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Abstract

Antibiotic resistance is one of the major challenges we face in modern
times. Antibiotic use, especially their overuse, is the single most important
driver of antibiotic resistance. Efforts have been made to reduce unnecessary
drug prescriptions, but limited work is devoted to optimising dosage regimes
when they are prescribed. The design of antibiotic treatments can be for-
mulated as an optimisation problem where candidate solutions are encoded
as vectors of dosages per day. The formulation naturally gives rise to com-
peting objectives, as we want to maximise the treatment effectiveness while
minimising the total drug use, the treatment duration and the concentra-
tion of antibiotic experienced by the patient. This article combines a recent
mathematical model of bacterial growth including both susceptible and resis-
tant bacteria, with a multi-objective evolutionary algorithm in order to au-
tomatically design successful antibiotic treatments. We consider alternative
formulations combining relevant objectives and constraints. Our approach
obtains shorter treatments, with improved success rates and smaller amounts
of drug than the standard practice of administering daily fixed doses. These
new treatments consistently involve a higher initial dose followed by lower
tapered doses.

Keywords: antibiotic resistance, antimicrobial resistance, AMR,
evolutionary computation,, stochastic model

1. Introduction

Since the introduction of Penicillin in 1942, antibiotics have become one
of the most commonly prescribed drugs in human medicine; they are also
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widely used in agriculture and aquaculture. Our dependency on these drugs,
together with their high usage, has provided selection pressures in the bac-
terial environment encouraging the evolution of bacterial strains that are
resistant to antibiotics. Resistant bacteria are not controlled or killed by an-
tibiotics, instead they are able to survive and even multiply in the presence
of antibiotics. Well known examples are Methicillin-Resistant Staphylococ-
cus aureus (MRSA), Clostridium difficile (C-diff) and Enterobacteriaceae.
The World Health Organization recently stated that antibiotic resistance is
a major threat to public health in every region of the world, and immediate
action needs to be taken [1]. Efforts to prevent the emergence of antibiotic re-
sistance include large-scale initiatives within hospitals centring on infection
control (e.g. quarantine), restricting antibiotic use and antibiotic cycling.
These efforts have had varied level of success [2], however, it is estimated
that up to 50% of antibiotics usage is inappropriate, often prescribed when
not needed, or administered with incorrect dosing and duration [3].

Antibiotic use is the single most important driver of the selection and
enrichment of antibiotic resistance, due to both their unnecessary prescrip-
tion, and by prescribing larger volumes than required. Traditional antibiotic
treatments apply a constant daily dose for a fixed period, i.e., take x mg
(milligrams) per day for n days. These regimens may be easier to admin-
ister, but there is little evidence that they are the most effective. Indeed,
some studies in the medical literature show that shorter treatments than the
standard practice can be effective against bacterial infections [4, 5]. More-
over, treatments with an initial higher dose (called loading dose) followed by
a lower maintenance dose are beneficial in treating patients in critical care
medicine [6]. Similarly, tapered regimens are effective when treating C-diff
[7, 8]. However, the generality of these findings has not been assessed, nor
are these alternative schedules common practice.

The need to optimise antibiotic treatments becomes critical in ensuring
the prolonged effectiveness of these drugs. A question thus emerges: how
can we reduce the quantity of prescribed antibiotics without reducing their
effectiveness for clearing bacterial infections? Paterson et al. [9] tackled this
question with a computational approach using a simple genetic algorithm,
allowing them to vary the dose each day. The design of antibiotic treatments
was formulated as an optimisation problem where candidate solutions were
encoded as vectors of dosages per day. Although formulations using bio-
inspired algorithms have been proposed for designing cancer chemotherapies
[10–16], very little work in the literature uses evolutionary algorithms to
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design tailored antibiotic treatments. A recent study by Cicchese et al. [17]
uses a genetic algorithm to design regimens to treat Tuberculosis infections,
however, the authors assume that doses are fixed across the treatment, and
vary instead the frequency of application of multiple drugs.

In Paterson et al. [9] an underlying mathematical model simulates the
progression of a bacterial infection, and the single objective function to be
minimised aggregates the bacterial load and antibiotic used across treat-
ment. This approach produced regimens of shorter duration than the stan-
dard practice, where a high initial dose is followed by an extended tapering
of doses. These new regimes consistently improved the success of eradicating
infections, used less antibiotic than traditional regimens, and reduced the
time to eradication. Here we adopt the model (and parameters values) in
[9] and propose to extend this approach by including additional objectives
and constraints, considering a multi-objective formulation and using a well-
established evolutionary algorithm to design effective antibiotic regimes. The
problem is naturally multi-objective as the goal is to maximise the treatment
effectiveness while minimising the total drug use and treatment duration.

The article is organised as follows. Section 2 presents the problem for-
mulation including relevant biomedical background, the mathematical model
and the problem objectives. Section 3 illustrates how traditional treatments
of fixed daily dosages behave according to our model. Section 4 overviews
our computational approach and experimental setting. Results are presented
and discussed in Section 5, while Section 6 summarises our main findings and
suggestions for future work.

2. Problem Formulation

2.1. Biomedical Background

Antibiotic treatments consist of two key variables: the dose and the du-
ration of treatment. For most antibiotics, the manufacturer identifies a stan-
dard treatment regimen which is implemented by medical practitioners when
prescribing these antibiotics. These traditional regimens usually consist of
a fixed dose administered for a specified duration (generally measured in
number of days). Drug efficiency studies are used to determine the dose
and duration for these treatment regimens. However, one limitation of this
approach is that it only provides information for the regimen being anal-
ysed and offers no indication for other potential regimens. As discussed in
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the introduction, there is evidence that these standard regimens might be
suboptimal.

2.2. Mathematical Model

The mathematical model and parameters used follow the work detailed
in [9], which we recap here. The antibiotic dosage regime is given as a vector
x = (x0 x1, x2, . . . , xn−1), where each entry xi represents the antibiotic dose
taken on day i, with 0 ≤ xi ≤ 60 and xi ∈ Z. Dosages xi are restricted to
integers, as in practice, fractional amounts of drugs are not used, instead they
are normally measured in grams or milligrams. The antibiotic component of
the model follows a deterministic equation:

dC

dt
= −gC

Here, C represents the concentration of antibiotic in the host at time t,
which decays exponentially at a rate g. Discrete doses of antibiotic, xi−1,
are added to the system at times ti = 1, 2, 3, ..., n, with C(t) updated as
C(ti)→ C(ti)+xi−1. Although t can be arbitrary in terms of units, we think
of it here in days.

The bacterial population is divided into two groups: an antibiotic-sensitive
population, with density S, and a resistant population with density R. A
higher concentration of antibiotic is required to eradicate the resistant popu-
lation. The populations are modelled with a Markov chain approach, specifi-
cally the Gillespie Algorithm [18]. The stochastic model contains the follow-
ing five possible events:

• p1 or p2: the birth of a new sensitive or resistant bacterial cell, increas-
ing the respective population by 1,

• p3 or p4: the death of a sensitive or resistant bacterial cell (either
naturally or antibiotic induced), reducing the respective population by
1,

• p5: a resistance gene is passed from a resistant cell to a sensitive cell,
making the sensitive cell resistant to antibiotics (a process known as
horizontal gene transfer [19].)

The birth process is modelled by a logistic growth function, while the
death process by summing a linear function (natural death) and a sigmoidal
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function (antibiotic induced death). Finally, gene transfer is modelled by a
density dependent mass-action function. The rates describing each of the
model’s events are given in Table 1, with parameter values given in Table 2.

Table 1: Mathematical terms for each of the rates in the model (S+R). The third column
displays how each term affects the bacterial population. Terms taken from [9].

pi Function S,R→ ...
p1 rSS (1− q(S +R)) S + 1, R
p2 rRR (1− q(S +R)) S,R + 1

p3 θS + aSS
(

1 + bS(C/ĈS)−k
)−1

S − 1, R

p4 θR + aRR
(

1 + bR(C/ĈR)−k
)−1

S,R− 1

p5 βSR S − 1, R + 1

Table 2: List of parameters and values; taken from [9]. (bi determined by function, to
ensure the bacterial growth rate is zero when C = Ĉi)

Parameter Description Value
rS, rR Replication Rate 2.7726, 2.2181
q Competition rate 0.001
β Rate of gene transfer 0.00001
θ Natural Death Rate 0.2
g Degradation rate of antibiotic 0.48

aS, aR Max kill rate at high C 4.6726, 4.1181
bS, bR bi = ai/(ri − θ) 0.8163, 1.0406

ĈS, ĈR Min inhibitory concentration (MIC) 16, 32
k Hill coefficient 4

S0, R0 Initial bacterial density 700, 100

At a given point in time, one of the five possible events is chosen at
random, based on their probabilities P (i), i ∈ 1 . . . 5, and the associated
effect of that event is applied to the bacterial population. At time t, the
probability of each event occurring is:

P (i) =
pi∑5
j=1 pj

5



After an event occurs, the time is updated: t → t + ∆t, where ∆t =
− ln(r)/ρ, r is a uniformly distributed number in [0, 1) and ρ =

∑
i pi. The

probabilities are then recalculated and the process repeated. As the time t
passes ti, the next dose of antibiotic, xi−1, is applied to the system.

Each run of the stochastic model is conducted until a number of days
after the treatment is completed or until the total bacteria population is
eradicated (S +R = 0), whichever is sooner. As the treatment duration will
be a maximum of n = 10 days for our study, we choose to run the simulations
until t = 15 days, as by this point the antibiotic in the system will have de-
graded to negligible levels, and should any bacteria be present, their number
will increase indicating that the host was not cured. As this is a stochas-
tic model, each single simulation is either a success (infection eradicated) or
failure (infection not eradicated) with some probability. Multiple simulation
runs give a statistical estimate of this probability, which we call the failure
rate. The higher the number of simulations, the more accurate the estimate
of the failure rate but the higher the computational cost. We use 1000 simu-
lations for computing the objective function while running the evolutionary
algorithm. However, we use a higher number of simulations 100 000 for re-
evaluating the best solutions found by the evolutionary algorithm (Section
4.5) and in our preliminary computations of traditional treatments (Section
3).

2.3. Objectives

Our approach considers three objective functions to be minimised:

1. The percentage of simulation runs where the bacteria survives the treat-
ment, the failure rate, ffr.

2. The total amount of antibiotic used, as measured by the sum of the
entries in the dosage vector, fta.

3. The maximum concentration that the antibiotic reaches at any point
in time across the simulation, fmc.

The first two objectives, ffr and fta, are equivalent to those in [9]. The
maximum antibiotic concentration was originally a constraint in [9], and was
not allowed to exceed 60 mg/l (milligrams/litre); this is due to the toxic
nature of antibiotics. However, here we take it as our third objective, fmc,
allowing a more thorough search of the solution space and the possibility of
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gaining more effective solutions that may have only breached the previous
constraint by a small amount.

In addition to the three objectives above, the treatment duration, ftd
is measured by the number of treatment days before the trailing zeros as
follows:

x = [

ftd (x) = 6 days︷ ︸︸ ︷
60, 30, 30, 0, 0, 10, 0, 0, 0, 0]

In a clinical setting, longer treatments are correlated with lower patient
compliance, therefore, shorter treatments are generally preferable. We model
this preference by establishing a maximum length n of the dosage vector x,
which represents an upper bound for the treatment duration. Since the
treatment duration is measured in days, the range of possible values for
this measurement is small. Antibiotic treatments shorter than 4 days never
occur in practice; they are not advisable as bacteria need several rounds of
treatment to be eradicated. On the other extreme, treatments longer than 10
days are not generally prescribed. In order to widely explore the feasibility
of treatments shorter than 10 days. Values of n from 2 to 10 were used in
separate runs of our experiments.

The goal of designing an effective antibiotic treatment is formulated as
finding a dosage vector

x =
[
x0 x1 x2 . . . xn−1

]
which minimises the following objective functions:

ffr(x) = P ((S +R)|t=15 6= 0)

fta(x) =
n−1∑
i=0

xi

fmc(x) = max
t∈[0,15]

(C(t)) = max
n=1..10

[
n∑

i=1

xi−1e
(n−i)g

]

Given the exponential decay of antibiotic, the peaks of antibiotic concen-
tration within the host will occur when each dose is applied. Hence the
concentration C(t) within this last objective, can be written as a straight-
forward summation. Although objectives 2 and 3 are linear in terms of xi,
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objective 1 is non-linear, as it is the result of the outcome of a stochastic,
non-linear mathematical model.

The detailed implementation of these objectives is described further in
Section 4.2 and the choice of objectives in our alternative formulations is
described in Section 4.3.

3. Exploring Traditional Treatments

In order to provide a benchmark for our study, this section explores the
behaviour of constant daily dosage treatments using the model. We enumer-
ated all treatments with a constant daily dose of up to 240 mg of duration 2 to
10 days. More formally, x = (x0 . . . , xn−1) with x0 = x1 = ... = xn−1 where
2 ≤ n ≤ 10 and 1 ≤ xi ≤ 240 with xi ∈ Z. For each treatment, the model
considered 100 000 simulation runs to compute the failure rate objective. We
report only successful treatments, that is treatments where the failure rate
is lower than 1%; this was chosen to make the treatments more viable in
clinical settings. The results are given in Table 3, where red font highlights
treatments where the maximum concentration exceeds 60 mg/l (which was
a constraint in [9]). As the results in Table 3 indicate, to reach a success-
ful treatment (failure rate < 1%) without exceeding a maximum antibiotic
concentration of 60 mg/l, at least 9 daily doses of 23 mg are required. As
the treatment duration gets shorter, the daily dose increases more rapidly,
as does the maximum concentration.

The main goal of our formulation using evolutionary algorithms described
in the next Section is to find successful treatments improving on the fixed
dose practice by allowing daily dosages to vary across the treatment duration.

4. Methods

We consider two and three objective formulations of the antibiotic opti-
misation problem. Multi-objective evolutionary algorithms are applied over
the space of possible treatment schedules to approximate the Pareto-optimal
trade-offs.

4.1. Problem Encoding

The dosage schedule taken from the mathematical model, is encoded as
an IntegerSolution in the Jmetal [20] framework:

x = [x0, x1, . . . , xn−1]
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Table 3: Minimum fixed daily dosage required for a successful treatment (failure rate lower
than < 1%). Red indicates solutions violating the maximum concentration constraint
(60 mg), previously imposed by [9].

Duration Fixed Dosage Max. Concentration Total Antibiotic
(days) (mg) (mg/l) (mg)

2 91 147.3 182
3 56 112.1 168
4 42 94.0 168
5 35 83.5 175
6 30 74.3 180
7 27 68.4 189
8 25 64.2 200
9 23 59.5 207
10 22 57.2 220

subject to the hard variable range bounds

xi ∈ {0, 1, . . . , 60} .

A constraint forcing x0 to be non-zero was added to ensure the treatments
started on day 1, in line with medical expectations. Following [9], most of
our experiments set the upper bound for treatment duration of n = 10, as 10
days represents the maximum duration of an antibiotic regimen in common
medical practice.

4.2. Implementation of the Objectives

The three objectives considered in our formulations are those discussed
in Section 2.3, namely, Failure Rate, ffr, Total Antibiotic, fta, and Maximum
Concentration, fmc. We also measure treatment duration.

The failure rate is estimated by running the stochastic model with a fixed
number of 1000 simulations, returning the percentage of runs in which the
bacteria were not eliminated. The total antibiotic is the sum of the dosages
in the candidate solution vector. The maximum concentration is calculated
by the deterministic model of antibiotic decay, returning the maximum value
achieved across the simulation. The treatment duration is determined from
the location of the last non-zero entry in the vector.
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Let us consider an example antibiotic treatment vector

x = [60, 30, 30, 30, 0, 0, 0, 0, 0, 0]

the failure rate is estimated from the stochastic model, in this case ffr(x) ≈
1.15%. The total antibiotic is the sum of the vector components, giving
fta(x) = 150. The maximum concentration is calculated from modelling the
decay of antibiotic. The concentration at each time step is computed and
the maximum value is retrieved, in this case fmc(x) = 74.3. The treatment
duration is 4, since there are four treatment days before the vector terminates
in trailing zeros.

The required simulations for each evaluation take around 2–3 seconds
to complete on an i7-3820 CPU @ 3.60GHz. This motivates the use of an
evolutionary algorithm: the search space is 6110, and even greatly reducing 
it by having doses in increments of 10, the space is 710 which would require 
2.8 × 108 evaluations, or approximately 9800 days of CPU time.

4.3. Alternative Multi-objective Formulations

A successful treatment should have a low failure rate, therefore, minimis-
ing the failure rate was kept as an objective in all our formulations. We
initially considered two formulations with two objectives, namely, pairing
Failure Rate with both Maximum Concentration (ffr, fmc), and Total An-
tibiotic (ffr, fta). However, our main formulation incorporates the three ob-
jectives, namely, Failure rate, Maximum concentration and Total Antibiotic
(ffr, fmc, fta). For each formulation two sets of experiments were conducted,
with and without setting a constraint on the failure rate to be lower than
1%. Our expectation is that this stringent constraint on the failure rate will
help the algorithm to focus the search on successful treatments.

The formulations with two objectives consider an upper bound of treat-
ments duration of n = 10. However, for the formulation involving the com-

plete set of three objectives, separate experiments considered n ∈ {2, 3, . . . , 10}
in order to restrict the search space and thus allow the algorithm to explore
more thoroughly shorter treatment schedules.

4.4. Evolutionary Algorithm
Multi-objective optimisation has vast practical importance because most

real-world optimisation problems are naturally posed as non-linear program-
ming problems having multiple conflicting objectives. Such problems give rise
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to a set of trade-off optimal solutions (known as Pareto-optimal solutions, or
Pareto front) instead of a single optimum solution. It becomes important to
find as many Pareto optimal solutions as possible, as each of them represents a
different trade-off between objectives. Users will be in a better position to
select the most suitable solution when many trade-off solutions are revealed.
Population-based approaches (evolutionary algorithms) have proven to be an
efficient way of finding multiple Pareto-optimal solutions simultaneously in a
single algorithm run. Many evolutionary approaches have been proposed,
making research and applications of multi-objective evolutionary algorithms
quite active and successful over the last two decades. The interested reader
may find numerous introductory tutorials [21, 22] and survey articles [23–25].

We used the Non-dominated Sorting Genetic Algorithm II (NSGA-II),
one of the best-known and frequently-used multi-objective evolutionary al-
gorithms [26]. NSGA-II uses non-dominated sorting of individuals in the
population, with a crowding distance penalty applied to individuals to main-
tain a diverse Pareto front. The optimal front found is simply the set of non-
dominated individuals in the final population. The focus of the present paper
is the application rather than the algorithm, so NSGA-II was chosen simply as
it is a well-established approach for 2 and 3 objective problems, with proven
success shown in numerous surveys of MOEA applications (e.g.[23]). We made
use of the Jmetal 5 suite [20] for its NSGA-II implementation and
experimental framework.

The NSGA-II parameters were set to typical values given by Tables 4
and 5. These were chosen to yield a reasonable trade-off between solution
quality and execution time. As the goal of this paper is to propose a novel
application domain, rather than an investigation of algorithm performance,
no further parameter tuning was conducted. Each experiment was run 30
times, and Pareto fronts were generated by cumulating the non-dominated
solutions across the 30 runs.

Table 4: List of algorithm operators.

Description Value
Selection Binary Tournament Selection
Comparator Ranking and Crowding Distance Comparator
Mutation Integer Polynomial Mutation
Crossover Integer SBX Crossover
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Table 5: List of algorithm parameters and values.

Parameter Value
Population Size (n) 100
Mutation Probability 1/n
Mutation Distribution Index 20
Crossover Probability 0.9

4.5. Re-evaluation of Best-found Solutions

During the evolutionary algorithm runs, the failure rate determined by
the stochastic model was susceptible to noise due to two factors. First, the
selected number of 1000 simulations per fitness evaluation, necessary to re-
duce the computational effort. Second, an elitist bias intrinsic to the the
NSGA-II algorithm as it selects solutions after evaluating them once, then
reselects (due to elitism) those candidates for which noise could have pro-
duced an optimist estimate. This can mean that some of the final solutions
obtained are not Pareto-optimal. However, this effect can be mitigated by
re-evaluating the failure rate after the completion of the evolutionary run,
using a larger number of simulations (100 000) per fitness evaluation, and
recomputing the Pareto front. Thus, during the evolutionary process, the
lower number of simulations effectively forms a “Problem Approximation”
surrogate with “No Evolution Control” [27, 28] for the true fitness function
(the larger number of simulations). The resulting re-evaluated failure rates
were used in the plots and for reporting the results as this produces a more
accurate assessment of the solutions obtained.

It must also be noted that the final results have undergone a cleaning
process, whereby any doses lower than 5 mg were flattened to zero before the
objectives were re-evaluated. This reduces the stochastic noise inherent to
results from evolutionary search. Moreover, this makes little difference from
the application perspective, as it is understood that such small doses have
negligible impact on both host and infection.

5. Results

Results are grouped by problem formulation, specifically which objectives
and constraints were considered. For each configuration, we report the ap-
proximations to the Pareto-optimal front and discuss the trends observed.
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Recall that Pareto fronts were generated by cumulating the non-dominated
solutions across 30 runs for each experiment.

5.1. Two Objectives (ffr, fmc)

(a) all solutions (b) zoom in solutions with failure rates < 1%

Figure 1: Failure Rate vs Maximum Concentration formulation. Pareto front across 30
runs.

First we give the results for Failure Rate vs Maximum Concentration.
These runs consider an upper bound for the treatment duration of n = 10.
Figure 1 gives the Pareto front plotted in objective space. The red points are
the approximated Pareto front from the unconstrained runs, and the blue
points are those from the constrained runs (i.e with ffr(x) < 1%). The right
plot is a zoomed part of the front around the solutions with Failure Rate lower
than 1%. Plot (b) illustrates that the solutions obtained with the constrained
runs (blue dots) can dominate those obtained from the unconstrained runs
(red dots), with the improvement sometimes being quite large. Interestingly,
the unconstrained approach is able to find solutions with lower failure rates
than the constrained one, those solutions with failure rates of less than 0.4%
here. As can be seen in Figure 1 (b), for successful solutions (failure rate
below 1%), there is not much of a trade-off with maximum concentration,
which needs to increase considerably to achieve a further reduction in failure
rate.

One further observation (Figure 1 (a)) is that there is a notable disconti-
nuity in the front around a maximum concentration fmc(x) = 42. The same
effect is apparent to a lesser extent around fmc(x) = 39 and fmc(x) = 45.
Further analysis revealed that this is down to the integer encoding in com-
bination with the nature of the maximum concentration objective. There is
no Pareto optimal way to obtain a value in these regions: increasing the first
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dosage in treatment by 1 mg brings a steep increase in the maximum concen-
tration and a corresponding decrease in the failure rate, and decreasing later
dosages has no effect on the maximum concentration (if they are reduced,
the antibiotic concentration will drop off, but the maximum has already been
set).

5.2. Two Objectives (ffr, fta)

(a) all solutions (b) zoom in solutions with failure rates < 1%

Figure 2: Failure Rate vs Total Antibiotic formulation. Pareto front across 30 runs.

Figure 2 shows the Failure Rate vs Total Antibiotic Pareto front. As
in the previous experiment 30 runs are conducted with an upper bound for
treatment duration of n = 10. The right plot shows the same front zoomed
into the solutions with Failure Rate lower than 1%. As before, the red points
are the approximated Pareto front from the unconstrained runs, and the
blue points are those from the constrained runs (i.e with ffr(x) < 1%). This
Pareto front (plot (a)) is much smoother when compared with the Failure
Rate vs. Maximum Concentration front (Fig. 1 (a)), and there is no visible
discontinuity. This is because the impact of the integer encoding is lesser
here; increments in the antibiotic amount at any given day affect the Total
Antibiotic objective. Figure 2 (b) indicates that not always the solutions
obtained from the constrained runs (blue dots) dominate those obtained by
the unconstrained runs (red dots). Similarly than in the previous section,
the unconstrained approach finds solutions with lower failure rates by having
higher total antibiotic.

5.3. Three Objectives, Unconstrained

For the formulation considering the three objectives, separate runs were
conducted for the upper bound on treatment durations n varying from 2 to 10.
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Figure 3: Pareto front for three-objective optimiser over 30 runs. Points representing
treatments are coloured by actual treatment duration.

The idea is to thoroughly explore the space of possible shorter treatments.
The combined Pareto front from the unconstrained approach is shown in
Figure 3. Each point represents a treatment, with the colour indicating the
treatment duration. There is a wide spread of treatment strategies, with
clear bands in the treatment duration. Longer treatments allow a lower
maximum concentration for the same total antibiotic, while maintaining the
same failure rate. The plot also shows that failure rate only drops below our
target of 1% with treatments of 3 days or longer.

Figure 4 (a) shows the Spearman correlation matrix between the three
objectives and the treatment duration for the solutions in the Pareto front.
Within the figure, the lower-left triangle shows 2D scatter plots of the treat-
ments for each pair of objective; the diagonal, histograms with the distribu-
tion of values for each single objective; and the top-right triangle the correla-
tion coefficients with three stars indicating statistical significance (p < 0.001).
There is a strong positive correlation between treatment duration and to-
tal antibiotic, which is to be expected as longer treatments require larger
amounts of drugs. The failure rate is strongly negatively correlated with
both the total antibiotic and the maximum concentration. However, the
negative correlation between the failure rate and the treatment duration is
not strong, which suggests that effective treatments with shorter duration can
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(a) unconstrained (b) constrained (failure rates < 1%)

Figure 4: Pareto front pair-wise correlations between objectives and treatment duration
for the three-objective formulation. The lower-left triangle shows 2D scatter plots, the
diagonal histograms with the distribution of values for each objective, and the top-right
triangle the correlation coefficients. Variables are (from left-to-right, or top-to-bottom):
Failure Rate (%), Total Antibiotic (mg), Maximum Concentration (mg/l), Treatment
Duration (days).

be obtained. This motivates the final experiment, where the run is repeated
while applying a constraint on the failure rate to explore only solutions with
a value below 1%.

5.4. Three Objectives, Constrained

Figure 5 (a) illustrates the Pareto front for the constrained formulation
(failure rate lower than 1%). Each point represents a treatment, with the
colour indicating the treatment duration. Again, clear bands for each treat-
ment duration can be observed, revealing a linear relationship between total
antibiotic and duration. The correlation matrix (Fig. 4 (b)) captures the
trends between the objectives within the Pareto front more clearly. The pos-
itive correlation between duration and total antibiotic is stronger as compared
to the unconstrained formulation. However, the strong negative correlations
observed on the unconstrained formulation (Fig. 4 (a)) between the failure
rate with both the total antibiotic and the maximum concentration, are no
longer present in the constrained case (Fig. 4 (b)). This is encouraging as it
suggests that in the region of successful treatments, several alternatives can
be found which do not compromise the treatment success.
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(a) 3D view; coloured by treatment duration.

(b) 2D view; coloured by failure rate.

Figure 5: Pareto front for the three-objective constrained formulation, with treatment
durations of 3 to 10.

Fig. 4 (b) also shows that the total antibiotic is strongly positively corre-
lated with the treatment duration; in contrast, the maximum concentration is
strongly negatively correlated with the duration. This means that the range
of treatments span from having high doses in a short time, to having lower
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doses spread out over a longer time. This trade-off is clearer in Figure 5 (b),
where we re-orient the Pareto front plot to a top-down version of Figure 5,
showing only the trade-off between Total Antibiotic and Maximum Concen-
tration. It is clear that, for treatments with low maximum concentration, as
the concentration increases, the total antibiotic and treatment length drop,
indicating the treatments shift to a higher-intensity but shorter schedule.
This trade-off is smooth without any obvious knee-points or discontinuities.

Table 6: Selection of dosage schedules produced by constrained 3-objective optimisation.

Dosage Vector (mg) Tot. Antib. Max. Conc. Fail. Rate
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (mg) (mg/l) (%)

V0 60 34 27 31 152 74.941 0.94
V1 59 25 25 23 23 155 63.060 0.86
V2 58 31 23 27 22 161 66.889 0.57
V3 58 22 20 24 17 20 161 58.541 0.89
V4 57 21 22 21 22 20 163 57.000 0.83
V5 52 30 22 22 22 19 167 62.177 0.53
V6 54 21 20 20 21 21 20 177 54.414 0.62
V7 53 20 20 19 21 21 20 19 193 53.748 0.31
V8 51 20 19 21 19 21 19 21 19 210 52.996 0.20
V9 47 20 20 20 20 18 20 18 18 18 219 51.663 0.32

Table 7: Table of fixed dosage schedules - for comparison with the optimised dosage
schedules.

Dosage Vector (mg) Tot. Antib. Max. Conc. Fail. Rate
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (mg) (mg/l) (%)

F0 42 42 42 42 168 94.021 0.98
F1 35 35 35 35 35 175 83.482 0.85
F2 30 30 30 30 30 30 180 74.278 0.96
F3 27 27 27 27 27 27 27 189 68.366 0.87
F4 25 25 25 25 25 25 25 25 200 64.170 0.73
F5 23 23 23 23 23 23 23 23 23 207 59.531 0.99
F6 22 22 22 22 22 22 22 22 22 22 220 57.235 0.80

Ultimately, if these treatments are to be applied in practice, we must
consider what they look like in terms of the actual doses administered. Ta-
ble 6 shows the details of a selection of effective treatments taken from the
constrained 3-objective Pareto front, sorted in ascending order of the Total
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Antibiotic objective. We analysed the complete Pareto front and selected a
set of 10 effective solutions with durations ranging from 4 to 10 days, as a
representative sample reflecting the trends observed. For comparison pur-
poses, we also report in Table 7, the best treatments of the same duration
that can be obtained with fixed daily doses, as explored in Section 3.

Several observations can be made on the treatments. Across all the treat-
ments in Table 6 (and indeed all the Pareto front), the first dose is consis-
tently high compared to the rest of the treatment. This is by a substantial
margin: usually 2–2.5× the level of the second dose. This corroborates the
earlier finding in [9].

Moving down the set of treatments in Table 6 in increasing order of fta (x),
each time the treatment duration increases by one day (e.g. V2 to V3), the
treatments show a “cliff-edge”, with a high first dose (V3 starts with 58 mg)
then flat doses for the rest of the treatment (around 20 mg for V3). Treat-
ments then gradually shift to a tapered regime (e.g. V5), with a smoother
drop from the high first dose (V5 has 52 mg, then 30 mg, then constant
around 20 mg). The pattern then repeats, with an increase in duration and
a return to the cliff-edge (e.g. V6, which has a first does of 54 mg followed
by all doses around 20 mg). This tapering effect is less clearly visible for the
longer treatments.

Some explanation for this pattern lies in the higher concentrations more
effectively tackling the infection. The high initial dose pushes the host to a
high concentration level, then the rest of the schedule tops up the antibiotic
load by the same amount every day to keep the concentration high, without
exceeding the maximum.

For schedules of the same duration (e.g. V3 and F2), once the doses have
moved to a constant level after the first dose, the doses are always lower with
the optimised schedules than for the constant schedules.

Comparing the objective values between the optimised schedules in Ta-
ble 6 and fixed dosage schedule in Table 7, we find that the optimised sched-
ules achieve better values across the objectives than the fixed schedules.
Solutions V0–V5 all have total antibiotic levels below the minimum found
when using the constant dose scheme (F0, with 168 mg), yet their failure
rates are still lower than that for F0. Any constant dose scheme with total
antibiotic levels below 168 mg have a failure rate in excess of 1%. The same
is true of the solutions with the lowest maximum concentration: V6–V9 have
maximum concentrations of 54.414 mg/l or less; yet the lowest maximum
concentration for the fixed dosage schedules is 57.235 mg/l.
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For schedules with a comparable failure rate, both the other objectives
are matched or improved with the tapered schedules. e.g. V0 in Table 6
has a failure rate of 0.94%; the closest in Table 7 is F2 with a failure rate
of 0.96%. F2 has a similar maximum concentration to V0, but higher total
antibiotic of 180 mg compared to 152 mg. V3 and F3 have failure rates of
0.89% and 0.87%; yet V3 has lower total antibiotic (161 mg vs 189 mg) and
maximum concentration (58 mg vs 68 mg).

Overall, the optimised treatment schedules surpass the fixed dosage sched-
ules in each objective, with only the small change of increasing the first one
or two doses and decreasing the rest.

6. Conclusion

As far as we are aware, this study is the first to use multi-objective evo-
lutionary algorithms and constrained optimisation for the automatic design
of effective antibiotic treatments. Previous studies using evolutionary al-
gorithms for optimising antibiotic treatments [9, 17] considered standard
genetic algorithms and appeared in general science or biomedical journals.
Therefore, the present article brings this relevant problem to the attention of
the computational intelligence community. We have explored formulations
with two and three objectives, modelling the most important factors to design
successful antibiotic treatments. Specifically, the goal is to firstly minimise
the failure rate, but to do so while also minimising the maximum concen-
tration of the antibiotic at any given point, and the total antibiotic used.
We also measured the treatment duration in days, in order to find treat-
ments which are also short, and thus of less burden to the patient. Reducing
the total antibiotic used on any given treatment is relevant to controlling
the emergence of resistant bacterial strands. Our results suggest that evo-
lutionary algorithms can be used to design successful treatments by widely
exploring the large space of alternative solutions and trade offs. Optimising
the daily dosages produced shorter treatments, with improved success rates
and smaller amounts of drug than the standard practice of administering
daily fixed doses. The evolved treatments consistently administered a higher
dose on the first day or two, followed by lower maintenance dosages.

As an inter-disciplinary project, our future work can follow three main
lines of research. First, it is important to validate our findings in the real-
world, indeed experiments are currently on the way for testing the effective-
ness of the evolved treatments in the (biology) lab. Secondly, the mathe-

20



matical model can be extended to include additional relevant aspects such
as multiple drugs, different levels of bacterial resistance, and more realistic
antibiotic decay. Finally, from the computational perspective, we can apply
methods to handle noisy fitness functions, surrogate models and additional
multi-objective evolutionary algorithms.
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