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Abstract 

This study investigated the effects of measurement error and testing 

frequency on prediction accuracy of the standard Fitness-Fatigue Model. A 

simulation-based approach was used to systematically assess measurement 

error and frequency inputs commonly used when monitoring the training of 

athletes. Two hypothetical athletes (intermediate and advanced) were 

developed and realistic training loads and daily ‘true’ power values generated 

using the fitness-fatigue model across 16-weeks. Simulations were then 

completed by adding Gaussian measurement errors to true values with mean 

0 and set standard deviations to recreate more and less reliable measurement 

practices used in real-world settings. Errors were added to the model training 

phase (weeks 1-8) and sampling of data used to recreate different testing 

frequencies (every day to once per week) when obtaining parameter 

estimates. In total, 210 sets of simulations (n=104 iterations) were completed 

using an iterative hill-climbing optimisation technique. Parameter estimates 

were then combined with training loads in the model testing phase (weeks 9-

16) to quantify prediction errors. Regression analyses identified positive 

associations between prediction errors and the linear combination of 

measurement error and testing frequency (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =0.87-0.94). Significant model 

improvements (P<0.001) were obtained across all scenarios by including an 

interaction term demonstrating greater deleterious effects of measurement 

error at low testing frequencies. The findings of this simulation study 

represent a lower-bound case and indicate in real-world settings where a 

fitness-fatigue model is used to predict training response, measurement 

practices that generate coefficients of variation greater than ≈4% will not 

provide satisfactory results.  
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Introduction 
 
 

The fitness-fatigue model has been used for decades primarily as a conceptual framework 

that describes the training process [1]. In its most basic form, the model posits that a single 

bout of training creates two antagonistic after-effects including a positive long-lasting 

and low-magnitude fitness effect, and a negative short-lasting and high-magnitude fatigue 

effect. These antagonist components then combine to describe an athlete’s performance 

and state of preparedness. Several mathematical implementations of the fitness-fatigue 

model have also been developed to more directly inform training program design [2-5]. 

Each fitness-fatigue model is described by a mathematical equation tailored to an 

individual athlete that links quantification of training load (input) to a performance 

measure (output). Individual tailoring is achieved by setting parameters in the equation 

to match the magnitude and decay rate of the positive and negative after-effects 

experienced by the specific athlete. This is achieved in practice by performing a period 

of training and performance measurement with parameters retrospectively fit to best 

match the input and output data generated. This process is referred to as the ‘model 

training’ phase and once complete, the model and fitted parameters can be used to predict 

future responses to physical training and inform its design [6]. Accurate quantification of 

training load and regular best-effort criterion trials (e.g. timed run or load lifted) revealing 

the athlete’s current capabilities are therefore required [7]. fitness-fatigue models have 

traditionally been applied to endurance athletes including runners [7,8], swimmers [9-11] 

and triathletes [12,13] as training loads are relatively simple to calculate and criterion 

trials closely match sporting performance.  
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A small number of studies have investigated the fit of fitness-fatigue models with 

performance in individual and team sports where strength and power are the primary 

fitness components [3,14,15]. Busso et al. [3,14] reported adequate to strong fit (𝑟𝑟=0.53 

to 0.97) between modelled and actual clean and jerk performance of 6 elite weightlifters 

over a 1-year period. Strong fit (𝑟𝑟=0.95) was also obtained for a 37-week case study 

comprising a hammer thrower engaged in diverse training that included resistance 

exercise, sport-specific weighted movements, sprints and plyometrics [16]. A more recent 

study by Graham et al. [15] fitted individual fitness-fatigue models to training load and 

match performance data across a team of Australian Rules Football players throughout a 

24-week in-season macrocycle. Moderate to strong model fit (𝑟𝑟 = 0.56 − 0.89) was 

demonstrated depending upon the method used to quantify training load. However, each 

of these studies only assessed the ability to retrospectively fit input and output data as 

part of the model training phase and did not include ‘hold-back’ data sets to quantify 

prediction accuracy. This represents a major limitation of the research base as the central 

premise of mathematical fitness-fatigue models is to predict future responses to training.  

 

Increased use of the fitness-fatigue model with team sport athletes may require a shift in 

emphasis where training data is used to predict response in terms of fitness variables [17] 

rather than sporting performance which is likely to demonstrate more complex 

relationships with training loads. Such a change in emphasis would also match the 

conceptual framework adopted by many strength and conditioning coaches where 

capacity of an athlete is viewed in terms of dimensions of fitness (e.g. strength and power) 

[17, 18]. Activities such as the vertical jump or bench press which are widely used to 

monitor athletes and assess improvements in fitness could then be used to fit models and 

characterise individual response [17]. Previous research has shown that multiple factors 
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including precision and frequency of measurements influence accuracy of parameter 

estimates [19]. As the fitness-fatigue model is a non-linear model, it has been suggested 

that between 15 and 200 performance tests over a training period may be required to 

obtain stable estimates. As a result, the ability to model and predict fitness of team sport 

athletes as suggested above, may require performance tests that can be completed at high 

weekly frequencies. The vertical jump is the most popular means of obtaining frequent 

assessments of an athlete’s physical capability and can be used daily without causing 

acute or chronic declines in performance [20] Additionally, a range of mechanical 

variables (e.g. impulse, power, rate of force development) can be extracted during vertical 

jumps to assess various features of the neuromuscular system [17, 21].  

 

Several challenges exist in researching the effectiveness of the fitness-fatigue model to 

predict athlete fitness and identify the importance of factors such as measurement error 

and testing frequency. Within standard sport science designs the primary challenge is the 

recruitment of large sample sizes to perform daily testing across various measurement 

procedures to accurately isolate the effects of measurement error and frequency on 

prediction accuracy. In addition, the existence of error in all measurements precludes 

‘true’ underlying performance of an athlete to be known [22] placing limits on the ability 

to assess predictions. Due to these challenges an alternative approach employing 

simulation techniques is applied in the present study to systematically investigate the 

effects of plausible measurement errors and frequencies. The approach adopted represents 

a best-case scenario with the assumption that response to training is completely specified 

by the fitness-fatigue model and ‘observed’ performances deviate due to measurement 

error only. Adopting this best-case approach sets a lower bound whereby similar practices 

in real-world settings can on average only lead to greater predictive errors. By simulating 
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thousands of training responses across a distributed range of measurement errors and 

frequencies, this study provides unique insight into the use of the fitness-fatigue model 

and was also designed to identify whether certain measurement errors and testing 

frequencies used in practice or research could be identified to have no potential validity 

in real-world settings.  
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Materials and Methods 
 

Experimental approach to the problem 

A simulation-based approach was adopted to quantify the effects of measurement error 

and testing frequency on fitness-fatigue model parameter estimates and performance 

prediction for two hypothetical athletes (intermediate and advanced). The vertical jump 

was selected as the performance measurement tool due to its popularity in athlete 

monitoring and potential to be used daily [20]. A range of mechanical variables including 

power, impulse and jump height were considered for the simulation study. However, each 

of the variables demonstrated similar relative profiles with regards to change in 

magnitude across an intervention compared to measurement error and therefore each 

outcome would result in the same conclusions produced by this study. Power produced 

during the vertical jump was ultimately selected for simulation as the measurement has 

previously been used in mathematical models to predict player fitness in response to 

training dose [17].  

 

Two popular training load distributions (“summated microcycles” and “wave-like” 

distribution; Figure 1) were combined with athlete specific parameters to generate 

realistic daily power values over a 16-week period. The generated data represented known 

‘true’ values that are accessible only within simulation-based approaches. The generated 

values were split in half to create an initial ‘model training’ set (weeks 1-8) and a ‘hold 

back’ data set (weeks 9-16) to assess prediction error. The effects of measurement error 

and testing frequency were assessed by adding realistic errors to true values in the training 

set whilst fitting the fitness-fatigue model to varying proportions of the augmented data 

(observed = true + error). The process replicated the situation adopted in real-world 

settings where observed scores on a physical test comprise the athlete’s true score and 
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measurement error [22]. The simulation approach, however, incorporated the additional 

assumption that the fitness-fatigue model completely specified the athlete’s response to 

training. Parameter estimates obtained from the model training set were then combined 

with training loads from the hold back data to obtain predicted power values and their 

associated prediction errors. Finally, extensive simulations were completed for each 

scenario to obtain distributional estimates. A detailed flowchart illustrating the simulation 

process is presented in Figure 2. 

Development of Hypothetical athletes 

Simulated data representing true performance change for two hypothetical athletes 

(intermediate and advanced) were developed based on the inverse relationship between 

experience and improvement [23]. Research investigating change in vertical jump power 

from a single intervention has demonstrated that improvements in peak power (W) for 

moderately trained athletes generally range between 0 and 20% [24], whereas 

improvements for advanced athletes generally range between 0 and 5% [25, 26]. Based 

on these findings, increases of 15% and 5% were chosen for the intermediate and 

advanced athletes over the 16-week period, respectively. The same research base [24-26] 

was also used to identify realistic baseline values. 

 
Development of Training Loads 

Two characteristic training load distributions (TRIMP values) were developed for each 

athlete. The first (TRIMP-1) followed a summated microcycles distribution, in which 

each 4-week mesocycle comprised 3 weeks of progressive loading followed by 1 week 

of deloading [27]. The second (TRIMP-2) followed a wave-like pattern where training 

load gradually increased and oscillated over each 4-week mesocycle [28, 29]. TRIMP 

values and their scaling across the two hypothetical athletes are presented in figure 1. 
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Development of Athlete Specific Parameters 

The standard fitness-fatigue model (eq.1) was used to fit all models in the present study.  

 

𝑝𝑝(𝑡𝑡) = 𝑝𝑝(0) + 𝑘𝑘1�𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏1

𝑡𝑡−1

𝑠𝑠=0

∙ 𝑤𝑤(𝑠𝑠) − 𝑘𝑘2�𝑒𝑒−
𝑡𝑡−𝑠𝑠
𝜏𝜏2 ∙ 𝑤𝑤(𝑠𝑠)

𝑡𝑡−1

𝑠𝑠=0

                            (eq. 1) 

 

Where 𝑝𝑝(𝑡𝑡) is the performance on day 𝑡𝑡, 𝑘𝑘1 and 𝑘𝑘2 are weighting factors that translate 

the units of the training load to the fitness and fatigue effects of the performance measure 

(power measured in Watts), respectively; 𝜏𝜏1 and 𝜏𝜏2 are decay constants controlling the 

decay time of fitness and fatigue effects, respectively; and 𝑤𝑤 is the daily TRIMP value. 

Athlete specific parameters were obtained through a process of systematic parameter-

space exploration. Briefly, desired end-performance values following 16-weeks of 

training were calculated for each athlete and an interval of ± 75 W constructed to provide 

an initial screening threshold. Simulations were run with 3.8 × 106 parameter sets 

(𝑘𝑘1,𝑘𝑘2, 𝜏𝜏1, 𝜏𝜏2) constructed by incrementing values in a grid-like fashion. Approximately 

2000 potential parameter sets were obtained for each athlete in which the end-

performance value resided within the threshold set. These parameter sets were then 

plotted and visually investigated for realistic developments over the 16-weeks. This 

process reduced the number of parameter sets to approximately 10 for each athlete (Table 

1; parameter ranges intermediate athlete 𝑘𝑘1: 0.5-2.5, 𝑘𝑘2: 1.0-4.0, 𝜏𝜏1: 14-37, 𝜏𝜏2: 5-19;  

parameter ranges advanced athlete 𝑘𝑘1: 0.5-4.5, 𝑘𝑘2: 1.0-5.0, 𝜏𝜏1: 6-25, 𝜏𝜏2: 5-15). A final 

selection was made (Table 2) based on further visual comparison to create upward trends 

with plateau, and ensuring parameter values and their ratios (𝑘𝑘1/𝑘𝑘2 and 𝜏𝜏1/𝜏𝜏2) were 

consistent with previous research [30].  
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Model Simulations 

Power values were generated for each athlete with the training loads and parameters 

described above using the fitness-fatigue model in eq.1 to represent true performance 

(Figure 3).  Repeated simulations were then used to investigate the effects of error 

magnitude and training frequency. Measurement error was added to each true power 

value (in the initial 8-week model training block) to replicate testing in a real-world 

setting. Errors were added by random draws from a Gaussian distribution with mean zero 

and standard deviation representative of that obtained during a vertical jump. A review 

of literature identified that power is frequently measured via a force platform or linear 

position transducer [21, 31]. The former measurement tool calculates power via force and 

velocity values obtained through integration, and the latter calculates power via force and 

velocity values obtained from differentiation of displacement data. Reliability studies 

have reported coefficients of variation (CV) ranging from approximately 2 to 10%, with 

superior reliability obtained when using a force platform [21, 31]. As a result, standard 

deviations for Gaussian errors were derived for both hypothetical athletes by multiplying 

each CV value (2, 4, 6, 8, 10%) by the athlete’s initial baseline power value (𝑝𝑝(0)) and 

dividing by 100 (Table 3). An additional set of simulations for the advanced athlete 

incorporating the same absolute error used in the intermediate case were completed to 

facilitate further comparisons.  

 

To simulate different testing frequency states, a proportion of power values were isolated 

to recreate the real-world setting of measuring performance once per week to each day 

(in unit increments). For example, every 7th power value with error was selected from the 

model training block when simulating the once per week condition. A total of 210 

scenarios were investigated with each comprising 104 simulations (2.1 × 106 total 
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simulations). Parameter estimates for each simulation were fitted under a parallel 

computing framework using least-squares regression via a limited-memory modification 

of the BFGS quasi-Newton method [32], in the optimization package Optim (a part of the 

R stats package, v.3.4.4). Parameter estimates for each simulation were combined with 

the corresponding TRIMPs across the entire 16-week block [33], with predictions for the 

hold-back data used to obtain prediction errors for subsequent analysis.  

 

Statistical Analyses 

For each set of 104 simulations, prediction errors were transformed into summary 

statistics representing distributional centrality (DPEM) and spread (DPES) by calculating 

the median and distance between the 0.16 and 0.84 quantiles, respectively. Relationships 

between dependent variables (centrality: DPEM, spread: DPEs) and centred independent 

variables (measurement error and testing frequency) were quantified by multiple linear 

regression. Initially, the linear combination of measurement error and testing frequency 

expressed as continuous variables were entered into regression models. A second series 

of models featuring the linear combination and product of measurement error and testing 

frequency (interaction effect) were then included. Fit and suitability of each linear model 

was assessed with adjusted R2 and residual analysis, respectively. Distributions of 

parameter estimates were described using descriptive statistics and ill-conditioning 

assessed via calculation of Pearson correlation coefficients [19, 30].  

 

Quality Control 

Systematic examination of the simulation source code (code review) was performed pre-

and post-simulation deployment, to detect inaccuracies that would prevent successful 

implementation or cause erroneous results. A sensitivity analysis was conducted to assess 
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the effects of different initial values on the non-linear least squares optimisation function. 

The sensitivity analysis comprised fitting the least squares algorithm with 100 different 

starting values across the parameter space and no substantive changes were noted from 

code featuring a single set of starting values comprising the true parameters. Optimisation 

convergence was set using a tolerance of 10-8 in the objective and found to be successful 

for approximately 99% of total parameters estimated within the experiment. 
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Results 
 
 
Prediction errors 

All analyses revealed positive associations between dependent variables (prediction error 

centrality and spread) and the independent variables measurement error and testing 

frequency. DPEM was well explained by the linear combination of the two independent 

variables (Adjusted R2 = 0.89-0.94) across all six athlete-TRIMP groupings (Figure 4). 

Regression coefficients for testing frequency (𝛽𝛽1 = 19.1 − 26.4) and measurement error 

(𝛽𝛽2 = 20.8 − 25.4) were shown to be significant (P<0.001) for each model assessed. The 

inclusion of an interaction term significantly (P<0.001) improved the fit of each model 

(Adjusted R2 = 0.96-0.98) and demonstrated that the deleterious effect of increased 

measurement error on DPEM was increased at lower testing frequencies.  Similar results 

were obtained for DPES (Figure 5), with strong linear relationships obtained with testing 

frequency and measurement error (Adjusted R2 = 0.87-0.91). Again, each regression 

coefficient was found to be significant (P<0.001) and all models were improved 

(P<0.001) with an interaction effect demonstrating greater deleterious effects of 

measurement error at low testing frequencies.  

 
 

Comparisons of prediction errors between the advanced and intermediate athlete 

demonstrated a dependence on testing frequency. For high measurement frequencies the 

advanced athlete simulations for both TRIMP distributions demonstrated systematically 

lower prediction errors compared to the intermediate athlete. This finding was obtained 

for both DPEM (mean±sd = 90±47 vs. 103±44 W, respectively) and DPES (mean±sd = 

168±110 vs. 193±93 W, respectively), despite larger absolute measurement error values 

inputted to advanced athlete simulations. However, when testing frequency was low, 
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prediction errors were similar for both athletes, and in some cases, slightly larger for the 

advanced athlete. When simulations were repeated using the same absolute error 

magnitude for both athletes, centrality and spread of prediction error were consistently 

lower for the advanced athlete across all conditions. 

 
 
Model parameter estimates 
 
In general, model parameter estimates (𝑘𝑘1, 𝜏𝜏1,𝑘𝑘2, 𝜏𝜏2) displayed a range of different 

distributions across simulation scenarios. Estimates for the gain parameters (𝑘𝑘1,𝑘𝑘2) were 

unstable for both athletes, with boundary values frequently obtained when testing 

frequency was low. This effect was magnified when low testing frequency was combined 

with high measurement error. Distribution of the decay parameters (𝜏𝜏1, 𝜏𝜏2) became 

increasingly right-skewed for both athletes as measurement error increased. This effect 

became more pronounced when large measurement errors were combined with low 

testing frequency. Correlations between parameter estimates (N=350,000 per athlete-

TRIMP grouping; Table 4) revealed strong associations between gain parameters (𝑘𝑘1 and 

𝑘𝑘2: r = 0.88-0.99) for both athletes, thereby demonstrating ill-conditioning. Low to 

moderate strength negative correlations were also obtained between 𝑘𝑘1 and 𝜏𝜏1(r = -0.63 

to -0.29), and 𝑘𝑘2 and 𝜏𝜏1 (r = -0.64 to -0.31) for both athletes.   
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Discussion 
 

The present study comprised a unique and efficient design to investigate prediction 

accuracy of the standard fitness-fatigue model in a strength and conditioning context. The 

simulation approach provided an effective method to systematically assess the effects of 

two key challenges in athlete training modelling, namely, controlling measurement error 

and identifying appropriate measurement frequencies [30, 34, 35]. Whilst it is unrealistic 

to expect an athlete will respond deterministically to a series of training loads, the 

approach and underlying assumptions adopted in the present study provide important 

general information and informative lower bound cases for researchers and practitioners 

to consider. That is, the approach can identify and rule out specific practices that have no 

potential to be successful in real-world settings (but not rule in other practices).  

 

The key findings of this study indicate that increased measurement error and reduced 

testing frequency across standard ranges encountered in practice meaningfully increase 

prediction errors. Additionally, variation in prediction errors were well explained by the 

simple linear combination of measurement error and testing frequency (Adjusted R2 = 

0.87-0.94). Regression coefficients showed that for every 1% increase in CV, the 

distribution of prediction errors increased by approximately 21-25W in centrality 

(DPEM), and 45-63W in spread (DPES). Similarly, models showed that for a single day 

reduction in testing frequency, the distribution of prediction errors increased by 

approximately 19-26W in centrality (DPEM) and 42-65W in spread (DPES). 

Theoretically, the standard fitness-fatigue model and traditional non-linear least squares 

methods used to obtain parameter estimates should demonstrate poor performance with 

high measurement error. The results of this simulation support this notion and show that 

if observed scores in a given performance test comprise error of more than 2-5% of an 



 
16 

athletes baseline score, they are unlikely to be suitable for use with the fitness-fatigue 

model due to unacceptable prediction accuracy even in this most optimistic scenario 

where performance is directly specified by the model. The results demonstrate that when 

the model is fit to moderately inaccurate data (comprising error more than 5% CV), 

predictive errors become unacceptably high across all frequency conditions. For example, 

if measurements comprised ~6% CV, the results of this study suggest that even under 

high testing frequencies prediction errors of +150 W should be expected for 

intermediate/advanced athletes. For further context, an error of 150 W is equal to 

approximately 3% of the baseline scores, with total improvement across the entire 

training phase set at 5 and 15% for the advanced and intermediate athlete, respectively. 

Furthermore, these simulations represent a lower bound case, where additional real-world 

factors will further increase prediction errors. 

 

Whilst a simple linear combination of the two independent variables explained most of 

the variation in prediction errors, significant improvements in model fit were obtained in 

all cases though inclusion of an interaction term. In each model the interaction 

demonstrated that deleterious effects of increased measurement error on prediction 

accuracy were amplified at lower testing frequencies. Viewed from the opposing 

perspective, the interaction effect demonstrated that very low measurement error (~2% 

CV) offered a protective effect on prediction accuracy even at low measurement 

frequencies. These findings suggest that if practitioners maintain very low measurement 

error (e.g. ≤2% CV) then use of the standard fitness-fatigue model may be viable despite 

low measurement frequencies (i.e. every 5-7 days). The lower bound case identified in 

this study suggested average prediction errors of approximately 50-100 W over an 8-week 

period with 2% CV and testing once per week. This finding aligns with previous research 
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where adequate to strong fit (r = 0.53-0.97) was obtained with the fitness-fatigue model 

applied to resistance training data and performance measured once per week [3, 14]. The 

authors measured performance with 1RM tests which have been shown to demonstrate 

very low measurement error with CV values between 1 and 3% reported in literature [36, 

37]. 

 

It is important to note that almost all previous studies conducted with the fitness-fatigue 

model have only included a model training phase and therefore potential for overfit given 

the four parameters available is likely. In contrast, the potential value of the fitness-

fatigue model if its functional from is appropriate and parameters can be reliably 

estimated is to project into the future predicting an individual’s response and thereby 

guide training prescription.  Notably, the use of a cross-validation or ‘hold back’ data set 

is required to assess predictive capacity and should be considered compulsory for all 

future studies that assess fitness-fatigue models in practice. This recommendation 

corresponds with recent studies [33,38] demonstrating that fitness-fatigue models can 

generate moderately accurate predictions using data collected outside of a laboratory.  

 

Parameter estimates obtained from the study were tested with correlations, with high 

values observed between the two magnitude factors, 𝑘𝑘1 and 𝑘𝑘2 across all simulations. 

This finding supports criticisms of ill-conditioning partially due to parameter inter-

dependency, first raised by Hellard et al. [19] and further supported by Pfeiffer [30]. As 

discussed in detail by Hellard et al. [19], inter-dependency removes practical meaning 

from parameters as representations of an athlete’s physiological state, and instead 

indicates the model has likely overfit, at the expense of accurate future predictions. Given 

the objective of uncovering meaningful parameters that characterise an individual’s 
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response to training, further research investigating fitness-fatigue models in a simulation 

environment may consider alternative parameter search methods, penalisation techniques 

to reduce parameter variability, and model reparameterisations [19]. 

 

Prediction errors and distributions of parameters estimates in the present study were 

similar across the two TRIMP designs for both athletes.  In general, prediction errors for 

the advanced athlete were either less than or similar to those obtained for the intermediate 

athlete, despite greater absolute measurement errors applied for the former due to the 

scaling effect of CV. However, controlling for this effect by applying the same absolute 

measurement errors for both athletes resulted in lower prediction errors across all 

scenarios for the advanced athlete. These results indicate that a range of factors including 

heteroscedasticity in measurement error, absolute performance level and adaptive rate are 

likely to combine to influence the suitability of predictions.  Further simulation work 

encompassing a wider range of training programs and realistic athlete development 

profiles should be conducted to identify cases where fitness-fatigue models have the 

greatest potential utility.   

 

  



 
19 

Conclusions 
 

Whilst the simulation results presented here provide novel insights into the effects of 

measurement error and testing frequency on fitness-fatigue model prediction accuracy, 

there are a range of complex additional factors that would be expected to influence model 

prediction of an athlete’s response to training. The primary aim of this study was to create 

lower bound estimates, where even in the absence of these additional factors, certain 

measurement errors and testing frequencies conditions would be considered ineffective 

to warrant use in practice or research. Collectively, the results of this study indicate that 

practitioners and researchers should focus on relevant performance tests that generate 

highly reliable data (≤4% CV). Additional processes including taking the average of 

multiple trials and filtering techniques can also increase reliability and should be 

considered.  Even under high frequency conditions, the results of this study demonstrate 

that accurate predictions are not likely if measurement error is not minimised. Prior to 

investing time in data collection, it is recommended that practitioners and researchers 

adopt a simulation approach like the one applied here, where various measurement error 

and testing frequencies can be applied to training loads and adaptive rates realistic to each 

athlete being studied. Finally, it is recommended that future research investigating the use 

of fitness-fatigue models report prediction accuracy using cross-validation to 

appropriately evaluate the utility of the model to practitioners within the field of sport 

science. 
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Table 1: Athlete specific parameter sets (𝑘𝑘1,𝑘𝑘2, 𝜏𝜏1, 𝜏𝜏2) creating realistic improvements 

 
Athlete 𝒌𝒌𝟏𝟏 𝝉𝝉𝟏𝟏 𝒌𝒌𝟐𝟐 𝝉𝝉𝟐𝟐 Athlete 𝒌𝒌𝟏𝟏 𝝉𝝉𝟏𝟏 𝒌𝒌𝟐𝟐 𝝉𝝉𝟐𝟐 

INT 0.5 18 1.0 5 ADV 4.5 8 5.0 7 

INT 2.5 14 3.5 9 ADV 3.5 6 4.0 5 

INT 2.5 19 4.0 11 ADV 0.5 12 1.0 15 

INT 0.5 37 1.5 9 ADV 1.5 10 2.0 7 

INT 1.0 22 2.0 9 ADV 2.5 10 3.0 8 

INT 1.0 19 1.5 10 ADV 0.5 20 1.0 9 

INT 0.5 31 1.0 11 ADV 0.5 25 1.0 11 

INT 1.5 26 2.0 17 ADV 1.0 19 1.5 12 

INT 2.5 25 3.0 19 ADV 2.5 16 3.0 13 

 INT: Intermediate | ADV: Advanced. Top row for each athlete includes the parameter set used for simulations.  

 

 

Table 2: Athlete specific parameters (𝑘𝑘1,𝑘𝑘2, 𝜏𝜏1, 𝜏𝜏2), initial starting values 𝑝𝑝(0) and end-

values 𝑝𝑝(112). 

 

Athlete Change (%) 

Baseline performance (W) Final performance (W) True Parameters 

𝒑𝒑(𝟎𝟎) 𝒑𝒑(𝟏𝟏𝟏𝟏𝟐𝟐) 𝒌𝒌𝟏𝟏 𝝉𝝉𝟏𝟏 𝒌𝒌𝟐𝟐 𝝉𝝉𝟐𝟐 

INT ~ 15% 4500 ~ 5175 0.50 18 1.0 5 

ADV ~ 5% 5250 ~ 5500 4.50 8 5.0 7 

                         INT: Intermediate | ADV: Advanced 

 

 

Table 3: Standard deviation (Watts) of the Gaussian error distribution with mean 0, from 

which random measurement error was drawn and applied to each known true-value within 

every individual simulation. Categorised by error (CV%) condition and athlete. 

 
 SD of Gaussian error distributions by error (CV%) state 

Athlete 2% 4% 6% 8% 10% 

Intermediate 90 W 180 W 270 W 360 W 450 W 

Advanced  105 W 210 W 315 W 420 W 525 W 
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Table 4: Correlations between estimated model parameters for simulated scenarios within 

athlete-TRIMP groupings (N = 10000 parameter sets, per scenario). 

 
 Correlation Coefficient 
 INT: TRIMPS-1 INT: TRIMPS-2 ADV: TRIMPS-1 ADV: TRIMPS-2 

Model Parameter Mean SD Mean SD Mean SD Mean SD 

𝑘𝑘1 − 𝑘𝑘2 0.99 0.009 0.990 0.013 0.98 0.018 0.978 0.025 

𝑘𝑘1 − 𝜏𝜏1 -0.57 0.031 -0.560 0.036 -0.38 0.057 -0.382 0.056 

𝑘𝑘1 − 𝜏𝜏2 0.28 0.231 0.237 0.221 -0.05 0.112 -0.084 0.089 

𝑘𝑘2 − 𝜏𝜏1 -0.58 0.032 -0.576 0.036 -0.39 0.049 -0.398 0.050 

𝑘𝑘2 − 𝜏𝜏2 0.23 0.253 0.186 0.244 -0.11 0.125 -0.151 0.100 

𝜏𝜏1 − 𝜏𝜏2 0.16 0.354 0.217 0.348 0.63 0.278 0.689 0.219 

𝜏𝜏1 − 𝑘𝑘1/𝑘𝑘2 -0.09 0.174 -0.073 0.165 -0.13 0.233 -0.049 0.195 

𝜏𝜏2 − 𝑘𝑘1/𝑘𝑘2 0.06 0.225 0.039 0.213 0.19 0.114 0.150 0.104 
INT: Intermediate | ADV: Advanced | SD: Standard Deviation 
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