrects for multiple

comparisons and as such, a large effect size is required to break the threshold of statistical

significance.
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FIGURE 6.7: Box plot of accuracy results of task SSC-2 averaged over all datasets. The white
circles indicate the arithmetic means.

IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

EM-LEX / DECISION TREE 0.05 0.00† 0.07 0.00† -0.02 0.49

LEXICNET / DECISION TREE 0.06 0.00† 0.09 0.00† -0.02 0.53

NAIVE BAYES / DECISION TREE 0.04 0.00† 0.07 0.00† 0.01 0.86

RELEXNET / DECISION TREE 0.09 0.00† 0.11 0.00† -0.03 0.14

SVM / DECISION TREE 0.06 0.00† 0.08 0.00† -0.01 1.00

LEXICNET / EM-LEX 0.01 0.77 0.02 0.40 0.00 1.00

NAIVE BAYES / EM-LEX -0.01 0.85 -0.00 1.00 0.03 0.05

RELEXNET / EM-LEX 0.04 0.00† 0.04 0.01† -0.01 0.98

SVM / EM-LEX 0.01 0.73 0.01 0.92 0.02 0.76

NAIVE BAYES / LEXICNET -0.03 0.15 -0.02 0.25 0.03 0.06

RELEXNET / LEXICNET 0.03 0.05 0.02 0.60 -0.01 0.97

SVM / LEXICNET 0.00 1.00 -0.01 0.93 0.02 0.79

RELEXNET / NAIVE BAYES 0.06 0.00† 0.04 0.00† -0.04 0.01†

SVM / NAIVE BAYES 0.03 0.13 0.01 0.80 -0.02 0.62

SVM / RELEXNET -0.03 0.06 -0.03 0.13 0.02 0.32

TABLE 6.6: Tukey test for IAC and ABCD on SSC-2. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

RELEXNET 0.630 0.641 0.618

LEXICNET 0.607 0.615 0.625

SVM 0.640 0.667 0.632

NAIVE BAYES 0.611 0.618 0.650

DECISION TREE 0.600 0.598 0.572

EM-LEX 0.618 0.629 0.622

TABLE 6.7: Accuracy results of Task SSC-3
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FIGURE 6.8: Box plot of accuracy results of task SSC-3 per dataset. The white circles indicate
the arithmetic means.

6.4.3.2 Results of task SSC-3

We present the results of the SSC-3 task in Table 6.7, and illustrate them in the plot given in

Figure 6.8 faceted per dataset. A visual inspection of the plots and the table of results show that

while LEXICNET and RELEXNET outperform our lexicon baseline, they are outperformed by

machine learning baselines (NAIVE BAYES and SVM) on all datasets. Figure 6.9 shows that when

averaged over all datasets, the difference becomes much less significant where all algorithms

tend to perform around the same with the exception of decision trees, which underperform by a

reasonable margin.

We perform an ANOVA significance test in order to detect whether there is any significant

difference between algorithm performance per dataset, which can be seen in Table 6.8, and find

that only the ABCD and SETC datasets contain a significant level of between group variance.
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FIGURE 6.9: Box plot of accuracy results of task SSC-3 averaged over all datasets. The white
circles indicate the arithmetic means.

Dataset F-Value P-Value

IAC 2.244 0.062

ABCD 9.137 2.416e-06†

SETC 11.269 1.809e-07†

TABLE 6.8: Results of ANOVA on task SSC-3. † indicates statistical significance at 0.95
confidence.

A Tukey HSD test run as a post hoc analysis, which we can see the results of in Table 6.9, shows

that the only significant effects on the ABCD and SETC datasets is the poor performance of

decision trees in SETC as well as the good performance of SVM in the ABCD dataset. All other

algorithms tended to perform similarly enough that no significant difference could be detected.

6.4.3.3 Results of task STL-2

The STL-2 task focuses on applying a model learned from a dataset to another dataset, which is

a weak form of transfer learning. Because the source dataset was labelled using an automated

method inspired from the distant supervision literature, we only use classes which can be explicitly

expressed: agreement and disagreement, rather than classes which show the absence of valence

(neutrality). The results are given in Table 6.10 and illustrated in Figure 6.10.

An examination of the results shows that except for the SETC dataset, RELEXNET tends to

outperform the other approaches. A visual inspection of Figure 6.11, which shows averages

over all datasets confirms that suspicion. This can be explained by the fact that LEXICNET and
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ABCD SETC

Difference Adjusted P-Value Difference Adjusted P-Value

EM-LEX / DECISION TREE 0.03 0.07 0.05 0.00†

LEXICNET / DECISION TREE 0.02 0.66 0.05 0.00†

NAIVE BAYES / DECISION TREE 0.02 0.49 0.08 0.00†

RELEXNET / DECISION TREE 0.04 0.00† 0.05 0.00†

SVM / DECISION TREE 0.07 0.00† 0.06 0.00†

LEXICNET / EM-LEX -0.01 0.79 0.00 1.00

NAIVE BAYES / EM-LEX -0.01 0.91 0.03 0.11

RELEXNET / EM-LEX 0.01 0.91 -0.00 1.00

SVM / EM-LEX 0.04 0.02† 0.01 0.94

NAIVE BAYES / LEXICNET 0.00 1.00 0.03 0.21

RELEXNET / LEXICNET 0.03 0.21 -0.01 0.99

SVM / LEXICNET 0.05 0.00† 0.01 0.99

RELEXNET / NAIVE BAYES 0.02 0.32 -0.03 0.05

SVM / NAIVE BAYES 0.05 0.00† -0.02 0.53

SVM / RELEXNET 0.03 0.20 0.01 0.81

TABLE 6.9: Tukey test for ABCD and SETC on SSC-3. † indicates statistical significance at
0.95 confidence.

IAC ABCD SETC

RELEXNET 0.657 0.640 0.630

LEXICNET 0.639 0.628 0.646

SVM 0.628 0.615 0.631

NAIVE BAYES 0.596 0.621 0.624

DECISION TREE 0.591 0.584 0.637

EM-LEX 0.581 0.605 0.581

TABLE 6.10: Accuracy results of Task STL-2
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FIGURE 6.10: Box plot of accuracy results of task STL-2 per dataset. The white circles indicate
the arithmetic means.
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FIGURE 6.11: Box plot of accuracy results of task STL-2 averaged over all datasets. The white
circles indicate the arithmetic means.

RELEXNET are both greatly regularised, to the point of often underfitting on some of the most

straightforward tasks/datasets. While this is a disadvantage in some situations, it is reasonable

that a transfer learning task would be the best suited situation to make use of such features. By

being heavily regularised, the lexicon methods avoid picking up and putting too much weight on

dataset-specific correlations, thus ensuring that the resulting models are more portable to new

tasks. We observe that RELEXNET also outperforms EM-LEX by a reasonable margin, and that

LEXICNET outperforms RELEXNET on the SETC dataset. This may be due to the particular

nature of microblog data: in the absence of long text, it is harder for a complex architecture such

as RELEXNET to leverage the weights of the valence modifiers. This means that the modifier

weights learned at training time are not as applicable at test time, and therefore the lexicon

weights become less effective at classifying the underlying data.

We perform an analysis of variance in order to pick up on statistical significance of the differences

between all groups, shown in Figure 6.11. Our analysis shows that there is a difference worth
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Dataset F-Value P-Value

IAC 14.175 7.439e-09†

ABCD 4.412 0.001†

SETC 9.802 1.05e-06†

TABLE 6.11: Results of ANOVA on task STL-2. † indicates statistical significance at 0.95
confidence.

investigating, which leads us to the Tukey HSD test in Table 6.12. While a visual inspection

of results shows a clear difference between all algorithms, this difference was mostly not sig-

nificant after adjusting for multiple comparisons. Besides the under-performance of EM-LEX

in the SETC dataset and DECISION TREE in the IAC dataset, the only statistically significant

differences present in the results of the STL-2 task are the dominance of lexicon methods over

NAIVE BAYES.

6.4.4 Discussion

The results shown in this section, while looking extremely promising at visual inspection, rarely

reach statistical significance when put under the lens of more rigorous testing. However there can

be multiple reasons for this, and the lack of effect is only one of them. Indeed, statistical tests are

sensitive to multiple parameters including the sample size, which is kept relatively low here (each

fold being used as one trial) and as such requires a larger effect size, and the fact that statistical

adjustments are made to account for performing multiple comparisons, in order for the Type 1

error rate to not increase dramatically. While our adjustments are not severe, they also require a

much larger effect size to display statistical significance. This is a clear limitation of our study: a

clearer hypothesis involving fewer algorithms would allow us to focus our evaluation and avoid

multiple comparison testing while keeping the power of our tests high.

From the results we can see that lexicon methods can be relatively competitive with typical

machine learning algorithms when trained only on raw text, coming often at the same level as

algorithms such as SVM and NAIVE BAYES, which are standards of text classification, but with

the additional advantage of being highly interpretable (lexicon weights can be interpret). A fair

criticism would be that no hyperparameter tuning was done on those algorithms, but similarly the
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

EM-LEX / DECISION TREE -0.01 0.95 0.02 0.60 -0.06 0.00†

LEXICNET / DECISION TREE 0.05 0.00† 0.04 0.02† 0.01 0.95

NAIVE BAYES / DECISION TREE 0.00 1.00 0.04 0.07 -0.01 0.79

RELEXNET / DECISION TREE 0.07 0.00† 0.06 0.00† -0.01 0.98

SVM / DECISION TREE 0.04 0.02† 0.03 0.17 -0.01 0.99

LEXICNET / EM-LEX 0.06 0.00† 0.02 0.49 0.07 0.00†

NAIVE BAYES / EM-LEX 0.01 0.78 0.02 0.82 0.04 0.00†

RELEXNET / EM-LEX 0.08 0.00† 0.03 0.10 0.05 0.00†

SVM / EM-LEX 0.05 0.00† 0.01 0.97 0.05 0.00†

NAIVE BAYES / LEXICNET -0.04 0.00† -0.01 0.99 -0.02 0.27

RELEXNET / LEXICNET 0.02 0.63 0.01 0.95 -0.02 0.61

SVM / LEXICNET -0.01 0.93 -0.01 0.92 -0.02 0.64

RELEXNET / NAIVE BAYES 0.06 0.00† 0.02 0.71 0.01 0.99

SVM / NAIVE BAYES 0.03 0.07 -0.01 1.00 0.01 0.99

SVM / RELEXNET -0.03 0.14 -0.02 0.43 0.00 1.00

TABLE 6.12: Tukey test for IAC, ABCD and SETC on STL-2. † indicates statistical signifi-
cance at 0.95 confidence.

LEXICNET and RELEXNET architectures were not tuned for each task and instead were issued a

set of default parameters.

6.5 Chapter Summary

In this chapter we explored LEXICNET, an approach to learn a lexicon from a corpus based on

the empirical risk minimisation framework which allows us to apply regularisation techniques

to make our lexicons more robust. We extended LEXICNET to take into account neighbouring

terms that have an intensification and diminishing effect in the RELEXNET architecture. Finally

we evaluated our approaches against a state-of-the-art lexicon (EM-LEX) as well as standard

machine learning methods (SVM, NAIVE BAYES, DECISION TREE). We found that a visual
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inspection of the results tend to show the dominance of RELEXNET and LEXICNET in binary

classification problems, but more formal testing using ANOVA with a Tukey post hoc test shows

that those differences, while promising, are not statistically significant.



Chapter 7

Lexicon-based Feature Models for

Stance Detection

This chapter focuses on the use of lexicons as feature extractors, in order to improve the perfor-

mance of a supervised classifier over a simple feature baseline. The two fundamental research

questions that we seek to answer are the following: (1) can class-sensitive features learned on a

corpus enrich an existing term representation and allow it to better represent argumentative con-

tent for the purpose of stance classification? and (2) what is the level of granularity (classifying

words, classifying sentences, or classifying the entire instance) that is the most compatible with

lexicon enhancement? In order to answer these research questions, we separate our feature vector

into two parts:

• A semantic part that captures the meaning of the instance ;

• A class-sensitive part that captures information captured by the lexicon about the argumen-

tative value of the instance.

We seek to answer the second research question by investigating the effect of different repre-

sentations at varying levels of granularity at which we represent instances and observing how

class-sensitive knowledge impacts the classification power. We introduce three types of fea-

ture models based on RELEXNET (detailed in Chapter 5): the instance-level lexicon feature

model (INSTLEX), the sentence-level lexicon feature model (SENTLEX), and the word-level

133
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lexicon feature model (WOLLEX) in order to answer this research question, starting by defining

lexicon-based feature extraction and then detailing compact and temporal feature models using

lexicon-based features.

7.1 Using lexicons for feature extraction

While lexicons can be used as the underlying classification or regression model due to their

simplicity and expressiveness, they can also be used to extract features from text in order to

build a higher level representation of instances. For example, Somasundaran and Wiebe (2010b)

use lexicons in order to detect argument expressions and use these expressions to compute a

sentiment with a target, which is then used as a way to represent the text they are trying to classify.

In this section we elaborate on multiple ways of generating a representation from a lexicon, using

multiple granularity levels:

• At the word level, a lexicon extracts a set of numerical values representing the probability or

degree of belonging of this word to multiple classes. This can be seen as a low dimensional

embedding of the word in the class space, which can then be used to represent the instance

as a sequence of M values (with M being the number of classes) of length L (with L being

the number of words in the sentence).

• At the sentence level, a lexicon can extract a set of values for each word which are then

averaged per sentence, resulting in an L ×M representation where L is the number of

sentences and M the number of classes.

• At the instance level, a lexicon can extract a set of values for each word which are either

averaged over the whole instance, or first averaged over sentences then over the whole

instance, resulting in an 1×M representation where M is the number of classes.

– Over the whole instance give equal importance to each term, but means that one

overly long sentence could overpower all others because of the lack of normalisation.

– Over sentences then instance give equal importance to each sentence, but means

that many short sentences which are heavily class-specific (e.g. expletives) could

overpower the more moderate or neutral parts of the instance.
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This distinction of granularity allows us to differentiate between multiple temporal representations

using lexicon-based feature extraction. Given an instance of length L and a lexicon referencing

M classes, we focus on the following potential feature models:

• At the word level, a L×M matrix where L is the number of words in the instance ;

• At the sentence level, a L×M matrix where L is the number of sentences in the instance ;

• At the instance level, a S ×M matrix where S is the number of statistics that need to be

collected over the instance. For example, an instance-level feature extractor could use the

mean, minimum, and maximum statistics and extract 3×M features. Doing so compresses

the instance maximally, losing smaller-grained information.

7.2 Instance-level feature model using lexicon features

We first propose an instance-level feature model in the form of a dense matrix of size 5 ×M

descriptive statistics (mean, median, standard deviation, minimum, and maximum class values)

where M is the number of classes, illustrated in Figure 7.1. The goal of this representation is

to summarise the instance that we aim to classify and provide the learning algorithm with some

form of prior knowledge over that particular instance. By doing so, an instance with a lot of

vocabulary tied to one class will need a significant amount of evidence of another class in order

for the learning algorithm to overcome that prior knowledge and predict the latter class. In this

section we detail two representation schemes that are augmented with this compressed feature

model, and the way they are computed.

7.2.1 Instance-level feature model with bag-of-words

The bag-of-words representation (detailed in Chapter 3) is the most common text representation

scheme due to its versatility, ease of computation and effectiveness. Considering a vector space

induced from a vocabulary of 300 terms, a bag-of-words representation is a 300-dimensional

vector of numerical values representing the frequency (or some function of the frequency) of

each term in the instance. Common functions of the frequency are raw frequency, Boolean
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FIGURE 7.1: An instance-level representation scheme using lexicon statistics. M corresponds
to the number of classes, while S corresponds to the number of statistics gathered for the

representation.

thresholding (1 if frequency is over 0, 0 otherwise) and logarithmic smoothing (natural logarithm

of the frequency).

The INSTLEXBOW+LN and INSTLEXBOW+RLN representation schemes use the dense vector of

summary lexicon statistics (computed respectively from the LEXICNET and RELEXNET lexicon

architectures) to extend a bag-of-word model, ending up with |V | + |S| ×M features where

V is the vocabulary size, S the set of statistics and M the number of classes. The feature

vector illustrated in Figure 7.1 is flattened and appended to the bag-of-words vector, as shown in

Figure 7.2.

This representation allows us to offer a dual view of the instance, where the bag-of-words

represents the semantics of the text while the lexicon statistics represents class knowledge with

which we want to influence the learning algorithm. It is suitable for most machine learning

algorithms because the final representation is flat and thus does not necessitate complex algorithms

such as recurrent neural networks.

7.2.2 Instance-level feature model with mean embedding

The mean embedding model (detailed in Chapter 3) is a common low dimensional representation

scheme where text is represented as a vector where each dimension is an average of the corre-

sponding embedding dimensions of all the terms contained in that instance. The INSTLEXEMB+LN
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FIGURE 7.2: Instance-level feature model with bag-of-words. V is the size of the vocabulary, S
the number of statistics calculated on the lexicon.

and INSTLEXEMB+RLN representations are built using the dense vector to extend a mean embed-

ding model, ending up with M + 5 × N features where M is the embedding size and N the

number of classes. We illustrate the representation in Figure 7.3.

This representation also offers a dual view of the instance, where the mean embedding is a

compact representation of the semantics of the text while the lexicon statistics encodes class

knowledge that we want to influence the learning algorithm with. Like previously described

representations, it is suitable for most machine learning algorithms. The main difference is that

the semantics of the terms are learned outside of our dataset, because we are able to use existing

word embeddings learned on much larger datasets.

7.3 Sentence-level feature model using lexicon features

The sentence-level lexicon representation is a series of variable size of lexicon values, giving

S ×M values where S is the number of sentences in the current instance and M the number of

classes. The lexicon values are first computed at the term level and then averaged over sentences,

as illustrated in Figure 7.4. This representation allows us to reduce the differences of long and

short sentences and focus on the average meaning of each sentence.
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FIGURE 7.3: Instance-level feature model with mean embedding. W is the size of the embedding,
S the number of statistics calculated on the lexicon.
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FIGURE 7.4: Lexicon representation of sentence level features. The lexicon values are averaged
over sentences to form a more compact class-sensitive representation of the instance that still
has a temporal dimension. M represents the number of classes, while L represent the number of

sentences.
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FIGURE 7.5: Sentence level frequency-based representation. V represents the size of the
vocabulary, while L represents the number of sentences.

7.3.1 Sentence-level lexicon model with frequency-based sentence encoding.

The SENTLEXBOW+LN and SENTLEXBOW+RLN representations are time series of lexicon values

(computed respectively from the LEXICNET and RELEXNET lexicon architectures) that are used

to augment a frequency-based sentence representation. The semantic part of the representation is

built by computing a traditional bag-of-words for at the sentence level, illustrated in Figure 7.5.

Having a bag-of-words model at the sentence level allows us to model the flow of topic throughout

a user comment, where not all sentences might be related to the topic at hand.

It is then augmented by the class-sensitive part of the representation, which is built by averaging

lexicon values at the sentence level. The class-sensitive representation is appended to the semantic

representation to form a sentence-level representation, illustrated in Figure 7.6. This allows us

to annotate the topic of a sentence, represented by the bag-of-words model, with the overall

argumentative stance of the words within it.

7.3.2 Sentence-level lexicon model with sentence embedding.

The SENTLEXEMB+LN and SENTLEXEMB+RLN representations are time series of lexicon values

that are used to augment an embedding-based sentence representation, computed respectively

using the LEXICNET and RELEXNET lexicon architectures. The semantic part of the represen-

tation is built using a sentence level mean embedding, illustrated in Figure 7.7. Similarly to
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FIGURE 7.6: Augmented sentence level frequency-based representation. M represents the
number of classes, V represents the size of the vocabulary, and L represents the number of

sentences.

SENTLEXBOW+LN and SENTLEXBOW+RLN, that mean embedding allows us to model the flow of

topic throughout a user comment.

We then augment this representation by a class-sensitive vector, which is built by averaging

lexicon values at the sentence level. Similarly to SENTLEXBOW+LN and SENTLEXBOW+RLN, the

class-sensitive representation is appended to the semantic representation to form a sentence-level

representation, illustrated in figure 7.8.

7.4 Word-level feature model using lexicon features

The word-level representation is a time series of lexicon values associated to each term contained

in an instance, building a L ×M matrix (illustrated in Figure 7.9) where L is the number of

terms in the current instance and M the number of classes. This representation allows us to

consider the argumentative value of each term separately, instead of blending them into sentence

or instance vectors.
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FIGURE 7.7: Lexicon representation of sentence level features. The embedding dimensions are
averaged over sentences to form a more compact representation of the instance that still has a
temporal dimension. W represents the size of the embedding, while L represents the number of

sentences.

7.4.1 Word-level feature model with one-hot word encoding

The WOLLEXOH+LN and WOLLEXOH+RLN representations use a one-hot encoding (discussed

in more detail in Chapter 3 and illustrated in Figure 3.3) as a way to model the semantic part of

the instance. That one hot encoding is augmented by appending the lexicon vector for each term,

as illustrated in Figure 7.10.

7.4.2 Word-level feature model with embedding

The WOLLEXEMB+LN and WOLLEXEMB+RLN representations use a word embedding (discussed

in more detail in Chapter 3 and illustrated in Figure 3.4) as a way to model the semantic part of

the instance. The embedding is augmented by appending the lexicon vector for each term, as

illustrated in Figure 7.11.
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FIGURE 7.8: Augmented sentence level mean embedding representation. M represents the
number of classes, W represents the size of the embedding, and L represents the number of

sentences.

FIGURE 7.9: Lexicon representation of word level features. M represents the number of classes
while L represents the number of words.
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FIGURE 7.10: One hot encoding augmented with lexicon representation of text. M represents
the number of classes, V represents the size of the vocabulary, and L represents the length of the

instances in words.

7.5 Evaluating deep supervised argument mining

This section focuses on the evaluation of the representation schemes developed during the course

of this thesis. As such, this evaluation is more complex than the previous ones mentioned in this

thesis, and is divided into three sections, which are evaluating three levels of granularity with

respect to the representation of documents for stance classification with a deep neural network:

instance-level, sentence-level and word-level representation.

7.5.1 Evaluation tasks

We evaluate our approaches using two different classification tasks: standard classification (DSC)

and transfer learning for classification (DTL). The first task consists in the classification of typical

stance classes, typically {agreement, disagreement} and {agreement, disagreement, neutral}. The

second task aims to classify stance on human-labelled data such as IAC, ABCD and SETC using
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FIGURE 7.11: Embedding augmented with lexicon representation of text. W represents the
size of the embedding, M represents the number of classes, and L represents the length of the

instance in words.

class knowledge learned from weakly labelled data such as RNLC. Because the instance-level

representations are flat and not temporally ordered, we use a traditional classifier to test them.

Conversely, because the sentence and word-level representations are temporally ordered, we use

a recurrent neural network to test them. The details of the learning algorithms are given below.

7.5.1.1 Learning algorithms

In the context of this evaluation we use two types of neural networks.

• Multilayer Perceptron (MLP), introduced in section 3.4.4, is suitable for representations

with a fixed size and no temporal dimension. It takes as input a flat representation such

as one generated from document statistics. It is used for instance-level representations,

which do not take into account the structure of the instances, as well as their corresponding

baselines.
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• Simple Recurrent Neural Network (RNN), introduced in section 3.4.4.1, is well-suited

for representations with a variable size and a temporal dimension. It parses through a

temporally-structured representation by analysing each time-step one at a time, before fi-

nally returning a prediction. It is used for the sentence-level and word-level representations,

as well as their corresponding baselines.

7.5.2 Results with instance-level feature models

The instance-level feature model uses summary statistics and flat semantic representations to

represent instances. The flatness of the representation means that the learning algorithm used

for evaluation cannot be focused on sequential data, and as such we use a Multilayer Perceptron

(MLP). INSTLEXBOW+LN and INSTLEXBOW+RLN refer to representations that contain the bag of

words of a given instance while INSTLEXEMB+LN and INSTLEXEMB+RLN refer to representations

that contain the mean embedding of an instance. Both of those representations are enhanced by

the addition of a vector of the following summary statistics of the lexicon values of the terms

present in that instance:

• Minimum value ;

• Maximum value ;

• Mean value ;

• Median value ;

• Standard deviation.

These four representations are compared to the following baselines of varying strength:

BOLEXLN is a bag-of-lexicon values, i. e., a vector of N times the size of the lexicon (300)

where each component of the vector is the frequency of the corresponding term in the

instance multiplied by the lexicon value for a specific class. The 300 dimensional vector

for each class are then aggregated into a 300×N vector for a N class classification task.

BOLEXLN uses LEXICNET as a way to learn the lexicon ;
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BOLEXRLN is similar to BOLEXLN but uses RELEXNET as a lexicon learning method ;

BOW is a simple bag-of-words representation with tf-idf weighting ;

MEANEMB is a mean embedding representation, where a 300-dimensional word embedding is

averaged out over all the terms in the instance (after removing stop words) and the resulting

average of embeddings is used as a representation.

Results of task DSC-2 The DSC-2 task refers to the binary classification of stance. The results,

shown in Table 7.1 and illustrated in Figure 7.12 comparing per dataset and Figure 7.13 averaged

over all datasets show that the instance level representations using the mean embedding as a

semantic representation tend to outperform other approaches. An ANOVA test in Table 7.2 shows

that there is a significantly differing behaviour between the tested algorithms, and we show the

results of our post hoc tests in Table 7.3. While in the ABCD dataset there is a clear demarcation

between the best-performing representation (+0.22), it is much less obvious in the ABCD and

SETC datasets (+0.02 and +0.01 respectively).

Additionally, a similar behaviour can be observed in the representations that make use of the

bag-of-words base semantic representation with differences of +0.00, −0.20 and +0.11 between

the ones enriched with RELEXNET and the ones enriched with LEXICNET summary statistics.

This would tend to show that for some datasets the act of enriching the representation with

class-sensitive information such as the lexicon summary statistics mentioned above is enough

to improve classification accuracy, with the choice of enrichment strategy being less important.

In all cases, the top performing combination of semantic and lexicon features outperforms the

lexicon-only and semantic-only features by a large margin. An examination of the Tukey test

results in Table 7.3 shows that this difference is significant in all datasets at the p < 0.05

threshold.

Results of task DSC-3 In this section we examine the result of a similar experiment but with

three classes. We show the results of the DSC-3 task in Table 7.4, and illustrate them in two

figures, Figure 7.14 for a dataset breakdown of the results, and Figure 7.15 for results averaged

over all datasets. A visual examination of the results shows us that unlike on the DSC-2 task,

here the semantic-only representations (BOW and MEANEMB) seem to outperform the enriched
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IAC ABCD SETC

INSTLEXBOW+LN 0.703 0.729 0.698

INSTLEXBOW+RLN 0.703 0.709 0.709

INSTLEXEMB+LN 0.725 0.745 0.714

INSTLEXEMB+RLN 0.701 0.743 0.715

BOLEXLN 0.601 0.590 0.611

BOLEXRLN 0.607 0.608 0.597

BOW 0.642 0.676 0.655

MEANEMB 0.667 0.675 0.669

TABLE 7.1: Accuracy results of Task DSC-2 with instance-level feature model
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FIGURE 7.12: Box plot of accuracy results of Task DSC-2 with instance-level feature models
per dataset
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FIGURE 7.13: Box plot of accuracy results of Task DSC-2 with instance-level feature models
averaged over all datasets
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Dataset F-Value P-Value

IAC 19.487 2.28553852209682e-14†

ABCD 28.066 3.28449336468974e-18†

SETC 25.051 5.7976380723505e-17†

TABLE 7.2: Results of ANOVA on task DSC-2. † indicates statistical significance at 0.95
confidence.

●

●

●

● ● ●
●

● ●●

●

●
●

●

● ● ●
● ●

●

●

●
●

●
● ●

●

● ●

ABCD IAC SETC

B
O

Le
x−

LN

B
O

Le
x−

R
LN

B
O

W

B
O

W
+

LN

B
O

W
+

R
LN

M
ea

nE
m

b

E
m

b+
LN

E
m

b+
R

LN

B
O

Le
x−

LN

B
O

Le
x−

R
LN

B
O

W

B
O

W
+

LN

B
O

W
+

R
LN

M
ea

nE
m

b

E
m

b+
LN

E
m

b+
R

LN

B
O

Le
x−

LN

B
O

Le
x−

R
LN

B
O

W

B
O

W
+

LN

B
O

W
+

R
LN

M
ea

nE
m

b

E
m

b+
LN

E
m

b+
R

LN

0.50

0.55

0.60

0.65

0.70

Algorithm

A
cc

ur
ac

y

FIGURE 7.14: Box plot of accuracy results of Task DSC-3 with instance-level feature models
per dataset
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FIGURE 7.15: Box plot of accuracy results of Task DSC-3 with instance-level feature models
averaged over all datasets

representations, albeit not by a very large margin. More specifically, we can observe that the

MEANEMB representation has the lowest variance between datasets and seems to be more stable

while some of the enriched representations go from best to bad depending on the dataset.

An ANOVA test in Table 7.5 lends evidence to there being a difference between algorithms,

which we investigate in a post hoc test. The results of our Tukey test in Table 7.6 confirm those
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

BOLEXRLN/BOLEXLN 0.01 1.00 0.02 0.95 -0.01 0.96

BOW/BOLEXLN 0.04 0.13 0.09 0.00† 0.04 0.03†

INSTLEXBOW+LN/BOLEXLN 0.10 0.00† 0.14 0.00† 0.09 0.00†

INSTLEXBOW+RLN/BOLEXLN 0.10 0.00† 0.12 0.00† 0.10 0.00†

MEANEMB/BOLEXLN 0.07 0.00† 0.08 0.00† 0.06 0.00†

INSTLEXEMB+LN/BOLEXLN 0.12 0.00† 0.15 0.00† 0.10 0.00†

INSTLEXEMB+RLN/BOLEXLN 0.10 0.00† 0.15 0.00† 0.10 0.00†

BOW/BOLEXRLN 0.03 0.31 0.07 0.00† 0.06 0.00†

INSTLEXBOW+LN/BOLEXRLN 0.10 0.00† 0.12 0.00† 0.10 0.00†

INSTLEXBOW+RLN/BOLEXRLN 0.10 0.00† 0.10 0.00† 0.11 0.00†

MEANEMB/BOLEXRLN 0.06 0.00† 0.07 0.00† 0.07 0.00†

INSTLEXEMB+LN/BOLEXRLN 0.12 0.00† 0.14 0.00† 0.12 0.00†

INSTLEXEMB+RLN/BOLEXRLN 0.09 0.00† 0.14 0.00† 0.12 0.00†

INSTLEXBOW+LN/BOW 0.06 0.00† 0.05 0.02† 0.04 0.03†

INSTLEXBOW+RLN/BOW 0.06 0.00† 0.03 0.42 0.05 0.00†

MEANEMB/BOW 0.03 0.70 -0.00 1.00 0.01 0.95

INSTLEXEMB+LN/BOW 0.08 0.00† 0.07 0.00† 0.06 0.00†

INSTLEXEMB+RLN/BOW 0.06 0.01† 0.07 0.00† 0.06 0.00†

INSTLEXBOW+RLN/INSTLEXBOW+LN 0.00 1.00 -0.02 0.91 0.01 0.99

MEANEMB/INSTLEXBOW+LN -0.04 0.29 -0.05 0.02† -0.03 0.39

INSTLEXEMB+LN/INSTLEXBOW+LN 0.02 0.83 0.02 0.98 0.02 0.93

INSTLEXEMB+RLN/INSTLEXBOW+LN -0.00 1.00 0.01 0.99 0.02 0.90

MEANEMB/INSTLEXBOW+RLN -0.04 0.27 -0.03 0.38 -0.04 0.07

INSTLEXEMB+LN/INSTLEXBOW+RLN 0.02 0.84 0.04 0.34 0.00 1.00

INSTLEXEMB+RLN/INSTLEXBOW+RLN -0.00 1.00 0.03 0.40 0.01 1.00

INSTLEXEMB+LN/MEANEMB 0.06 0.01† 0.07 0.00† 0.04 0.02†

INSTLEXEMB+RLN/MEANEMB 0.03 0.37 0.07 0.00† 0.05 0.02†

INSTLEXEMB+RLN/INSTLEXEMB+LN -0.02 0.74 -0.00 1.00 0.00 1.00

TABLE 7.3: Results of Tukey test on task DSC-2. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

INSTLEXBOW+LN 0.644 0.639 0.609

INSTLEXBOW+RLN 0.652 0.634 0.618

INSTLEXEMB+LN 0.662 0.625 0.610

INSTLEXEMB+RLN 0.655 0.648 0.615

BOLEXLN 0.562 0.576 0.568

BOLEXRLN 0.543 0.541 0.540

BOW 0.615 0.678 0.637

MEANEMB 0.642 0.643 0.648

TABLE 7.4: Accuracy results of Task DSC-3 with instance-level feature model

Dataset F-Value P-Value

IAC 29.829 6.7687303583772e-19†

ABCD 25.27 4.6728008570218e-17†

SETC 26.628 1.25565864578366e-17†

TABLE 7.5: Results of ANOVA on task DSC-3. † indicates statistical significance at 0.95
confidence.

observations, with the only significant differences being the lexicon-only representations being

outperformed by all other approaches.

Results of task DTL-2 The DTL-2 task consists in the binary classification of stance using a

model learned from a different dataset. In this case, both the LEXICNET/RELEXNET models

used to provide the lexicon part of the representation and the final model were learned on the

RNLC dataset. We display the results in Table 7.7 and illustrate them per dataset in Figure 7.16

and averaged over all datasets in Figure 7.17. Visual inspection of the results shows a clear

dominance of the enriched approaches over the semantics-only and lexicon-only baselines.

The results of the ANOVA are shown in Table 7.8 and of the resulting Tukey HSD test in Table 7.9.

The results of the Tukey test confirm that the enriched approaches significantly outperform both

the semantic-only and the lexicon-only approaches at the p < 0.01 level.
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

BOLEXRLN/BOLEXLN -0.02 0.74 -0.03 0.11 -0.03 0.11

BOW/BOLEXLN 0.05 0.00† 0.10 0.00 † 0.07 0.00†

INSTLEXBOW+LN/BOLEXLN 0.08 0.00† 0.06 0.00 † 0.04 0.00†

INSTLEXBOW+RLN/BOLEXLN 0.09 0.00† 0.06 0.00 † 0.05 0.00†

MEANEMB/BOLEXLN 0.08 0.00† 0.07 0.00 † 0.08 0.00†

INSTLEXEMB+LN/BOLEXLN 0.10 0.00† 0.05 0.00 † 0.04 0.00†

INSTLEXEMB+RLN/BOLEXLN 0.09 0.00† 0.07 0.00 † 0.05 0.00†

BOW/BOLEXRLN 0.07 0.00† 0.14 0.00 † 0.10 0.00†

INSTLEXBOW+LN/BOLEXRLN 0.10 0.00† 0.10 0.00 † 0.07 0.00†

INSTLEXBOW+RLN/BOLEXRLN 0.11 0.00† 0.09 0.00 † 0.08 0.00†

MEANEMB/BOLEXRLN 0.10 0.00† 0.10 0.00† 0.11 0.00†

INSTLEXEMB+LN/BOLEXRLN 0.12 0.00† 0.08 0.00 † 0.07 0.00†

INSTLEXEMB+RLN/BOLEXRLN 0.11 0.00† 0.11 0.00† 0.07 0.00†

INSTLEXBOW+LN/BOW 0.03 0.20 -0.04 0.05 -0.03 0.11

INSTLEXBOW+RLN/BOW 0.04 0.04† -0.04 0.01† -0.02 0.53

MEANEMB/BOW 0.03 0.31 -0.03 0.11 0.01 0.92

INSTLEXEMB+LN/BOW 0.05 0.00† -0.05 0.00† -0.03 0.12

INSTLEXEMB+RLN/BOW 0.04 0.02† -0.03 0.23 -0.02 0.32

INSTLEXBOW+RLN/INSTLEXBOW+LN 0.01 1.00 -0.01 1.00 0.01 0.99

MEANEMB/INSTLEXBOW+LN -0.00 1.00 0.00 1.00 0.04 0.00†

INSTLEXEMB+LN/INSTLEXBOW+LN 0.02 0.80 -0.01 0.94 0.00 1.00

INSTLEXEMB+RLN/INSTLEXBOW+LN 0.01 0.99 0.01 1.00 0.01 1.00

MEANEMB/INSTLEXBOW+RLN -0.01 0.98 0.01 1.00 0.03 0.04†

INSTLEXEMB+LN/INSTLEXBOW+RLN 0.01 0.99 -0.01 1.00 -0.01 0.99

INSTLEXEMB+RLN/INSTLEXBOW+RLN 0.00 1.00 0.01 0.96 -0.00 1.00

INSTLEXEMB+LN/MEANEMB 0.02 0.65 -0.02 0.82 -0.04 0.00†

INSTLEXEMB+RLN/MEANEMB 0.01 0.95 0.00 1.00 -0.03 0.02†

INSTLEXEMB+RLN/INSTLEXEMB+LN -0.01 1.00 0.02 0.61 0.00 1.00

TABLE 7.6: Results of Tukey test on task DSC-3. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

INSTLEXBOW+LN 0.726 0.690 0.689

INSTLEXBOW+RLN 0.690 0.692 0.705

INSTLEXEMB+LN 0.693 0.702 0.706

INSTLEXEMB+RLN 0.701 0.702 0.728

BOLEXLN 0.552 0.597 0.612

BOLEXRLN 0.599 0.591 0.595

BOW 0.617 0.614 0.622

MEANEMB 0.609 0.624 0.614

TABLE 7.7: Accuracy results of Task DTL-2 with instance-level feature models
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FIGURE 7.16: Box plot of accuracy results of Task DTL-2 with instance-level feature models
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FIGURE 7.17: Box plot of accuracy results of Task DTL-2 with instance-level feature models
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Dataset F-Value P-Value

IAC 66.317 7.51944104659384e-29†

ABCD 25.079 5.64325437695852e-17†

SETC 25.374 4.21737073354391e-17†

TABLE 7.8: Results of ANOVA on task DTL-2. † indicates statistical significance at 0.95
confidence.

7.5.3 Results with sentence-level feature model

In this section we review and comment on the results of our experiment with the sentence-

level feature models developed throughout this chapter. Unlike the instance-level models, the

sentence-level models retain some form of temporality in the sense that each sentence is encoded

separately before being aggregated together. Because of this particularity, instances can be of

variable length and call for a learning algorithm that can accommodate such differences, in our

case a recurrent neural network. Four representations are evaluated, where two of them use

a sentence bag of words as the semantic part of their representation (SENTLEXBOW+LN and

SENTLEXBOW+RLN) and the two others use an average of the word embeddings present in the

sentence (SENTLEXEMB+LN and SENTLEXEMB+RLN). Those are then augmented by average

lexicon values for each class and averaged over all the terms present in the sentence, and the

sentences are then aggregated into the final vector representation.

The following baselines were used:

VSBOLEXLN , a vector of LEXICNET values averaged over all words of each sentence (VSLN

in the plots) ;

VSBOLEXRLN , a vector of RELEXNET values averaged over all words of each sentence

(VRSLN in the plots) ;

VSBOW , a vector of sentence bags of words, is a simple vector of bag of words for each

sentence (BOW in the plots);

VSEMB , a vector of sentence embeddings, is a simple vector of word embeddings averaged

over all words of each sentence (MeanEmb in the plots).
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

BOLEXRLN/BOLEXLN 0.05 0.00† -0.01 1.00 -0.02 0.94

BOW/BOLEXLN 0.06 0.00† 0.02 0.93 0.01 1.00

INSTLEXBOW+LN/BOLEXLN 0.17 0.00† 0.09 0.00† 0.08 0.00†

INSTLEXBOW+RLN/BOLEXLN 0.14 0.00† 0.10 0.00† 0.09 0.00†

MEANEMB/BOLEXLN 0.06 0.00† 0.03 0.50 0.00 1.00

INSTLEXEMB+LN/BOLEXLN 0.14 0.00† 0.11 0.00† 0.09 0.00†

INSTLEXEMB+RLN/BOLEXLN 0.15 0.00† 0.10 0.00† 0.12 0.00†

BOW/BOLEXRLN 0.02 0.69 0.02 0.74 0.03 0.62

INSTLEXBOW+LN/BOLEXRLN 0.13 0.00† 0.10 0.00† 0.09 0.00†

INSTLEXBOW+RLN/BOLEXRLN 0.09 0.00† 0.10 0.00† 0.11 0.00†

MEANEMB/BOLEXRLN 0.01 0.98 0.03 0.26 0.02 0.90

INSTLEXEMB+LN/BOLEXRLN 0.09 0.00† 0.11 0.00† 0.11 0.00†

INSTLEXEMB+RLN/BOLEXRLN 0.10 0.00† 0.11 0.00† 0.13 0.00†

INSTLEXBOW+LN/BOW 0.11 0.00† 0.08 0.00† 0.07 0.00†

INSTLEXBOW+RLN/BOW 0.07 0.00† 0.08 0.00† 0.08 0.00†

MEANEMB/BOW -0.01 0.99 0.01 0.99 -0.01 1.00

INSTLEXEMB+LN/BOW 0.08 0.00† 0.09 0.00† 0.08 0.00†

INSTLEXEMB+RLN/BOW 0.08 0.00† 0.09 0.00† 0.11 0.00†

INSTLEXBOW+RLN/INSTLEXBOW+LN -0.04 0.03† 0.00 1.00 0.02 0.97

MEANEMB/INSTLEXBOW+LN -0.12 0.00† -0.07 0.00† -0.08 0.00†

INSTLEXEMB+LN/INSTLEXBOW+LN -0.03 0.05 0.01 0.98 0.02 0.94

INSTLEXEMB+RLN/INSTLEXBOW+LN -0.03 0.28 0.01 0.99 0.04 0.16

MEANEMB/INSTLEXBOW+RLN -0.08 0.00† -0.07 0.00† -0.09 0.00†

INSTLEXEMB+LN/INSTLEXBOW+RLN 0.00 1.00 0.01 0.99 0.00 1.00

INSTLEXEMB+RLN/INSTLEXBOW+RLN 0.01 0.97 0.01 1.00 0.02 0.75

INSTLEXEMB+LN/MEANEMB 0.08 0.00† 0.08 0.00† 0.09 0.00†

INSTLEXEMB+RLN/MEANEMB 0.09 0.00† 0.08 0.00† 0.11 0.00†

INSTLEXEMB+RLN/INSTLEXEMB+LN 0.01 1.00 -0.00 1.00 0.02 0.82

TABLE 7.9: Results of Tukey test on DTL-2. † indicates statistical significance at 0.95 confi-
dence.
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IAC ABCD SETC

SENTLEXBOW+LN 0.776 0.769 0.741

SENTLEXBOW+RLN 0.757 0.762 0.748

SENTLEXEMB+LN 0.772 0.788 0.774

SENTLEXEMB+RLN 0.762 0.775 0.762

VSBOLEXLN 0.639 0.622 0.617

VSBOLEXRLN 0.587 0.603 0.601

VSBOW 0.575 0.552 0.583

VSEMB 0.743 0.740 0.722

TABLE 7.10: Accuracy results of Task DSC-2 with sentence-level feature model
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FIGURE 7.18: Box plot of accuracy results of Task DSC-2 with sentence-level feature model
per dataset

Results of task DSC-2 This section details the results of the DSC-2 task, which focuses on

binary classification of stance. We show the results in Table 7.10 and see that the embedding-based

and LEXICNET-enriched representation seems to dominate, with all enriched representations

having a large difference over the semantic-only and lexicon-only approaches except for the

sentence embedding representation (VSEMB). We illustrate those results in Figure 7.18 to

compare per dataset and Figure 7.19 by averaging over all datasets. We can see from Figure 7.19

that all representations perform relatively similarly, and that the MEANEMB baseline performs

very close to the proposed approaches.

An examination of our ANOVA table in Table 7.11 and following that of the results of our paired

comparisons using the Tukey HSD test in Table 7.12 confirms our observations, showing that



Chapter 7. Lexicon-based Feature Models for Stance Detection 156

●

● ●
●

● ●

●
●

0.5

0.6

0.7

0.8

B
O

W

B
O

W
+

LN

B
O

W
+

R
LN

M
ea

nE
m

b

E
m

b+
LN

E
m

b+
R

LN

V
S

LN

V
S

R
LN

Algorithm

A
cc

ur
ac

y

FIGURE 7.19: Box plot of accuracy results of Task DSC-2 with sentence-level feature model
over all datasets

Dataset F-Value P-Value

IAC 55.105 2.09981432691958e-26†

ABCD 43.623 1.98767852848713e-23†

SETC 40.715 1.41664252315884e-22†

TABLE 7.11: Results of ANOVA on task DSC-2. † indicates statistical significance at 0.95
confidence.

while all approaches outperformed the bag of words and bag of lexicon values baselines, the

difference between the embedding baseline MEANEMB and the proposed approaches did not

reach statistical significance.

Results of task DSC-3 The results of the DSC-3 evaluation task in Table 7.13 show that in

the IAC and ABCD datasets, while the proposed approaches outperform the non-enriched

representations, the embedding-based representation VSEMB comes very close to the top-

performing accuracy (within 0.05 in IAC and 0.09 in ABCD). The enriched representations

however perform relatively similar to each other, with a very low level of variation in IAC

(all results ranging from 0.668 to 0.683) and a slightly larger range for the ABCD dataset

(ranging from 0.645 to 0.697). On the SETC dataset, the VSEMB baseline outperforms all

other approaches by a very large margin (0.032). We illustrate those results in Figures 7.20 and

7.21, firstly per dataset and finally averaging over all datasets. Figure 7.21 shows that overall,

the VSEMB baseline seems to perform at least as good if not slightly better than the proposed

representations.
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

SENTLEXBOW+LN/VSBOW 0.20 0.00† 0.22 0.00† 0.16 0.00†

SENTLEXBOW+RLN/VSBOW 0.18 0.00† 0.21 0.00† 0.16 0.00†

VSEMB/VSBOW 0.17 0.00† 0.19 0.00† 0.14 0.00†

SENTLEXEMB+LN/VSBOW 0.20 0.00† 0.24 0.00† 0.19 0.00†

SENTLEXEMB+RLN/VSBOW 0.19 0.00† 0.22 0.00† 0.18 0.00†

VSBOLEXLN/VSBOW 0.06 0.00† 0.07 0.02† 0.03 0.53

VSBOLEXRLN/VSBOW 0.01 0.99 0.05 0.20 0.02 0.97

SENTLEXBOW+RLN/SENTLEXBOW+LN -0.02 0.93 -0.01 1.00 0.01 1.00

VSEMB/SENTLEXBOW+LN -0.03 0.47 -0.03 0.82 -0.02 0.96

SENTLEXEMB+LN/SENTLEXBOW+LN -0.00 1.00 0.02 0.98 0.03 0.59

SENTLEXEMB+RLN/SENTLEXBOW+LN -0.01 0.99 0.01 1.00 0.02 0.94

VSBOLEXLN/SENTLEXBOW+LN -0.14 0.00† -0.15 0.00† -0.12 0.00†

VSBOLEXRLN/SENTLEXBOW+LN -0.19 0.00† -0.17 0.00† -0.14 0.00†

VSEMB/SENTLEXBOW+RLN -0.01 0.99 -0.02 0.96 -0.03 0.83

SENTLEXEMB+LN/SENTLEXBOW+RLN 0.01 0.98 0.03 0.89 0.03 0.81

SENTLEXEMB+RLN/SENTLEXBOW+RLN 0.00 1.00 0.01 1.00 0.01 0.99

VSBOLEXLN/SENTLEXBOW+RLN -0.12 0.00† -0.14 0.00† -0.13 0.00†

VSBOLEXRLN/SENTLEXBOW+RLN -0.17 0.00† -0.16 0.00† -0.15 0.00†

SENTLEXEMB+LN/VSEMB 0.03 0.65 0.05 0.25 0.05 0.08

SENTLEXEMB+RLN/VSEMB 0.02 0.94 0.04 0.64 0.04 0.34

VSBOLEXLN/VSEMB -0.10 0.00† -0.12 0.00† -0.11 0.00†

VSBOLEXRLN/VSEMB -0.16 0.00† -0.14 0.00† -0.12 0.00†

SENTLEXEMB+RLN/SENTLEXEMB+LN -0.01 1.00 -0.01 1.00 -0.01 1.00

VSBOLEXLN/SENTLEXEMB+LN -0.13 0.00† -0.17 0.00† -0.16 0.00†

VSBOLEXRLN/SENTLEXEMB+LN -0.18 0.00† -0.19 0.00† -0.17 0.00†

VSBOLEXLN/SENTLEXEMB+RLN -0.12 0.00† -0.15 0.00† -0.14 0.00†

VSBOLEXRLN/SENTLEXEMB+RLN -0.17 0.00† -0.17 0.00† -0.16 0.00†

VSBOLEXRLN/VSBOLEXLN -0.05 0.05 -0.02 0.97 -0.02 0.98

TABLE 7.12: Results of Tukey test on task DSC-2 with sentence-level representations. †

indicates statistical significance at 0.95 confidence.
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IAC ABCD SETC

SENTLEXBOW+LN 0.683 0.693 0.643

SENTLEXBOW+RLN 0.668 0.645 0.634

SENTLEXEMB+LN 0.668 0.668 0.628

SENTLEXEMB+RLN 0.677 0.697 0.631

VSBOLEXLN 0.568 0.574 0.566

VSBOLEXRLN 0.552 0.539 0.552

VSBOW 0.569 0.540 0.531

VSEMB 0.677 0.688 0.675

TABLE 7.13: Accuracy results of Task DSC-3 with sentence-level feature model
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FIGURE 7.20: Box plot of accuracy results of Task DSC-3 with sentence-level feature model
per dataset
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FIGURE 7.21: Box plot of accuracy results of Task DSC-3 with sentence-level feature model
over all datasets
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Dataset F-Value P-Value

IAC 15.132 5.40848272169679e-12†

ABCD 46.38 3.39252319607527e-24†

SETC 49.286 5.75305314347075e-25†

TABLE 7.14: Results of ANOVA on task DSC-3. † indicates statistical significance at 0.95
confidence.
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FIGURE 7.22: Box plot of accuracy results of Task DTL-2 with sentence-level feature model
per dataset

Further investigation using our ANOVA table in Table 7.14 shows that there exist some significant

differences within representations over all datasets, which warrants the Tukey post hoc test shown

in Table 7.15. Those result agree with the rest of our analysis, showing that while there is some

difference observed with visual inspection of the results, the differences over all do not reach

statistical significance except for the poor performance of the lexicon-only baselines.

Results of task DTL-2 The results in Table 7.16 show that SENTLEXBOW+LN outperforms

all other representations except for the SETC dataset, where SENTLEXEMB+RLN performs best.

Unlike previous tasks, the embedding baseline here (VSEMB) does not perform well, and is

typically 0.1 to 0.15 lower than the best performing representation. We illustrate those results in

two figures. In Figure 7.22 we can observe the breakdown of scores per dataset, and we can see

that the baselines tend to perform consistently bad, while the proposed representations tend to

perform consistently well and with less overall variance in the results. In Figure 7.23, we can see

those same results averaged over all datasets, and which emphasise the same conclusion.
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

SENTLEXBOW+LN/VSBOW 0.11 0.00† 0.15 0.00† 0.11 0.00†

SENTLEXBOW+RLN/VSBOW 0.10 0.00† 0.11 0.00† 0.10 0.00†

VSEMB/VSBOW 0.11 0.00† 0.15 0.00† 0.14 0.00†

SENTLEXEMB+LN/VSBOW 0.10 0.00† 0.13 0.00† 0.10 0.00†

SENTLEXEMB+RLN/VSBOW 0.11 0.00† 0.16 0.00† 0.10 0.00†

VSBOLEXLN/VSBOW -0.00 1.00 0.03 0.26 0.03 0.02†

VSBOLEXRLN/VSBOW -0.02 0.99 -0.00 1.00 0.02 0.43

SENTLEXBOW+RLN/SENTLEXBOW+LN -0.01 1.00 -0.05 0.03† -0.01 0.99

VSEMB/SENTLEXBOW+LN -0.01 1.00 -0.00 1.00 0.03 0.05

SENTLEXEMB+LN/SENTLEXBOW+LN -0.01 1.00 -0.02 0.67 -0.02 0.80

SENTLEXEMB+RLN/SENTLEXBOW+LN -0.01 1.00 0.00 1.00 -0.01 0.94

VSBOLEXLN/SENTLEXBOW+LN -0.11 0.00† -0.12 0.00† -0.08 0.00†

VSBOLEXRLN/SENTLEXBOW+LN -0.13 0.00† -0.15 0.00† -0.09 0.00†

VSEMB/SENTLEXBOW+RLN 0.01 1.00 0.04 0.07 0.04 0.00†

SENTLEXEMB+LN/SENTLEXBOW+RLN 0.00 1.00 0.02 0.73 -0.01 1.00

SENTLEXEMB+RLN/SENTLEXBOW+RLN 0.01 1.00 0.05 0.01† -0.00 1.00

VSBOLEXLN/SENTLEXBOW+RLN -0.10 0.00† -0.07 0.00† -0.07 0.00†

VSBOLEXRLN/SENTLEXBOW+RLN -0.12 0.00† -0.11 0.00† -0.08 0.00†

SENTLEXEMB+LN/VSEMB -0.01 1.00 -0.02 0.86 -0.05 0.00†

SENTLEXEMB+RLN/VSEMB 0.00 1.00 0.01 1.00 -0.04 0.00†

VSBOLEXLN/VSEMB -0.11 0.00† -0.11 0.00† -0.11 0.00†

VSBOLEXRLN/VSEMB -0.12 0.00† -0.15 0.00† -0.12 0.00†

SENTLEXEMB+RLN/SENTLEXEMB+LN 0.01 1.00 0.03 0.48 0.00 1.00

VSBOLEXLN/SENTLEXEMB+LN -0.10 0.00† -0.09 0.00† -0.06 0.00†

VSBOLEXRLN/SENTLEXEMB+LN -0.12 0.00† -0.13 0.00† -0.08 0.00†

VSBOLEXLN/SENTLEXEMB+RLN -0.11 0.00† -0.12 0.00† -0.07 0.00†

VSBOLEXRLN/SENTLEXEMB+RLN -0.13 0.00† -0.16 0.00† -0.08 0.00†

VSBOLEXRLN/VSBOLEXLN -0.02 0.99 -0.03 0.24 -0.01 0.90

TABLE 7.15: Results of Tukey test on task DSC-3. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

SENTLEXBOW+LN 0.715 0.741 0.678

SENTLEXBOW+RLN 0.695 0.694 0.701

SENTLEXEMB+LN 0.706 0.699 0.715

SENTLEXEMB+RLN 0.708 0.676 0.721

VSBOLEXLN 0.604 0.600 0.615

VSBOLEXRLN 0.608 0.585 0.591

VSBOW 0.549 0.581 0.626

VSEMB 0.610 0.613 0.605

TABLE 7.16: Accuracy results of Task DTL-2 with sentence-level feature model
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FIGURE 7.23: Box plot of accuracy results of Task DTL-2 with sentence-level feature model
over all datasets

We perform an ANOVA (Table 7.17) to test our conclusion and detect a significant change between

approaches, which leads us to the results of a Tukey HSD test displayed in Table 7.18). An

inspection of those results shows that overall, the proposed representations perform significantly

better than both lexicon-only and semantic-only baselines, and that there is no statistically

significant difference among baseline approaches as well as among the proposed representations.
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Dataset F-Value P-Value

IAC 49.611 4.74298763062588e-25†

ABCD 43.858 1.70378503723316e-23†

SETC 22.186 1.11453141231639e-15†

TABLE 7.17: Results of ANOVA on task DTL-2. † indicates statistical significance at 0.95
confidence.

7.5.4 Results with word-level feature model

In this section we review and comment on the results of our experiment with the word-level

feature models developed throughout this chapter. Unlike the sentence-level models, the word-

level models do not average over words of each sentence but retain all information both at the

semantic and the lexicon level. Similarly to sentence-level models, the representations are thus of

variable length and are processed by a recurrent neural network. We evaluate four representations,

representing the combinations of either one hot encoding (detailed in Section 3.3.1.1) and word

embedding for the semantic part of each word, and LEXICNET vector or RELEXNET vector for

the lexicon part of each word.

The following baselines were used:

VLN , a vector of LEXICNET values for each term ;

VRLN , a vector of RELEXNET values for each term ;

ONEHOT , a vector of one-hot encoded terms ;

EMBEDDING , a vector of word embeddings.

Results of task DSC-2 We show the results of the DSC-2 task in Table 7.19, and illustrate

them in Figures 7.24 (per dataset) and 7.25 (averaged over all datasets). A visual inspection of

the plots and the related table shows that the LEXICNET-enriched and word embedding based

representation WOLLEXEMB+LN outperforms all other approaches in the IAC and SETC datasets

and comes close to the best-performing method in the ABCD dataset, where the EMBEDDING

baseline outperforms it by a small margin (0.032).
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

SENTLEXBOW+LN/VSBOW 0.17 0.00† 0.16 0.00† 0.05 0.03†

SENTLEXBOW+RLN/VSBOW 0.15 0.00† 0.11 0.00† 0.07 0.00†

VSEMB/VSBOW 0.06 0.00† 0.03 0.26 -0.02 0.88

SENTLEXEMB+LN/VSBOW 0.16 0.00† 0.12 0.00† 0.09 0.00†

SENTLEXEMB+RLN/VSBOW 0.16 0.00† 0.09 0.00† 0.09 0.00†

VSBOLEXLN/VSBOW 0.05 0.00† 0.02 0.84 -0.01 1.00

VSBOLEXRLN/VSBOW 0.06 0.00† 0.00 1.00 -0.03 0.36

SENTLEXBOW+RLN/SENTLEXBOW+LN -0.02 0.75 -0.05 0.01† 0.02 0.83

VSEMB/SENTLEXBOW+LN -0.11 0.00† -0.13 0.00† -0.07 0.00†

SENTLEXEMB+LN/SENTLEXBOW+LN -0.01 1.00 -0.04 0.04† 0.04 0.30

SENTLEXEMB+RLN/SENTLEXBOW+LN -0.01 1.00 -0.07 0.00† 0.04 0.14

VSBOLEXLN/SENTLEXBOW+LN -0.11 0.00† -0.14 0.00† -0.06 0.00†

VSBOLEXRLN/SENTLEXBOW+LN -0.11 0.00† -0.16 0.00† -0.09 0.00†

VSEMB/SENTLEXBOW+RLN -0.09 0.00† -0.08 0.00† -0.10 0.00†

SENTLEXEMB+LN/SENTLEXBOW+RLN 0.01 0.99 0.01 1.00 0.01 0.99

SENTLEXEMB+RLN/SENTLEXBOW+RLN 0.01 0.97 -0.02 0.84 0.02 0.91

VSBOLEXLN/SENTLEXBOW+RLN -0.09 0.00† -0.09 0.00† -0.09 0.00†

VSBOLEXRLN/SENTLEXBOW+RLN -0.09 0.00† -0.11 0.00† -0.11 0.00†

SENTLEXEMB+LN/VSEMB 0.10 0.00† 0.09 0.00† 0.11 0.00†

SENTLEXEMB+RLN/VSEMB 0.10 0.00† 0.06 0.00† 0.12 0.00†

VSBOLEXLN/VSEMB -0.01 1.00 -0.01 0.98 0.01 1.00

VSBOLEXRLN/VSEMB -0.00 1.00 -0.03 0.39 -0.01 0.99

SENTLEXEMB+RLN/SENTLEXEMB+LN 0.00 1.00 -0.02 0.61 0.01 1.00

VSBOLEXLN/SENTLEXEMB+LN -0.10 0.00† -0.10 0.00† -0.10 0.00†

VSBOLEXRLN/SENTLEXEMB+LN -0.10 0.00† -0.11 0.00† -0.12 0.00†

VSBOLEXLN/SENTLEXEMB+RLN -0.10 0.00† -0.08 0.00† -0.11 0.00†

VSBOLEXRLN/SENTLEXEMB+RLN -0.10 0.00† -0.09 0.00† -0.13 0.00†

VSBOLEXRLN/VSBOLEXLN 0.00 1.00 -0.02 0.94 -0.02 0.82

TABLE 7.18: Results of Tukey test on task DTL-2. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

WOLLEXOH+LN 0.790 0.771 0.792

WOLLEXOH+RLN 0.755 0.762 0.791

WOLLEXEMB+LN 0.817 0.745 0.797

WOLLEXEMB+RLN 0.775 0.770 0.758

VLN 0.634 0.607 0.610

VRLN 0.579 0.603 0.609

ONEHOT 0.712 0.748 0.735

EMBEDDING 0.752 0.777 0.736

TABLE 7.19: Accuracy results of Task DSC-2 with word-level feature model
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FIGURE 7.24: Box plot of accuracy results of Task DSC-2 with word-level feature model
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FIGURE 7.25: Box plot of accuracy results of Task DSC-2 with word-level feature model
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Dataset F-Value P-Value

IAC 53.935 3.9884104071254e-26†

ABCD 49.597 4.78186413583018e-25†

SETC 58.401 3.65354147763317e-27†

TABLE 7.20: Results of ANOVA on task DSC-2. † indicates statistical significance at 0.95
confidence.

The results of the ANOVA in Table 7.20 show that there is a significant difference worth inves-

tigating between approaches, which leads us to the results of a Tukey HSD test, in Table 7.21.

The results from the Tukey test confirm the observations that we can make from the plot, where

the only significant differences are between the very low performing lexicon-only representa-

tions and the rest of the approaches, including the embedding and the one hot baselines. The

WOLLEXEMB+LN representation also outperforms the ONEHOT and EMBEDDING on two of the

datasets, IAC and SETC, with a statistically significant difference.

Results of task DSC-3 In this section we perform an evaluation of our proposed representations

on the DSC-3 task, a three class stance classification problem. The test results in Table 7.22

show that WOLLEXOH+LN and WOLLEXEMB+LN tend to outperform other approaches on all

datasets. The strongest baseline, EMBEDDING, comes within 0.004 to 0.016 of the top performing

representation, which is close enough that we do not expect to see a statistically significant

difference in our further testing. We illustrate those results in Figure 7.26, which shows a box

and whiskers plot of the accuracy broken down per dataset, and Figure 7.27, which shows those

same scores aggregated over all datasets. We can see from those plots that embedding-based

methods tend to fare better on IAC and ABCD, with them having a more consistent set of scores

than enriched methods based on one-hot encoding.

The p-values from our ANOVA, in Table 7.23, indicate that there is a significant difference in

the results of this experiment, which we investigate with a Tukey HSD test shown in Table 7.24.

Further testing confirms our previous observation, which is that the EMBEDDING baseline is

close enough that statistical significance is not attained on the difference between it and our
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

WOLLEXEMB+LN/EMBEDDING 0.06 0.00† -0.03 0.38 0.06 0.00†

WOLLEXEMB+RLN/EMBEDDING 0.02 0.81 -0.01 1.00 0.02 0.78

ONEHOT/EMBEDDING -0.04 0.20 -0.03 0.50 0.00 1.00

WOLLEXOH+LN/EMBEDDING 0.04 0.23 -0.01 1.00 0.06 0.00†

WOLLEXOH+RLN/EMBEDDING 0.00 1.00 -0.02 0.97 0.06 0.01†

VLN/EMBEDDING -0.12 0.00† -0.17 0.00† -0.13 0.00†

VRLN/EMBEDDING -0.17 0.00† -0.17 0.00† -0.13 0.00†

WOLLEXEMB+RLN/WOLLEXEMB+LN -0.04 0.16 0.02 0.70 -0.04 0.12

ONEHOT/WOLLEXEMB+LN -0.10 0.00† 0.00 1.00 -0.06 0.00†

WOLLEXOH+LN/WOLLEXEMB+LN -0.03 0.70 0.03 0.65 0.00 1.00

WOLLEXOH+RLN/WOLLEXEMB+LN -0.06 0.00† 0.02 0.95 -0.01 1.00

VLN/WOLLEXEMB+LN -0.18 0.00† -0.14 0.00† -0.19 0.00†

VRLN/WOLLEXEMB+LN -0.24 0.00† -0.14 0.00† -0.19 0.00†

ONEHOT/WOLLEXEMB+RLN -0.06 0.00† -0.02 0.80 -0.02 0.78

WOLLEXOH+LN/WOLLEXEMB+RLN 0.02 0.98 0.00 1.00 0.03 0.24

WOLLEXOH+RLN/WOLLEXEMB+RLN -0.02 0.89 -0.01 1.00 0.03 0.29

VLN/WOLLEXEMB+RLN -0.14 0.00† -0.16 0.00† -0.15 0.00†

VRLN/WOLLEXEMB+RLN -0.20 0.00† -0.17 0.00† -0.15 0.00†

WOLLEXOH+LN/ONEHOT 0.08 0.00† 0.02 0.76 0.06 0.00†

WOLLEXOH+RLN/ONEHOT 0.04 0.13 0.01 0.98 0.06 0.01†

VLN/ONEHOT -0.08 0.00† -0.14 0.00† -0.13 0.00†

VRLN/ONEHOT -0.13 0.00† -0.14 0.00† -0.13 0.00†

WOLLEXOH+RLN/WOLLEXOH+LN -0.04 0.33 -0.01 1.00 0.00 1.00

VLN/WOLLEXOH+LN -0.16 0.00† -0.16 0.00† -0.18 0.00†

VRLN/WOLLEXOH+LN -0.21 0.00† -0.17 0.00† -0.18 0.00†

VLN/WOLLEXOH+RLN -0.12 0.00† -0.16 0.00† -0.18 0.00†

VRLN/WOLLEXOH+RLN -0.18 0.00† -0.16 0.00† -0.18 0.00†

VRLN/VLN -0.06 0.02† 0.00 1.00 0.00 1.00

TABLE 7.21: Tukey test for IAC, ABCD and SETC on DSC-2. † indicates statistical signifi-
cance at 0.95 confidence.
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IAC ABCD SETC

WOLLEXOH+LN 0.685 0.671 0.637

WOLLEXOH+RLN 0.647 0.650 0.635

WOLLEXEMB+LN 0.681 0.685 0.627

WOLLEXEMB+RLN 0.642 0.665 0.605

VLN 0.579 0.554 0.551

VRLN 0.554 0.536 0.548

ONEHOT 0.520 0.626 0.578

EMBEDDING 0.676 0.681 0.621

TABLE 7.22: Accuracy results of Task DSC-3 with word-level feature model
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FIGURE 7.26: Box plot of accuracy results of Task DSC-3 with word-level feature model
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FIGURE 7.27: Box plot of accuracy results of Task DSC-3 with word-level feature model
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Dataset F-Value P-Value

IAC 27.104 8.01565094976069e-18†

ABCD 25.16 5.20748057425818e-17†

SETC 9.952 1.25650747438696e-08†

TABLE 7.23: Results of ANOVA on task DSC-3. † indicates statistical significance at 0.95
confidence.
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FIGURE 7.28: Box plot of accuracy results of Task DTL-2 with word-level feature model

approaches. However, the other baselines such as the lexicon-only representations as well as

one-hot encoding are outperformed with a significant margin in most datasets.

Results of task DTL-2 In this section we comment on the results of task DTL-2, displayed

in Table 7.25, Figures 7.28 and 7.29. A visual inspection of those results shows that proposed

approaches outperform the baseline approaches by a reasonable margin, beating the best baseline

by a range of 0.03 to 0.057. The LEXICNET-enriched representations tend to perform better on

the IAC and ABCD datasets, and are extremely close to the results of the RELEXNET-enriched

representations on the SETC dataset. There is no consistent difference between representa-

tions based on one-hot encoding and based on word embeddings, except that embedding-based

techniques tend to yield a better accuracy on the SETC dataset.

The ANOVA test displayed in Figure 7.26 shows evidence of there being a significant difference

within the results previously discussed, and therefore we perform a post hoc test using the Tukey

HSD testing procedure, and show the results in Table 7.27. The results of the Tukey HSD test

coincide with our previous observations and do not reveal any counter-intuitive result.
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

WOLLEXEMB+LN/EMBEDDING 0.01 1.00 0.00 1.00 0.01 1.00

WOLLEXEMB+RLN/EMBEDDING -0.03 0.51 -0.02 0.97 -0.02 0.98

ONEHOT/EMBEDDING -0.16 0.00† -0.05 0.03† -0.04 0.17

WOLLEXOH+LN/EMBEDDING 0.01 1.00 -0.01 1.00 0.02 0.98

WOLLEXOH+RLN/EMBEDDING -0.03 0.69 -0.03 0.54 0.01 0.99

VLN/EMBEDDING -0.10 0.00† -0.13 0.00† -0.07 0.00†

VRLN/EMBEDDING -0.12 0.00† -0.15 0.00† -0.07 0.00†

WOLLEXEMB+RLN/WOLLEXEMB+LN -0.04 0.33 -0.02 0.92 -0.02 0.88

ONEHOT/WOLLEXEMB+LN -0.16 0.00† -0.06 0.01† -0.05 0.07

WOLLEXOH+LN/WOLLEXEMB+LN 0.00 1.00 -0.01 0.99 0.01 1.00

WOLLEXOH+RLN/WOLLEXEMB+LN -0.03 0.50 -0.03 0.41 0.01 1.00

VLN/WOLLEXEMB+LN -0.10 0.00† -0.13 0.00† -0.08 0.00†

VRLN/WOLLEXEMB+LN -0.13 0.00† -0.15 0.00† -0.08 0.00†

ONEHOT/WOLLEXEMB+RLN -0.12 0.00† -0.04 0.28 -0.03 0.72

WOLLEXOH+LN/WOLLEXEMB+RLN 0.04 0.23 0.01 1.00 0.03 0.52

WOLLEXOH+RLN/WOLLEXEMB+RLN 0.00 1.00 -0.01 0.99 0.03 0.58

VLN/WOLLEXEMB+RLN -0.06 0.01† -0.11 0.00† -0.05 0.03

VRLN/WOLLEXEMB+RLN -0.09 0.00† -0.13 0.00† -0.06 0.02†

WOLLEXOH+LN/ONEHOT 0.16 0.00† 0.04 0.13 0.06 0.01†

WOLLEXOH+RLN/ONEHOT 0.13 0.00† 0.02 0.83 0.06 0.02†

VLN/ONEHOT 0.06 0.02† -0.07 0.00† -0.03 0.72

VRLN/ONEHOT 0.03 0.52 -0.09 0.00† -0.03 0.62

WOLLEXOH+RLN/WOLLEXOH+LN -0.04 0.37 -0.02 0.90 0.00 1.00

VLN/WOLLEXOH+LN -0.11 0.00† -0.12 0.00† -0.09 0.00†

VRLN/WOLLEXOH+LN -0.13 0.00† -0.13 0.00† -0.09 0.00†

VLN/WOLLEXOH+RLN -0.07 0.00† -0.10 0.00† -0.08 0.00†

VRLN/WOLLEXOH+RLN -0.09 0.00† -0.11 0.00† -0.09 0.00†

VRLN/VLN -0.03 0.83 -0.02 0.96 0.00 1.00

TABLE 7.24: Tukey test for IAC, ABCD and SETC on DSC-3. † indicates statistical signifi-
cance at 0.95 confidence.
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IAC ABCD SETC

WOLLEXOH+LN 0.711 0.700 0.695

WOLLEXOH+RLN 0.691 0.691 0.693

WOLLEXEMB+LN 0.712 0.680 0.709

WOLLEXEMB+RLN 0.687 0.683 0.718

VLN 0.633 0.619 0.598

VRLN 0.599 0.613 0.589

ONEHOT 0.556 0.570 0.616

EMBEDDING 0.654 0.647 0.678

TABLE 7.25: Accuracy results of Task DTL-2 with word-level feature model
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FIGURE 7.29: Box plot of accuracy results of Task DTL-2 with word-level feature model

Dataset F-Value P-Value

IAC 18.185 1.07737810299774e-13†

ABCD 20.656 5.98930389381991e-15†

SETC 25.37 4.23477489899523e-17†

TABLE 7.26: Results of ANOVA on task DTL-2. † indicates statistical significance at 0.95
confidence.
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IAC ABCD SETC

Diff. Adj. P-Value Diff. Adj. P-Value Diff. Adj. P-Value

WOLLEXEMB+LN/EMBEDDING 0.06 0.05 0.03 0.33 0.03 0.43

WOLLEXEMB+RLN/EMBEDDING 0.03 0.64 0.04 0.23 0.04 0.15

ONEHOT/EMBEDDING -0.10 0.00† -0.08 0.00† -0.06 0.00†

WOLLEXOH+LN/EMBEDDING 0.06 0.06 0.05 0.01† 0.02 0.95

WOLLEXOH+RLN/EMBEDDING 0.04 0.49 0.04 0.07 0.01 0.97

VLN/EMBEDDING -0.02 0.95 -0.03 0.48 -0.08 0.00†

VRLN/EMBEDDING -0.05 0.08 -0.03 0.24 -0.09 0.00†

WOLLEXEMB+RLN/WOLLEXEMB+LN -0.03 0.87 0.00 1.00 0.01 1.00

ONEHOT/WOLLEXEMB+LN -0.16 0.00† -0.11 0.00† -0.09 0.00†

WOLLEXOH+LN/WOLLEXEMB+LN 0.00 1.00 0.02 0.87 -0.01 0.98

WOLLEXOH+RLN/WOLLEXEMB+LN -0.02 0.95 0.01 1.00 -0.02 0.96

VLN/WOLLEXEMB+LN -0.08 0.00† -0.06 0.00† -0.11 0.00†

VRLN/WOLLEXEMB+LN -0.11 0.00† -0.07 0.00† -0.12 0.00†

ONEHOT/WOLLEXEMB+RLN -0.13 0.00† -0.11 0.00† -0.10 0.00†

WOLLEXOH+LN/WOLLEXEMB+RLN 0.02 0.90 0.02 0.94 -0.02 0.78

WOLLEXOH+RLN/WOLLEXEMB+RLN 0.00 1.00 0.01 1.00 -0.02 0.71

VLN/WOLLEXEMB+RLN -0.05 0.09 -0.06 0.00† -0.12 0.00†

VRLN/WOLLEXEMB+RLN -0.09 0.00† -0.07 0.00† -0.13 0.00†

WOLLEXOH+LN/ONEHOT 0.16 0.00† 0.13 0.00† 0.08 0.00†

WOLLEXOH+RLN/ONEHOT 0.14 0.00† 0.12 0.00† 0.08 0.00†

VLN/ONEHOT 0.08 0.00† 0.05 0.02† -0.02 0.92

VRLN/ONEHOT 0.04 0.31 0.04 0.07 -0.03 0.61

WOLLEXOH+RLN/WOLLEXOH+LN -0.02 0.96 -0.01 1.00 0.00 1.00

VLN/WOLLEXOH+LN -0.08 0.00† -0.08 0.00† -0.10 0.00†

VRLN/WOLLEXOH+LN -0.11 0.00† -0.09 0.00† -0.11 0.00†

VLN/WOLLEXOH+RLN -0.06 0.05 -0.07 0.00† -0.10 0.00†

VRLN/WOLLEXOH+RLN -0.09 0.00† -0.08 0.00† -0.10 0.00†

VRLN/VLN -0.03 0.62 -0.01 1.00 -0.01 1.00

TABLE 7.27: Tukey test for IAC, ABCD and SETC on DTL-2. † indicates statistical signifi-
cance at 0.95 confidence.
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7.5.5 Discussion

In this section we demonstrated and commented on the results from multiple experiments, testing

the usefulness of augmenting semantic representations of text with additional knowledge in

the form of a lexicon representation of words, at multiple levels of granularity starting from an

instance-level representation, where a flat vector of unchanging dimension represents the text

to be classified, to a word-level representation where each term of an instance is represented

on a semantic level as well as on a lexicon level. We now seek to answer the two research

questions that were asked in the beginning of this chapter with the evidence collected through

our experiments: (1) can a lexicon enhance a traditional text representation scheme for stance

classification? and (2) at which granularity, if any, does this enhancement perform best?

7.5.5.1 Lexicon-based enhancement of text representation

While a visual inspection of the results often shows that the enriched representations outperform

their non-enriched counterparts, further statistical testing more often than not shows that such

difference is not statistically significant. One probable cause for this is the fact that we are

testing several hypotheses by pairing each representation together in order to detect any statistical

significance in their difference. The high number of possible pairings forces us to use an extremely

conservative testing procedure in order to reduce the chance of increasing our type 1 error rate.

However, the existing results show a lot of promise in the field of text representation: it is possible

and effective to use resources such as lexicons in order to enhance classification accuracy in an

artificial manner.

In order to overcome this problem we perform a further analysis by grouping algorithms together

according to the following groups: proposed approaches, containing all enriched representations

with a semantic and a lexicon part, and the top ranking baseline based on the use of word

embeddings alone. We aggregate the results of all those algorithms on the DSC-2, DSC-3, and

DTL-2 tasks and display those results in Table 7.28.

On the DSC-2 tasks, we find the mean average accuracy to be 0.753 for the enriched repre-

sentations and 0.720 for the best baselines. A two-tailed Welch T-test for unequal variances

reveals a p-value of 1.316e− 08, which passes the p < 0.05 as well as the p < 0.01 threshold
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Task DSC-2 DSC-3 DTL-2

Baseline approaches 0.720 0.661† 0.628

Enriched representations 0.753† 0.649 0.701†

TABLE 7.28: Mean accuracies when averaging over types of approaches

and shows that enriched representations overall outperform significantly very strong baselines.

Similarly, with respect to the DSC-3 tasks we find mean average accuracies of 0.649 and 0.661

for enriched and baseline representations (respectively), yielding a p-value of 0.01239. While it

does not pass the p < 0.01 threshold, it does pass the p < 0.05 threshold and achieves statistical

significance, lending evidence to the fact that lexicon enrichment of semantic representations

has a detrimental effect on classification in a 3 class stance classification task. A possible reason

could be that the lexicons computed for 3 classes are not reliable for text representation, which is

in agreement with the poor performance of shallow lexicon-based classification in evaluation task

SSC-3, Section 6.4.3.2. Finally, with respect to the DTL-2 task enriched representations achieve

an average accuracy of 0.701, while baseline approaches achieve an average of 0.628. Further

testing yields a p-value of 2.2e− 16, which easily reaches statistical significance at the p < 0.05

and p < 0.01 level.

Those further experiments lend more evidence to the fact that enriching semantic representations

with class-sensitive information such as lexicon knowledge can help improve classification accu-

racy as long as the lexicon representation is good itself. Indeed, it appears that the performance

of the lexicon-enhanced representations are highly correlated to the performance of lexicon

classifiers with the corresponding number of classes as seen in the previous chapter (DSC2 and

DTL-2 with SSC-2, DSC-3 with SSC-3).

7.5.5.2 Granularity of representation

The second research question concerns itself with the optimal granularity of representation in

order to make use of enriched representations. The aggregated results are presented in Figure 7.30

from which we observe that while there is little to no difference in the DTL-2 task, the DSC-2
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FIGURE 7.30: Box plot of aggregated accuracy results of enriched approaches averaged per
granularity level

and DSC-3 tasks seem to be slightly in favour of finer granularity in text representation, with

higher accuracy scores for word-level than sentence or instance-level features.

A Tukey HSD test shown in Table 7.29 confirms our observations, showing that there is no

significant difference in the DTL-2 task, while there is a clear ordering in DSC-2 and DSC-3. In

DSC-2 all comparisons achieve statistical significance at the p < 0.05 level, indicating that word-

level representations are superior. In DSC-3, there is a clear preference of word and sentence

level representations over instance level representations, but no clear difference between word

level and sentence level representation. Finally in DTL-2 there is virtually no difference between

the approaches, which emphasises the difficulty of learning transferable knowledge from outside

corpora.

7.6 Chapter summary

In this chapter we explored a set of representations at different levels of granularity that are

designed to help us answer the following research questions: can class-sensitive features learned

on a separate corpus (lexicon knowledge) enrich an existing term representation and allow it

to better represent argumentative content for the purpose of stance classification? And which
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DSC-2 DSC-3 DTL-2

Diff. P-Value Diff. P-Value Diff. P-Value

Sentence/Instance 0.05 0.00† 0.03 0.00† 0.00 0.88

Word/Instance 0.06 0.00† 0.02 0.00† -0.00 0.48

Word/Sentence 0.01 0.04† -0.01 0.14 -0.01 0.23

TABLE 7.29: Differences and p-values of a Tukey HSD test comparing granularity level for
different tasks
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FIGURE 7.31: Box plot of aggregated accuracy results of enriched approaches averaged per
granularity level, separated by family of approaches

level of granularity when representing instances works better? We introduced three level of

granularity: word, sentence and instance level, and different forms of class-sensitive features

at each of those levels. We evaluated our approaches along two axes, firstly by measuring the

impact of merging semantic and lexicon-based representations for supervised classification, and

secondly by reproducing that experiment at different levels of granularity (instance, sentences,

words). We concluded that while it is not easily perceivable by statistical testing, there is a

strong positive effect of lexicon-based features for text representation at different levels of

granularity. We investigated such effect using the plot in figure 7.31, which shows the interaction

between granularity and lexicon-based enrichment, and confirms our previous observation that
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lexicon-based enrichment seems to benefit more approaches at the instance and sentence level,

possibly because the word-level semantic representations do not lose any meaning by averaging

out their representation over sentences or entire instances. Secondly, we found that word-level

representation is the best fit in most cases, being at worst as good and occasionally superior in

classification accuracy to the other levels of representation.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In the past decade, stance detection has slowly become a more important challenge in the area

of opinion mining, and has numerous applications in the fields of information retrieval, text

summarisation, and argumentation mining. In this thesis we addressed the task of detecting

stance in informal text using a diverse set of methods, ranging from unsupervised, heuristic-based

methods inspired from the sentiment analysis community to the generation of automated lexicons,

which are well-known tools of computational linguistics, and finally by using such lexicons to

compute feature models for deep neural networks, in order to bypass the data-hungry feature

learning step that is often thought to be paramount to their success.

This thesis started by explaining the underlying motivation of wanting to compute the stance of

user-generated, informal texts as well as the potential scope of such research. We put a particular

emphasis on building platform-agnostic models and as such avoided large features models from

the literature that used hundreds of platform-specific features to represent text. We explained

the relevance of social media mining to numerous sub-fields of artificial intelligence such as

debate analysis, and positioned stance detection with respect to neighbouring sub-fields such as

sentiment analysis.

In Chapter 2, we then reviewed the literature on argument stance classification, as well as

the different corpora that were generated for that purpose, before considering the background
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knowledge necessary for this thesis in Chapter 3. In Chapter 3, we reviewed the basics of

supervised machine learning applied to text classification in order to further contextualise the

content of this work. In Chapter 4, we explained and detailed the evaluation methodology that

we adopted throughout the thesis, starting with the datasets that were used and how they were

processed, and finishing with the statistical significance testing procedures that we used to ensure

some rigour in our investigation.

The rest of the thesis was organised in three main chapters, describing a different aspect of our

work: unsupervised methods for stance classification, lexicon generation for stance classification,

and finally the use of stance lexicons to build feature models.

In Chapter 5, we investigated unsupervised classification techniques for stance classification.

Unsupervised classification is still a vibrant research area because of the small amounts of labelled

data that researchers have access to. While machine learning algorithms require significant

amounts of domain expertise in the process of labelling hundreds of thousands of data points, a

single expert can encode their pre-existing knowledge using heuristics and rules and bypass that

need completely. Because of this, several techniques such as sentiment lexicons are still to this

day built manually using dictionary entries and expert domain knowledge. Four techniques were

investigated in the context of this chapter. The first two techniques, SP-ADAPT and SP-COSTS,

use sentiment as a proxy for stance and an adaptive threshold to improve results. In particular,

SP-COSTS uses context knowledge in order to apply the sentiment lexicon on a subset of the

terms present in the text to be classified, and shows significant improvement over using the

raw text alone. The other techniques developed in this chapter, USS, USS+ and MUSC, are

complex heuristics building on top of each other, where MUSC uses USS+ as a fallback method,

which uses USS as a fallback method, where the text to be classified falls outside of the range

of expertise of the current heuristic. This leads to modest but not significant improvement over

naive baselines such as the PMI-LEX method, although we strongly suspect that it is mainly due

to statistical reasons rather than lack of intrinsic superiority.

In Chapter 6, we turned our attention to another vibrant area of computational linguistics:

computational lexicons, and how to build them from data. We proposed to use well-known

techniques for empirical risk minimisation in order to learn lexicons similarly to how the weights

of a single perceptron units would be learned, and introduced the LEXICNET approach. The
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advantages of such a technique over existing lexicon learning methods such as methods based

on pointwise mutual information or expectation maximisation is that the optimisation process

by gradient descent can be arbitrarily regularised, which helps us avoid learning lexicons which

overfit over specific language patterns. We then extended this lexicon learning architecture so

that it could learn not only valence terms, which carry an inherent weight towards a class, but

also valence shifters, which are not stance-bearing in themselves but can increase or decrease

the valence of neighbouring stance-bearing terms. This approach, named RELEXNET1, shows

some modest improvement on free-text datasets, and less so on size-constrained datasets (such as

SETC, which was built on Twitter microblogging posts).

In Chapter 7, we investigated the use of previously developed lexicon learning architectures to

build feature models for deep learning methods. The intuition behind such models is that features

extracted from a stance lexicon provide a form of background knowledge to the classification

algorithm which helps the algorithm learn faster by biasing them towards a class.

8.2 Research questions

In the beginning of this thesis, we set out to answer a set of research questions that would guide

our investigation in argument stance classification. In this section, we leverage the work presented

in the rest of the thesis in order to formulate a concise answer to those questions.

RQ1. Can we use the direct conversational context to improve classification accuracy by

helping a naive classifier focus on relevant terms? We answer this research question by drawing

on the work presented in Chapter 5. We can see from the results of the evaluation in chapter 5

that the addition of some form of context provides an improvement in classification accuracy

when trying to predict stance. However, that improvement does not seem to reach the statistical

significance threshold we set out for our work.

RQ2. Can we use empirical risk minimisation techniques to learn a regularised stance

classification lexicon? We answer this research question by drawing on the results presented in
1For reasons that have been long forgotten by the author.
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Chapter 6. We can see from those results that the lexicon that we proposed, LEXICNET, tends

to outperform other approaches. However once again, the difference does not seem to reach

statistical significance.

RQ3. Can we leverage the neighbourhood of words to learn a context-sensitive classification

lexicon? We also answer this research question by drawing on the results presented in Chapter

6. We can see from those results that the extension of the lexicon presented, RELEXNET,

outperforms most other approaches. Similarly to LEXICNET, the difference does not consistently

reach statistical significance.

RQ4. Can class-sensitive features learned on a corpus enrich an existing term representation

and allow it to better represent argumentative content? This question is answered using the

results presented in Chapter 7. While the effect is not consistently statistically significant, there

is a strong positive effect when enhancing representations with lexicon-based features.

RQ5. At what level of granularity (words, sentences, or entire instance) does lexicon enhance-

ment performs better when applied to standard representation schemes? The further analysis in

Chapter 7 shows us that instance-level and sentence-level representations tend to benefit more

from lexicon enhancement. However, while they do benefit more, word-level representations tend

to perform better overall, which might be due to being more expressive (while sentence-level

and instance-level representations are forced to average their representations over sentences and

instances respectively).

Overall, while there are promising results throughout the work currently presented, we find

that the lack of data in the field of argument stance mining makes it exceedingly difficult to obtain

proper and consistent statistical significance in our experimental results.

8.3 Objectives revisited

In this section we revisit the objectives defined in the introduction and consider the way they

were changed throughout this work.
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� Develop an unsupervised classification algorithm that leverages conversational con-

text and existing resources from the field of opinion mining.

Unsupervised classification algorithms are still popular classifiers in field where annotated

data are scarce and often noisy. Domain experts overcome the limitations of such lack of

data by designing expert rules that reflect their expertise. Towards this objective in Chap-

ter 5 we introduced a novel set of heuristics based on a hierarchical organisation of simpler

heuristics starting with high precision low recall (detection of stance by finding specific

language patterns) to high recall low precision (approximation of stance by sentiment). We

find that our novel set of heuristics outperform all our baselines based on the sentiment

analysis community.

� Develop a novel approach to learn an argument lexicon from weakly labelled data.

Another way to deal with a lack of properly labelled data is to leverage weak or distant

labelling, where a set of distant labels, often taking the form of language patterns, are

used to approximate a labelling over a dataset. In Chapter 6 we introduce LEXICNET, a

lexicon learning technique that works using the empirical risk minimisation principle and

the backpropagation algorithm in order to compute optimal lexicon scores in a way that

can be heavily regularised. The regularisation allows us to not overfit our lexicon to data

with low confidence in the labelling, and thus to obtain better classification scores when

using lexicons learned on this noisy data to other datasets.

� Develop a novel learning algorithm to jointly learn an argument lexicon and its mod-

ifiers.

Lexicons work by using an overly simplistic classification model for the sake of inter-

pretability: it is possible for a human user to backtrack from a prediction and understand

which terms made the balance go towards one class rather than another. One way that

lexicons have been extended in the literature without any negative impact on this inter-

pretability is by the use of lexical valence modifiers, i. e., terms which have no class

valence by themselves but can modify the class valence of terms in their neighbourhood,

such as for example adverbs like “extremely” or “barely”. However this relation makes

it impossible for standard algorithms to model during the learning phase, which is why

valence modifiers are typically specified by hand. In Chapter 6, we develop RELEXNET,

an extension of the LEXICNET architecture that is able to account for modifiers and learn
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their modifying score during the learning phase.

� Develop a representation scheme using the argument lexicon as a feature extractor

that can leverage the temporal nature of text. While lexicons are powerful classification

tools for text, they often lack the representational power to achieve state-of-the-art accuracy

when compared to machine learning algorithms that do not account for providing an

interpretable model to the user. In Chapter 7, we investigate the use of lexicon scores as a

way to enhance existing text representation schemes and observe the potential increase in

accuracy on a set of classification tasks.

8.4 Future work

In order to overcome the limitations highlighted in the previous section, we submit the following

plan for our future research on interpretable methods for stance detection.

Bayesian evidence combination for large-scale lexicons. One way to overcome the lack of

data when learning lexicons would be to combine multiple data sources in the training set, and as

such increase its size at a lower cost. This can be extended to combining multiple data sources of

different level of confidence, for example by combining the RNLC and IAC datasets in order to

classify instances from the ABCD dataset. This can be done by modelling the confidence that we

have in each of our labelings inside the cost function that is minimised during the training process.

Effectively, it equates to teaching the learning algorithm that making a mistake on a noisy-labelled

RNLC example is not as grave an error as making a mistake on an example from the IAC dataset.

Furthermore, this confidence estimation can be extended to distinguishing instances within the

same dataset. For example, some instances from the RNLC dataset might display more evidence

of belonging in one class than others. Rather than removing those low-confidence instances and

only keeping the ones with high confidence, as in the case of this thesis, a natural extension

would be to keep all data and give a weight to each instance depending on the confidence of its

noisy labelling. This relates to the field of cost-sensitive learning, which was surveyed in Frénay

and Verleysen (2014). In future work, we will investigate the use of cost-sensitive learning in the

context of lexicons and how it can be applied to leverage large collections of noisy-labelled data

without losing accuracy.
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Context-sensitive attention-driven lexicons. Attention is a recent mechanism which has taken

over neural network-based language processing and made recurrent neural networks close to

redundant in machine translation Vaswani et al. (2017). It differs from recurrent neural networks

in that it gives the neural network the power of deciding where it should focus its attention next,

by manipulating a vector of weights over regions of the input space. Our work in 5 has attempted

to manipulate a similar notion by using the content of contextual comments to decide where (on

which terms) the naive classifier should focus its “attention”, but in a naive way that proved to

have very little effectiveness in a lot of cases. A better way of modelling context-sensitivity would

be to train a black-box algorithm such as a neural network to use contextual information in order

to generate a vector of attention weights over the instance to be classified. Those weights could

then be used instead of simple term frequencies and combined to the values of the lexicon in order

to provide a classification. The resulting model would then retain the interpretability of a lexicon

model while striking a compromise with the modelling power of black-box methods such as

neural networks. In future work, we will investigate the combination of attention-based methods

with lexicon-based classification for high-accuracy and high-interpretability stance detection.
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Appendix B

Background in Argumentation Theory

Argumentation theory is a highly interdisciplinary domain, spanning a period of time starting

with the study of rhetoric in ancient Greece to, more recently, the use of abstract argumentation

for collaborative decision-making systems. This multidisciplinary status allows us to examine it

under multiple lenses. Philosophers, linguists, and computer scientists built their own theories

of argumentation with the goal of modelling specific social phenomena (e. g., multi-agent

negotiation) and therefore in this appendix we will concisely examine selected theories of

argumentation and the extent of their uses from the perspective of information systems.

B.1 An overview of argumentation theories

In this section we review the main theories of argumentation from the perspective of logic,

rhetoric and computer science. We examine the core elements of arguments under those points

of view and draw conclusions on the requirements of a theory of argumentation for argument

mining in the social Web.

B.1.1 Monological versus dialogical argumentation

The process of argumentation can be divided in two broad classes, depending on the goal and

actors involved. In the case of monological argumentation, only one agent is involved and

argumentation is used as a mean of reasoning by laying out arguments interacting with each other
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and observing the final outcome of the inference process. The agent is in a state of complete

knowledge beforehand, and merely articulates arguments in order to come up with a conclusion.

Monological argumentation is used for non-monotonic reasoning and decision explanation.

We focus on the case of dialogical argumentation, where the argumentation process is used by

multiple agents in order to arrive at a decision by laying out arguments regarding a topic. No

agent possesses all the facts and the only prerequisite is that a common ground regarding the topic

of discussion is agreed upon. Dialogical argumentation is a better fit to model the interaction

between users in social applications.

B.1.2 The structure of an argument: the Toulmin model of argumentation

The best known model of the structure of arguments is attributed to British philosopher Stephen

Toulmin. The Toulmin model of practical argumentation as described in Toulmin (2003) states

that an argument should contain six parts, the last three of which are optional to a well-formed

argument:

1. the claim is the conclusion of the argument, that the other parts try to achieve ;

2. the ground is the set of facts, or evidence, that are used as a starting point ;

3. the warrant is a statement that allows a reader to logically link the ground to the claim ;

4. the backing is a set of evidence to justify the warrant ;

5. the rebuttal is a possible restriction that can be applied to the claim ;

6. the qualifier applies a modality on the claim by establishing the certainty with which the

agent makes the statement.

This model is used as a basis for structuring arguments in debate mapping software. It relies on an

optimistic, perfect argumentation process between well-intentioned rational agents, which makes

it brittle on some platforms such as oral dialogue or web forums, where a lot of information is

implied and it is not rare . Another problem is that in the case of a continuing argumentation, the

agents can also implicitly refer to previous grounds. An example of this would be:
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Ideal argument : [I am a British citizen]claim because [I was born in Bermuda]ground, and [a

man born in Bermuda is a British citizen]warrant.

Realistic argument : [I am a British citizen]claim because [I was born in Bermuda]ground.

Continuing argument : [I am a British citizen]claim because [of where I previously said I was

born]reference.

In addition to the problem of the semantic gap in natural language processing, these limitations

underline the limitations of the Toulmin framework in the case of argument mining on the Social

Web. The realistic situations in which such a framework would be used offer no assurance except

for the presence of a claim, which means that a “pessimistic” framework would require either a

greater flexibility in structure, taking into account:

- the temporal nature of the process, due to the necessity of being able to recall previously

used grounds, or previously made claims, and test their validity at the time of argument

evaluation ;

- the identity of the agents involved, so that we can consider the epistemic state of each

agent, their affinities and dislikes of other agents, and other characteristics of the sort.

B.1.3 The argumentation process viewed as a graphical structure

Taking a step backwards and a birds-eye view of the process of argumentation, it is possible to

describe it using a graphical structure. This is the domain of abstract argumentation frameworks,

whose development was motivated by wanting to leverage the computational properties of graphs

for discourse analysis. The two most popular frameworks are Dung’s abstract argumentation

framework and the bipolar argumentation framework.

Dung’s abstract argumentation framework (Dung, 1995) describes the process of argumen-

tation by using only a defeating relationship between arguments. Therefore the resulting

graph possesses only one type of edge representing that an argument a1 defeats an argu-

ment a2, meaning that if the truth value of a1 is true, then the truth value of a2 has to be

false ;
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Bipolar argumentation framework (Amgoud et al., 2008) extends Dung’s framework by

adding an explicit supporting relationship between arguments. This relationship means

that the graph possesses two types of edges, with one type representing that an argument

a1 defeats an argument a2, and the other type representing that an argument a1 supports an

argument a2. This new relationship means that if the truth value of a1 is true, then it lends

more weight to the truth value of a2 in case of an uncertain graph topology.

The following running example, of a debate between multiple agents about the legal nationality

of Agent1, will be used to illustrate the differences between the two frameworks

Arg1 : Agent1: I am of French origin

Arg2 : Agent2: You were born in Algeria, so you are not French

Arg3 : Agent3: Algeria was occupied by the French until 1962, so someone born in Algeria

before 1962 would be French, unless they chose to stay in Algeria

Arg4 : Agent2: Agent1 chose to stay in Algeria

Arg5 : Agent4: Agent1 was forced to stay in Algeria

Arg6 : Agent5: French people speak French, you don’t, so you are not French

Arg7 : Agent3: People in French colonies didn’t always speak French

Arg8 : Agent3: Your birth certificate says Republic of France, so you are French

B.1.4 Dung’s unipolar abstract argumentation framework

The abstract argumentation framework as defined by Dung in Dung (1995) structures an argu-

mentation framework as the pair 〈A,<〉 with A being a set of arguments and < being a binary

relationship on A called a defeating relationship. Considering two arguments Ai and Aj ∈ A,

Ai<Aj means that Aj is defeated by Ai or that Ai defeats Aj . An argumentation framework is

said to be well-grounded if there is at least one argument that is not defeated.

Dung’s framework does not provide an explicit supporting relationship between arguments but

defines the set of supporting arguments for an argument Ai as the set of arguments that do not
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FIGURE B.1: Graphical example of an abstract argumentation framework

defeat Ai itself but defeat any argument of the set of arguments that defeat Ai. An argument

which defeats both another argument and its defeater, is called a controversial argument.

Figure B.1 shows an example of a unipolar abstract argumentation framework. In this case

arguments A2 and A5 are not defeated, which make it well grounded. The state of matter

obviously revolves around the claim of A1. The set of defeaters of A1 comprises of A2 and A3.

The set of supporters of A1 comprises of A4 and A5 (because they are the defeaters of A2 and A3,

which are A1’s defeaters). A5 defeats both A3 and A4, which makes it a controversial argument.

From these basic definitions Dung builds the computational properties of his abstract argumen-

tation framework. These permit the computation of different sets of arguments with special

properties, such as for instance admissibility, or the fact that they mutually defend each other

(and thus are undefeated when considered as a set).
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B.1.5 Bipolar argumentation

Cayrol and Lagasquie-Schiex detail in Cayrol and Lagasquie-Schiex (2005) the extension of

Dung’s framework to include an explicit supporting relationship between arguments. Two

previous attempts at including a notion of bipolarity are cited: the HERMES system Karacapilidis

and Papadias (2001) and the DEFLOG system Verheij (2002).

The rationale behind the need for an explicit support relationship is the need for a richer way of

describing real-life argumentation. Staying on an abstract level such as Dung’s framework forces

us to model the support relationship implicitly and thus possesses a low expressive power when

modelling real argumentation.

Bipolar argumentation requires us indeed to leave the abstract, almost graph theoretical nature of

Dung’s framework to have a more detailed view of what does and what does not constitutes an

argument. The authors thus give a logical description of arguments as a pair (S,C) attached to a

logic L so that S is a set of consistant formulas of L called the support and C is a consistant

formula of L called the claim, so that S ` C and S is minimal to obtain C.

The authors then define different types of defeating relationships, related to which part of the

argument are defeated and establish the basic properties of a bipolar argumentation system. A

bipolar argumentation system is defined as a triple 〈A,<def ,<sup〉 with:

- A as the set of arguments ;

- <def as the defeating relationship between arguments of A ;

- <sup as the supporting relationship between arguments of A ;

To illustrate the gain in expressivity, let us go back to the initial dialog between the five agents,

and analyse the logic behind their reasoning in the following form: (support, claim).

Arg1 : Agent1: I am of French origin : ({}, f)

Arg2 : Agent2: You were born in Algeria, so you are not French : ({a, a→ ¬f},¬f))
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FIGURE B.2: Graphical example of a bipolar argumentation system

Arg3 : Agent3: Algeria was occupied by the French until 1962, so someone born in Algeria

before 1962 would be French, unless they chose to stay in Algeria : ({a, d, d→ o, a ∧ o ∧

¬c→ f}, f)

Arg4 : Agent2: Agent1 chose to stay in Algeria : ({}, c)

Arg5 : Agent4: Agent1 was forced to stay in Algeria : ({y, y → ¬c},¬c)

Arg6 : Agent5: French people speak French, you don’t, so you are not French : ({f →

s,¬s},¬f)

Arg7 : Agent3: People in French colonies didn’t always speak French : ({},¬(f → s))

Arg8 : Agent3: Your birth certificate says Republic of France, so you are French : ({b, b →

f}, f)

Figure B.2 (page 191) is an example of a graphical representation of the bipolar argumentation

system described previously. The crossed arrow represents the defeating relationship, while the

normal arrow stands for the supporting relationship. We can see that the relationship between

arguments 8 and 1 can now be modeled.

B.1.6 Comparison in context

While Dung’s framework aims to stay at an abstract point of view and thus abstains to describe

arguments themselves, merely representing the argumentation process as a graphical structure,
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the bipolar extension by Cayrol and Lagasquie-Schiex offers a richer language to describe the

different cases in real life argumentation, almost bridging the gap to the purely logical framework

described by Besnard and Hunter (Besnard and Hunter, 2008, Chapter 3). Dung’s abstract

argumentation framework is advantageous from a purely computational point of view because

it defines the acceptability of an argument using only one binary relation instead of two, but

lacks the expressivity that can be attained when explicitly modelling the support binary relation.

Another extension of Dung’s framework worth mentioning is the fuzzy argumentation framework

detailed in Janssen et al. (2008) in order to account for the relative strength of the defeating

relationship between arguments.

B.2 Logical analysis of the interactions between arguments

A third way to look at argumentation, and in a way a middle ground between the detailed

discourse analysis of Toulmin and the graphical structure of Dung, relies on the analysis of

the interactions between arguments. Detailed in (Besnard and Hunter, 2008, Chapter 3) as

logical argumentation, it describes arguments as logical formulas (in a language L, usually either

propositional or first-order predicate logic) of the form 〈S,C〉 with C being the claim, and S

being the support so that S is the minimal set of propositions which hold both S ` C and S 0 ⊥.

The rationale behind this point of view is that it allows for a greater flexibility in describing the

relationship between arguments, and more precisely to provide a typology of defeat relationships.

The two principal ones are:

- the undercut: given two arguments 〈Φ, α〉 and 〈Ψ, β〉, 〈Ψ, β〉 undercuts 〈Φ, α〉 if β

negates one or more propositions of Φ which, due to the necessity of minimality of Φ,

defeats the whole argument.

- the rebuttal: given two arguments 〈Φ, α〉 and 〈Ψ, β〉, 〈Ψ, β〉 is a rebuttal for 〈Φ, α〉 if

β ↔ ¬α is a tautology.

An undercut for an argument need not be a rebuttal and a rebuttal for an argument need not be an

undercut. Both types of defeaters can be split up further according to special circumstances, such
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as a self-defeating argument, an argument defeating its defeaters or even depending on which

part of the support an argument undercuts.

B.3 Pragmatic argumentation theory

Because we need to scale classification to large amounts of data a simple conceptual representation

of arguments, such as Pragmatic Argumentation Theory (PAT) van Eemeren (1993), Hutchby

(2013), is necessary. Indeed, fitting a complex computational model of argument would be

computationally expensive and not fit the colloquial nature of social media content and it is thus

deemed preferable to use a less complex model with a higher accuracy.

PAT defines an argument as an opinionated piece of text which can arise in the presence of two

elements: (1) a target, being some other action by another actor, has been called out as being

problematic; (2) a stance, i.e. whether it is supporting or attacking the target, has been defined.

This simplification of the argumentation representation helps with applying those mappings to

social media content, by relaxing the definition of an argument. Indeed, users of social media

tend to prefer a highly informal language and as such are less likely to worry about formulating a

well-formed argument.

B.4 Impact on social media research

As we have observed in this section, there are several ways to model the process of dialogical

argumentation at multiple levels of granularity, and we ought to select our model based on our

end goal. Because our goal is to model debates in social media, approaches based on a fine

grained analysis of linguistic forms such as Toulmin’s model or Besnard’s logical argumentation

are bound to fail in their coverage of the several ways arguments take place in the wild. We

therefore adopt a coarser-grained view of argumentation by adopting a bipolar abstract model for

the rest of this thesis. The bipolar augmentation of Dung’s abstract argumentation framework

allows us to model debates in terms of two essential relationships: the attacking stance and the

supporting stance. In order to fit within the larger context of social media analysis, we loosen our

bipolar relationship to a more general local agreement stance, meaning that an argument is in
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general agreement with another argument, and disagreement stance, meaning that an argument is

in general disagreement with another argument.



Appendix C

Example of lexicon computed by

LEXICNET

This appendix presents a simple, toy lexicon computed on the IAC dataset using LEXICNET and

a list of seed words from Hu and Liu (2004) (originally intended for sentiment analysis). We can

see from a simple inspection that the regularisation stops the scores from inflating a lot over 1,

due to the quadratic cost incurred by L2-norm regularisation. The lexicon was kept to a size of a

100 words in order to illustrate the result in a concise manner.

195
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TABLE C.1: Example toy lexicon computed on the IAC dataset, with seed dictionary from Hu
and Liu (2004) (part 1 of 4)

Word Agreement score Disagreement score

advocates 1.083 0.284

affordable 1.121 0.293

ambivalence 0.081 1.315

annoyed 0.211 1.126

astoundingly 1.269 0.111

avaricious 0.154 1.246

beautifullly 1.265 0.133

beckoning 1.306 0.095

beleaguer 0.136 1.305

bogus 0.492 0.91

bombardment 0.151 1.258

bountiful 1.476 -0.08

bumpping 0.199 1.204

butcher 0.05 1.333

calumny 0.243 1.164

commend 1.303 0.125

courageous 1.142 0.26

craze 0.131 1.307

crowded 0.089 1.293

cumbersome 0.197 1.203

cuss 0.188 1.24

daringly 1.134 0.281

dark 0.304 1.093

defamation 0.18 1.2

desperation 0.173 1.247

difficulty 0.195 1.233
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TABLE C.2: Example toy lexicon computed on the IAC dataset, with seed dictionary from Hu
and Liu (2004) (part 2 of 4)

Word Agreement score Disagreement score

disappoints 0.354 1.02

dissatisfied 0.124 1.239

distinction 1.106 0.287

doomsday 0.081 1.32

doubtless 1.143 0.275

enhanced 1.291 0.078

enlighten 1.297 0.103

excellant 0.892 0.506

failed -0.099 1.464

faster 1.207 0.19

filth 0.182 1.225

fresher 1.048 0.328

frugal 1.543 -0.095

glitz 1.24 0.169

gloomy 0.272 1.093

guile 0.34 1.052

hallucination 0.291 1.111

harmonious 0.995 0.413

helpful 1.067 0.342

hostility 0.355 1.045

hysterics 0.209 1.18

imperfections 0.093 1.286

indiscretion 0.15 1.265

inequalities -0.001 1.411

inescapable 0.146 1.291

inflexible 0.178 1.216
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TABLE C.3: Example toy lexicon computed on the IAC dataset, with seed dictionary from Hu
and Liu (2004) (part 3 of 4)

Word Agreement score Disagreement score

inflexible 0.178 1.216

infuriating 0.337 1.038

inordinate 0.186 1.218

interrupt 0.261 1.137

invaluable 1.001 0.41

irk 0.318 1.069

irrelevant 0.212 1.178

joyous 1.056 0.356

lambast 0.156 1.283

laudably 1.413 -0.007

leaking 0.326 1.018

lethargy 0.115 1.257

majesty 1.226 0.197

maltreatment 0.316 1.06

meticulous 1.26 0.108

misconception 0.195 1.218

mock 0.055 1.369

muscle-flexing 0.183 1.23

neat 1.319 0.101

nettlesome 0.297 1.118

overthrows 0.231 1.18

pigs 0.259 1.096

pollute 0.294 1.108

reasonable 1.126 0.3

reconciliation 1.233 0.126

refreshing 1.354 0.04

regrets -0.017 1.406
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TABLE C.4: Example toy lexicon computed on the IAC dataset, with seed dictionary from Hu
and Liu (2004) (part 4 of 4)

Word Agreement score Disagreement score

sagged 0.27 1.133

scratches 0.279 1.138

second-class 0.226 1.199

splatter 0.231 1.146

spoiled 0.279 1.067

steadfast 1.303 0.113

struggle 0.233 1.169

succeed 1.076 0.322

sugarcoated 0.308 1.072

sumptuous 1.178 0.198

superficially 0.111 1.268

tarnish 0.152 1.266

tenaciously 1.231 0.168

treason 0.361 1.053

troublesome 0.398 1.016

unconstitutional 0.217 1.206

undermined 0.023 1.37

uneasiness 0.159 1.233

unlamentable 0.397 1.014

whiny 0.244 1.144

worrisome 0.029 1.37

wowing 1.248 0.109
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Karan, Domagoj Alagić, and Jan Šnajder. Takelab at semeval-2016 task 6: stance classification

in tweets using a genetic algorithm based ensemble. In Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016), pages 464–468, 2016.

Peter Krejzl and Josef Steinberger. Uwb at semeval-2016 task 6: stance detection. In Proceedings

of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages 408–412,

2016.

Heba Elfardy and Mona Diab. Cu-gwu perspective at semeval-2016 task 6: Ideological stance

detection in informal text. In Proceedings of the 10th International Workshop on Semantic

Evaluation (SemEval-2016), pages 434–439, 2016.

Michael Wojatzki and Torsten Zesch. ltl. uni-due at semeval-2016 task 6: Stance detection in

social media using stacked classifiers. In Proceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016), pages 428–433, 2016a.

Yuki Igarashi, Hiroya Komatsu, Sosuke Kobayashi, Naoaki Okazaki, and Kentaro Inui. Tohoku

at semeval-2016 task 6: Feature-based model versus convolutional neural network for stance

detection. In SemEval@NAACL-HLT, 2016.



Bibliography 206

Henrik Bøhler, Petter Asla, Erwin Marsi, and Rune Sætre. Idi @ ntnu at semeval-2016 task 6:

Detecting stance in tweets using shallow features and glove vectors for word representation.

In Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016),

pages 445–450, 2016.

Dustin Hillard, Mari Ostendorf, and Elizabeth Shriberg. Detection of agreement vs. disagreement

in meetings: Training with unlabeled data. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human Language

Technology: companion volume of the Proceedings of HLT-NAACL 2003–short papers-Volume

2, pages 34–36. Association for Computational Linguistics, 2003.

Marie-Francine Moens, Erik Boiy, Raquel Mochales Palau, and Chris Reed. Automatic detection

of arguments in legal texts. In Proceedings of the 11th international conference on Artificial

intelligence and law, pages 225–230. ACM, 2007.

Sebastian Germesin and Theresa Wilson. Agreement detection in multiparty conversation. In

Proceedings of the 2009 international conference on Multimodal interfaces, pages 7–14. ACM,

2009.

Wen Wang, Sibel Yaman, Kristin Precoda, Colleen Richey, and Geoffrey Raymond. Detection of

agreement and disagreement in broadcast conversations. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics: Human Language Technologies:

Short Papers - Volume 2, HLT ’11, pages 374–378, Stroudsburg, PA, USA, 2011. Association

for Computational Linguistics. ISBN 978-1-932432-88-6.

Rob Abbott, Marilyn Walker, Pranav Anand, Jean E. Fox Tree, Robeson Bowmani, and Joseph

King. How can you say such things?!?: Recognizing disagreement in informal political

argument. In Proceedings of the Workshop on Languages in Social Media, LSM ’11, pages

2–11, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-

932432-96-1.

Ahmed Hassan, Amjad Abu-Jbara, and Dragomir Radev. Detecting subgroups in online discus-

sions by modeling positive and negative relations among participants. In Proceedings of the

2012 joint conference on empirical methods in natural language processing and computational

natural language learning, pages 59–70. Association for Computational Linguistics, 2012.



Bibliography 207

Jie Yin, Paul Thomas, Nalin Narang, and Cecile Paris. Unifying local and global agreement

and disagreement classification in online debates. In Proceedings of the 3rd Workshop in

Computational Approaches to Subjectivity and Sentiment Analysis, WASSA ’12, pages 61–69,

Stroudsburg, PA, USA, 2012a. Association for Computational Linguistics.

Kazi Saidul Hasan and Vincent Ng. Extra-linguistic constraints on stance recognition in ideologi-

cal debates. In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), volume 2, pages 816–821, 2013b.

Amita Misra and Marilyn Walker. Topic independent identification of agreement and disagree-

ment in social media dialogue. arXiv preprint arXiv:1709.00661, 2017.

Marilyn A. Walker, Pranav Anand, Rob Abbott, Jean E. Fox Tree, Craig H. Martell, and Joseph

King. That is your evidence?: Classifying stance in online political debate. Decision Support

Systems, 53:719–729, 2012c.

Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor, and Marilyn Walker. Joint models

of disagreement and stance in online debate. In Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers), volume 1, pages 116–125, 2015.

Qingying Sun, Zhongqing Wang, Qiaoming Zhu, and Guodong Zhou. Exploring various linguistic

features for stance detection. In Natural Language Understanding and Intelligent Applications,

pages 840–847. Springer, 2016.

Can Liu, Wen Li, Bradford Demarest, Yue Chen, Sara Couture, Daniel Dakota, Nikita Haduong,

Noah Kaufman, Andrew Lamont, Manan Pancholi, et al. Iucl at semeval-2016 task 6: An

ensemble model for stance detection in twitter. In Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016), pages 394–400, 2016.

Braja Gopal Patra, Dipankar Das, and Sivaji Bandyopadhyay. Ju_nlp at semeval-2016 task

6: detecting stance in tweets using support vector machines. In Proceedings of the 10th

International Workshop on Semantic Evaluation (SemEval-2016), pages 440–444, 2016.

Amita Misra, Brian Ecker, Theodore Handleman, Nicolas Hahn, and Marilyn A. Walker. Nlds-

ucsc at semeval-2016 task 6: A semi-supervised approach to detecting stance in tweets. In

SemEval@NAACL-HLT, 2016.



Bibliography 208

Linchuan Li, Zhiyong Wu, Mingxing Xu, Helen M. Meng, and Lianhong Cai. Recognizing

stances in mandarin social ideological debates with text and acoustic features. 2016 IEEE

International Conference on Multimedia and Expo Workshops (ICMEW), pages 1–6, 2016.

Saif M Mohammad, Parinaz Sobhani, and Svetlana Kiritchenko. Stance and sentiment in tweets.

ACM Transactions on Internet Technology (TOIT), 17(3):26, 2017.

Sangyun Hahn, Richard Ladner, and Mari Ostendorf. Agreement/disagreement classification:

Exploiting unlabeled data using contrast classifiers. In Proceedings of the Human Language

Technology Conference of the NAACL, Companion Volume: Short Papers, pages 53–56.

Association for Computational Linguistics, 2006.

Michel Galley, Kathleen McKeown, Julia Hirschberg, and Elizabeth Shriberg. Identifying

agreement and disagreement in conversational speech: Use of bayesian networks to model

pragmatic dependencies. In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics, page 669. Association for Computational Linguistics, 2004.

Danqi Chen and Christopher D. Manning. A fast and accurate dependency parser using neural

networks. In EMNLP, 2014.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013a.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for

word representation. In EMNLP, 2014.

Dhanya Sridhar, Lise Getoor, and Marilyn Walker. Collective stance classification of posts in

online debate forums. In Proceedings of the Joint Workshop on Social Dynamics and Personal

Attributes in Social Media, pages 109–117, 2014.

Filip Boltuzic and Jan Šnajder. Back up your stance: Recognizing arguments in online discussions.

In Proceedings of the First Workshop on Argumentation Mining, pages 49–58, 2014.

Parinaz Sobhani, Diana Inkpen, and Stan Matwin. From argumentation mining to stance classifi-

cation. NAACL HLT 2015, page 67, 2015.



Bibliography 209

Marcelo Dias and Karin Becker. Inf-ufrgs-opinion-mining at semeval-2016 task 6: Automatic

generation of a training corpus for unsupervised identification of stance in tweets. In Pro-

ceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages

378–383, 2016.

Miha Grčar, Darko Cherepnalkoski, Igor Mozetič, and Petra Kralj Novak. Stance and influence

of twitter users regarding the brexit referendum. Computational social networks, 4(1):6, 2017.

Lu Wang and Claire Cardie. Improving agreement and disagreement identification in online

discussions with a socially-tuned sentiment lexicon. arXiv preprint arXiv:1606.05706, 2016.

Jie Yin, Paul Thomas, Nalin Narang, and Cecile Paris. Unifying local and global agreement

and disagreement classification in online debates. In Proceedings of the 3rd Workshop in

Computational Approaches to Subjectivity and Sentiment Analysis, pages 61–69. ACL, 2012b.

Isabelle Augenstein, Andreas Vlachos, and Kalina Bontcheva. Usfd at semeval-2016 task 6: Any-

target stance detection on twitter with autoencoders. In Proceedings of the 10th International

Workshop on Semantic Evaluation (SemEval-2016), pages 389–393, 2016a.

Michael Wojatzki and Torsten Zesch. Stance-based argument mining–modeling implicit argu-

mentation using stance. Proceedings of the KONVENS, Bochum, Germany, pages 313–322,

2016b.

Sara S Mourad, Doaa M Shawky, Hatem A Fayed, and Ashraf H Badawi. Stance detection in

tweets using a majority vote classifier. In International Conference on Advanced Machine

Learning Technologies and Applications, pages 375–384. Springer, 2018.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob Procter, Michal Lukasik, Kalina Bontcheva,

Trevor Cohn, and Isabelle Augenstein. Discourse-aware rumour stance classification in social

media using sequential classifiers. Information Processing & Management, 54(2):273–290,

2018.

Shaodian Zhang, Lin Qiu, Frank Chen, Weinan Zhang, Yong Yu, and Noémie Elhadad. We

make choices we think are going to save us: Debate and stance identification for online breast

cancer cam discussions. In Proceedings of the 26th International Conference on World Wide

Web Companion, pages 1073–1081. International World Wide Web Conferences Steering

Committee, 2017.



Bibliography 210

Isabelle Augenstein, Tim Rocktäschel, Andreas Vlachos, and Kalina Bontcheva. Stance detection

with bidirectional conditional encoding. arXiv preprint arXiv:1606.05464, 2016b.

Jiachen Du, Ruifeng Xu, Yulan He, and Lin Gui. Stance classification with target-specific

neural attention networks. In Proceedings of the International Joint Conferences on Artificial

Intelligence. International Joint Conferences on Artificial Intelligence, 2017.

Sushant Hiray and Venkatesh Duppada. Agree to disagree: Improving disagreement detection

with dual grus. In Proceedings of the Seventh International Conference on Affective Computing

and Intelligent Interaction Workshops and Demos (ACIIW). Seventh International Conference

on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 2017.

Nan Yu, Da Pan, Meishan Zhang, and Guohong Fu. Stance detection in chinese microblogs with

neural networks. In Natural Language Understanding and Intelligent Applications, pages

893–900. Springer, 2016.

Prashanth Vijayaraghavan, Ivan Sysoev, Soroush Vosoughi, and Deb Roy. Deepstance at

semeval-2016 task 6: Detecting stance in tweets using character and word-level cnns. CoRR,

abs/1606.05694, 2016. URL http://arxiv.org/abs/1606.05694.

Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, and Tengjiao Wang. pkudblab at semeval-2016

task 6 : A specific convolutional neural network system for effective stance detection. In

SemEval@NAACL-HLT, 2016.

Guido Zarrella and Amy Marsh. Mitre at semeval-2016 task 6: Transfer learning for stance

detection. arXiv preprint arXiv:1606.03784, 2016.

Jacob Andreas, Sara Rosenthal, and Kathleen McKeown. Annotating agreement and disagreement

in threaded discussion. In LREC, pages 818–822, 2012.

Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to information

retrieval, volume 1. Cambridge university press Cambridge, 2008.

Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali Tishby. Euclidean embedding of

co-occurrence data. Journal of Machine Learning Research, 8(Oct):2265–2295, 2007.

http://arxiv.org/abs/1606.05694


Bibliography 211

Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger pca. arXiv preprint

arXiv:1312.5542, 2013.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In

Advances in neural information processing systems, pages 2177–2185, 2014.

Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen. Word embedding

revisited: A new representation learning and explicit matrix factorization perspective. In IJCAI,

pages 3650–3656, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-

tations of words and phrases and their compositionality. In Advances in neural information

processing systems, pages 3111–3119, 2013b.

Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. Representation

learning for very short texts using weighted word embedding aggregation. Pattern Recognition

Letters, 80:150–156, 2016.

Anil Bandhakavi, Nirmalie Wiratunga, P Deepak, and Stewart Massie. Lexicon based feature

extraction for emotion text classification. Pattern Recognition Letters, 2016.

James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:

Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71:2001, 2001.

Aminu Muhammad, Nirmalie Wiratunga, and Robert Lothian. A hybrid sentiment lexicon for

social media mining. In Tools with AI (ICTAI), IEEE 26th International Conf. on, pages

461–468, 2014.

Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical resource for

opinion mining. In Proceedings of LREC, volume 6, pages 417–422. Citeseer, 2006.

Anil Bandhakavi, Nirmalie Wiratunga, P Deepak, and Stewart Massie. Generating a word-

emotion lexicon from# emotional tweets. In Proceedings of the Third Joint Conference on

Lexical and Computational Semantics (* SEM 2014), pages 12–21, 2014.

Peter D Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised

classification of reviews. In Proceedings of the 40th annual meeting on ACL. ACL, 2002.



Bibliography 212

Jérémie Clos, Nirmalie Wiratunga, Stewart Massie, and Guillaume Cabanac. Shallow techniques

for argument mining. In ECA’15: Proceedings of the ECA, volume 63, page 2, 2016.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine

learning. The annals of statistics, pages 1171–1220, 2008.

Harold W Kuhn and Albert W Tucker. Nonlinear programming, in (j. neyman, ed.) proceedings

of the second berkeley symposium on mathematical statistics and probability, 1951.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization

in the brain. Psychological review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. nature, 323(6088):533, 1986.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

Michael C Mozer. A focused backpropagation algorithm for temporal. Backpropagation: Theory,

architectures, and applications, page 137, 1995.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Michael I Jordan. Serial order: A parallel distributed processing approach. In Advances in

psychology, volume 121, pages 471–495. Elsevier, 1997.

William Yang Wang, Dan Bohus, Ece Kamar, and Eric Horvitz. Crowdsourcing the acquisition

of natural language corpora: Methods and observations. In Spoken Language Technology

Workshop (SLT), 2012 IEEE, pages 73–78. IEEE, 2012.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. Cheap and fast—but is it

good?: evaluating non-expert annotations for natural language tasks. In Proceedings of the

conference on empirical methods in natural language processing, pages 254–263. Association

for Computational Linguistics, 2008.



Bibliography 213

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for relation extrac-

tion without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting

of the ACL and the 4th International Joint Conference on Natural Language Processing of the

AFNLP: Volume 2-Volume 2, pages 1003–1011. Association for Computational Linguistics,

2009.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.

CS224N Project Report, Stanford, 1(12), 2009.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2014. URL https://www.R-project.org.

Livia Polanyi and Annie Zaenen. Contextual valence shifters. In Computing attitude and affect

in text: Theory and applications, pages 1–10. Springer, 2006.

Tim Miller. Explanation in artificial intelligence: insights from the social sciences. arXiv preprint

arXiv:1706.07269, 2017.

Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):30, 2018.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Yurii Nesterov. Gradient methods for minimizing composite objective function, 2007.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial

intelligence and statistics, pages 249–256, 2010.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical

learning, volume 112. Springer, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,

volume 1. Springer series in statistics New York, 2001.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal of machine

learning research, 15(1):1929–1958, 2014.

https://www.R-project.org


Bibliography 214

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):

1735–1780, 1997.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,

2014.

J. Ross Quinlan. Learning logical definitions from relations. Machine learning, 5(3):239–266,

1990.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct):

2825–2830, 2011.

Swapna Somasundaran and Janyce Wiebe. Recognizing stances in ideological on-line debates.

In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis

and Generation of Emotion in Text, pages 116–124. Association for Computational Linguistics,

2010b.

Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey.

IEEE transactions on neural networks and learning systems, 25(5):845–869, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017.

Stephen E. Toulmin. The Uses of Argument. Cambridge University Press, July 2003. ISBN

0521534836. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike-20&path=ASIN/0521534836.

Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

Leila Amgoud, Claudette Cayrol, Marie Christine Lagasquie-Schiex, and Pierre Livet. On

bipolarity in argumentation frameworks. Int. J. Intell. Syst., 23(10):1062–1093, October 2008.

ISSN 0884-8173. doi: 10.1002/int.v23:10.

http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521534836
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521534836


Bibliography 215

C. Cayrol and M. C. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumenta-

tion frameworks. In Proceedings of the 8th European conference on Symbolic and Quantitative

Approaches to Reasoning with Uncertainty, ECSQARU’05, pages 378–389, Berlin, Heidelberg,

2005. Springer-Verlag. ISBN 3-540-27326-3, 978-3-540-27326-4. doi: 10.1007/11518655_33.

URL http://dx.doi.org/10.1007/11518655_33.

Nikos Karacapilidis and Dimitris Papadias. Computer supported argumentation and collaborative

decision making: The hermes system. Information Systems, 26:259–277, 2001.

Bart Verheij. On the existence and multiplicity of extensions in dialectical argumentation. CoRR,

cs.AI/0207067, 2002.

Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT Press, 2008. ISBN

0262026430, 9780262026437.

J. Janssen, M. De Cock, and D. Vermeir. Fuzzy argumentation frameworks. In Information

Processing and Management of Uncertainty in Knowledge-based Systems, pages 513–520,

2008.

http://dx.doi.org/10.1007/11518655_33

	Abstract
	Declaration of Authorship
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Applications of argumentative stance mining
	1.2 Related research fields
	1.3 Scope of the research
	1.3.1 Research motivation
	1.3.2 Research questions
	1.3.3 Research objectives

	1.4 Contributions
	1.5 Overview of the thesis

	2 Literature Review
	2.1 Methods for Argument stance detection
	2.1.1 Unsupervised approaches to stance classification
	2.1.1.1 Conclusions from the unsupervised stance classification literature

	2.1.2 Supervised approaches to stance classification
	2.1.2.1 Feature engineering and shallow stance classifiers
	2.1.2.2 Deep learning methods for stance classification
	2.1.2.3 Conclusions from the stance classification literature


	2.2 Corpora for stance classification
	2.2.1 Transcribed media corpora
	2.2.2 Free-form social media corpora
	2.2.3 Short text social media corpora
	2.2.4 Non-standard argumentation corpora

	2.3 Chapter summary

	3 Background
	3.1 The supervised learning process
	3.2 Text preprocessing
	3.2.1 Tokenisation
	3.2.2 Annotation
	3.2.3 Standardisation of the vocabulary
	3.2.4 Filtering

	3.3 Text representation
	3.3.1 Sequential representations
	3.3.1.1 One-hot encoding
	3.3.1.2 Word embeddings

	3.3.2 Non-sequential representations
	3.3.2.1 Bag-of-words
	3.3.2.2 Mean embeddings


	3.4 Model building
	3.4.1 Taxonomy of machine learning algorithms
	3.4.2 Lexicon methods
	3.4.3 Support vector machines
	3.4.4 Neural networks
	3.4.4.1 Recurrent neural networks


	3.5 Model evaluation
	3.6 Chapter Summary

	4 Evaluation methodology
	4.1 Evaluating classifiers
	4.1.1 Machine learning evaluation methodology
	4.1.2 Evaluating classification algorithms

	4.2 Datasets
	4.2.1 Internet Argument Corpus (IAC)
	4.2.2 Agreement By Create-Debaters (ABCD)
	4.2.3 SemEval Twitter Dataset (SETC)
	4.2.4 Reddit Noisy-Labelled Corpus (RNLC)

	4.3 Statistical testing for classification
	4.4 Chapter Summary

	5 Unsupervised Argument Mining
	5.1 Sentiment as proxy approaches
	5.1.1 Sentiment as proxy with adaptive threshold (SP-AdapT)
	5.1.2 Sentiment as proxy with context-sensitive term selection (SP-CoSTS)

	5.2 Shallow linguistic approximations
	5.2.1 Unsupervised sentiment surface (USS)
	5.2.2 Augmented unsupervised sentiment surface (USS+)
	5.2.3 Multi-strategy Unsupervised Stance Classifier (MUSC)

	5.3 Evaluation
	5.3.1 Evaluation tasks
	5.3.2 Baselines
	5.3.3 Results
	5.3.3.1 Results of task CL-2
	5.3.3.2 Results of task CL-3
	5.3.3.3 Results of task CS-2 and CS-3

	5.3.4 Discussion
	5.3.4.1 Using context to improve heuristics


	5.4 Chapter Summary

	6 Supervised Lexicon-Based Methods for Argument Stance Mining
	6.1 Lexicon generation by backpropagation
	6.1.1 Differentiable architectures and backpropagation
	6.1.2 Application of backpropagation to lexicons
	6.1.2.1 The Lexicon network topology
	6.1.2.2 Optimisation
	6.1.2.3 Example


	6.2 Lexicon regularisation
	6.2.1 Complexity regularisation with p-norms
	6.2.1.1 L1-norm
	6.2.1.2 L2-norm
	6.2.1.3 Elastic-Net

	6.2.2 Drop-out regularisation
	6.2.2.1 Drop-out in neural networks
	6.2.2.2 Drop-out in lexicons
	6.2.2.3 Conclusion on lexicon regularisation


	6.3 Complex lexicon architectures
	6.3.1 Gating for information flow control
	6.3.2 Joint learning of lexicons and modifiers

	6.4 Evaluation
	6.4.1 Hyperparameter setting
	6.4.2 Baselines
	6.4.3 Results of shallow approaches
	6.4.3.1 Results of task SSC-2
	6.4.3.2 Results of task SSC-3
	6.4.3.3 Results of task STL-2

	6.4.4 Discussion

	6.5 Chapter Summary

	7 Lexicon-based Feature Models for Stance Detection
	7.1 Using lexicons for feature extraction
	7.2 Instance-level feature model using lexicon features
	7.2.1 Instance-level feature model with bag-of-words
	7.2.2 Instance-level feature model with mean embedding

	7.3 Sentence-level feature model using lexicon features
	7.3.1 Sentence-level lexicon model with frequency-based sentence encoding.
	7.3.2 Sentence-level lexicon model with sentence embedding.

	7.4 Word-level feature model using lexicon features
	7.4.1 Word-level feature model with one-hot word encoding
	7.4.2 Word-level feature model with embedding

	7.5 Evaluating deep supervised argument mining
	7.5.1 Evaluation tasks
	7.5.1.1 Learning algorithms

	7.5.2 Results with instance-level feature models
	7.5.3 Results with sentence-level feature model
	7.5.4 Results with word-level feature model
	7.5.5 Discussion
	7.5.5.1 Lexicon-based enhancement of text representation
	7.5.5.2 Granularity of representation


	7.6 Chapter summary

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Research questions
	8.3 Objectives revisited
	8.4 Future work

	A Publications
	B Background in Argumentation Theory
	B.1 An overview of argumentation theories
	B.1.1 Monological versus dialogical argumentation
	B.1.2 The structure of an argument: the Toulmin model of argumentation
	B.1.3 The argumentation process viewed as a graphical structure
	B.1.4 Dung's unipolar abstract argumentation framework
	B.1.5 Bipolar argumentation
	B.1.6 Comparison in context

	B.2 Logical analysis of the interactions between arguments
	B.3 Pragmatic argumentation theory
	B.4 Impact on social media research

	C Example of lexicon computed by LexicNet
	Bibliography



