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Abstract - The purpose of the work is firstly to explore 
the proposal from a previous North Sea Flow Measurement 
Workshop paper that increasing the number of chordal 
locations above 4 yields little improvement in the 
performance of ultrasonic flow meters. Secondly the work 
examines the relationship between profile factor and 
symmetry on theoretical velocity profiles and how that 
changes with an increased number of chordal locations. 
Finally, the benefits of more paths for the purposes of swirl 
cancellation are reviewed, particularly when axial 
asymmetry and swirl are present concurrently. 

It is found that in the presence of axial asymmetry there 
is a significant performance improvement to be had with an 
increased number of chordal locations. 

A relationship between profile factor and error is also 
apparent. The interpolation polynomial and weight function 
are used to visualize the quadrature and explain the 
correlation. The theory that more chordal locations will 
improve the correlation between error and profile factor is 
investigated, however initial results suggest this is not true. 

The theory behind swirl cancellation is explained and 
the velocity profile diagnostics of common designs in the 
presence of swirl and axial asymmetry are shown. Examples 
of how the user can be fooled into thinking all is well in the 
presence of both axial asymmetry and swirl are also shown. 
The sensitivity of some designs to swirl is also examined.  

The modelling suggests that in cases where swirl and 
axial asymmetry are present together and non-axial velocity 
components are not removed by swirl cancellation or flow 
conditioners, a change in traditional velocity profile 
diagnostics cannot be used to indicate the magnitude of the 
error. 

1 INTRODUCTION 

One of the findings from the 2012 North Sea Flow 
Measurement Workshop paper ‘Limits of Achieving 
Improved Performance from Gas Ultrasonic Meters and 
Possible Solutions’ [1] was that increasing the number of 
paths beyond 4 has little effect on the integration.  

In the paper, the power law profile was used to make 
this assertion and a specific type of Gaussian quadrature. 
It appears that the original intent may have been to 
illustrate whether more chords offer much improvement 
in the integration. It was therefore decided to model the 
effect of more chords on the integration in the presence of 
axial asymmetry and no swirl for two different methods 
of Gaussian quadrature and see if this conclusion still 
holds true.  

The correlation of profile factor with meter error for 
these asymmetric profiles will also be reviewed including 
why the correlation appears to work and the effect of 
more chords will also be shown. 

The performance improvements possible with more 
paths are also considered. The word ‘path’ should not be 
considered synonymous with ‘chord’ because this can 
lead to confusion. For example, there exist 8 path 4 chord 
meters with 2 paths per chord with the paths crossed for 
the purposes of swirl cancellation. These meters offer 
significant performance benefits over their 4 path 4 chord 
siblings and this should not be overlooked [2]. This 
design of meter and the issues that arise with an unknown 
combination of swirl and axial asymmetry will be 
discussed.  

2 THE EFFECTS OF AXIAL ASYMMETRY  

2.1 Background 
Axial velocity profiles describe the distribution of 

velocity in the axial direction (i.e. straight down the 
length of the pipe). There are assumed to be no 
components in any other direction, or in other words no 
swirl. Similarly, axial asymmetry means an axial velocity 
profile which is not symmetrically distributed around the 
pipe centre. In real velocity profiles asymmetry and swirl 
can exist together in various proportions, although in 
theory it is possible to have a perfectly symmetrical 
profile with swirl or an asymmetric axial profile with no 
swirl. The modelling in this section is concerned with the 
distribution of axial velocity, how it affects the 
performance and diagnostics of chordal meters and how 
this changes with more chordal locations.  

This scenario does exist in real life; for example, a 
flow conditioner can remove swirl components but leave 
persistent asymmetry in the profile which slowly decays.  

It is necessary to define what is meant by the terms 
chord and path to lessen confusion because the 
terminology is not necessarily consistent between 
manufacturers. A detailed explanation of this issue can be 
found in [10]. In this paper, a ‘path’ is the straight line 
through the fluid connecting transducers. A ‘chord’ is the 
straight line connecting two points on the circumference 
of a circle. A ‘chordal path’ is the path (or paths) that 
lines up with a chord in a cross-sectional view of the 
meter. The term ‘chordal location’ describes the height of 
the chord from the pipe centre. The chords are illustrated 
below in Fig. 1.1 as A – D. The chordal paths can be 
visualised by imagining a view from the top of the meter 
looking down as in Fig. 1.2 or 1.3. One would then see 
the chordal paths for A (and beneath them B, C and D). 
At each chord, there could be only a single path with a 
positive or negative transducer inclination angle , or 
there could be two paths on the same chord or chordal 
location.  



Fig. 1.1 – 4 chords Fig. 1.2 – 
Single path per 

chord 

Fig. 1.3 – Two paths 
on the same chord 

Chordal ultrasonic flow meters make use of Gaussian 
quadrature to integrate the velocity profile. Quadratures 
are designed to calculate the definite integral of a 
function with only a select few samples of the function on 
which to base its calculation. The weights which many 
are familiar with are derived by integrating interpolation 
polynomials. We can construct the interpolation 
polynomial and use it to illustrate why the meter is 
affected in a certain way when errors begin to develop. It 
is the interpolation polynomial which gives the meter an 
inherent ability to cope with some asymmetry in the axial 
profile.  

The following equations illustrate the basics of 
Gaussian quadrature adapted for use in ultrasonic meters 
(USMs). Note that the equations are written for 
illustrative purposes assuming a meter with a radius of 
unity. Be aware there is a further modification required to 
adapt the weights to operate over a different interval. 
Imagine an infinite number of chords one ever so slightly 
below the previous, each determining the average 
velocity along the chord multiplied by chord length, or 
the line integral. If those values were plotted you could 
visualise the function of chordal line integrals. When this 
function is integrated w.r.t. height and the result divided 
by cross-sectional area this gives us the mean velocity 

 in Eq. (1) is the true function of chordal line 
integrals and this function defines the mean chordal 
velocity multiplied by chord length or at each 
height . However, we are only sampling at a few chords 
so we can only approximate this function, the 
interpolation polynomial fills in the gaps for us. To build 
the interpolation polynomial the Lagrange polynomial is 
used along with samples of the true function at a number 
of discrete points. The integration of the Lagrange 
polynomials provides us with the weighting factors 
and they include the modification to operate in a circular 
domain and return mean velocity. 

(1) 

The Lagrange polynomials are formulated as per Eq. (2).

(2) 

As shown above, calculating the weighting factors 
and applying them in this way integrates the interpolation 
polynomial exactly, not necessarily the true function. We 
can get closer to the true function with more chordal 

locations because there are more points for the 
interpolation polynomial to base its prediction on as is 
shown later.  

The above quadrature rule would integrate an order 
n-1 polynomial with n samples of the true function. 
Gaussian quadrature is a specific type of quadrature that 
is more powerful than the conventional quadrature rule 
shown above. In fact, with n samples this method can 
integrate a polynomial of the order 2n-1. The chordal 
locations are chosen as the zeroes of a specific 
polynomial depending on the quadrature type, e.g. Jacobi, 
Legendre, Chebyshev. Each polynomial has a 
corresponding weight function which, through the 
principle of orthogonal polynomials, permits integration 
of a higher order function with a given number of points. 
It also expands the capability of the quadrature to 
integrate functions which are not polynomials. Eq. (3) 
shows the addition of the weight function. 

(3)

The weights are divided by the weight function 
evaluated at the associated chordal location when used in 
this way which results in  being 
used as the basis for the interpolation polynomial. Note 
also that and is not a polynomial. 
The Lagrange interpolation polynomial cannot interpolate 
functions which are not polynomials, but this problem 
can be solved through clever selection of , e.g. if 

.  
This example must be extended further to fully 

appreciate how Gaussian quadrature reduces the problem. 
Assuming our above definition of  and also our 
selection of if we further assume that 

 and  is the polynomial upon which 
the quadrature is based, because  is orthogonal w.r.t. 

then  and we are 
only integrating . The interpolation 
polynomial also needs to account for the lack of the 
and  functions which is captured in the design of the 
quadrature. The locations of the chords are the zeroes of 
the polynomial upon which the quadrature is based, 
therefore each sample which is fed into the interpolation 
polynomial is based on  hence it can replicate 
the reduced function. This function will be of a lesser 
order than  therefore using this method we can 
integrate a higher order function with a given number of 
points.  

We can also compare the interpolation polynomial 
with the function of chordal line integrals as per Eq. (4). 

(4)



2.2 Modelling the Effects of Axial Asymmetry on Transit Time 
USMs 

For the purposes of modelling the effects of axial 
asymmetry the measurement principle of the transit time 
ultrasonic flow meter can be modelled using existing 
mathematical 2D velocity profile functions as explained 
in [3], [5] and [6]. The line integral is approximated 
numerically across these functions and used to represent 
the path measurements of velocity. The line integral 
allows computation of the mean velocity across a chord 
of the profile function, which is a simplified 
representation of the velocity being inferred from a 
measurement of upstream and downstream transit times. 
The mean velocity for each of the chords at defined 
locations are used according to the principles of Gaussian 
quadrature which models the meter output.  

Since the profile functions are defined they can be 
integrated numerically or analytically to allow calculation 
of the true mean velocity for the velocity profile function. 
The mean velocity output from the quadrature can then be 
compared with the true mean and the quadrature error, or 
percentage difference between these two values, 
determined.  

The model gives us the path velocities from which 
traditional profile factor and symmetry ratio can be 
calculated. The asymmetric profiles are specified in polar 
coordinates and to perform the line integral one must 
calculate the radius and angle from the horizontal for 
each point in the path. By including an angular offset, the 
profile can be rotated which yields a great deal more 
velocity profile diagnostic information.  

An illustration of the rotation of the profile is given 
in Table 1. This is an example velocity profile contour 
plot (high velocity is blue, low is brown), and it can be 
seen this allows us to model rotation of the meter. One 
can expect different integration errors at different angles 
as reported in [6].  

0° 90° 270° 

Table 1 – Rotation of the velocity profile (dashed lines 
indicate the chordal paths)

To model the performance and diagnostic changes 
more chordal locations can yield 4, 5, 6, 7 & 8 chordal 
locations were used for both quadrature types.  

The model includes the 10 profile functions 
mentioned in paper [4] which are based on the Salami 
profiles but the asymmetry term has been reduced as the 
author understands to make the errors match closer with 
those seen in laboratory tests. The power law profile has 
also been implemented. There is also the facility to 
perform line integrals very closely spaced from top to 
bottom of the profile function and output the data which 
allows visualisation of the profile and comparison with 
the interpolation polynomial on which the quadrature is 
based.  

To determine the weights and nodes (or locations) of 
the quadratures the polynomial definition and the 
associated weight function are required. This work 

focusses on Gauss-Jacobi (also known as Gauss-
Chebyshev for our configuration of the Jacobi 
polynomial) and Gauss-Legendre since it is understood 
these represent integration schemes used by chordal 
meters seen during inspections performed by the author.  

Determining the nodes and weights can be a lengthy 
process. However pre-calculated nodes and weights are 
available online [7] or in papers [3].  

2.3 Results – Power Law Profile 
We first show the performance of the 4 – 8 chordal 

location Gauss-Jacobi and Legendre quadratures on the 
power law profile. The range of n values was 

, representing a Reynolds number range of 
. This covers a range of profile factors and 

for 4 chord Gauss-Jacobi the range was 1.21 - 1.11.  
Note that the Legendre implementations in this 

section and section 2.4 use correction factors to account 
for an oddity when this quadrature is used in a circular 
domain. Use of the correction factor results in weights 
which sum to 1 and merely shifts all errors in the negative 
direction. One manufacturer has explained this 
adjustment is performed in their meters [4] and hence this 
make the comparison with Gauss-Jacobi fairer.  

Errors seen at the first calibration of a new meter will 
be due to many factors including chordal locations not 
being exactly where required for the quadrature, slight 
geometry measurement errors in the meter internal 
diameter, path lengths and path angles and the inherent 
error due to the quadrature’s ability to accurately 
integrate the velocity profile. The below results can be 
thought of as the change in this inherent error in the 
quadrature which would only be visible at the first 
calibration of a new meter. Thereafter any error from this 
component is effectively calibrated out. 

Fig. 2 – Error span with increasing chordal locations (Gauss-
Jacobi & Gauss-Legendre)  

Fig. 2 shows the span of errors across the range of n 
on the power law profile. We note that in general the span 
of error is decreasing as the number of chords increases, 
although for the Gauss-Jacobi the span is reduced with an 
even number of chords (i.e. 4 chords are better than 5 and 
6 are better than 7) and the reverse appears evident for 
Legendre. 



Fig. 3 – Average absolute error with increasing chordal 
locations (Gauss-Jacobi & Gauss-Legendre) 

Fig. 3 shows the average absolute error across the 
range of n on the power law profile. The Legendre 
quadrature shows a significant improvement in 
performance as the number of chordal locations increases 
whereas Gauss-Jacobi shows less of an improvement. The 
results reported by K. Zanker [1] are similar to those 
above in that we have a small increase in performance, 
~0.1% to ~0.01% as the number of chordal locations 
increase for Gauss-Jacobi. However, those results do not 
consider the performance of the quadrature with 
asymmetric profiles which now follows. 

2.4 Results – Asymmetric Profile Functions 
Note that a variation of the metric ‘orientation 

sensitivity factor’ defined by P. Moore et al. [3] has been 
used which in this case is the difference between the 
maximum and minimum % errors at different 
orientations. Note 37 different orientations were used for 
each profile in 5° increments from 0° to 180°. 

Fig. 4 – Error span with increasing chordal locations  

Fig. 4 shows that there is a significant improvement 
across the different profiles with a reduction in the error 
span of 0.2% – 0.3% being achieved on many of the 
profiles when comparing 4 to 8 chordal locations. 

Fig. 5 – Average absolute error with increasing chordal 
locations  

Fig. 5 shows that the average absolute error is 
reducing as the number of chordal locations increases by 
~0.15% for Gauss-Jacobi and ~0.2% for Gauss-Legendre.  

There are some practical problems with introducing 
more chords which have been described in [1]. For 
example, with more chords the velocity profile 
disturbance created by the transducer cavity increases 
which itself causes problems with the integration. There 
may also be problems with interference between paths or 
unintended reflections. It is understood that these 
problems are more evident in smaller meters than larger 
meters and that larger USM’s in water applications do 
make use of a greater number of chordal locations. The 
size of meter for which these problems become 
unsurmountable with different numbers of chordal 
locations is not presently known, but presumably as the 
technology develops further these challenges will become 
less of an issue. It is also worth considering the potential 
for offering increased chordal locations in larger sizes 
only as these meters will likely be measuring a greater 
value of product and therefore reductions in sensitivity to 
axial asymmetry become more fiscally important.  

Note that manufacturers in some cases also include 
diagnostic corrections in the meter software which may 
reduce the effect of the above. These corrections when 
employed for axial asymmetry correction can be thought 
of as an alternative to more chordal locations. These 
corrections are commercially sensitive and are not 
divulged. When we have differences between profiles at 
calibration and in service these corrections may be in use 
to a lesser or greater degree depending on the difference. 
However, there is a disadvantage to correcting for axial 
asymmetry this way which is discussed in part 4.  

We shall now explore correlations between 
diagnostics and integration errors caused by axial 
asymmetry only (no swirl present). 

2.5 Diagnostic Correlations – Axial Asymmetry 
The relationship between profile factor and 

integration error was reviewed using the data from the 
asymmetric profile functions at different orientations. 
Note that profile factor is calculated as the sum of the 
inner path velocities divided by the sum of the outer path 
velocities. 

Fig. 6 – Correlation between integration error and profile 
factor on the asymmetric profiles (4 chord Gauss-Jacobi)  

Fig. 6 shows a relationship between error and profile 
factor as reported in [4]. The % change in error per % 
change in profile factor (sensitivity) from the above is ~ -
0.016% per 1% increase in profile factor. Note this 
represents a theoretical correction for asymmetry only, no 
swirl. Figs. 7A and 7B show the same data split into two 
plots, the profile function each data point belongs to is 
indicated. 



Fig. 7A – Correlation between integration error and profile 
factor for some asymmetric profiles (4 chord Gauss-Jacobi)  

Fig. 7B – Lack of correlation between integration error and 
profile factor for some asymmetric profiles (4 chord Gauss-

Jacobi)  

Fig. 7A shows that there are some profile functions 
for which the correlation works well, e.g. A3, A7, A8, 
A9, A10 and A11. Fig. 7B shows that there are some 
profiles that it does not work for e.g. A1, A2, A5 and A6. 
Using the model, the function of chordal line integrals 
was output and compared with the interpolation 
polynomial to understand why the correlation works for 
some of the profiles and not others. 

Figs. 8A and 8B show profile A8 at angles of 95° and 
0° respectively compared with the Gauss-Jacobi 4 chord 
interpolation polynomial. For each chart the interpolation 
polynomial is calculated as per equation (4) with samples 
from the velocity profile function with the associated 
angular offset applied. The upper chart corresponds to an 
error of +0.02% and it is clear the interpolation 
polynomial is a fair fit. The lower chart shows the 
interpolation polynomial overestimating the mean chordal 
velocity and the error has increased to +0.28%. 

Fig. 8A – Comparison of mean chordal velocity and 
interpolation polynomial for profile A8 at 95°.

Fig. 8B – Comparison of mean chordal velocity and 
interpolation polynomial for profile A8 at 0°. 

It appears that the reason for the correlation is that as 
the profile gets flatter (and hence profile factor decreases) 
there appear to be changing gradients between the inner 
chords which the interpolation polynomial is unable to 
predict and causes an overestimate around the pipe 
centre. There is also a lesser degree underestimate 
between the inner and outer chords but this does not 
counter the overestimate around the centre and results in 
a positive error.  

A comparison of the true mean chordal velocity with 
the interpolation polynomial was also performed for 
profile A1, shown in Fig. 9. It was found there is a 
discontinuity present which is causing a larger than 
expected error across the range and should not appear in 
real life. This has been investigated in previous work [3]. 
The chordal velocity function was plotted for all profile 
functions at 0° which demonstrated that A2 and A5 
contain a similar discontinuity to that shown below. A6 
does not appear to have the same discontinuity but it is 
detailed in [3] that the angular function which forms part 
of the profile function does not have a continuous 
derivative w.r.t. , so it could be argued it may not be 
realistic. 

Fig. 9 – Comparison of mean chordal velocity and interpolation 
polynomial – A1  

The correlation was rechecked with the profiles of 
questionable validity removed. It was found that the 
sensitivity was ~ -0.018% with an  of 0.84. The Gauss-
Legendre profile factor correlation was generally better in 
terms of fit than Gauss-Jacobi for the same number of 
chords, for example at 4 chords  was 0.93. The only 
exception to this rule was for 5 chords where Gauss-
Jacobi achieved an  of 0.92 and Legendre achieved 
0.84. Gauss-Legendre appeared slightly more sensitive to 
changes in profile factor for a given number of chords, 
for example at 4 chords sensitivity was -0.025%.  



The integration error was plotted as a function of 
symmetry ratio to see if a correlation was evident, see 
Fig. 10. Note that the symmetry ratio is calculated as the 
sum of the upper path velocities divided by the sum of the 
lower path velocities. 

Fig. 10 – Correlation between integration error and symmetry 
ratio on the asymmetric profiles (4 chord Gauss-Jacobi)  

From Fig. 10 it appears that there is not a useful 
correlation relating errors due to axial asymmetry with 
the symmetry ratio.  

Fig. 11 shows the relationship between error and 
profile factor for the 7 and 8 chord Gauss-Jacobi 
quadrature and test if the relationship between profile
factor and error becomes stronger with more chordal 
locations. 

Fig. 11 – Correlation between integration error and profile 
factor on the asymmetric profiles for 7 chord (top) and 8 chord 

(bottom) Gauss-Jacobi  

Fig. 11 shows that the correlation is only marginally 
improved with 7 chords and is not improved with 8 
chordal locations. From the trends  increased from 
0.84 with 4 chordal locations to 0.85 with 7 and dropped 
to 0.38 with 8. For Gauss-Legendre generally 
decreased with the number of chords from 0.93 to 0.57 
with 8 chords, the exception being at 7 chords in which 

 was 0.87.  
The total spread of error across the range of profile 

factors is vastly reduced with 8 chords and sensitivity is ~ 
-0.002% for Gauss-Jacobi and ~ -0.003% for Gauss-
Legendre, i.e. the integration scheme is less sensitive to 
changes in profile factor caused by axial asymmetry. 

3 THE EFFECTS OF SWIRL 

3.1 Background 
Swirl can be thought of as any non-axial component 

of velocity and has a separate effect to axial asymmetry 
on the measurement. The issue with swirl arises from an 
assumption in Eq. (5): 

(5) 

The measurement principle is simply time equals distance 
divided by speed. Remember that the meter does not 
measure velocity, it measures transit time and it infers 
velocity. To calculate the expected speed of the pulse 
used in the formulation of the equation for velocity we 
take the speed of sound in the fluid and add/subtract a 
correction for the component of velocity in the direction 
of the path. A vector diagram illustrating this is shown in 
Fig. 12: 

Fig. 12 – Path component and axial velocity vectors  

(6) 

To be able to infer axial velocity from the difference 
in transit times the ratio of the path to the axial velocity 
must be equal to the cosine of the angle between them. If 
there is swirl in the profile there will be another velocity 
helping or retarding the pulse. Consequently will 
be higher or lower than expected and these equations are 
no longer true leading to an error in the velocity 
measurement.  

Three different chordal meter designs are referenced 
within this section. According to BS-7965:2013 [12] 
these three types are as follows, multi-path parallel chord, 
multi-path parallel crossed chord and multi-path in-plane 
crossed chord. These definitions will be used minus the 
multi-path description. The parallel crossed chord 
configuration which has been used in this paper has A 
and C chords with a transducer inclination angle of -60° 
and B and D chords at angle of +60°. The parallel chord 
configuration has an inclination angle of +60° for all 
chords. 

3.2 Swirl Cancellation 
For some time, there has been a meter design in 

production which can combat the issue of swirl from first 
principles using swirl cancellation, although it appears 
uptake in the fiscal measurement side of the oil and gas 
industry has been slow and the author has only seen one 
so far during inspections. Note that true cancellation of 
asymmetric swirl will only occur if the crossed paths are 
at the same elevation. 

The mechanics of the swirl cancellation employed by 
the in-plane crossed chord design are illustrated below in 
a worked example using only basic trigonometry and 
vectors. If we assume we have a given axial velocity, say 
15 m/s and say we have a swirl velocity of 2 m/s. We 



construct a new combined velocity vector as shown in 
Fig. 13. 

Fig. 13 – Formulation of the combined velocity vector (positive 
path angle)  

The swirl angle 
and our new combined velocity magnitude  

. We 
can show the effect this combined velocity would have on 
the path velocity. To do this we calculate the component 
of the combined velocity vector in the direction of the 
path as shown in Fig. 14. 

Fig. 14 – Calculation of the path velocity vector (positive path 
angle)  

The angle between the combined velocity vector and 
the path itself, termed here the interception angle  is 
calculated by subtracting the swirl angle  from the 
path angle  and we find it is 52.4°. The component of 
velocity in the direction of the path 

. The USM measures the time 
of flight along the path which will obviously be heavily 
dependent on this velocity and the conversion back to an 
axial velocity is handled in the formation of the velocity 
equation. We must now convert our answer back to an 
axial velocity to mimic the USM and we can only use the 
path angle to do this, hence the velocity error creeps in. In 
our simplified example, axial velocity for this path is as 
follows:  

We now repeat this for a second path which crosses 
the first and is on the same chord as shown in Fig. 15. 
This should experience the same swirl velocity in our 
simplified example. 

Fig. 15 – Calculation of the path velocity vector (negative 
path angle) 

For this path, the path angle is -  otherwise the 
calculations are performed in the same way as before. We 
have a reduced path component of 5.77 m/s because of 
the larger interception angle (-67.6°). Finally, the 
component of velocity in the direction of the path is 
converted to give an inferred axial velocity for this path 
as before giving 11.54 m/s. The effect on each of these 

paths is equal in magnitude but opposite in sign, so if we 
now average the two axial velocities we arrive at the true 
axial velocity of 15 m/s.  

Another feature of the design is the ability to infer the 
swirl velocity from the difference in path velocities. 
Geometrically this can be visualised as per Fig. 16. This 
has been constructed from the above example, the two 
bold arrows on the left are the path components of 
velocity from Fig. 14 and Fig. 15. 

Fig. 16 – Calculation of the swirl velocity from half the 
difference in path velocities  

We can therefore take our difference in path 
velocities which is 18.46 - 11.54 = 6.92. Referring to Fig. 
16 the swirl component (at a right angle to the axial 
velocity vector) is part of a small right-angled triangle 
and is adjacent to the known angle, the side opposite the 
angle is the half difference in path velocities so the swirl 
is simply calculated from 

  

3.3 Modelling the Effects of Swirl  
The modelling described in 2.2 was expanded to 

include the ability to superimpose single vortex 
asymmetric swirl on top of the asymmetric and power 
law profile functions already implemented. The modified 
vortex equation from [4] was used to calculate a 
theoretical tangential velocity at a point in a vortex with a 
specified centre and radius. This is shown in Eq. (7). 

(7)

To calculate the theoretical effect of swirl each path 
is divided into 10000 sub-lengths. To determine the swirl 
effect on each sub-length the x-component of swirl 
velocity from the above tangential swirl velocity was 
calculated. This is treated as a vector at 90 degrees to the 
axial velocity and vector addition is used to create a new 
combined velocity vector. Note that the sign of the x-
component is set according to whether the present point 
in the path is above or below the vortex centre. The 
remainder of the calculation proceeds as described in 3.2, 
the interception angle is calculated and used to calculate 
the component of velocity in the direction of the path. 
The sum of all such components is divided by the number 
of lengths to determine the average and converted to an 
axial velocity prediction by dividing by . The results 
in this paper were calculated using this method.  

The above method is fine for a chordal meter design 
in which there is no change in height across the path. 
However, if one wishes to model a different meter design, 
such as one incorporating bounce paths which requires 3 
dimensions to represent, a new approach is needed. To do 
this the path is still divided into many sub-lengths but the 
swirl effect on each sub length is calculated by including 
the y-component of swirl velocity in addition to the x-



component and by use of the dot product of the path 
vector p and the velocity vector v. The result of the dot 
product is the velocity in the direction of the path 
weighted by the length of each path sub length. This is 
simply implemented because of the relation in Eq. (8): 

(8)
The x and y components of the velocity vector are 

found from the tangential swirl velocity and the z 
component of velocity is taken from the axial velocity 
profile function of your choice. The path vector 
components are constructed from a knowledge of the 
meter design, dimensions and number of sub-lengths. The 
result of  for each sub length is summed which 
approximates the line integral across the velocity field 
and is then divided by the total path length to give a mean 
path velocity which forms the basis for the remainder of 
the calculation. This can be used for any meter design to 
test the appearance of swirl and asymmetry in varying 
proportions and to test for diagnostic correlations. For 
chordal designs, this is equivalent to the first approach 
described. 

3.4 Interference with Diagnostics  
Swirl changes the appearance of the profile and 

introduces additional errors, these could counter or add to 
the error already present from any axial asymmetry.  

An illustration of the way swirl strength can change 
the appearance of the velocity profile is given below in 
Figs. 17A, 17B and 17C. These show single vortex swirl 
with varying vortex strength superimposed on top of 
profile A8. The swirl strength is varied from -0.2 to +0.2 
in 0.1 increments simulating anti-clockwise and 
clockwise swirl for the parallel chord (Fig. 17A), the 
parallel crossed chord (Fig. 17B) and the in-plane crossed 
chord (Fig. 17C) arrangements. Note that as previously 
reported in [11] there is a significant difference in the 
appearance of swirl between the parallel chord and 
parallel crossed chord designs. A summary of the velocity 
profile diagnostics are given below each graph. 

Profile factor 1.09, Symmetry 0.78 
Possible swirl 

Profile factor 1.08, Symmetry 0.86 
Possible swirl 

Profile factor 1.07, Symmetry 0.95 
Possible swirl 

Profile factor 1.06, Symmetry 1.04 
Possible swirl 

Profile factor 1.05, Symmetry 1.15 
Possible swirl 

Fig. 17A – Appearance of single vortex swirl with varying 
swirl strength and direction for parallel chord 

Profile factor 0.89, Symmetry 0.97 
Possible swirl 

Profile factor 0.97, Symmetry 0.96 
Possible swirl 



Profile factor 1.07, Symmetry 0.95 
Possible swirl 

Profile factor 1.18, Symmetry 0.94 
Possible swirl 

Profile factor 1.31. Symmetry 0.93 
Possible swirl 

Fig. 17B – Appearance of single vortex swirl with varying 
swirl strength and direction for parallel crossed chord 

Profile factor 1.07, Symmetry 0.95 
Swirl -10% 

Profile factor 1.07, Symmetry 0.95 
Swirl -5% 

Profile factor 1.07, Symmetry 0.95 
Swirl 0% (note path avg is overlapping +ve and -ve paths) 

Profile factor 1.07, Symmetry 0.95 
Swirl 5% 

Profile factor 1.07, Symmetry 0.95 
Swirl 10% 

Fig. 17C – Appearance of single vortex swirl with varying 
swirl strength and direction for in-plane crossed chord 

When comparing the flow profile in service and at 
calibration we use established permissible changes in 
profile factor and symmetry ratio from the results of 
installation effect tests [2]. We can also use plots such as 
those in Figs. 17A-C to train ourselves to spot what swirl 
looks like for the meter configuration in question and 
therefore to help us identify the possible cause when a 
difference appears. However, if axial asymmetry is also 
in the profile this can easily cause us to misdiagnose the 
issue as will be shown shortly.  

Relating a change in diagnostics to a change in error 
is extremely difficult at present and throughout the course 
of this work it became apparent that to begin to 
understand the magnitude of effect any difference is 
having on the measurement error two questions need to 
be asked: is swirl present and is axial asymmetry present. 
These are two separate effects with two separate changes 
in error for a given change in velocity profile diagnostics.  

The charts in Fig. 18 were generated by running the 
model with asymmetric swirl superimposed on a power 
law profile with a varying vortex location across a square 
overlapping the centre at and 

. The square is divided into 10 columns and 10 
rows. Each set of runs includes all vortex locations. For 



each set of runs one parameter was changed and the 
others held at the centre value in their range. There were 
5 different values for swirl strength, swirl radius and swirl 
n (how the swirl diminishes at the pipe wall). These 
calculations were performed for both transducer 
configurations. The maximum swirl angle varies from 
approximately 2° to 5°. The plots are based on profile 
factor and not symmetry ratio because no useful 
relationship between symmetry ratio and error was 
observed. 

Fig. 18 – Error as a function of profile factor for parallel (top) 
and crossed 4 chord (bottom) arrangements 

Fig. 18 shows that the parallel chord design does 
exhibit a strong correlation with profile factor (  0.97) 
in the presence of swirl alone and we can see that the 
sensitivity is around 0.45% change in error for a 1% 
change in profile factor caused by swirl.   

It is more difficult to express the sensitivity to swirl 
for the parallel crossed chord design. From Fig. 18 the 
sensitivity appears less than the parallel chord due to the 
crossed chords partly cancelling the swirl but the swirl 
effect is still present because the chords are at different 
elevations. It is also evident there is not a single 
correlation. Each colour above represents a set of tests 
with varying vortex locations. The sensitivity due to 
vortex location is slightly different for each, but appears 
to be around 0.27% per 1% change in profile factor. The 
other swirl parameters also affected the error as expected, 
e.g. swirl strength and swirl radius but obvious 
correlations with profile factor or symmetry ratio were 
not evident.  

In summary, it can be said that a small change in 
profile factor caused by swirl corresponds to a large 
change in error for both chord arrangements, that error 
being dependent on swirl position, strength and vortex 
size. 

The purpose of showing this is to illustrate that a shift 
in profile factor caused by swirl is much more concerning 
than the same shift in profile factor caused by axial 
asymmetry. Axial asymmetry was shown earlier to have 
an effect of around -0.018% per 1% change in profile 
factor (Gauss-Jacobi). Swirl appears to have an effect 
which can be far greater depending on the meter design 

and the swirl characteristics. It therefore follows that to 
better understand the potential effect on the measurement 
using present diagnostics we need to separate these two 
effects. The problem is that using the diagnostics with 
most current chordal designs it is difficult to separate 
what is swirl and what is axial asymmetry.  

To illustrate this point further below are 3 meter 
designs measuring single vortex swirl superimposed on 
top of an asymmetric axial flow profile (A8). Figs. 19A, 
19C and 19E represent a no swirl environment and are the 
base cases. Figs. 19B, 19D and 19F show the effect of 
swirl on these arrangements. The swirl strength in this 
example was 0.1, swirl radius 1.6, swirl n 15, swirl vortex 
at (0.1, 0.1) and a meter radius of 1. The resultant 
maximum swirl angle was ~3.5°. The error due to axial 
asymmetry is specified as . 

Fig. 19A - 4 parallel crossed chords no swirl ( % error, 
profile factor 1.07, symmetry 0.95) 

Fig. 19B - 4 parallel crossed chords with swirl ( +0.4% 
error, profile factor 1.18, symmetry 0.94) 

Fig. 19C - 4 parallel chords no swirl   
( % error, profile factor 1.07, symmetry 0.95)

Fig. 19D - 4 parallel chords with swirl  



( -0.5% error, profile factor 1.06, symmetry 1.04)

Fig. 19E - 4 in-plane crossed chords no swirl ( % error, 
profile factor 1.07, symmetry 0.95. Note: path avg is 

overlapping +ve and -ve paths) 

Fig. 19F - 4 in-plane crossed chords (8 paths) with swirl 
( % error, profile factor 1.07, symmetry 0.95) 

Consider Figs. 19B and 19D. How would the user 
know that swirl is in the profile and differentiate between 
axial asymmetry alone (which can influence the 
integration as shown above, the magnitude depending on 
the diagnostic corrections in place or number of chords) 
and a combination of axial asymmetry and swirl (which 
potentially can have a larger effect depending on the 
chord arrangement)?  

Fig. 19F shows the in-plane crossed chord design in 
the same swirl scenario. However, we note that the 
average of the paths has recovered the underlying axial 
profile as per Figs. 19A, 19C and 19E. This allows for 
better understanding of the diagnostics. The user is no 
longer having to make a judgement call regarding what is 
swirl and what is axial asymmetry. This also presumably 
makes it easier to correct for the presence of axial 
asymmetry by diagnostic based corrections. A difference 
between the positive and negative paths at each chordal 
location is now apparent indicating the presence of swirl. 
The point at which the paths cross also indicates the 
vortex height.  

It is theoretically possible for swirl to undo the 
appearance of axial asymmetry in the profile so all 
appears normal, but in fact potentially a significant 
measurement error can remain as illustrated in Figs. 20A 
and 20B using profile A1.  

Fig. 20A - 4 parallel chords with axial asymmetry and no 
swirl (+0.39% error, profile factor 1.09, symmetry 0.82) 

Fig. 20B - 4 parallel chords with swirl and axial asymmetry 
(-0.47% error, profile factor 1.07, symmetry 1.00, swirl 

strength 0.19, swirl radius 1.29) 

A similar case for the parallel crossed chord arrangement 
is one in which the true axial profile is symmetrical but 
excessively pointed with this being masked by swirl as 
shown using the power law in Figs. 21A and 21B. 

Fig. 21A - 4 parallel crossed chords with excessively pointed 
axial profile and no swirl (+0.03% error, profile factor 1.47, 

symmetry 1.0) 

Fig. 21B - 4 parallel crossed chords with excessively pointed 
axial profile hidden by swirl (-0.88% error, profile factor 

1.17, symmetry 1.0) 

Some research has looked to examine what 
correlations are evident from multiple calibrations and 
installation effect testing, for example [8]. In some cases, 
these tests will be on meters which have some automatic 
velocity profile diagnostic corrections included in the 
software. In those cases, the remaining error will depend 
on how well the diagnostic based correction has coped 
with the change in profile and interference from swirl. 
This is a reason the results may differ from those in this 
paper. 

3.5 Advantages of the In-Plane Crossed Chord Design 
The principal advantage of this design is swirl 

cancellation and consequent ability to perform to the 
required level in far from ideal situations. This has been 
well described in [2] in which it appears that the 8 path 
in-plane crossed chord design without a flow conditioner 



can outperform common 4 chord designs with a flow 
conditioner as shown in the results from the installation 
effect tests.  

The addition of the flow conditioner obviously 
creates a pressure drop and a feature within the pipework 
to trap debris and cause problems with the measurement 
which has cost implications. The swirl cancellation and 
consequent lack of flow conditioner also suggests much 
smaller upstream straight length requirements. This was 
demonstrated in [2] which included the results of tests 
with 5D pipework upstream and is another cost saving 
feature. Some of the original promises of USMs were 
small footprint, large turndown and lack of pressure loss 
[9]. It appears this design does realise that goal given the 
minimal upstream straight lengths and lack of flow 
conditioner.  

Swirl velocity measurement from first principles is a 
feature of the design and provides users with improved 
diagnostics. The measurement of swirl magnitude is also 
not affected by interference from axial asymmetry. 

It appears that the permissible differences between 
the profile factor and symmetry ratio at calibration and 
those seen in the field are also larger with limits of 10% 
and 6% being used in [2]. This is because swirl and its 
associated interference with the diagnostics has been 
removed leaving only any possible integration error 
caused by axial asymmetry which is a lesser order effect.  

A comparison of the profile factor and symmetry 
ratio at calibration against that seen in the field is often 
performed by the author on inspection and this is one of 
the great applications of velocity profile diagnostics. 
They allow us to confirm transferability of the calibration 
[9]. If the flow profile is excessively different in the field 
to that seen at calibration and the difference is stable this 
is concerning because this can lead to a persistent error in 
one direction. Such problems are often caused by a 
blocked flow conditioner, contamination of upstream 
pipework or they can be caused by installation effects. 
However as has been shown there is a degree of 
judgement involved as one must differentiate swirl from 
just axial asymmetry and to do that one must know what 
swirl looks like for the path configuration in question and 
base any judgement on the upstream pipework 
configuration as well. The situation would be far simpler 
for the in-plane crossed chord design. The swirl is 
removed from the measurement and we have the true 
underlying axial velocity profile, simplifying 
interpretation of the diagnostics. It then becomes a 
question of identifying what potential error there could be 
from the axial asymmetry which is possibly going to be 
one of the factors which will form the basis for 
competition between manufacturers.  

We are fortunate at OGA to be exposed to a variety 
of measurement issues, including some with ultrasonic 
meter stations. These are usually identified using USM 
diagnostics and are often (but not always) velocity profile 
related. It seems prudent to ask of the errors seen, how 
many of these would have happened had this new design 
of meter been in use?  

Of the 6 USM velocity profile issues we have been 
involved with in recent times 4 were caused by blocked 
flow conditioners. Assuming it would be used without a 
flow conditioner these are unlikely to have happened or 

had an effect. The contamination so far has been of the 
sort that would likely just pass through the meter without 
an issue (e.g. thin metallic strips, rust, fibrous compound 
used during welding) but it is feasible, however unlikely, 
that some contamination that might have been caught in 
the conditioner may go on to be caught on the USM body 
or damage it in some way and still cause an error. 

Another was an installation effect caused by multiple 
out of planes bends and blank tees. In that case, the 
operator chose to stop using the 2 streams more affected 
by swirl and use the stream in which swirl appeared to 
not be present. There remains a noisy profile factor which 
is being monitored. Swirl cancellation would have 
removed the swirl issue so they would still have 3 
streams, but it is difficult to say for definite whether the 
noisy profile factor is being caused by swirl and therefore 
whether this would be eliminated also.  

Another was contamination of the upstream spool 
with glycol. Although luckily the USM escaped 
contamination (hence gains and VOS were unaffected) 
the presence of this substance and subsequent additional 
friction significantly changed the shape of the velocity 
profile to be much more pointed prompting an 
investigation. Upon inspection, it appears that if there was 
a measurement error (it may have coped with the change 
in profile given it was very symmetrical) it was likely an 
error in the integration due to the excessively different 
profile which would affect the in-plane crossed chord 
design in a similar fashion. Due to the contamination, the 
operator was unable to test the USM with the 
contaminated upstream spool so the actual error is 
unknown. It is also worth highlighting that initially there 
was concern that swirl could be present because an 
increase in profile factor along with a symmetrical profile 
could be caused by swirl for the path arrangement that 
was in use. This possible cause would have been 
immediately ruled out had the in-plane crossed chord 
design been in use because swirl measurement is a feature 
of the design. 

In summary, it seems fair to say that of the 6 issues 
described 5 would have been significantly reduced or 
prevented using this design of meter. 

4 DISCUSSION AND CONCLUSIONS 

In short using more than 4 paths with chordal USMs 
can yield a very significant improvement in the 
integration if the paths are used in a meaningful way. The 
assertion in [1] that using more than 4 paths has little 
effect on the integration has been explored considering 
two possible meanings.  

If we assume ‘path’ means ‘chord’ whilst it is noted 
that the results reported were repeated for one type of 
Gaussian quadrature and a symmetrical power law profile 
it has been shown that this is not the case when 
asymmetry in the axial profile is considered with 
reductions in error span of 0.2%-0.3% and reductions in 
average absolute error of ~0.15% being typical. This is 
also not true for a symmetrical power law profile for all 
types of Gaussian quadrature, and it was shown in the 
above that there was a larger increase in performance for 
Gauss-Legendre with more chords on the power law 
profile.  



If we assume the literal meaning of ‘path’ it has been 
shown this is not the case. The theory behind extra paths 
for the purposes of swirl cancellation has been explained 
and results from installation effect tests show the 
principle works not just in theory but in practice and 
offers significant performance benefits and cost savings 
for operators.  

Combinations of swirl and axial asymmetry interfere 
with our interpretation of the diagnostics and make it 
harder to identify whether swirl is or isn’t present and to 
quantify the error being caused by a shift in the 
diagnostics. The in-plane crossed chord design simplifies 
this problem by it being a question of determining the 
error due to axial asymmetry only. The magnitude of 
residual errors will depend on whether diagnostic 
corrections are in use, how strong the relationship is and 
the number of chords used in the design.  

Just like conventional 4 chord designs, the in-plane 
crossed chord design still requires correction for the 
presence of axial asymmetry to achieve optimal 
performance. Because of this fact operators using this 
meter still need to monitor for differences between the 
flow profile at calibration and that seen in service. It does 
appear at present that the permissible differences in 
profile factor and symmetry ratio are potentially wider, 
and the potential errors once outside these limits are 
potentially smaller. For users (OGA are included as a user 
in this regard) to make a judgement on what is an 
acceptable difference and what is not the data from 
installation effect tests (e.g. those specified in ISO-17089 
[13] or OIML [14]) needs to be released by the 
manufacturer. Without this information users will be 
forced to adopt more cautious permissible differences and 
the true value of these meters may not be realised.  

The profile factor correlation for the purposes of 
axial asymmetry correction has been reviewed. By use of 
the interpolation polynomial we have seen why this 
correlation appears to work. It was found that in general 
more chordal locations does not improve the correlation. 

The modelling demonstrates that a given change in 
profile factor caused by swirl has a larger impact on the 
measurement than the same change in profile factor 
caused by axial asymmetry. This suggests that in the case 
where both axial asymmetry and swirl are present 
concurrently in unknown proportions in the meter bore 
and swirl cancellation is not in use, a change in velocity 
profile diagnostics cannot be used to estimate the 
magnitude of the error. 

Diagnostic corrections for axial asymmetry and 
including more chords in the design are two different 
ways of achieving the same thing, a reduction in 
sensitivity to axial asymmetry. Meters with more chords 
or with diagnostic based corrections are likely to be more 
resilient to changes in the axial profile (however they can 
be fooled in the presence of swirl without swirl 
cancellation). Such changes could occur when moving 
from a calibration facility to the field, where multiple 
bends or tees could be distorting the profile. Using 
diagnostic based corrections or more chords is therefore a 
way to reduce the installation effect bias. It is often 
referred to as an uncertainty, however OGA would only 
consider it to be true uncertainty if the difference between 
the calibration and service profiles is constantly changing 

with the errors being evenly distributed around 0. In the 
authors experience these differences are often stable 
which would yield a persistent integration error in one 
direction, and therefore a bias.  

However, one could make the argument that if a 
diagnostic based correction can yield the same 
performance as more chords, why bother producing a 
more expensive meter with more chords? The answer to 
this is as follows.  

At present the detail behind these corrections, how 
they were derived and how they are applied, is not 
usually divulged. In some cases, users do not know what 
errors remain after application of these corrections, the 
only insight is available from the installation effect 
testing if this data is released. The corrections are slightly 
different between each of the profiles and (assuming this 
is also the case in real profiles) this presumably creates 
differences in the way they are applied between 
manufacturer. We have also seen the potential for swirl to 
interfere with the diagnostics, making it harder still to 
apply an appropriate correction (where the in-plane 
crossed chord design principle is not used). This gives a 
little insight into the complexity involved in applying a 
diagnostic based correction and what potential there is for 
them to differ between manufacturer.  

The use of confidential diagnostic based corrections 
also presents a problem for anyone trying to model the 
meter performance. Users sometimes use modelling when 
trying to justify the expense of changing an installation. 
In the present day, it is rarely enough to say expense must 
be incurred to correct some deficiency without an 
approximate quantification of the error being caused. We 
can use results from installation effect tests and these are 
very useful but unless the installation and meter type 
matches up to the test perfectly it may not be relevant. 
Without knowledge of the detail of the corrections the 
user can’t predict the meter response from modelling, 
even with a perfect CFD model. There is concern that not 
including these effects in models could lead to a false 
positive, for example recommend installation of a flow 
conditioner when in fact it is not required (the author has 
seen one example where this may have happened) or a 
false negative, where the model predicts the meter should 
cope when in fact, due to the corrections being used in 
situations for which they were not developed, 
performance is being adversely affected.  

Using more chordal locations may change the above 
problem. If the integration scheme in use is known (i.e. 
weights and chordal locations which some manufacturers 
do publish) the user has a chance to model the meter if 
the CFD simulation is accurate. The operation of the 
meter is also more transparent. 

5 KEY POINTS

Operators 
4 chords are not optimal. As meters develop and 

more chords are introduced these will make the meter 
more resilient to asymmetry in the axial velocity profile 
but this does not help them combat swirl. This will also 
mean any confidential diagnostic corrections will have 
less of an effect because the effects of axial asymmetry 
have been addressed using a first principles approach.  



4 paths are not optimal. Extra paths crossed on the 
same chord for swirl cancellation (the in-plane crossed 
chord design) is a major performance enhancement and 
results in various cost saving features such as reduced 
footprint due to the reduced upstream straight length 
requirements and no requirement for flow conditioning 
which reduces the likelihood of mismeasurement due to 
blockages and simplifies the calibration process. The 
design also simplifies the interpretation of velocity profile 
diagnostics due to the absence of any interference from 
swirl.  

Whilst the in-plane crossed chord design is not 
affected by swirl it is still affected by axial asymmetry so 
monitoring for differences between the velocity profile 
seen at the calibration facility and that seen in service is 
still required. Be aware that some manufacturers may not 
include automatic diagnostic based corrections and ask to 
see the results from the installation effect tests. The 
results from these tests should illustrate permissible 
profile factor and symmetry ratio changes that should 
result in minimal error in the measurement.  

Meters that use automatic velocity profile diagnostic 
corrections for axial asymmetry are likely to be more 
resilient to changes in the axial velocity profile than the 
same path configuration and quadrature type which 
doesn’t include a correction unless they use more than 4 
chords.  

When modelling the meter response using CFD any 
velocity profile diagnostic corrections should be included 
in the model otherwise there is a real risk the predicted 
measurement error will be inaccurate. 

Manufacturers 
There are a few manufacturers now producing the in-

plane crossed chord design. The design is a worthy 
addition to a product portfolio.  

Consider whether more chords could be added 
because this will improve the meters ability to handle 
changes in the axial velocity profile. If diagnostic based 
velocity profile corrections are in use this will also reduce 
reliance on these and allow users to better model the 
meter response.  

The data from installation effect tests (such as those 
performed for ISO 17089 [13] and OIML R137 [14]) 
should be released for different meter types to help users 
decide what is and what isn’t an acceptable change in 
velocity profile diagnostics. 

Regulators & Auditors 
The theory behind the in-plane crossed chord design 

and test data released so far suggests that these meters can 
perform to the required level without a flow conditioner 
and with minimal upstream straight lengths and this 
represents a significant opportunity for cost savings.  

Monitoring for differences between the flow profile 
at calibration and that seen in service is still required for 
the in-plane crossed chord design because it will be 
affected by axial asymmetry to a lesser or greater degree, 
the magnitude of the effect depending on whether 
velocity profile diagnostic corrections are in use and the 
number of chords.  

When reviewing results from CFD simulations query 
whether the presence of any diagnostic based velocity 

profile correction has been accounted for because it can 
affect the predicted measurement error.  

Manufacturers should be encouraged to release data 
from installation effect testing to ensure maximum value 
from their meters is realised and to help establish 
permissible differences in velocity profile diagnostics for 
each meter model.  

Modelling the effects of axial asymmetry and swirl 
on USMs helps improve understanding and provides a 
platform to test designs and diagnostic correlations. 



6 NOTATION 

weight for chordal location
velocity of sound in fluid
chordal line integral function 
path length 
chord length at
Lagrange polynomial
parameter controlling swirl behaviour at pipe 
wall 
polynomial approximating
meter radius 
current radial position
distance from vortex center
vortex radius

mean fluid velocity
axial velocity
mean chordal velocity at
weight function
height at chordal location
path angle
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Table 1 – Rotation of the velocity profile (dashed lines 
indicate the chordal paths)
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