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Abstract

A novel real-time state monitoring method is proposed to realize the real-time energy
management of the lithium-ion battery packs, which is conducted in the iterative
computational calculation process by introducing an improved weighting factor-
unscented Kalman filtering algorithm. The accurate state monitoring treatment is
investigated by applying a new iterate calculation thought, in which the improved
weight coefficient parameter is constructed and its numerical stability is improved.
Meanwhile, the recursive calculation is derived by using the real-time measured fac-
tors, according to which the state-of-charge estimation is realized accurately. Aiming
to adapt the complex current variation working conditions, the nonlinear treatment
is introduced to construct the mathematical unscented transforming function. As can
be known from the experimental results, the state-of-charge estimation accuracy is
98.34% under the complex current charge-discharge working conditions. Meanwhile,
the effective closed-circuit voltage trackage is also investigated accurately and its
tracking error is within 3.51% in the complex working conditions, which provides
a good security guarantee for the reliable energy supply of the lithium-ion battery
packs.
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1 | INTRODUCTION

The lithium-ion battery has some attracting advantages over
other rechargeable batteries, such as high energy density,
stable voltage, and eco-friendly. The high energy density is
required in the power supply application of the new energy
vehicle, unmanned aerial vehicle, and energy storage system.
As a result, the lithium-ion battery packs can be applied as
the power source, which is also taken as the auxiliary power
for the energy shortages and other sudden emergencies.1
Because of the positive correlation relationship between the
energy consumption and the weight of the flying objects,
the energy density is chosen as an important indicator of its
power supply systems. Therefore, the lithium-ion battery
pack has become the power supply trend of the unmanned
aerial vehicles.’ However, the cumulative working state esti-
mation error restricts the power promotion of the lithium-ion
battery pack severely, according to which the state-of-charge
estimation researches are investigated extensively.” The ef-
fective implementation was established with the charge re-
placement, in which the extended Kalman filtering algorithm
was introduced and realized.* The online battery impedance
measurement method was also studied by using the direct
current-direct current conversion together with its power con-
verter control.” A systematic and reliable state-of-charge esti-
mation method was proposed for the lithium-ion battery pack
by using the comprehensive state evaluation algorithm.6 The
recovery strategy was studied for the lithium-ion batteries
on the aging characteristics at high temperature conditions,’
and the direct measurements were investigated by using the
diffusive coefficients of the lithium-ion batteries.® The state-
of-charge inconsistency evaluation was implemented for the
lithium-ion battery pack by using the mean differential model
and the extended Kalman filtering algorithm.9 The incremen-
tal capacity and differential voltage were analyzed for the
state-of-charge estimation of the lithium-ion batteries,'® and
a new multi-time-scale filter was proposed to obtain the state
of energy and the state of power values.!! The state of health
diagnosis was realized according to the surface temperature
changes.12 The related research provides scientific and tech-
nological references to the state-of-charge estimation of the
lithium-ion battery together with its energy management.
However, there is still a lack of effective technical solutions
to realize the real-time working state monitoring of the lith-
ium-ion battery pack.

The lithium-ion battery can be implemented in the electric
vehicles together with the battery management by using the
active current control .':11g0rithm.13 A joint state-of-charge es-
timation was performed for the electric vehicle power batter-
ies by using the least square and Kalman filter algorithms,14
and an online frequency tracking algorithm was proposed by
using the closed-circuit voltage spectroscopy to realize the
optimal charging maintenance of the lithium-ion batteries.
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The performance evaluation of the modular equalization sys-
tem was also performed,16 and a new thermal coupling model
was built for the state-of-charge estimation.'” A real-time
state-of-charge estimation was investigated by using the fad
Kalman filter algorithm for the lithium-ion battc:ries,18 and the
multimodel estimation was realized by using the H-infinity
algorithrn.19 A new modeling method was proposed by Liu et
al,”® and the energy preheating strategy was discussed for the
lithium-ion batteries together with its latency temperature.21
The path dependence was studied by using the aging char-
acteristics at different storage conditions,” and the working
state estimation was realized for the lithium-ion batteries by
using the extended Kalman filtering algorithm together with
the physicochemical model.> A realistic life prediction was
investigated,24 and the wavelet-based state-of-charge estima-
tion was conducted for the lithium-ion batteries. The mem-
ory effect was investigated 2 for the large format lithium-ion
batteries, and the data-driven model 2 was used to perform
the robust capacity estimation in its management systern.27
The online equalizing strategy was conducted for the lith-
ium-ion battery packs *® by considering the state of balance
conditions among the internal connected battery cells. The
online battery parameter identification was performed for the
equivalent circuit model by using the decoupling least square
technique.29 An improved online state-of-charge estima-
tion algorithm was proposed by using the adaptive cubature
Kalman filter processing treatment,”® which was also realized
by using the dual scale adaptive particle filter,’! and the im-
proved state-of-charge determination was conducted by using
the genetic algorithm as well.*>

In order to realize the real-time parameter monitoring, the
fault-tolerant voltage measurement should be investigated for
the series-connected lithium-ion battery packs and the state-
of-charge estimation was also realized by using the fractional
and integral order methods.™ The state-of-charge estimation
was conducted by using the H-infinity observer,**
the hysteresis characteristic was also considered. The mod-
eling and state-of-charge prediction were conducted for the

in which

lithium-ion battery and ultracapacitor hybrids with a co-es-
timator,® and its degradation behavior *® was studied during
its aging process by considering the internal resistance in-
crement characteristics.”” The effective implementation of
charge replacement was also conducted in the hybrid electri-
cal energy storage system.38 The relationship of coulomb ef-
ficiency and energy decrease was studied,”® and the extended
Kalman filtering-based materialization model was built by
using the charge curve 4 to construct a new Gaussian pro-
cessing regression model. The probability-based remaining
capacity estimation was investigated by using the data-driven
and neural network models.*' The hierarchical message
was used to describe the degradation characteristics,” and
the sampling diagnosis was studied for the lithium-ion bat-
teries.*’ A state recognition method is proposed to identify
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the degradation by using the electrochemical model for all
climate working environments.* The online state-of-charge
estimation *> was performed by using the multimodel data fu-
sion method,*® and the parameter sensitivity was performed
on the lithium-ion battery modeling.47

In order to improve the state-of-charge estimation ac-
curacy, a novel weighting factor-unscented Kalman filter
(WF-UKF) calculation method is proposed to realize the
real-time state monitoring of the lithium-ion battery packs
in the complex current variation working conditions. It
is realized mainly by using the real-time parameter iden-
tification and correction, the estimation process of which
is treated as a black-box module. Then, the iterative cal-
culation based on the proposed WF-UKF algorithm is
performed to obtain the state-of-charge values at various
operating conditions, according to which the online pa-
rameter identification and state-of-charge estimation are
conducted by using the forgetting factor recursive least
square and nonlinear Kalman filter algorithms. Meanwhile,
the state-space description is investigated along with the
noninteger order derivatives. Considering the temperature
effects, the Peukert equation is introduced into the iterate
calculation process, according to which the estimator is in-
vestigated by considering the temperature effect, hysteresis
potential, and thermal evolution of the lithium-ion battery
packs.

2 | MATHEMATICAL ANALYSIS
The mathematical state-of-charge estimation method is
studied for the lithium-ion battery packs, in which the com-
prehensive state evaluation is introduced into the iterative
calculation process combined with the state-space descrip-
tion and parameter identification of the equivalent circuit
models. According to the improved WF-UKF approach, the
battery energy state is estimated real-timely in the associated
battery management system for the security protection, real-
izing the energy state management purpose of the lithium-ion
battery packs.

2.1 | State-space description

The mathematical description is conducted for the lithium-
ion battery packs, in which the series-connected power
source and resistance are introduced along with the elec-
tro-motive force. In order to characterize the inconsist-
ency effect among the internal connected battery cells, the
operational characteristic description is investigated for
the lithium-ion battery pack, making it to be performed
accurately. The working characteristics of the lithium-
ion battery can be expressed accurately in the improved
modeling treatment, which realizes the model framework

construction. In addition, the equivalent model is ana-
lyzed by the experimental test together with its parameter
identification. In order to realize the inconsistency char-
acterization of the serially connected lithium-ion battery
packs, a time-varying voltage source is introduced along
with the open circuit voltage source parameter U,. The
closed-circuit voltage is measured in real time when the
positive and negative terminals of the lithium-ion battery
pack are connected to the external circuit components dur-
ing the charge-discharge operation time period. When the
lithium-ion battery pack is in the charge-discharge working
state, the functional relationship can be obtained for the
state-space mathematical expression that can be used in the
iterate calculation process, in which the state equation can
be obtained as shown in Equation (1).

U O=EM0-U,(n~-R, 1) ()]

In the above expression, E(f) is the ideal power source and
R, is the ohmic internal resistance to the coulomb efficiency.
R, and C, are the polarization internal resistance and capac-
itance, which are used to express the dynamic characteristics
of the lithium-ion battery pack. I(¢) is introduced to describe
the current, and U, is used to characterize the voltage at both
ends of the parallel resistance-capacitance loop circuit, the
calculation process of which can be described mathemati-
cally as shown in Equation (2).

1 1
—WUP ®H+ ml(f) )

U,(n=
After obtaining the voltage and current data onto the param-
eter identification experiments with different state-of-charge
levels, the multivariate linear regression is introduced to identify
the parameters of the equivalent circuit model. The identifica-
tion treatment is investigated to obtain the relationship between
the polarization current and the linearized load current of the
circuit equation, which is described as shown in Equation (3).

U,0=E®-U,n-R,0)1,®

1, 0)= [1— ! ‘f_?] Lo+ [1 Sl —e‘f] I (=1)+e 1 (1= 1)

T T

3

Wherein, T is the segmentation time of the linear pro-
cessing, which represents the parameter sampling time of
the battery management system. [,(¢) is used to describe the
current flowing through the polarization capacitance. /;(7)
is used to describe the current flowing through the electri-
cal loads. Then, the subsequent calculation framework can
be established, which is introduced into the model param-
eter identification. Afterward, the equivalent model and its
state-space equation can be established for the lithium-ion
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battery pack, in which the data acquisition and processing
treatment are transformed into the discrete time forms of
the computerized real-time calculation. By conducting the
state-space representation, the mathematical description of
the equivalent model can be conducted for the lithium-ion
battery pack. Combined with the Ampere-hour integration
method, the parameters of S and U, are used as the state
variables and the linearized state-space equation can be ob-
tained that are shown in Equation (4).

g ]_[1-gg o] [we-n] [uw o] g [, [weD
5k 0 1]| S&-1 0o iIw || -2 w, (k=1)

“)

The parameter significances are described as follows:
k (time point), S (state of charge), U;(k) (closed-circuit
voltage value), R, (ohm resistance), I(k) (output current),
T (parameter detection time period). By investigating the
circuit analysis, the state-space equation can be described
accurately toward the circuit structure. When the lith-
ium-ion battery pack is in an open circuit state for about
40 minutes as the internal reaction of the battery is stable,
Uy equals to the closed-circuit voltage value which can be
described as Uy = U;. After that, the observation equa-
tion can be transformed in conjunction with the equivalent
circuit model by selecting the closed-circuit voltage as the
observation parameter, according to which the transforma-
tion can be obtained by Equation (5).

U, (k)

UL W] =1E®I-] 1 0 ]l b

] = [R,] [ ®)] +v (k)
©)

There are some parameters that should be known in
the above expression: E (open circuit voltage), R, (ohm
resistance), U, (closed-circuit voltage), w; and w, (pro-
cess noise), v (observation noise). In order to obtain the
parameter value of U, the calculation process of T is set as
T =R,C,. When using the WF-UKF algorithm for the state
estimation of the lithium-ion battery pack, it is required to
establish an observation equation for the estimated state of
charge and the output vector U;. According to the identi-
fied parameter data, the relationship between R, E, and S is
fitted, respectively, for the charge-discharge directions, and
then, the matrix required for the improved Kalman filter
calculating treatment is defined as shown in Equation (6).

U, (k) -2 0
X (k= P Ak = R,C,
()[S(k)] <>[ 0 1]

(6)
U, _ | oY U
nt CUQ:X‘[ oU, oS ]
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In the above expression, S(k) is used to represent the
state-of-charge value at the time point of k. The calculation
expression of Up(k) can be substituted for the mathematical
calculation process of U(f), which can be discretized to ob-
tain the final observing equation. The mathematical relation-
ship can be characterized by using the initial treatment and
real-time calculation that are shown in Equation (7).

ou, dU, oE oR,

=1, =— 4+
oU,” " 9S oS "os

@)

The proposed mathematical model provides a great fea-
sibility for the rapid recognition result analysis, according to
which the state-space equation can be obtained. The general
knowledge of covariance and noise is taken as the priory
known condition, in which the additional considerations can
be made in the dependent submodules. By investigating its
internal working state monitoring structure, the application
characterization can be realized and the operating character-
istics can be obtained through the experiments. Combined
with the battery management system design, the working
characteristics are analyzed to realize the parameter identi-
fication process, according to which the model coefficients
can be obtained.

2.2 | [Iterative correction algorithm

The iterative calculation is investigated to realize the state-
of-charge estimation of the power lithium-ion battery pack,
which utilizes the experimental results and the model pa-
rameter identification mechanism. In order to obtain its
state-space function, the comprehensive evaluation is in-
troduced into the mathematical calculation process. An im-
proved WE-UKF-based state-of-charge estimation method is
implemented together with the recalibrating process of the
Ampere-hour counter as it is simple and easy to be realized.
In order to obtain the input factors of the state-of-charge esti-
mation model, the parameter identification submodule is es-
tablished. Finally, the iterate calculation process is performed
in conjunction with the balance state impact correction. In
this way, the state-of-charge estimation of the associated bat-
tery management system can be realized and the iterative cal-
culation of the proposed method can be implemented.

The state and observation equations of the linearization
are like the Kalman filtering equations48 in the pretreatment
process, in which the initial value of the covariance matrix
can be obtained by calculating the desired variance in the ini-
tial error correction process. Furthermore, the state-of-charge
estimation model structure can be constructed by the oper-
ating characteristic analysis of the lithium-ion battery pack,
in which U;(k) is the observing closed-circuit voltage value
and the state-of-charge value can be initialized. The input pa-
rameters of the state-space equation can be obtained by the
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real-time monitoring, in which U;(k) is the output parame-
ter of the observation equation and the calculation process is
shown as follows.

2.2.1 | S1: Prediction

1. The initial working state can be obtained by conducting
the predicted calculation treatment. In the front of each
iteration treatment, the state-of-charge value is set as
S = S(k-1) to calculate its predictive value, the calcula-
tion process of which is shown in Equation (8).

Sklk=1)=AGk-1)Sk-1D+Bk-1)I, (k) (8

2. The priory covariance error of the working state estima-
tion is expressed in Equation (9).

Pklk=1)=A*k=1)Pk=D[AGk=D]"+T (k=D 0, T *k-DI"T (9)

2.2.2 | S2: Correction

1. The Kalman gain can be obtained by the calculation
treatment that is shown in Equation (10).

K(k)=Pk|k—1)[C ()" C(k)P(klk—l)[C(k>1T+B<;(i8>]

2. The updated state value considering the observed data
can be obtained by investigating the calculation process
that is shown in Equation (11).

{ U, ()=E(K)+R, (k) I, (k)+U, (k) .

X (k=X (klk—1)+K (k) [Y (k) - U, (k)

3. The covariance error matrix of the state-of-charge estima-
tion can be corrected by the mathematical treatment that is
shown in Equation (12).

Pky=[I-K(k) CK)]P(klk—1) (12)

As can be known from the equivalent model and the experimen-
tal results, the sampling data points can be obtained by conduct-
ing the unscented transform treatment, which is investigated by

the calculation process of the prior mean and variance factors.
Then, it is applied to the state-space mathematical description
and the state-of-charge estimation process, according to which
the 2n + 1-dimensional Sigma data set can be obtained by the
following unscented transform calculations together with its
weight coefficients. Thereafter, its characteristics can be ob-
tained which are shown in Equation (13).

X0 =X,i=0;X" =X + (\/(n+l)P)',i= 1,

’ (13)

x@:X—( (n+/1)P)‘,i:n+l,~-,2n

In the above expression, i is used to represent the i-th col-
umn of the sampling data sequence and its covariance matrix.
P is the product of its transposed and arithmetic square root
parameters that are shown in Equation (14).

() (Br s

The battery data point set can be obtained by using the
original distribution together with its state screening spec-
trum, which is replaced by using the nonlinear state equa-
tion and the observation equation. Afterward, their mean and
variance values can be analyzed by using these data points,
the accuracy of which can reach the second order without
conducting the linearization treatment. The weight coeffi-
cient of the sampling data sequence can be implemented by
Equation (15).

o® = L,l=a2 (n+x)—n

" n+4

A
O=_+(1-*+ 1
W = (1-a’+p) 15)
; i 1 .
a)i,?=w§’)=m,l=1,~-,2n

In the above expression, the subscript parameter m rep-
resents the average value of the Sigma data point set and
the subscript ¢ is used to characterize the variance between
the Sigma data point set. The superscript i indicates the
serial number of the sampling data points. 4 defines the
overall scaling parameter, which can be adjusted by the
parameter correction treatment to reduce the overall state-
of-charge estimation error. The choice of @ determines the
state distribution that is relative to the state-of-charge data
sequence. Furthermore, (n + A)P is set as a semipositive
matrix, and then, the value of k can be obtained. By select-
ing the non-negative weight coefficient parameter f, the
statistical high-order term error of the state-space equation
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is integrated to ensure the effective unscented transform
influence.

2.3 | Double unscented transform

Aiming to realize the computational reduction purpose, the
three-particle mode is designed and applied for the iterative
calculation. In order to realize the one-step state-of-charge
predicting calculation, a simplified unscented transform
treatment is investigated to realize the nonlinear mean and
variance conversion. Wherein, the sampling data sequence
set is also used to approximate the posterior probability den-
sity, in which the Jacobian matrix calculation is not necessary
to be conducted. Therefore, there is no neglected high-order
term discarding treatment for the calculation process,49 mak-
ing the statistical feature has the higher precision advantage.
As a result, the nonlinear error can be reduced effectively for
the working state estimation. By conducting the three-parti-
cle unscented transform treatment, the data averaging calcu-
lation is performed by using two weighting treatments of the
Sigma points.

The three Sigma state-of-charge data point sequence
can be obtained by the first unscented transform treatment,
together with the weight parameters of w, and w,,, respec-
tively. Then, the predicted values can be obtained by the state
equation corresponding to these data points. Meanwhile,
the one-dimensional predicted state-of-charge value can be
calculated by combining the weighted summation for these
three time-updating state-of-charge values. Afterward, the
unscented transform treatment is performed again on the pre-
dicted state-of-charge result, in which the transformation is
applied to the observation equation. In this way, three pre-
dictive closed-circuit voltage values can be obtained, which
are used in the correction step to improve the state-of-charge
estimation accuracy. Afterward, the predicted value can be
obtained by the weighting treatment, which is used as the
state update link in the iterate calculation process.

The state-of-charge estimation of different time points
includes the random state variable, which is fused with the
white Gaussian noise w(k). Meanwhile, the observed random
variable Uj(k) is fused by the white Gaussian noise v(k).®
Among them, f{(*) is a nonlinear equation of the state-space
function and g(*) is the nonlinear observational equation
that describes the closed-circuit voltage characteristics.
Furthermore, the variance of the noise matrix w(k) is de-
scribed by using the symbol Q and the variance of the noise
matrix v(k) is described by using the symbol R. Considering
these random noise influences, the state-of-charge estimation
can be realized for the lithium-ion battery pack at different
time points.

A series of weighted Sigma data point selection can be
investigated to realize the mean value estimation of the data

samples. By conducting this iterative calculation, the double
unscented transform treatment and the improved WF-UKF
algorithm can be implemented in the state-of-charge estima-
tion process of the lithium-ion battery pack. And then, the
measurement equation can be realized that describes the
closed-circuit voltage and the state-of-charge observation.
The iterate calculation lies on the handling treatment of the
real-time detected parameters, in which no complex mathe-
matical models must be derived and investigated, making the
fast error analysis in each prediction and correction step to
be possible.

2.4 | Weight coefficient calculation

The WF-UKF approach is an extension of the basic Kalman
filter algorithm with the high precision and robustness advan-
tages, which also relies on the accurate mathematical models
by using the statistical features of the process and observation
noise. In the state-of-charge estimation process of the power
lithium-ion battery pack, the statistical characteristics of the
process and the observed noises change significantly as well
when the operating environment and the motion state change
drastically, which will reduce the accuracy and stability of
the conventional WF-UKF algorithm. If the conventional
calculation algorithm is used in the state-of-charge estimation
process directly, the estimation result may encounter a covar-
iance negative decision problem of the later stage operation
due to the severe current variation. And then, the covariance
P, becomes a negative value. However, the Cholesky de-
composition requires that the matrix has the semidefiniteness
characteristic. Otherwise, the iterate calculation may lead to
diverge which is invalidating for the state-of-charge estima-
tion process, the reason of which is that there is a rounding
error in the numerical calculation process.

In order to improve the numerical instability of the WF-
UKEF algorithm, the covariance encounters the later operation
that is determined negatively, which may lead to the state-of-
charge estimation failure. The QR decomposition is introduced
into the WF-UKF-based state-of-charge estimation process,
in which the square root of the state variable covariance is
used in the unscented transform treatment instead of the co-
variance. The iterative operations are performed to ensure the
non-negative qualitative and numerical stability of the cova-
riance matrix. As a result, the square root of the error covari-
ance can be used instead of the error covariance to participate
in the operation process, and the square root of the covari-
ance is directly transmitted into the state-of-charge estimation
process of each calculation step to avoid the redecomposition
phenomena. When S is used to characterize the square root of
the covariance matrix P (ie, sst= P), it can be guaranteed that
P has the non-negative qualitative feature if S # 0. The iterate
calculation process can be described as follows.
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The initial state variable value of state of charge, should be de-
termined together with the initial value of the error covariance
P,. Among them, S is the Cholesky factor of the covariance
Py, the initial value of which is determined by the mathematical
description that is shown in Equation (16).

Parameter initialization

Xo=E (X))
P,=E [(XO—Y0> <XO—Y0)T} (16)

Sy =chol (PO)

242 |

The Sigma pointed acquisition data onto state of charge can
be obtained by conducting the unscented transform treatment
that is shown in Equation (17).

Three-particle calculation

Xk-DP=X(k-1),i=0
Xk-DP=Xk—D+Vm+DS*k=1),i=1,--n A7)
Xk=-1DP=Xk=1)=V(n+ DS k—1)™",i=n+1,-- 2n

In the above expression, S;'( represents the i-th column of
the Cholesky factor that characterizes the state variable cova-
riance at k time point.

2.4.3 | One-step prediction

The time-updated state variable of state of charge in one-step
prediction can be realized by using the state equation that
is based on the state variable of state of charge at k-1 time
point, according to which the input parameter values can be
obtained. The calculation formula for the state-of-charge pre-
diction process is shown in Equation (18).

X (klk—1'=f{X (k=1 uk—1)} (18)

The weighted average calculation process is shown in
Equation (19).

2n
X (klk=1)=) @} X (klk—1) (19)

i=0

Then, the QR decomposition is performed on the error co-
variance of the predicted state-of-charge value according to
the one-step prediction of the state of charge at the sampling

time point,50 the calculation process of which is shown in
Equation (20).

Sxw=4r { /ol [X (klk— 1" =X (k|k—1)] ,\/Q(k)}
(20
Considering that the values of o and k may generate the

negative values of a)(c’, Equation (21) is used to guarantee the
semidefiniteness of the matrix.

Sx =cholupdate {S;((k),\ [abs () [X (klk—1)° —X (k|k—1)] , sign (@?) }
21)

Wherein, Sy, represents the square root update of the
error covariance for the working state value at k time point.
According to the three-one-step state-of-charge prediction
results, the observed closed-circuit voltage values can be
obtained by using the observation equation correspondingly.
Meanwhile, Sy, is used to represent the updated square root
of the covariance for the observed variable U, at k time point,
the statistical characteristics are shown in the Equation (22).

Uy (klk=1)' =h {X (klk—1) ,u (k) } (22)

The weighted average calculation process of U; is shown
in Equation (23).

2n
U, (klk=1)=Y !, Uy (klk—1)’ (23)
=0

The QR decomposition is shown in Equation (24).

St =" { Vol [Uy (klk=1)"" = U (klk—1)] A/R(k')}
4)

The decomposition calculation can be realized by using
the function of cholupdate(*) as shown in Equation (25).

Sy, @ = cholupdate {SUL(W,‘ [abs (@?) |U, (klk—1)° =0, (k|k—1)] . sign (?) }
25)

24.4 | Real-time correction

The updated state calculation process should be conducted
by using the predicted state-of-charge value, in which the
real-time closed-circuit voltage monitoring is conducted
and is used for the correction treatment by multiplying the
Kalman gain. The cross-covariance of the state and observed
variables can be calculated accordingly, the value of which
affects the magnitude of the KF gain directly. The covariance
of these two parameters can be calculated by the summation
calculation that is shown in Equation (26).
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2n
Pyu,ao= 2, @ [X (klk=1y' =X (klk=1)] (U, (klk=1)' = U, (klk = 1)]
i=0

(26)

The accuracy of the Kalman gain will affect the state-of-
charge estimation effect, which can be obtained because of
the above formula.”’ By investigating the parameter solving
process, the mathematical expression can be obtained for the
Kalman gain calculation, which is described in Equation (27).

-1
K (k) =Pxayu, ) [SUL(k>SLT/L<k)] @7

Furthermore, the working state value of the k time point
and its updating covariance error treatment can be conducted,
in which U, (k) is the measured closed-circuit voltage value of
the k time point. The updated state calculation process can be
investigated and is shown in Equation (28).

X (=X (klk—1)+K (k) [U, (k)= U, (klk—1)] %)
S (k)= cholupdate {Sy-.K (k) Sy .= 1}

In the optimized calculation process, the initial value is
calculated by the Cholesky factorization and the square root
of the covariance matrix. In the subsequent iterative calcula-
tion process, the updated factor directly forms the Sigma data
point set. The time-updated factor of Sy, is implemented

by using the square root complex matrix, which contains the
weighted Sigma points and superimposed process noise co-
variance. Then, the update treatment can be expanded com-
bined with the QR decomposition. The optimization realizes
the Py 1y updated treatment of the WF-UKF-based calcu-
lation process, which overcomes the shortcomings of poor
stability and ensures the semidefiniteness of the covariance
matrix.

2.5 | Estimation model realization

The general knowledge about covariance and noise is used
as the prior knowledge, in which the current dependency
should be also considered for the reliable state-of-charge
estimation. The Hybrid Pulse Power Characterization ex-
perimental test is used for the parameter identification of
the equivalent model, in which the mathematical func-
tion can be encapsulated in the separate M files. Then, the
state-of-charge correction process takes the voltage and
current parameters into account, by which the battery op-
erating state information can be obtained to achieve the
comprehensive state-of-charge estimation. The real-time
monitoring of the state-of-charge values can be achieved
by comparing the estimated state-of-charge value of the
experimental result obtained by the Ah integral calcula-
tion. Then, the parameter values are constantly adjusted
by the variance analysis to optimize the state-of-charge
estimation model, which uses the WF-UKF algorithm and
incorporates the nondestructive treatment in front of the
state-of-charge estimation process to avoid the prediction
offsets caused by high-order term losses.

The balance state evaluation results are combined with
the internal connected battery cells of the lithium-ion bat-
tery pack by applying the battery difference in the calibra-
tion process, which can be applied to the calibration process,
making the proposed algorithm to have a short calculation
time and high calculation efficiency advantages. The cycling
iterate calculation process includes time update and measure-
ment update. The time update process is also called the pre-
diction, which is a one-step prediction of the current state
variable and provides a process of a priori estimation of the
next time point. The calibration process is a feedback of the
observations, which corrects the deviations at the same time
as shown in Figure 1.

The basic parameters are important inputs to the asso-
ciated battery management system device, such as voltage,
current, and temperature. They are used to control and op-
timize the power flow both electrical loads and the distrib-
uted power sources. Wherein, the available power of the
lithium-ion battery pack can be defined as an additional
state in the iterate state-of-charge calculation process. In
order to prevent the sudden voltage drop and current flow
phenomenon, the outside parameters of the lithium-ion
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battery pack should be detected in real-time and intro-
duced into the state-of-charge estimation process, includ-
ing closed-circuit voltage, battery cell voltage, and current.
Prior to the overtaking maneuvers, the estimated state-of-
charge value should be used to avoid the dangerous situa-
tions such as the sudden power outages that will lead to the
critical dynamic conditions.

The adaptive state-of-charge estimation considers the cur-
rent aging state and predicts the emergency due to its self-
learning design characteristics, and its purpose is to react
and predict the power demand of the power supply system
immediately in the future. Extensive experiments have been
conducted in advance to generate the dependency on the re-
maining available power of the lithium-ion battery pack in
terms of battery states, voltages, and power pulse parameters.
The operating current and temperature signals are measured
and used as the input parameters of the state-of-charge esti-
mation model, in which the different values of I are used for
the working state amplification. In order to realize the energy
management of the serially connected batteries, the battery
management system is designed and implemented, in which
the real-time temperature monitoring is achieved by the sen-
sors fixed at the battery electrodes. The modular design of
the overall structure is investigated by using the parameter
matrix, together with the prediction and correction. Using
the state variables as the output mode of the cache space,
the effective state monitoring is realized by the observed
data analysis. According to the basic principle analysis of the
working process, it is suitable for the lithium-ion battery pack
and the state-of-charge estimation is realized by the real-time
monitoring.

The lithium-ion battery pack needs to be managed to en-
sure the safe operation in the emergency power supply pro-
cess, in which the historical stored data can also provide a
useful reference to its retirement. Considering the working

characteristics of the lithium-ion battery pack, the heating
and cooling plates are used to achieve the suitable operating
temperature maintenance. In order to meet the online appli-
cation requirements, the working state monitoring subsystem
is also designed for the lithium-ion battery pack. The working
condition monitoring and analysis are investigated to ensure
application safety for the energy storage and supply process
of the lithium-ion battery packs. The antijamming digital
transmission signals can be obtained by the real-time signal
monitoring in the battery management system. The security
protection plays an important role in the lithium-ion battery
packs, which is limited by the power supply due to its phys-
ical limitations. Experiments are carried out at different am-
bient temperatures by using the different discharge current
rates, according to which the experimental data can be in-
troduced into the discharge capacity calculation of the actual
operating conditions.

3 | EXPERIMENTAL ANALYSIS

3.1 | Parameter identification

The parameter identification of the lithium-ion battery pack
can be treated as a dynamic system, in which the direct appli-
cation of the parameter identification submodule is designed
and applied that is suitable for the power supply requirement.
It has strong adaptability in realizing the time domain dy-
namic parameter relationship, the feature of which is obtained
by using the dynamic mechanism of the recognition submod-
ule. Therefore, the output value of the corresponding param-
eters can be effectively identified, in which the stabilization
process is also implicit in the parameter identification. When
the identification network is used, the defined recognition
error function is introduced into the standard energy func-
tion. The target capture parameters of the lithium-ion battery
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pack can be obtained by performing various pulse charge-
discharge experiments, which are the encapsulation of the
real-time closed-circuit voltage monitoring corresponding to
different state-of-charge conditions. Then, an experimental
calculation analysis is performed, and the variation law of the
model coefficients can be calculated through the realization
of the specific state-space equation. Finally, various model
coefficients can be obtained and the overall working state de-
scription can be realized.

According to the parameter identification requirements of
the state-space equation, the power battery test system was ad-
opted (Company: YAKEYUAN; Channel number: 20; Voltage
accuracy: 0.02%; Current accuracy: 0.02%; Temperature ac-
curacy: 1°C). By using the intermittent Hybrid Pulse Power
Characteristic test, the power characteristic experiments of var-
ious model parameters can be conducted, in which the variation
law can be obtained. In order to obtain the closed-circuit voltage
value in response to the open circuit voltage variation required
for the lithium-ion battery pack, the constant current-constant
voltage charging maintenance should be first applied fully to
charge the lithium-ion battery pack with the state-of-charge
value of 100%. In addition, it should be left for half an hour
to stabilize its internal electrochemical reaction stable for the
subsequent experimental test. In the experiment, a 0.2CsA cur-
rent is used to realize the intermittent cycling discharge. The ex-
perimental analysis is combined with the shelf phase, in which
the discharge process was suspended after the CC discharge for
3 minutes. It is performed after a complete static operation for
40 minutes, after which the CC discharge and experimental test
are conducted in accordance with the above process until the
state-of-charge value is discharged to 0. The experimental test
results of different time points in the intermittent charge-dis-
charge test procedure are described in Figure 2.

In the above figure, U, is the initial discharge voltage
value; U, is the initial discharge voltage, which is the battery
instantaneous voltage value; Us is the discharge end voltage
value; U, is the instantaneous voltage value after the battery
is left for 40 seconds; and Us is the battery recovered voltage
value after standing for 40 minutes.

Open circuit voltage: The open circuit voltage parameter
of Uy is the voltage across the battery of the positive and
negative terminals for a long period of time. In order to ob-
tain the open circuit voltage value of the lithium-ion battery
corresponding to different state-of-charge states, the voltage
is measured when state of charge = 1. And then, the battery
is discharged at a constant current of 1 C for 6 minutes to
reduce the state of charge by 0.1 and the battery is left for a
long time. When the voltage reaches a steady state, the open
circuit voltage value of the battery is measured again, and the
cycle test is performed until the state of charge is lowered to
Zero.

Ohm resistance: When the discharge starts and the dis-
charge stops, the polarization has not yet occurred. As aresult,
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the battery terminal voltage sudden drop-and-rise phenome-
non is caused by the ohmic internal resistance, in which the
voltage transient process satisfies Ohm's law. Therefore, the
ohmic internal resistance value can be calculated by Ohm's
law. Aiming to improve the calculation accuracy of R, the
average treatment of these two processes can be taken as the
sample of R, the formula is shown in Equation (29).

(U= Up)+ (U= Us)

(29)
0 21

Polarized internal resistance: When the battery is in a dis-
charged state, the slow drop of the terminal voltage after the
transient drop is due to the polarization internal resistance
and the polarization capacitance. Since the battery is in a
hold state before the discharge starts, the parallel resistance-
capacitance portion can be regarded as a zero-state response
within 10 seconds at the start time point of the discharge pe-
riod, so the polarization internal resistance R, can be identi-
fied according to the Equation (30).

{ U,=Upc+IRy+U, o)
U,=IR, (1-¢7'/")

In the formula, U, is the voltage across the resistance-ca-
pacitance circuit loop. The battery has no external current
flowing through the resistance-capacitance circuit for 40 sec-
onds of the duration of the pulse after the end of the pulse
discharge. At this time, the resistance-capacitance circuit can
be regarded as a zero-input response, so the time constant ¢
can be calculated by the formula(31).

ty—13

T [(0-Us) /(U - )] on

Polarize capacitance: During the period from t, to £
where the battery is left after the end of the pulse discharge,
due to the polarization effect, the induced current appears in
the resistance-capacitance loop in the model, and the battery
voltage will slowly rise. The time constant of the polarization
reaction is T = R,C,
of the transition process of the first-order resistance-capac-
itance circuit. As the calculation formula for 7 is obtained

and its magnitude reflects the velocity

together with the parameter value of R,, C, can be obtained
as shown in Equation (32).
i~ 1

Y Ty T B

A 40-minute interval discharge is performed, and the
Hybrid Pulse Power Characteristic test is performed at the
end of the following 40-minute hold. During the intermit-
tent discharge process, the embedded Hybrid Pulse Power
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Characteristic test is performed at the end time point of the
shelved time period, and then, the 5-seconds duration current
pulse of each intermittent hold is set at the end time point of
the shelved time period. According to the parameter identi-
fication purpose of the equivalent circuit model and its state-
space equation structure, the experiment is performed at the
room temperature based on the 1CsA mixed pulse power
characteristic test method. The dynamic characteristics can
be obtained considering the different state-of-charge effects
and the difference between the charge-discharge processes.

S1: A series of balanced charge processes are per-
formed to make the lithium-ion battery pack full of
energy, in which the fast CC charge is conducted in
the phased array process, and then, the CV replenish-
ment mode is turned on to make the state-of-charge
value of each internal connected battery cell to be
100%. After leaving for 40 minutes, the Hybrid Pulse

Power Characteristic test was performed and the data
were recorded in real time.

S2: The 5.00% energy of the lithium-ion battery pack
should be released for each state-of-charge state, in which
the state-of-charge value drops to 95% at the first time
and the Hybrid Pulse Power Characteristic test should be
conducted at the end time point of the following shelved
time period. In this way, it can be performed when the
state-of-charge value equals to 100%, 95%, 90%, ..., 10%,
5%, and 0. Subsequently, the equivalent model parameters
can be obtained under the same state-of-charge condi-
tions to identify the subsequent parameter identification
process. If Uy remains constant for a short time period,
the closed-circuit voltage response to the corresponding
lithium-ion battery pack is recorded with each current
pulse. This cyclic current pulse is repeated for every 5%
state-of-charge drop until the lithium-ion battery pack is
fully discharged.
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The closed-circuit voltage response is obtained by embedding
the pulse charge-discharge process at different state-of-charge
conditions, which is then used for its parameter identification.
The coefficient of the functional equation can be obtained by
integrating the closed-circuit voltage value of the lithium-ion
battery pack. In addition, the functional relationship of the
model parameters can be obtained by processing these coeffi-
cients, The parameter identification results are shown in Figure
3.

As it can be seen from the experimental results, unlike
the ohmic internal resistance, when the ambient tempera-
ture is a constant value (20°C), the polarization internal
resistance of the battery changes drastically with the state
of charge. At the initial stage of discharge, R, rises slightly.
When the state of charge discharges to about 0.6, the po-
larization internal resistance drops to the minimum point.
As the discharge progresses, the polarization internal resis-
tance increases significantly. When the state of charge is
<0.3, the internal parameters of the battery change greatly,
which has a great relationship to the internal chemical re-
action of the battery cells. As the near end, the electro-
chemical reaction against the battery changes drastically,
resulting in the significant change of the battery terminal
voltage.

3.2 | Charge-discharge characteristics

In the state-space function of the state-of-charge estimation
model, the dynamic characteristics of the lithium-ion battery
pack should be considered and the voltage and current can
be represented by the nonlinear function of the dynamic real-
time parameter monitoring. This approach helps to reduce the
prior learning requirement, which has better generalization
to adapt the variation. The basic part of the method is the
adaptive structure, in which a difference function is applied

to the adaptive state-of-charge estimation framework. As bat-
tery aging proceeds, the proposed iterate calculation method
should be able to provide an accurate estimation of the re-
maining available power, which is a challenging problem.
The voltage and current characteristics are analyzed in the
charging process as shown in part (A) of Figure 4.

The parameters in Figure 4 are expressed as follows:
precharge current (PCC), constant charge current (CCC),
constant voltage charge current (CVCC), precharge volt-
age (PCV), and floating charge voltage (FCV). The voltage
and current axes are used to characterize their variations in
the constant current-constant voltage charging process. The
PCC, CCC, and CVCC can be reflected in the current curve
of the above figure. Finally, the auxiliary constant voltage
charge process is performed in the last part of the charge pro-
cess. During the charge process, the closed-circuit voltage
does not change much and the current decreases accordingly.
The reason for this phenomenon is that the electrical energy
becomes full and the differential voltage value of the lithium-
ion battery pack becomes smaller and smaller. It will be exe-
cuted until the charge current is about to be the end-of-charge
current (2.25A). Meanwhile, the charge voltage characteris-
tics can be also reflected. As it can be known from Figure 4,
the voltage increases rapidly from the CCC charge process.
However, as the battery capacity is supplemented with the
charge process, the voltage is essentially constant and the ex-
periment will be stopped by the end-of-charge current limit.

The voltage drop rate is also different from the cross-
current discharge process of different current rates, accord-
ing to which the discharge voltage characteristics can be
obtained and analyzed afterward. When the discharge volt-
age reaches the end-of-charge terminal voltage of 3.00 V,
the discharge experiment will be terminated regardless of
any environment. The working characteristics at differ-
ent discharge current rates can be obtained finally by the
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FIGURE 5 The cell voltage characteristics of the lithium-ion battery pack in the cycling charge-discharge process. (A) Cell voltage variation

during the cycling treatment. (B) Cell voltage characteristics in the shelved state

experiments, forming the discharge voltage characteristic
curve, which is shown in the part (B) of 0 and the param-
eters are shown as follows: fast dropping region voltage
(FDRV) and slow dropping region voltage (SDRV). The
battery voltage drops sharply along with the time extension
of the first region, and the discharge voltage characteristics
can be obtained accordingly. The discharge result is almost
similar to the change law, in which the self-discharge pro-
cess is also considered to represent the voltage difference.
In the second region, the battery voltage decreases slowly
over time. After entering the third zone, the battery voltage
suddenly drops to the low voltage limit. Most of the work-
ing time is in the second area, and only a small part of the
working time is in the first or third area. It is worth not-
ing that this phenomenon satisfies the application require-
ments and the working length range of the second region,
which is also an important health state indicator and plays
a central role in the state-of-charge estimation. At different
discharge current rates, the discharge time of the second
region is also different.

33 |

The cycling charge-discharge experiments should be per-
formed for the lithium-ion battery pack, in which 7 battery
cells of 4 Ah capacities relate to series. Then, the charge
(CC 9A/0.2C5A to CV 4.15 V)-shelved-discharge (CC
45A/1C5A) mode was used as one test cycle. Prior to the
experiment, the previous discharge process was conducted
for the lithium-ion battery pack and a time of 25°C was re-
served. The charge process uses a constant current-constant
voltage charge module: The charge current in the constant
current mode is 9.0A, and it converts to constant voltage

Cycling charge-discharge

mode charge when the battery cell voltage reaches the high
voltage of 4.15 V. The discharge process uses a large cur-
rent discharge method, in which the constant current series
discharge can be investigated until the entire lithium-ion
battery pack voltage drops to 21 V or the battery cell volt-
age drops to 3.0 V. The cycling charge-discharge experi-
ments repeat and the experimental data can be measured
together with the accompanying restorage.

A single charge-discharge curve of the lithium-ion bat-
tery pack is shown in part (A) of Figure 5, in which the
trend curve of the lithium-ion battery pack is the same as
the single one battery cell in the charge-discharge process.
The working state of the lithium-ion battery pack appears
in these three stages. The charge rate of the lithium-ion bat-
tery pack is slower than the single battery cell. Because of
the polarization of the shelf, the single battery cell voltage
has a constant ice base battery voltage. When this part has
up and down floats and standards, there should be more
time. During the discharge process, it is obvious that the
early stage of the relatively fixed closed-circuit voltage
and the stable discharge are changed, making it tends to
be slow. As a result, the discharge rate of the single battery
cell is relatively slow in the discharge process and the dis-
charge time is long as well, in which the conversion process
is a single turret corresponding to a small lag for two hours.
The experimental results show that the lithium-ion battery
pack has special feature of the single battery cell, and the
operational features of the lithium-ion battery pack are dif-
ferent from a single battery cell.

The lithium-ion battery pack is placed in a static state at
25°C for approximately four hours at room temperature to re-
store temperature and activity to a steady state, during which
the electrical parameters are monitored to obtain the boundary
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TABLE 1 Charge-disch
L arge-diseharge . Name Group 1 Group 2 Group 3 Group 4 Group 5
parameters with different current ratio
Charge rate 0.50C 0.20C 0.30C 1.00C 1.20C
Discharge rate 1.00C 0.50C 0.20C 1.20C 0.30C
TABLE 2 Chargi ffici t
. Arging etticiency a Name Group 1 Group 2 Group 3 Group 4 Group 5
different current rates
Charge rate 0.50C 0.20C 0.30C 1.00C 1.20C
Power 3.5861 3.7599 3.7217 3.3844 3.2307
Efficiency 0.9548 1.0000 0.9894 0.9001 0.8590

TABLE 3 Coefficient relation of charging efficiency and current

ratio
Name P1 1 4] P3 P4 Ps
Value —0.6462 1.6850 —1.4630 0.3471 0.9766

voltage variations and capacities that are shown in part (B) of
0. As it is shown in part (B) of Figure 5, there is a significant
battery difference when the lithium-ion battery pack is placed
on hold. During the shelving process, the self-discharge rate
of each battery is varied, due to the discharge current rate dif-
ference between each battery cells. However, compared to the
other two phases, this difference phenomenon is too small to
be calculated in the state-of-charge estimation process. The
operating characteristics often cause the over-discharge disks
on the lithium-ion battery pack. Unlike other type of batteries,
it can be restored automatically, which will cause permanent
damage. Therefore, the self-discharge rate and battery incon-
sistency have a significant impact on the state-of-charge esti-
mation process of the entire lithium-ion battery pack.

3.4 | Current rate correction

Aiming to improve the adaptability of the proposed method,
the different current rate experiments are designed for the
coulomb efficiency calculation during the different current
charge-discharge maintenance process, which are investi-
gated in the correction step of the iterate calculation process.
By conducting the varying current test, the correction fac-
tors are obtained and taken into the optimization treatment,
including the temperature influence on the polarization re-
sistance. The current rates for charging and discharging ex-
perimental process are shown in Table 1.

As can be known from the analysis of the experimental re-
sults, the efficiency decreases as the charging rate increases.
Therefore, the relative capacity ratio of different charge rates,
that is, the charge efficiency, is obtained by using the 0.20 C
charging current rate, and the calculation expression thereof
is shown in Equation (33).

n =-S5 x=0.50,0.20,0.30,1.00,1.20 (33)

0.20

In addition, the charging efficiency # at different current
rates can be obtained according to the experimental results,
which are shown in Table 2.

Since it is not easy to observe the change law of charge
efficiency directly from the data, it is not easy to obtain the
charge efficiency function relationship of the above table.
Therefore, the variation law of the charging efficiency can
be more intuitively described by drawing the curve, and then,
the charging efficiency curve can be obtained under differ-
ent charging rates.”? As a result, a positive correlation be-
tween the charging efficiency and charging current rate can
be obtained. By comparing and analyzing the function fit-
ting effects on different orders, the fourth-order polynomial
fitting method is selected as the fitting function relationship,
and the calculation expression is shown in Equation (34).

ne=f @) =p,#x*+p, 2 +psx x> +p,xx' +ps (34)

In the above Equation, x is the current rate, #c is the effi-
ciency, and p, to ps are the coefficients of the respective sub-
items. Then, the coefficient value of each subitem is obtained
by a curve fitting function. In the above functional relation
expression, the coefficient values of various items are shown
in Table 3.

In order to achieve the purpose of fitting the coefficient
function, the corresponding polarization capacitance val-
ues of different state of charge are calculated by using the
functional relation expression. The experimental results are
compared with the original collected data, and the tracking
effect of the fitting curve is verified. Finally, the variation
on the coulomb efficiency can be obtained. The results show
that the fitting equation has a good effect on the simulation
of the running characteristic of the airborne lithium-ion bat-
tery pack s. By embedding the charging efficiency in the
state-of-charge prediction process, the prediction accuracy
of the airborne lithium-ion battery pack can be improved on
the charging and discharging process.53 In order to calculate
the coulomb efficiency of different current charging and
discharging processes, simulated working condition experi-
ments are designed with different charging and discharging
rates. The experimental parameters of different current rates
are set that is shown in Table 4.
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Name Group 1 Group 2 Group 3 Group 4
Charge rate 1.00C 1.00C 1.00C 1.00C
Discharge rate  0.10C 1.00C 0.50C 0.20C

At a charge rate of 0.10CsA, the discharge efficiency is
the highest, and as the discharge rate increases, the discharge
efficiency gradually decreases. Therefore, the relative ca-
pacity ratio of different discharge rates can be obtained with
a0.10C discharge rate. The discharge efficiency is obtained,
and the calculation formula is shown in Equation (35).

na= -5 x=0.10,0.50,0.20,0.30,1.00,120  (35)

0.10

In addition, the charging efficiency # at different current
rates can be obtained according to the experimental results
that are shown in Table 5.

It is difficult to observe the functional relationship directly
from the data onto the table. Therefore, using the experimen-
tal results of the table, according to the positive correlation
between the discharge efficiency and the discharge rate, the
curve is drawn to more intuitively describing the variation
law of the discharge efficiency. By comparing and analyzing
the function fitting effect on different orders, the third-order
polynomial function is selected as the fitting function rela-
tionship, and the calculation expression is shown in Equation

(36).
na=f (X)=p, X +p,#x°+psxx' +p, (36)

In the above Equation, x represents the discharge current
multiplication factor, and the coefficient values of the various
items are shown in Table 6.

In the calculation process, the purpose of coefficient ef-
fected verification and the functional relation expression
after function fitting treatment is applied, obtaining the cor-
responding coulomb efficiency values under different current
multiplication rates. This can be compared to the original col-
lected data to verify the tracking effect of the fitted curve.
The fitting equation has a good effect on the simulation of
the running characteristic of the airborne lithium-ion battery
pack. By embedding the discharge efficiency in the state-of-
charge prediction process, the state-of-charge prediction ac-
curacy of the airborne lithium-ion battery pack is improved
on the charging and discharging experiments.

Name Group 1 Group 2 Group 3 Group 4
Rate 0.10 1.00 0.50 0.20
Energy 3.4063 3.3560 3.3716 3.3941
Efficiency 1.0000 0.9852 0.9898 0.9964

Group 5

TABLE 4 Discharge experimental

Group5  Group 6 . L .
parameters list with different current ratio
1.00C 1.00C
1.20C 0.30C
3.5 | State estimation effect

The lithium-ion battery pack is mainly used for the instru-
ment inspection and other emergency power supply purposes
of the aircraft flying conditions. Taking the lithium-ion bat-
tery pack as the research object, the voltage variation law and
the voltage difference between the battery cells are studied
by designing the simulated various working condition experi-
ments. When the change rate of the operating condition is
large, the closed-circuit voltage change rate and the battery
voltage will be obvious. The voltage difference is as high as
120 mV, but the different operating effect is relatively small
on the battery voltage difference.
The experimental procedure is designed as follows.

S1: It should be determined whether the single battery
voltage and closed-circuit voltage are greater than the
minimum voltages 3 V and 21 V, and it will enter the
second experimental step when the closed-circuit voltage
or battery voltage meets the conditions. Otherwise, it
will jump to the tenth step.

S2: The lithium-ion battery pack should be left shelved for
10 seconds and turned to the third step.

S3: A 0.30CsA discharge is performed while the real-time
voltage monitoring is set up to determine whether the bat-
tery cell voltage and closed-circuit voltage are greater than
the minimum voltage limitation. The experimental proce-
dure will be turned to the fourth step under the satisfactory
conditions, or jump into the tenth step.

S4: The ignition simulation with 0.60CsA discharging
treatment should be maintained for B seconds, and it
should be determined whether the battery cell voltage and
closed-circuit voltage are greater than the minimum volt-
age limitation. If the condition is met, the fifth step should
be entered; otherwise, the experimental procedure will
skip to the tenth step.

S5: The lithium-ion battery pack should be charged with
a current of 0.10CsA for C seconds to obtain the analog
supplemental power supply process and turned into the
sixth step.

TABLE 5 Efficiency at different

Group 6 .
current rate discharges

1.20 0.30
3.3500
0.9835

3.3831
0.9932
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S6: The self-discharge characteristics can be simulated by
conducting the 0.01 C5A cycling discharge process for D
seconds, and then, the experimental procedure will pro-
ceed with the seventh step.

S7: The 0.10 CsA charge process can be investigated by
performing C seconds analog replenishment power and
proceed to step 8.

S8: The emergency output can be simulated by the 1CsA
discharge current for E seconds, and the battery manage-
ment system determines whether the battery voltage and
closed-circuit voltage are greater than the minimum volt-
age limitation in real time. When the voltage meets the
requirements of the experimental conditions, the experi-
mental procedure should go to the ninth step. Otherwise,
the experimental procedure should jump into the tenth
step.

S9: The experimental test should repeat steps from 2 to
8 until the conditions are not met and jump to tenth step.
S10: The end. T, is the discharge time of the instrument
inspection step, 50 seconds. T}, is the aircraft ignition dis-
charge time, 5 seconds. 7, is the recharge time, 20 seconds.
T, is the self-discharge time, 10 seconds. 7, characterizes
the emergency power supply time, 30 seconds.

External direct monitoring signals of the lithium-ion battery
pack during the experiment can be obtained by real-time
monitoring. These signals are input into the state-of-charge
estimation model, and a closed-circuit voltage tracking
signal can be obtained. The closed-circuit voltage tracking

TABLE 6 Fitting coefficient of current efficiency and ratio

Name D1 1 2} pP3 P4
Value —-0.01828 0.04852 —0.04936 1.004

U V)

21

r T T T T T T T
0 2000 4000 6000 8000
t(s)

(A) closed-circuit voltage changing law

T T 1
10 000 12 000

pen Access

effect along with the current variation can be obtained,
which is shown in Figure 6, in which U, and U, represent
the closed-circuit voltage data obtained by the real-time
sampling and the calculation toward time during the state-
of-charge estimation process. As it can be shown from
the graphical experimental result analysis, the proposed
method can achieve effective closed-circuit voltage track-
ing. The estimated error is 1.00%, which indicates that the
closed-circuit voltage tracking has good estimation effect
on the main discharge simulation condition. Meanwhile,
the state-of-charge estimation analyzed that is shown in the
right part of Figure 6, in which the state of charge, integral
is obtained by the Ah integration algorithm, and the pro-
posed method is used to implement state of charge,. The
experimental results show that the proposed method has
a good effect on the online state-of-charge estimation to-
ward the hour integral integration method by analyzing the
experimental results in the complex current working con-
ditions. Experimental results show that this novel weight
coefficient calculation method can improve the state esti-
mation accuracy. The state-of-charge value calculated by
Ah integration has a significant systematic error because
of the accumulation, and the weight coefficient calculation
can be corrected to the zero return.

The MMSE evaluation method is used to verify the
applicability of the joint state-of-charge estimation algo-
rithm, in which the estimation effects on different initial
state-of-charge values are analyzed. The energy and time
efficiency54 were utilized to improve battery uniformity
with the group working lithium-ion battery pack. In addi-
tion, it has higher accuracy in various modes, compared
to the state-of-charge estimation results® with better con-
verge. When the initial state-of-charge value of the con-
structed filter is close to the actual value, the state-of-charge

soc (1)

T s T ¥ T

: ; .
0 2000 4000 6000 8000
t(s)

(B) state of charge estimation effect

FIGURE 6 The closed-circuit voltage changing law and the state-of-charge estimation effect. (A) closed-circuit voltage changing law. (B)

state-of-charge estimation effect
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TABLE 7 BBDST working condition parameters and description
Ph (kw) Pc (w) Single step (s) Grand total (s) Working condition 375 69 21 134 Accelerate
37.5 69 21 21 Start 4.5 9 16 150 Sliding
s 1155 112 33 Accelerate -15 =27 156 Brake
45 9 16 49 Sliding 72.5 135 165 Accelerate
-15 27 6 55 Brake 925 174 171 Rapid acceleration
37.5 69 21 76 Accelerate 375 69 21 192 Accelerate
4.5 9 16 92 Sliding 45 9 16 208 Sliding
-15 =27 6 98 Brake =35 —66 217 Brake
72.5 185 9 107 Accelerate -15 =27 229 Brake
92.5 174 6 113 Rapid acceleration 4.5 9 71 300 Parking
FIGURE 7 BBDST working
0 0 { condition experimental data
<_\t -20 § -20
_40 —40
0 100 200 300 0 2000 4000 6000
tls tls
(A) (B)
415 &2
4
% 4.1 %
3.8
4.05 3.6
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tls tls
) (D)

estimation of the lithium-ion battery pack is compared by
three model-based algorithms in a new combined dynamic
loading profile,55 where the estimated results had similar
experimental values compared to the experimental results
obtained in this research. In addition, the correctness and
accuracy of the proposed estimation model can be verified
by the experimental results. The actual initial value will
be corrected in the state-of-charge estimation process, in
which the jitter is negligible. The superposition efficiency
is analyzed under the complex current variation working
conditions, which reflects that the proposed method can re-
alize the effective state-of-charge estimation. In addition,
the experimental results show that the developed battery
management system device has good influence on the lith-
ium-ion battery pack energy supply process.

3.6 |

Refer to the Beijing bus dynamic stress test (BBDST) set-
ting working condition test to test the used lithium battery
LFP50AH ternary lithium battery. Battery charging and dis-
charging equipment The BTS750-200-100-4 battery testing

Complex condition analysis

equipment provided by Shenzhen Yakeyuan Technology
Co., Ltd. sets the steps according to the data in Table 7 and
conducts experiments.

The BBDST working condition is the actual data acqui-
sition of the Beijing bus. In Table 7, Ph (kW) is the actual
battery output power under the conditions of the bus start
acceleration and taxiing. Since the experiment was carried
out on the battery of 50 Ah, the data in Pc(w) were ob-
tained by reducing Ph(kw), and Pc(w) was used for the ex-
periment of the LFP50Ah ternary lithium battery of China
National Aviation Corporation. As can be seen from the
data table, the time of a complete BBDST is 300 seconds,
and the BBDST condition test is performed 20 times on the
battery, and the BBDST condition data can be obtained as
shown in Figure 7.

In Figure 7, (A) and (C) are the experimental current and
voltage data of the first BBDST condition, and (B) and (D)
are the experimental current and voltage data of 20 BBDST
conditions, respectively. Since the BBDST operating con-
dition is power discharge, it can be seen from (B) and (D)
that the discharge current increases and the battery terminal
voltage shows a downward trend when the number of cycles
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FIGURE 8 State-of-charge estimation result and error curve

increases. The equivalent circuit model was established by
parameter identification of HPPC experimental data. In order
to verify the validity of the model, the model data and ac-
tual data were compared and analyzed with additional bat-
tery operating conditions data. The model was verified by the
BBDSTT condition, and the various working conditions of
the battery were simulated by constant power discharge for a
certain period. The test device obtains the current value in the
experimental data as the input condition, and the simulated
terminal voltage is compared with the experimental acqui-
sition terminal voltage by the simulation model. According
to the established resistance-capacitance equivalent circuit
model and the extended Kalman algorithm, the state-of-
charge estimation of the BBDSTT condition is carried out.
The error between the initial value and the true value is given
at least 20% in advance, so that the state-of-charge estimation
is performed, and the obtained result is shown in Figure 8.
In Figure 8, (A) is a graph of estimation results, SOC1 is a
true state-of-charge value, and SOC2 is a state-of-charge esti-
mation value using an extended Kalman algorithm. (B) is an
error curve obtained by subtracting two state-of-charge value
curves. The state-of-charge estimation error based on the estab-
lished resistance-capacitance model using improved extended
Kalman filter algorithm is <2.00%. It can correct the error of
the initial value very well, which does not depend on the accu-
racy of the initial value and has a strong correction function.

4 | CONCLUSIONS

An adaptive weight coefficient calculation incorporates the
state-of-charge estimation of the lithium-ion battery pack,

in which the weight coefficient is fully applicable to the on-
line working state monitoring by establishing a suitable en-
vironment. By implying a new weighting factor calculation
method, it achieves the accurate working state monitoring
purpose, in which the improved weight coefficient calcu-
lation treatment is introduced and its numerical stability is
improved. The recursive calculation is derived by using the
real-time detected parameters, aiming to adapt the complex
current variation working conditions. In addition, the non-
linear treatment is used to construct the unscented transform
function, according to which a novel state-of-charge estima-
tion model is investigated by using the iterative calculation
process and provides a theoretical basis for the energy-based
cleaner production. The complex current variation work-
ing condition capability is verified by conducting the ex-
perimental tests, and the coefficient correction processing of
the adaptive calculation realizes the accurate working state
monitoring of the power supply in the lithium-ion battery
pack. Meanwhile, as the calculation requirement is small, the
algorithm realization is easier compared to the power secu-
rity protection process of the lithium-ion battery pack. As the
proposed weight coefficient calculation method is quite ef-
fective in the real-time state monitoring of the lithium-ion
battery packs under complex current variation situations, it
will be applied to the battery management system explorato-
rily for performance testing and further improvement under
different working conditions.
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