
JIA, G., MILLER, P., HONG, X., KALUTARAGE, H. and BAN, T. 2019. Anomaly detection in network traffic using dynamic
graph mining with a sparse autoencoder. In Proceedings of 18th Institution of Electrical and Electronics Engineers

(IEEE) international Trust, security and privacy in computing and communications conference, co-located with 13th
IEEE international Big data science and engineering conference TrustCom/BigDataSE), 5-8 August 2019, Rotorua,

New Zealand. Piscataway: IEEE [online], pages 458-465. Available from:
https://doi.org/10.1109/trustcom/bigdatase.2019.00068

Anomaly detection in network traffic using
dynamic graph mining with a sparse

autoencoder.

JIA, G., MILLER, P., HONG, X., KALUTARAGE, H. and BAN, T.

2019

This document was downloaded from
https://openair.rgu.ac.uk

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

https://doi.org/10.1109/trustcom/bigdatase.2019.00068

Anomaly Detection in Network Traffic Using
Dynamic Graph Mining with a Sparse Autoencoder

Guanbo Jia, Paul Miller, Xin Hong
The Centre of Security Information

Technologies,
Queen’s University Belfast, UK

Harsha Kalutarage
School of Computing Science

and Digital Media,
Robert Gordon University, UK

Tao Ban
Information Security Research Centre,

National Institute of Information
and Communications Technology, Japan

Abstract—Network based attacks on ecommerce websites can
have serious economic consequences. Hence, anomaly detection
in dynamic network traffic has become an increasingly important
research topic in recent years. This paper proposes a novel dy-
namic Graph and sparse Autoencoder based Anomaly Detection
algorithm named GAAD. In GAAD, the network traffic over
contiguous time intervals is first modelled as a series of dynamic
bipartite graph increments. One mode projection is performed
on each bipartite graph increment and the adjacency matrix
derived. Columns of the resultant adjacency matrix are then
used to train a sparse autoencoder to reconstruct it. The sum
of squared errors between the reconstructed approximation and
original adjacency matrix is then calculated. An online learning
algorithm is then used to estimate a Gaussian distribution
that models the error distribution. Outlier error values are
deemed to represent anomalous traffic flows corresponding to
possible attacks. In the experiment, a network emulator was
used to generate representative ecommerce traffic flows over a
time period of 225 minutes with five attacks injected, including
SYN scans, host emulation and DDoS attacks. ROC curves
were generated to investigate the influence of the autoencoder
hyper-parameters. It was found that increasing the number of
hidden nodes and their activation level, and increasing sparseness
resulted in improved performance. Analysis showed that the
sparse autoencoder was unable to encode the highly structured
adjacency matrix structures associated with attacks, hence they
were detected as anomalies. In contrast, SVD and variants, such
as the compact matrix decomposition, were found to accurately
encode the attack matrices, hence they went undetected.

Index Terms—anomaly detection, network traffic, network
security, bipartite graph, sparse autoencoder, dynamic graph

I. INTRODUCTION

In recent years, the Internet has become indispensable in
many aspects of daily life. However, modern society’s depen-
dency on the Internet means that attacks exploiting security
vulnerabilities can have enormous impact in terms of cost.
Currently, new widespread security breaches break out on a
monthly basis [1]. Incidents caused by malware such as Mirai,
Heartbleed and WannaCry attacks, have a significant media
profile and security breaches of large companies, including
Sony Pictures and Yahoo, have brought cyber security front
and centre to the public view.

For the ecommerce industry, website security is a par-
ticularly important topic. Online retail stores are becoming
ubiquitous, with almost 400 billion dollars being spent online
in the US alone. Research has shown that 79% of American
adults have used ecommerce sites. Among people under the

age of 30 that number is even higher: 90% have bought
something online and 77% have used their mobile phone for
an ecommerce purchase. Furthermore, the scale of Distributed
Denial of Service (DDoS) attacks has risen with the advent of
the Internet of Things and the associated increase in connected
devices.

One approach to detecting an attack, such as a DDoS attack
on an e-commerce website, is to look for anomalous traffic
patterns on a network. A network anomaly is a sudden and
short lived deviation from the normal operation of a computer
network. Some anomalies are deliberately caused by intruders
with malicious intent, e.g., DDoS attacks and Port Scans [2],
while others are caused by innocent incidents, such as network
misconfiguration or equipment outages. Detecting both types
of anomalies in near real-time is essential to keep the quality
of the service. In the literature, various methods of differing
complexity have been proposed for network traffic anomaly
detection, ranging from simple volume based traffic analysis
to packet header distribution analysis [3]. Most of these works
are static and entropy based in which a traffic matrix is
used to describe the statistical properties of the behaviour
and entropy is used to reveal changes in distributions. And
not all of these approaches are forensic and do not scale
easily to large networks. To date, little work has been done to
investigate the usefulness of deep learning in network traffic
anomaly detection. Therefore, this work investigates the ability
to employ dynamic and bipartite graphs [4] with a sparse
autoencoder from deep learning [5] to detect anomalies in
network traffic.

In order to detect anomalies in network traffic efficiently,
we propose a dynamic Graph and sparse Autoencoder based
Anomaly Detection algorithm named GAAD in the paper.
GAAD first models the network traffic as a dynamic sequence
of graphs with each representing the traffic flow over contigu-
ous time increments. It considers each graph increment as a
bipartite graph in which one partition is for internal nodes and
the other partition is for external nodes in the network. Then,
it adopts the one mode projection to compress information of
the bipartite graph to generate a projected graph. After that,
it employs a sparse autoencoder to compute an approximation
to the adjacency matrix, and then calculate the sum of squared
errors to detect the anomalous graph increments in the network
traffic.

Fig. 1: Architecture of the proposed algorithm GAAD.

The rest of the paper is organized as follows. Section
II provides a comprehensive review of the related literature
and Section III gives a detailed description of the proposed
algorithm. Moreover, the performance evaluation and analysis
of the experimental results are presented from Section IV to
Section VI. Finally, the paper is concluded in Section VII.

II. RELATED WORK

A comprehensive survey of graph based anomaly detection
algorithms has been provided by Akoglu et al. [3]. They
devised a general framework for these algorithms and pre-
sented some real-world applications across diverse application
domains. Rashous et al. [6] gave an overview of anomaly
detection methods for dynamic graphs. They described four
types of anomalies and presented a general two-stage approach
to detect anomalies in dynamic graphs. Dai et al. [7] unified
both positive and negative mutual dependency relationships to
model the complete set of anomalous behaviors of nodes of
bipartite graphs in which an iterative method was designed to
compute anomaly scores of nodes in the graph and its conver-
gence was mathematically proven. Tong and Lin [8] proposed
a non-negative residual matrix factorization algorithm to detect
anomalies in graphs. They presented an optimization formu-
lation tailored for graph anomaly detection and an effective
technique linear to the size of the graph in order to solve the
formulation. Bridges and Vaughn [9] developed a method that
integrates fuzzy data mining techniques to include quantitative
features and genetic algorithms in order to find the optimal
parameters of the fuzzy functions used for detecting network
anomalies. Salmen et al. [10] built two models based on both
the firefly and genetic algorithms by using flow data such as
bits and packets per second to detect network anomalies. Luo
and Nagarajan [11] introduced autoencoder neural networks
into wireless sensor networks and built a simple structure of
autoencoder to exploit its powerful reconstruct-ability in order
to solve the anomaly detection problem.

In Dromard et al. [12] presented an online and real-time
unsupervised network anomaly detection algorithm which re-
lied on a discrete time-sliding window to update continuously
the feature space and an incremental grid clustering to rapidly
detect anomalies in networks. Duan et al. [13] proposed an
approach to scan sequentially outgoing messages by imple-
menting the sequential probability ratio test to quickly detect

Fig. 2: A bipartite graph and one mode projection graph.

compromised machines in networks that were involved in the
spamming activities. Ghanem et al. [14] proposed a hybrid
approach for anomaly detection in large scale datasets using
negative selection detector generation. Sun et al. [15] presented
the compact matrix decomposition to compute sparse low-rank
approximations of network adjacency matrices in which the
reconstruction error between the original and approximated
matrix was used to indicate whether the traffic flow was
anomalous. Ahmed and Mahmood [16] proposed a partitional
clustering technique for detecting collective anomalies which
are data patterns caused when a group of similar data in-
stances behave anomalously with respect to the entire dataset.
Limthong [17] presented a method based on the combination
of time series and feature spaces using machine learning
algorithms to automatically detect network anomalies.

Bhuyan et al. [18] presented a tree based subspace clustering
technique for finding clusters in intrusion data and for detect-
ing unknown attacks without using any labelled traffic. Kim et
al. [19] developed an online anomaly detection technique that
considered the availability of traffic attributes during monitor-
ing and computational scalability for streaming data. Hoque et
al. [20] proposed an intrusion detection system that employed a
genetic algorithm to efficiently detect various types of network
intrusions and used a standard benchmark dataset to mea-
sure the system performance. Marti et al. [21] presented the
Voronoi diagram based evolutionary algorithm which uses the
Voronoi diagram to divide the input search space in abnormal
or normal regions and applies a multi-objective approach
considering the detection accuracy to evolve diagrams in order
to conjointly optimize classification metrics for detecting the

Fig. 3: Illustration of the sparse autoencoder.

anomalous network traffic. Cho and Shin [22] proposed a
Voltage-based attacker identification algorithm to detect the
attacker electronic control unit by measuring and utilizing
voltages in the in-vehicle networks. Nasr et al. [23] presented
a generic framework by introducing the idea of compressive
traffic analysis to address the scalability of the exploding
volumes of network traffic. Finally, Andrysiak et al. [24]
used statistical relationships between the predicted and original
network dataset to determine the anomalies in network traffic.

In the paper, we propose the dynamic Graph and sparse
Autoencoder based Anomaly Detection (GAAD) algorithm.
In GAAD, we first model the network traffic as a dynamic
sequence of graphs each of which represents traffic flow
over contiguous time increments. Then, we consider each
graph increment as a bipartite graph in which one partition
is for internal nodes and the other partition is for external
nodes in the network. In order to ensure scalability and near
real-time operation, we adopt the one mode projection to
compress information of the bipartite graph to generate a
projected graph. Next, we derive the adjacency matrix of the
projected graph which encodes traffic flow between nodes in
the network. Subsequently, we employ a sparse autoencoder
to compute an approximation to the adjacency matrix, and
then calculate the sum of squared errors to detect anomalous
graph increments in the network traffic. Common approaches
for anomaly detection usually use spectral decomposition of
the adjacency matrix. A disadvantage of these approaches
is that they require singular value decomposition, which is
not scalable to large network traffic flows. In addition, many
approaches are batch-based which does not meet the need to
have real-world applicability. Therefore, in GAAD we use the
one mode projection to help reduce the size of the adjacency
matrix to make it smaller and adopt the autoencoder to make
it scalable. Moreover, we use the autoencoder to introduce
regularisation constraints such as sparseness, which cannot
be easily done within a spectral decomposition framework.
Sparseness is desirable as it can greatly improve the efficiency
of the algorithm, in terms of storage and processing, and
is capable of improving the performance of the anomaly
detection. Furthermore, we model the sum of squared errors

Fig. 4: The topology of the network traffic dataset.

as a unimodal Gaussian distribution. This allows us to use
online incremental learning equations to efficiently estimate
the mean and standard deviation in a streaming fashion,
thereby facilitating real-time anomaly detection. Experimental
results based on a network traffic dataset have demonstrated
the proposed algorithm has good performance for anomaly
detection in network traffic.

III. THE PROPOSED ALGORITHM

In this paper, we present the dynamic Graphs and sparse
Autoencoder based Anomaly Detection (GAAD) algorithm for
anomaly detection in network traffic. Its main procedures and
architecture are shown in Algorithm 1 and Fig. 1 respectively.

Algorithm 1 The GAAD algorithm

Require: The network traffic N.
Model the network traffic N as a set of bipartite graph
increments {G1, G2, ..., GT }.
for i = 1 : T do

Perform the one mode projection operation on Gi to
construct the graph GSi .

Compute the adjacency matrix Ai of the graph GSi .
Perform the sparse autoencoder to calculate the approx-

imation Ãi of the adjacency matrix Ai.
Compute the sum of squared errors SSEi of the adja-

cency matrix Ai and its approximation Ãi.
Calculate the rate Φi of the graph GSi .
if Φi > 1 then

Set the anomaly score ASi = 1.
else

Set the anomaly score ASi = 0.
end if

end for
Return The anomaly scores AS.

A. One Mode Projection of Bipartite Graph

In GAAD, we first represent the network traffic flow at
each time window t as a bipartite graph Gt = 〈Vt, Et,Wt〉
with Vt = St ∪ Dt, where St =

{
s1, ..., s|St|

}
is a set

(a) (b)

Fig. 5: Adjacency matrix for normal, (a), and DDoS, (b), traffic.

of internal nodes, Dt =
{
d1, ..., d|Dt|

}
is a set of external

nodes, Et ⊂ St × Dt is a set of directed edges from the
internal nodes to the external nodes, and Wt = {wijt} is
a set of edge weights depending on the number of packets
transmitted between the internal node si and the external node
dj . Then, we perform the one mode projection operation on
each graph Gt to construct its one mode projection graph
GSt

= 〈VSt
, ESt

,WSt
〉. In the projection graph, only the

projection of the internal nodes are considered, and the internal
nodes si and sj are connected if and only if they are connected
with at least one common external node dk, and their weights
are determined by the traffic flows among the internal nodes
with their common external nodes in the network traffic. Then,
the corresponding adjacency matrix of the projection graph is
used and the boundary of adjacency matrix depends on the
number of internal nodes. An example is illustrated in Fig. 2.
By using the above one mode projection, we are able to reduce
the size of the adjacency matrices of the projection graphs to
make it scalable for anomaly detection in the network traffic.

B. Sparse Autoencoder

We employ the sparse autoencoder in deep learning to
compute the approximation of the adjacency matrix of the
obtained projection graph in GAAD. The sparse autoencoder
[5] is an artificial neural network for unsupervised learning
as a powerful tool for dimensionality reduction. Composed of
an input layer, a hidden layer and an output layer, it aims to
learn a compressed representation of the input data. For each
obtained pojected graph, we perform the sparse autoencoder
on the adjacency matrix A to generate its approximated matrix
Ã as follows. Given a graph increment G with n nodes
and its adjacency matrix A, the matrix A is treated as the
training set containing n instances {A1, A2, ..., An} where
Ai = {Aij}, j = 1, 2, ..., n, and then the training set is fed
into the sparse autoencoder network to produce the output
result. In the sparse autoencoder, we assume that xi is the i-
th input vector of the input layer and its output vector in the

output layer is yi = f(W2hi + b2) where hi = f(W1xi + b1),
Θ = {θ1, θ2} = {W1, b1,W2, b2} are parameters to be
learned, and f is the sigmoid function as the activations of
the hidden layer and the output layer. Then, we construct a
cost function by adding the reconstruction error between an
input xi and an output yi with a regularization term:

J(θ) =

n∑
i=1

‖yi − xi‖2 + βKL(ρ||ρ̂) (1)

where β controls the weight of the sparsity penalty, ρ is the de-
sired average of the hidden layer activations, ρ̂ = 1

n

∑n
j=1 hj

is the average of the hidden layer activations, and KL(ρ||ρ̂)
is defined as:

KL(ρ||ρ̂)=

|ρ̂|∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(2)

The above constructed cost function is optimized using the
standard back-propagation algorithm. We use the output from
the output layer as the new graph and treat its transposed
adjacency matrix as the training set and then repeat the above
training process to generate the approximated matrix of the
adjacency matrix. An illustration of the sparse autoencoder is
shown in Fig. 3.

C. Sum of Squared Errors

After having obtained the approximated matrix, we compute
the sum of squared errors SSE =

∑
i,j(A(i, j)− Ã(i, j))2 to

measure the difference between the adjacency matrix A and
its corresponding approximation Ã in GAAD.

D. Anomaly Detection

To detect anomalies in the network traffic, we assume that
the distribution of the computed sum of squared errors SSEt
of each t-th graph increment is Gaussian for the normal traffic,
and compute streaming estimates of its mean ut and standard
deviation stdt using Equations (3) and (5), in which µ is

Fig. 6: ROC curve with varying hs.

the learning rate and by convention is usually set to 0.01
[25]. After that, we calculate an anomaly score Φt by using
Equation (6) where k is a constant, and if the difference
between SSEt and the mean ut is greater than k times of the
standard deviation then the traffic is deemed as anomalous.

ut = µ× SSEt + (1− µ)× ut−1 (3)

vart = µ× (SSEt − ut)2 + (1− µ)× vart−1 (4)

stdt =
√
vart (5)

Φt =
|SSEt − ut|
k × stdt

(6)

IV. EXPERIMENTAL EVALUATION

In this section, we evaluated GAAD using a network traffic
dataset. All experiments were conducted on an Intel Core
i7 platform, with CPU 3.4 GHz processor and 32.0 GB of
memory. The operating system was Windows 10 and GAAD
was implemented in MATLAB R2017(a).

A. Network Traffic Dataset

The network traffic dataset was acquired using a network
emulation testbed with the NRL CORE tool [26]. The network
topology is illustrated in Fig. 4. The testbed consists of internal
and external networks, the former of which contains 38 virtual
machines and a webserver which has apache installed and
runs a Shopping Cart Solution (OpenCart) [27]. The external
network consists of 100 virtual machines and a physical
machine for the attacker. In the built network, clients in the
internal network can access the external network for web
surfing, whilst clients in the external network can access the

Fig. 7: Anomalies detected by GAAD in the network dataset.

webserver. No communication is allowed between clients in
the internal network.

During the acquisition period, traffic was allowed to flow
in the network for 255 minutes. Over each fifteen-second
contiguous time interval a graph increment was generated.
Hence, the 255 minutes of network traffic was modelled as
a dynamic graph with 1020 graph increments in total. Five
different attacks were injected into the network traffic. The first
of these was a SYN scan to all target machines. The second
was a host enumeration and a TCP scan to see if systems run
SSH, DNS, POP3, or IMAP on their standard ports, or on
the port 8000. The last three were DDoS attacks on a target
machine running OpenCart. Benign traffic was produced via
typical user activities, e.g. accessing the Internet, and the traffic
was captured using tshark, which is the terminal oriented
version of Wireshark [28]. Fig. 5 shows the adjacency matrix
generated from a graph increment containing a normal traffic
and an attack traffic. We can see that the normal traffic matrix
is random in nature, whilst the DDoS attacks have highly
structured rectangular patterns at each of the four corners.

B. Evaluation

For the purpose of this investigation we evaluated the in-
fluence of autoencoder hyper-parameters on the performance.
They included the number of nodes in the hidden layer as
hs, the desired average activation parameter ρ for hidden
nodes, and the weight parameter β of the sparsity penalty.
We adopted the receiver operating characteristic (ROC) curve
[25] to measure performance and tested GAAD with varying
values for these parameters on acquired network dataset.

In the experiments, the learning rate µ is set to 0.01 and k
was varied over the range 0.5-4 in a step of 0.5. For each k
value, we computed the true positive rate which is the fraction
of correctly detected anomalous graph increments over the
total number of anomalous graph increments, five in our case,
and the false positive rate which is the fraction of normal

Fig. 8: ROC curve with varying ρ.

graph increments detected as anomalous to the total number
of normal graph increments, i.e., 1,015. Based on the true
positive rates and the false positive rates computed for all k
values we drew the ROC curves for GAAD.

C. Effect of the Number of Hidden Nodes

For the parameter hs for the number of hidden nodes, we
chose the values of 10, 50, 100, and 150 for comparison.
The results obtained by GAAD for the parameter values are
presented by the ROC curves in Fig. 6 and the anomalies
detected by GAAD with the parameter value of 100 are shown
in Fig. 7. From Fig. 6, it can be seen that GAAD with
hs = 100 has the best performance and, with both the increase
and decrease of the number of the hidden nodes, GAAD shows
the gradually degenerated performance. Moreover, according
to the experimental observation, we can see that GAAD with
hs = 100 detected all the five attacks as shown in Fig. 7 while
the algorithm with hs = 10 detected only three attacks in the
network dataset. Therefore, it can be seen that GAAD with
the number of hidden nodes hs = 100 is very effective for
anomaly detection in the network traffic dataset.

D. Effect of the Desired Average Activation

For the parameter ρ for the desired average activation for
hidden nodes, we chose the values of 0.1, 0.01, and 0.001 for
comparison. The obtained results by GAAD with these three
parameter values are presented by the ROC curves in Fig. 8.
In the figure, we can see that GAAD with ρ = 0.1 shows the
best performance while the algorithm with ρ = 0.001 has the
worst performance. Moreover, according to the experimental
observation, we can see that GAAD with ρ = 0.1 detected
all five anomalies while the algorithm with ρ = 0.001 could
detect only four anomalies in the network traffic. Thus, it can
be seen that GAAD with ρ = 0.1 has better capability to detect
anomalies in the network traffic.

Fig. 9: ROC curve with varying β.

E. Effect of the Weight Parameter

For the weight parameter β for the sparsity penalty, we
chose the values of 1, 3, and 5 for comparison. The results
obtained by GAAD with these three parameter values are pre-
sented by the ROC curves in Fig. 9. In the figure, GAAD with
these three parameter values show the similar performance
although the algorithm with β = 3 shows a slightly better
performance than other parameter values. Moreover, according
to the observation, GAAD with these three parameter values
all could detect the five attacks in the network traffic. Thus,
it can be seen that GAAD is not significantly affected by β
when detecting anomalies in the network traffic.

V. DISCUSSION AND ANALYSIS

In this section, we further analyse the results in order
to provide some insight into how GAAD actually works.
Specifically, we try to establish whether there is a relation-
ship between the number of eigenvectors used in the SVD
reconstruction [29] and the number of hidden nodes in the
autoencoder of GAAD.

For the purposes of the analysis we selected one graph
increment representing normal traffic and another containing
traffic acquired during a DDoS attack as shown in Figs. 5(a)
and 5(b) respectively. Fig. 10(a) shows the reconstruction error
for the GAAD algorithm versus the number of hidden nodes
for both the normal and DDoS attack traffic. We can see that
the reconstruction error for the DDoS traffic is larger than the
normal traffic. As the number of hidden nodes increases, the
reconstruction error reduces for both normal and DDoS traffic.

Figs. 11(a) and 11(c) show the autoencoder’s approximation
to the adjacency matrix of the DDoS traffic with 10 and 100
hidden nodes respectively. We can see that in neither case has
the autoencoder been able to reconstruct the adjacency matrix.
In particular, the highly structured rectangular patterns in each
of the four corners of the adjacency matrix have not been
reconstructed. Figs. 11(b) and 11(d) show the reconstructed

(a) (b)

Fig. 10: Adjacency matrix reconstruction error versus number of hidden nodes for the autoencoder, (a), and versus number of
eigenvectors for SVD, (b), for normal and DDoS traffic.

(a) (b)

(c) (d)

Fig. 11: Reconstruction of the DDoS traffic adjacency matrix
with 10, (a), and 100, (c), nodes respectively. Reconstruction
of the normal traffic with 10, (b), and 100, (d), nodes.

adjacency matrix for the normal traffic with 10 and 100 hidden
nodes. In contrast, we can see that autoencoder has been better
able to reconstruct the adjacency matrix of the normal traffic
with 100 hidden nodes. The adjacency matrix of the normal
traffic appears more random in nature and does not contain any
highly regular structured patterns as in the case of the DDoS
traffic. Hence, as the auotencoder fails to approximate the
DDoS attack traffic, the reconstruction error is large enough
to be detected. The normal traffic is adequately approximated
leading to a low reconstruction error.

Figs. 10(b) and 12 show the same graphs for the SVD recon-
struction. We can see that in this case the SVD approximations

(a) (b)

(c) (d)

Fig. 12: Reconstruction of the DDoS traffic adjacency matrix
with 2, (a), and 3, (c), eigenvectors respectively. Reconstruc-
tion of the normal traffic with 2, (b), and 3, (d), eigenvectors.

to both the normal and DDoS attack traffic have the high fi-
delity even with using only 2 and 3 eigenvectors. In particular,
it is able to approximate the highly structured patterns in the
DDoS attack resulting in a very small reconstruction error.
Hence, the DDoS attack is not detected.

VI. PERFORMANCE COMPARISON

Using the optimum derived hyper-parameters in Section IV,
we compared the performance of GAAD with the compact
matrix decomposition (CMD) anomaly detection method [15],
and the ROC curves for the results obtained by CMD and
GAAD are shown in Fig. 13. From Fig. 13, we can see
that GAAD demonstrates a better performance than CMD

Fig. 13: ROC curve for GAAD and CMD.

for detecting anomalies. Moreover, the experimental analysis
showed that CMD could only detect four attacks while GAAD
found all the five attacks in the network traffic dataset. There-
fore, it can be seen that GAAD has a superior performance to
CMD for the anomaly detection in the network traffic.

VII. CONCLUSION

In this paper, we propose a novel anomaly detection algo-
rithm named GAAD which is based on the dynamic graphs
and sparse autoencoder in order to efficiently detect anomalies
in network traffic. The algorithm first models the network
traffic as dynamic sequence of graphs. Each graph increment
represents the traffic flow over contiguous time increments
and is considered as a bipartite graph with one partition for
internal nodes and the other partition for external nodes. Then,
it employs the one mode projection to compress information
of bipartite graphs to generate projected graphs. Subsequently,
it adopts the sparse autoencoder to compute approximations
of the adjacency matrix of the projected graph. After that, it
computes the sum of squared errors to detect anomalies in
the network traffic. Based on the experiments on a simulated
network traffic, our proposed algorithm demonstrates very
promising performance for anomaly detection in the network
traffic. In the future, we will do more performance compar-
isons of our algorithm with other anomaly detection methods
for the network traffic, and implement the application of our
algorithm in the real-world network traffic.

REFERENCES

[1] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyberse-
curity,” Journal of Computer and System Sciences, pp. 973–993, 2014.

[2] P. Kaur, M. Kumar, and A. Bhandari, “A review of detection approaches
for distributed denial of service attacks,” Systems Science & Control
Engineering, vol. 5, no. 1, pp. 301–320, 2017.

[3] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: a survey,” Data Mining and Knowledge Discovery, pp.
626–688, 2015.

[4] A. Asratian, T. Denley, and R. Häggkvist, Bipartite graphs and their
applications. New York, NY, USA: Cambridge University Press, 1998.

[5] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A sparse
auto-encoder-based deep neural network approach for induction motor
faults classification,” Measurement, vol. 89, pp. 171–178, 2016.

[6] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F.
Samatova, “Anomaly detection in dynamic networks: a survey,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 7, no. 3, pp.
223–247, 2015.

[7] H. Dai, F. Zhu, E. Lim, and H. Pang, “Detecting anomalies in bipartite
graphs with mutual dependency principles,” in Proceedings of the 12th
IEEE International Conference on Data Mining, 2012, pp. 171–180.

[8] H. Tong and C. Lin, “Non-negative residual matrix factorization with
application to graph anomaly detection,” in Proceedings of the 11th
SIAM International Conference on Data Mining, 2011, pp. 143–153.

[9] S. M. Bridges and R. B. Vaughn, “Fuzzy data mining and genetic
algorithms applied to intrusion detection,” in Proceedings of the National
Information Systems Security Conference, 2000, pp. 16–19.

[10] F. Salmen, P. Hernandes, L. Carvalho, and M. Proenca, “Using firefly
and genetic metaheuristics for anomaly detection based on network
flows,” in Proceedings of the 11th Advanced International Conference
on Telecommunications, 2015, pp. 113–118.

[11] T. Luo and S. G. Nagarajany, “Distributed anomaly detection using
autoencoder neural networks in wsn for iot,” 05 2018, pp. 1–6.

[12] J. Dromard, G. Roudiere, and P. Owezarski, “Online and scalable
unsupervised network anomaly detection method,” IEEE Transactions
on Network and Service Management, vol. 14, no. 1, pp. 34–47, 2017.

[13] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, and J. M.
Barker, “Detecting spam zombies by monitoring outgoing messages,”
IEEE Transactions on Dependable and Secure Computing, pp. 198–210,
2012.

[14] T. Ghanem, W. Elkilani, and H. Abdul-Kader, “A hybrid approach for
efficient anomaly detection using metaheuristic methods,” Journal of
Advanced Research, vol. 6, no. 4, pp. 609–619, 2015.

[15] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, “Less is more: Sparse graph
mining with compact matrix decomposition,” Statistical Analysis and
Data Mining, vol. 1, no. 1, pp. 6–22, 2008.

[16] M. Ahmed and A. Mahmood, “Novel approach for network traffic
pattern analysis using clustering-based collective anomaly detection,”
Annals of Data Science, vol. 2, no. 1, pp. 111–130, 2015.

[17] K. Limthong, “Real-time computer network anomaly detection using
machine learning techniques,” Journal of Advances in Computer Net-
works, pp. 1–5, 2013.

[18] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “An effective unsupervised
network anomaly detection method,” in Proceedings of the International
Conference on Advances in Computing, Communications and Informat-
ics, 2012, pp. 533–539.

[19] J. Kim, W. Yoo, A. Sim, S. Suh, and I. Kim, “A lightweight network
anomaly detection technique,” in Proceedings of the International Con-
ference on Computing, Networking and Communications (ICNC), 2017,
pp. 896–900.

[20] M. Hoque, M. Mukit, and M. Bikas, “An implementation of intrusion
detection system using genetic algorithm,” International Journal of
Network Security and Its Applications, vol. 4, no. 2, pp. 109–120, 2012.

[21] L. Marti, A. F. Tchango, L. Navarro, and M. Schoenauer, “Anomaly
detection with the voronoi diagram evolutionary algorithm,” in Proceed-
ings of the nternational Conference on Parallel Problem Solving from
Nature, 2016, pp. 697–706.

[22] K.-T. Cho and K. G. Shin, “Viden: attacker identification on in-vehicle
networks,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security. New York, NY, USA: ACM, 2017, pp.
1109–1123.

[23] M. Nasr, A. Houmansadr, and A. Mazumdar, “Compressive traffic
analysis: a new paradigm for scalable traffic analysis,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. New York, NY, USA: ACM, 2017, pp. 2053–2069.

[24] T. Andrysiak, L. Saganowski, M. Choras, and R. Kozik, “Proposal
and comparison of network anomaly detection based on long-memory
statistical models,” Logic Journal of the IGPL, pp. 944–956, 2016.

[25] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, pp. 861–874, 2006.

[26] “NRL CORE tool,” ‘‘https://www.nrl.navy.mil/itd/ncs/products/core”.
[27] “OpenCart,” ‘‘https://www.opencart.com/”.
[28] “Tshark,” ‘‘https://www.wireshark.org/docs/man-pages/”.
[29] G. W. Stewart, “On the early history of the singular value decomposi-

tion,” Pattern Recognition Letters, vol. 35, pp. 551–566, 1992.

	JIA 2019 Coversheet.pdf
	paper.pdf

