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Abstract
The safety assurance is very important for the unmanned aerial vehicle lithium ion 
batteries, in which the state of charge estimation is the basis of its energy manage-
ment and safety protection. A new equivalent modeling method is proposed for the 
mathematical expression of different structural characteristics, and an improved re-
duce particle-adaptive Kalman filtering model is designed and built, in which the 
incorporate multiple featured information is absorbed to explore the optimal rep-
resentation by abandoning the redundant and abnormal information. And then, the 
multiple parameter identification is investigated that has the ability of adapting the 
current varying conditions, according to which the hybrid pulse power characteriza-
tion test is accommodated. As can be known from the experimental results, the poly-
nomial fitting treatment is carried out by conducting the curve fitting treatment and 
the maximum estimation error of the closed-circuit-voltage is 0.48% and its state of 
charge estimation error is lower than 0.30% in the hybrid pulse power characteriza-
tion test, which is also within 2.00% under complex current varying working condi-
tions. The iterate calculation process is conducted for the unmanned aerial vehicle 
lithium ion batteries together with the compound equivalent modeling, realizing its 
adaptive power state estimation and safety protection effectively.
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1 |  INTRODUCTION

The new energy promotion has already become a global 
consensus after its technology revolution and strategic ad-
justment, according to which the power supply issues attract 
great attention along with the continuous expansion of the 
energy development and utilization that becomes to be the 
main challenges. The lithium ion battery has the characteris-
tics of high energy density, long life span, high output power, 
and excellent cost control, so thousands of them play an 
important role on the decontamination and emission reduc-
tion absolutely as well as the national economic progress.1 
The unmanned aerial vehicles (UAV) must meet three con-
ditions: safety, cost-effective life cycle, and environmental 
friendship.2 Nowadays, the lithium ion battery application 
has a large production capacity but its price is falling, which 
has become one of the development trends of new energy 
sources and applied in the unmanned aerial vehicles abun-
dantly.3 However, its safety protection problem is not solved 
yet due to the absence of its effective energy management, 
which should be overcome to accelerate its promotion and 
application.

The lithium ion battery is a complex electronic chemical 
system,4-7 making it to be very hard to construct its equiva-
lent model,8 which affects the accuracy and reliability of the 
state estimation system.9 At present, the development and ap-
plication of the lithium ion battery enters a critical period as 
presentation, in which the competitive pressure is increasing 
on the high-end technology.10 The key technologies should 
be broken for the equivalent modeling, in which the balance 
of complexity and precision is the main conundrum to be ac-
complished.11,12 The state of charge is premise of all other 
battery state estimation that prevents abusing the battery 
energy in the complex working condition monitoring pro-
cess,11,13,14 which is also the basis of the ladder utilization for 
the battery accompanying in its whole life cycle span together 
with the overall performance optimization and accordance 
for its safety guarantee. Due to the existence of the process 
noise in the complex power supply working conditions, inter-
nal structures, environments, and measurement parameters, 
the feature information extraction and mathematical expres-
sion are difficult.15 Therefore, the equivalent modeling is the 
key technology which bursts into the worldwide sight.16

The battery management system is a necessary part of the 
unmanned aerial vehicles that can be used as a long side, in 
which the equivalent circuit modeling is very important that 
affects its working performance, so it should be investigated 
and taken into account.17 As the working characteristic of 
the lithium ion battery is nonlinear, its state of charge value 
should be estimated by the associated battery management 
system equipment, in which the accumulated estimation error 
should be avoided and reduced.18 The energy management, 
charge-discharge control, overcharge, and overdischarge 

protection should be considered in the battery management 
system, the subsequences of which are proved accordingly. 
The equivalent circuit modeling is quite necessary that 
should be constructed in the lithium ion battery power supply 
applications.19 Aiming to satisfy its working process simu-
lation and mathematical expression targets as suspected, the 
equivalent circuit modeling should be constructed together 
with its effective parameter identification.20 The safety mod-
eling method was proposed to avoid the accumulated calcu-
lation error accused by the stable discharging platform of the 
lithium ion battery as before.21 The equivalent modeling was 
analyzed that was adopted in the automated guided vehicle 
applications by the a lot of subsidies,22 which was intro-
duced into the accustomed Wiener continuous-time mod-
eling process.23 An enhanced equivalent circuit model was 
built accounting for the state of charge redistribution, state 
estimation, and temperature effect characterization, which 
had taken part in the working state monitoring process.24 A 
novel parameter identification method was proposed to con-
struct the equivalent circuit model considering its electrical 
properties and situations,25 the characterization of which 
was evaluated for the lithium ion battery slurry with the bare 
10-parameter equivalent model for the special damp condi-
tions.26 The electrical lithium ion battery model was built by 
considering the two-step procedure and parameter sensitiv-
ity, which was used in the tens of thousands power supply 
working conditions.27 The model-based resistance estimation 
was conducted by using the electric vehicles operating data to 
overcome the application dam considering the multiple input 
parameters.28 An easy-to-parameterize physics-informed bat-
tery model was built along with its application of the lithium 
ion battery diagnosis and degradation to avoid its damage.29 
The accurate power sharing method of the balanced battery 
state of charge was investigated in the distributed direct cur-
rent micro-grid according to the cylinder barrel theory.30 The 
interconnected observer was built for the concurrent estima-
tion of the bulk and surface concentration in the lithium ion 
batteries.31 The state of charge estimation was realized via the 
dual extended Kalman filter and the charging voltage curve,32 
and the comparative global optimization was conducted for 
the parameter identification of different equivalent circuit 
modeling algorithms.33

Meanwhile, the state estimation methods were investigated 
for its real-time working condition monitoring, which was 
conducted by using the capacity fade and internal resistance 
growth models.34 The micro-short-circuit diagnosis was con-
ducted basically for the series-connected lithium ion batteries 
by using the mean-difference model.35 The model-based in-
sulation fault diagnosis was conducted to overcome the safety 
protection barrier of electric vehicles.36 The cycle life predic-
tion was conducted for each battery cells in the aged lithium 
ion batteries by using the fad trajectory of the four-parame-
ter model battling with its cyclic life.37 The lump diffusion 
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lithium ion battery models were analyzed during the dynamic 
loads for the voltage prediction.38 The model-based thermal 
runaway prediction was conducted from the kinetics analy-
sis of the cell components bearing the temperature rise.39,40 
The quantitative validation of the calendar aging models was 
realized for lithium ion batteries,41 and the model-based as-
sessment of performance was realized by using the single ion 
conducting electrolytes.42 The online thermal parameter esti-
mation was investigated by using the coupled wide-tempera-
ture-range and electrothermal model,43 on the basis of which 
a mechanism identification model-based state diagnosis was 
conducted for the energy storage system applications.44 The 
state of charge estimation was conducted for the lithium ion 
batteries in electric vehicles,45 the different ranges of which 
were analyzed in the aging mechanisms together with its mul-
tiple indicators.46

The model construction methods are analyzed that is 
based on the working principle and voltage characteristic 
analysis, aiming to protect the lithium ion battery in the cabin 
of the unmanned aerial vehicles. By combining the equiv-
alent circuit model with different curve fitting structures, 
an improved compound equivalent modeling method is put 
forward to characterize the internal state of the lithium ion 
battery accurately including the cable resistance. It is then 
constructed by identifying the relevant undetermined coef-
ficients, which is the basis of the subsequent state of charge 
estimation. Then, a novel capable reduce particle-adaptive 
Kalman filtering (RP-AKF) method is proposed and realized 
by the calculator, according to which the looped iterative cal-
culation is put forward to realize the accurate state of charge 
estimation, which improves the parameter identification ac-
curacy and adaptability effectively of the UAV lithium ion 
batteries.

2 |  MATHEMATICAL ANALYSIS

The equivalent modeling construction method is investigated 
to ease the aeronautical auxiliary for the state of charge es-
timation, in which the inconsistency of the internal battery 
cells should be characterized to explore the accurate equiva-
lent model construction. Various kinds of the equivalent 
models are analyzed and probed into their respective im-
provements. Considering the advantages of various methods, 
a compound equivalent modeling method is put forward and 
applied into the state of charge estimation of the UAV lith-
ium ion batteries.

2.1 | Structural model building

The theoretical research and experimental verification are 
combined, in which the gradual and in-depth development 

of the equivalent model is established and the state estima-
tion is realized with facility. The full life cycle equivalent 
modeling is realized for the lithium ion battery by consid-
ering the environmental and aging characteristics that are 
influenced by the bulk concentration. The input-output char-
acteristics are considered fully under different environmental 
conditions by using the interconnected observer, in which the 
characteristics of temperature, aging and internal resistance 
factors are analyzed for the unmanned aerial vehicle lithium 
ion battery based on the data-driven strategies such as the 
single particle model and sliding mode observer. Combined 
with the equivalent circuit modeling and open-circuit-voltage 
characteristic analysis, the state of charge estimation model 
can be constructed that has the faculty of characterizing dif-
ferent working states and surface concentrations. As a result, 
the full life cycling equivalent model is built to realize the 
battery behavior characteristics and surface concentration. 
Furthermore, an adaptive parameter identification system is 
built that is suitable for the environmental changes and its 
online inner electrochemical sate estimation.

The state of charge estimation is investigated by the RP-
AKF algorithm that is established for the lithium ion battery, 
in which the double-trackless transform closed-loop observer 
is constructed based on the density function. The time update 
and measurement state update are performed by the recursive 
feedback treatment to gain the high accuracy purpose, pro-
viding crucial messages for its effective energy management. 
Its weight distribution is performed according to the error gap 
between the predictive value and the prior value, according to 
which the state of charge values are observed and corrected 
in real time. The life cycle state of charge estimation and pa-
rameter correction are investigated by the iterate calculation 
modeling, aiming to insight into the commeasurable electro-
chemical states by the bulk and surface concentration. The 
battery model parameters are further calculated by using the 
estimation results, and the battery life cycle state estimation 
model is established on the basis of the multiple constraints. 
According to the estimation results, the relationship between 
aging, performance degradation, and internal parameters of 
the unmanned aerial vehicle lithium ion battery is gathered 
for its whole cycling charge-discharge lifespan. And then, the 
parameter correction strategy is optimized and introduced 
into the feature building modular process, the performance of 
which is verified under varying measurement noise and para-
metric uncertainties. Considering the research objectives, the 
theoretical model is designed together with its experimental 
verification as it is required in the complex working condi-
tions of the power lithium ion batteries.

The overall phased objectives are determined by estab-
lishing the rational division, in which the research is carried 
out step by step by conducting the theoretical analysis. The 
model construction and the technical route are taken as fol-
lows. S1: The experimental study is conducted on the working 
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characteristics of the unmanned aerial vehicle lithium ion 
battery, in which the environmental influence factor can be 
obtained that is possible to be introduced into the iterate calcu-
lation process. Then, its behavior analysis is conducted on the 
lithium ion battery according to the cycling data at the battery 
dynamic working conditions accumulated in the previous time 
period, which provides an opportunity of substituting it into 
the correction stage.

S2: The equivalent model construction method is stud-
ied together with the state-space description of the exter-
nal measurable parameters, which is used to accommodate 
the scarcity to the mathematical state-space description. 
By the full analysis of the temperature and aging charac-
teristics, its mathematical expression is obtained by using 
the data-driven approach that is accommodated to interact 
through exchange in the iterate calculation process. The ef-
fective model is used to initialize the parameters by using 
the adaptive identification method to establish its state-
space expression.

S3: The state of charge estimation method of the un-
manned aerial vehicle lithium ion battery is verified by its 
embedded implementation to avoid the redundant repeti-
tion calculation, according to which the RP-AKF closed-
loop observer is constructed. Then, the input parameters 
are assembled together in the designed battery manage-
ment system test platform for the effective working state 
monitoring process.

S4: By analyzing the experimental results, the battery equiv-
alent circuit model is constructed on the simulation and correc-
tion process, which is then used in the state of charge estimation 
of the unmanned aerial vehicle lithium ion batteries.

A full life cycled state of charge estimation with the 
correction strategy is established that is suitable for the 
multiple constraint conditions, according to which the as-
sembling iterate calculation model is constructed for the it-
erate calculation process. The proposed method is verified 
by the online battery management system platform together 
with its gauges to further analyze the aging mechanism and 
the performance evolution of the unmanned aerial vehicle 
battery. The regularity and simultaneous update is then in-
vestigated for the modeling database, which is occupied 
with the state parameters.

2.2 | Equivalent circuit modeling

A full life cycle equivalent model is constructed aiming to 
characterize the behavior of the lithium ion battery at differ-
ent working conditions by the data-driven algorithm with un-
usual data treatment, and its overall mathematical state-space 
expression is realized for the unmanned aerial vehicle lith-
ium ion based on the equivalent circuit modeling and open-
circuit-voltage characterizing treatment. Then, a parametric 
adaptive environmental change is introduced along with its 
aging mechanism analysis, the proposal of which covers all 
the important aspects in the state of charge estimation process 
and a complex equivalent circuit model is built together with 
its parameter identification.

The proposed model realizes the working process descrip-
tion by investigating the different effect simulation treatment 
of the unmanned aerial vehicle lithium ion batteries. In order 
to realize the mathematical description of the working charac-
teristics, the shunt resistance is introduced into the model by 
the one-order resistance-capacitance (RC) equivalent modeling 
method combined its convenient calculation process and high 
accuracy expression. The series-connected resistances are in-
troduced into the equivalent circuit model and mix it with the 
traditional equivalent modeling process, which is then con-
nected to the parallel loop reverse diodes to characterize the 
charge-discharge resistance difference. As a result, it can real-
ize the comprehensive and accurate working characterization 
of the lithium ion battery, in which the working characteristics 
are considered by combining the constructional optimization. 
According to the application condition characteristics of the 
lithium ion battery, the compound equivalent circuit modeling 
strategy is constructed that is improved from the original battery 
equivalent models, the structure of which is shown in Figure 1.

There are some parameters should be known in the 
above equivalent model. E (t) characterizes the open-cir-
cuit-voltage value of the unmanned aerial vehicle lithium 
ion batteries. Rs is a big resistance that is wrapped up in a 
square dotted frame and Ro represents the Ohm resistance 
inside the battery. Rc is the additional resistance when the 
battery is in the charging process, while Rd represents the 
additional resistance inside the battery, which are used 
to characterize the internal difference in the batteries at 

F I G U R E  1  The compound equivalent 
battery model



1488 |   WANG et Al.

time-varying working conditions. The proposed modeling 
method simulates the relaxation effects of the lithium ion 
battery by using the one-order RC network in order to real-
ize its transient response characterization. Rp represents the 
polarization resistance, and Cp represents its polarization 
capacity. IL represents the inflow and outflow current of 
the lithium ion battery when it is connected with the exter-
nal circuit. An arbitrary linear independent source is con-
nected with two RC networks which can be equivalent to a 
series-connected circuit of the voltage source and resistor. 
The model is constructed for the state characterization by 
using the resistance and capacitance, which is represen-
tative compared with other universal battery equivalent 
models. The closed-circuit-voltage value of the unmanned 
aerial vehicle lithium ion battery is indicated by conduct-
ing the intermittence discharging test, which represents the 
load voltage characteristic toward the current variation of 
the battery.

2.3 | State-space expression

The mathematical description is realized by considering the 
working characteristics and the parameter identification. As 
a result, the proposed integral approach is a mature state 
of charge estimation method without considering its inter-
nal complex chemical reaction. By the real-time parameter 
measurement, the remaining power can be monitored at any 
time, as the current acquisition accuracy is not high enough 
in the traditional methods.47,48 When the initial value is not 
accurate, it will also affect the estimation error. Considering 
the energy dissipation efficiency in the charge-discharge 
Columbic on behalf of the lithium ion battery, the state 
of charge value has a close relationship with the current. 
Therefore, mounts of the battery factors should be consid-
ered, such as capacity, charge-discharge current, discharge 
frequency, and temperature change. To solve the above prob-
lem, an improved current integral method is introduced to 
estimate the state of charge value and applied into the RP-
AKF calculation process, the calculation process of which is 
shown in Equation (1).

where in S(t) describes the SOC value at the time point of t, 
which is the combined value of its initial state value and its 
energy change during the power supply process of the lithium 
ion batteries. α is a time-varying correction factor of the ca-
pacity considering the equivalent Columbic efficiency of the 
self-discharge and cyclic aging characteristics, which is calcu-
lated by the initial open-circuit-voltage correction along with 
the real-time current time integral calculation. Through the 

differential expression analysis, the corrected value is defined 
as the final power state estimation result. By combining the un-
scented Kalman filtering and open-circuit-voltage correcting 
methods together, the state of charge estimation algorithm is 
realized in the micro-controller unit of STM32F103, which can 
maintain a good accuracy in the state of charge working state 
monitoring process and has good inhibition effect on the pro-
cess noise.

The state-space representation is constructed for the equiv-
alent circuit model, the mathematical description of which is 
described for the lithium ion battery. The parameter identifi-
cation is constructed, in which the covariance and noise are 
generally considered as preowned conditions that are addi-
tionally considered in the dependent submodules. After es-
tablishing the state-space description structure, it is necessary 
to determine the coefficients in the iterate calculation process 
experimentally. And then, the parameter identification results 
are implemented in the separate modules, according to which 
a model is built for the battery state estimation, which is used 
for the parameter identification. Furthermore, the application 
characteristics and state estimation process of the battery are 
realized and the operating characteristics of the unmanned 
aerial vehicle battery can be developed by conducting the 
simulation experiments of the complex environmental work-
ing conditions. Afterward, the coefficients and their variation 
rules can be obtained through the parameter identification 
process, which are used to initialize the model factors. The 
mathematical representation and parameters are then ana-
lyzed to accommodate the lithium ion battery output features 
in different internal cascading cell states and an equivalent 
model is constructed to achieve the goal of working state 
monitoring framework construction. Furthermore, an effec-
tive state-space equation is constructed that is combined with 
experimental analysis and parameter identification.

2.4 | Adaptive correction

The proposed RP-AKF algorithm is used to correct the cur-
rent value of the lithium battery state of charge by the error 
covariance correction while real-time online parameter 
measuring, which plays an adaptive power state adjustment 
role. The estimated state value is effectively corrected by up-
dating the system noise together with its error covariance in 
real time. The error covariance matrix of the initial state is 
determined in advance, and the error covariance matrix is up-
dated at the next time moment. And then, the Kalman gain is 
calculated according to the current error covariance, which is 
also used as the correction coefficient to the next calculation 
procedure. The state estimation value and the error covari-
ance of the real-time power state values are estimated accord-
ingly, based on which the mean and error covariance of the 
system noise and the process noise are updated continuously, 

(1)S(t)=𝛼×S(0)±
∫ t

0
𝜂e ⋅ I(t)dt

𝛿Ce

,t>0
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thereby realizing the state of charge estimation of the un-
manned aerial vehicle lithium ion batteries.

The basic characteristic equations of the proposed RP-AKF 
calculation process are analyzed together with its operation order, 
which is based on the basic Kalman filtering strategies. The ex-
tension of this algorithm makes it suitable for the estimation of 
each environmental statement, which adds an adaptive effect 
based on the extended Kalman filter and the unscented Kalman 
filter so as to make the estimated value match the real value more 
closely. The iterate RP-AKF calculation method is used to esti-
mate the state of charge of the lithium battery and also controls 
the covariance of the unknown noise in the algorithm, so that the 
final estimation effect is more stable when the working condi-
tions are varying. At the same time, the interference of the noise 
on the estimation process is reduced effectively when estimating 
the state of charge value for the UAV lithium ion batteries.

The proposed RP-AKF algorithm uses the measurement 
data onto the filtering and estimation process, which determines 
whether the dynamic characteristics of the system change by the 
state of charge estimation model itself continuously. As a result, 
it estimates and corrects the model parameters and noise statis-
tics to improve the filter structure by reducing the filtering error. 
This method combines the system identification and filtering es-
timation organically, in which the statistical properties of noise 
are introduced into the iterate calculation process. Through the 
measurement data, the mean and variance of the noise are esti-
mated in real time, and then, the current state estimation value 
is corrected according to the mean and variance of the real-time 
update so as to improve the accuracy of the algorithm and avoid 
the divergence phenomenon. The mean value of the process 
noise and the measured noise is zero and its whole feature obeys 
the normal distribution, which are defined by Equation (2).

In Equation (2), k is a discrete time point. And then, the 
calculation process of the system noise estimator with high 
correlation quantity is realized for the experimental design as 
shown in Equation (3).

In Equation (3), “∧” indicates that the statistic of this 
special factor is an estimator. xk is the system state at time k 
and yk is an observation signal corresponding to the state of 
charge. uk is the input of the system. A is a state transition ma-
trix and B is the system control matrix. Meanwhile, G is the 
observation matrix, the value of which is set as G=

(
ΓTΓ

)
ΓT 

by taking Г as the noise drive matrix. The values obtained 
in the Equation (3) are the arithmetic mean values, which 
are the weighting coefficients of each term (k+1)−1. In the 
time-varying system, the recent data have a great influence 
on the state of charge estimation process. Therefore, the es-
timator is improved by the exponential weighting method 
and each formula is multiplied by the different exponential 
weighting coefficient β, which satisfies the functional rela-
tionship as shown in Equation (4).

Furthermore, the numerical calculations are used to ob-
tain an iterative calculation expression as shown in Equation 
(5).

In the Equation (5), b is a forgetting factor which is cal-
culated by replacing each item of (k + 1)−1 in the original 
estimator with βk−1, the noise estimation requirements of the 
improved time-varying system are obtained, according to 
which the specific steps of the designed calculation process 
are obtained. The first step is to realize the initialization of 
the parameters, in which the initial value x0 of the system 
state and the covariance matrix P0 of the initial state error are 
obtained as shown in Equation (6).

After that, the state and error covariance matrix at time 
point k + 1 can be calculated as shown in Equation (7).

Furthermore, the Kalman gain can be calculated accord-
ing to the error covariance of the current state obtained in the 
previous step that is shown in Equation (8).

(2)

{
wk ∼N

(
qk,Qk

)
vk ∼N

(
rk,Rk

)

(3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qk+1 =
1

k+1
G

k�
i=0

�
x̂k+1−Ax̂k −Buk

�

Qk+1 =
1

k+1
G

k�
i=0

�
Lk+1ŷk+1yT

k+1
LT

k+1
+ P̂k+1−APk+1AT

�
GT

r̂k+1 =
1

k+1

k�
i=0

�
yk+1−Cx̂k+1�k

�

R̂k+1 =
1

k+1

k�
i=0

�
yk+1y

T

k+1
−CPk+1�kCT

�

(4)βi =βi−1b,

(
0<b<1,

k∑
i=0

βi =1

)

(5)βi =dkbi,

(
dk =

1−b

1−bk+1
,i=0,1,2,3,⋯ ,k

)

(6)x̂0 =E
[
x0

]
,P0 =E

[(
x0− x̂0

) (
x0− x̂0

)T
]

(7)

{
x̂k+1|k =Ax̂k +Buk +Γq̂k

Pk+1|k =APkAT +ΓQ̂kΓ
T

(8)Lk =Pk+1|kCT
(
CPk+1|kCT +Rk

)−1
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Finally, according to the system observation value yk+1, 
the estimated state value and its error covariance matrix at 
the next time moment are updated as shown in Equation (9).

In Equation (9), E is a unit matrix. Further, the calculation 
process can return to the first step by updating qk, rk, Qk, and 
Rk; accordingly, the iterative calculation is continued until 
it meets the requirement. The proposed RP-AKF method is 
suitable for the nonlinear discrete state of charge estimation 
systems, in which the complex working conditions and the 
noise statistical characteristics are changed drastically along 
with the actual working conditions. In order to avoid the di-
vergence disks in the filtering and estimation process under 
complex conditions, the idea of proportional integral deriv-
ative control is introduced into the correcting stage in order 
to improve the state of charge estimation accuracy of the un-
manned aerial vehicle lithium ion batteries based on the iter-
ative calculation process, considering its high convergency 
advantages. The mathematical calculation of its introduced 
incremental control algorithm is shown in Equation (10).

As can be known from the incremental calculation algo-
rithm shown in Equation (10), the integral coefficient is set 
as k1 = kpT/T1 which is used for the integral control link. Uk is 
used as the terminal output voltage of the lithium ion battery 
and ek is taken as its time-varying power state. The differ-
ential coefficient is set as kD = kpT1/T which is used for the 
differential control and proportional coefficient calculation. 
kp is the proportional coefficient of the proportional control 
coefficient. T is the system sampling time period, in which 
T1 is the integral time coefficient and TD is the differential 
practice coefficient. The incremental correction has a small 
amount of calculation, but it makes the operation integral to 
be accumulated with the larger control amount. Therefore, it 
is combined with the integral separation and used as the dead 
zone. In order to overcome the problems of low precision and 
low practicability in the state of charge estimation of power 
lithium batteries state of charge, the statistical characteristics 
of the process noise can be corrected online and its estimation 
accuracy is improved by introducing the proposed RP-AKF 
algorithm into the state of charge estimation process.

Combined with the compound equivalent circuit model, 
the RP-AKF algorithm is used to estimate the SOC value 
of the lithium battery, in which the ampere-time integration 

method is also used, the terminal voltages Up1 and Up2 of 
the two RC loops are selected as the state variables, and the 
battery terminal voltage is selected as the observation param-
eter. And then, the inner state parameter relationship can be 
obtained as shown in Equation (11).

In Equation (11), Δt is the sampling time and Q is the 
rated capacity of the lithium ion battery. In the signal sam-
pling process, it is often interfered by some unknown noise, 
including various noises from the outside world and the sig-
nal itself because of the sensor accuracy. After the discreti-
zation treatment, the linearization is combined with the noise 
effects; the state-space mathematical equations of the state of 
charge estimation process can be obtained as shown in (12).

As can be known from Equation (12), the out-of-range 
values are collected, and these interferences are corrected 
adaptively by using the hardware filtering. This algorithm 
not only reduces the hardware costs, but also is easy to be 
implemented. The proposed adaptive Kalman filter method 
estimates the dynamic state from the measured data in real 
time, which estimates and corrects the statistical characteris-
tics of the noise continuously, improving the state of charge 
estimation accuracy. The process noise covariance Q is used 
in the calculation process as well as the measurement noise 
covariance R, which are set to be constant in the running pro-
cess of the algorithm. As the above two noise covariances are 
not accurate in the practical applications, it may lead to a cer-
tain cumulative error easily bringing in a divergence problem 
in the calculation process. Moreover, when dealing with the 
nonlinear state of charge estimation system with large dimen-
sionality, it is easy to cause the nonpositive or semipositive 
definite phenomena of the noise covariance matrixes in the 
iterate calculation process, making the estimation model to 
diverge.

Only when the dynamic model and the linearization trans-
formation are accurate enough, can the results obtained by 
the RP-AKF algorithm be effective and approximated to the 
real value. In addition, the traditional calculation algorithm 
has a defect that will cause the calculation process to be di-
vergence during the running process if the assumed initial 
value and covariance have large errors. In order to solve the 
noise error problem, an adaptive filtering treatment is intro-
duced into the calculation process, in which the system noise 
is filtered adaptively as well as the system state estimation. 
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{
x̂k+1 = x̂k+1|k +Lkyk+1

Pk+1|k =
(
E−LkC

)
Pk+1|k

(10)
⎧⎪⎨⎪⎩

uk =Kp

�
ek +β

T

T1

k�
j=0

ej+
T

TD

�
ek −ek−1

��

Δuk =uk −uk−1 =Kp

�
ek −ek−1

�
+K1ek +KDek +KD

�
ek −2ek−1+ek+1

�

(11)

⎡⎢⎢⎢⎣

Sk+1

S
p1

k+1

S
p2

k+1

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1 0 0

0 e−Δt∕�1 0

0 0 e−Δt∕�2

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

Sk

S
p1

k

S
p2

k

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

−Δt∕Q

Rd1

�
1−e−Δt∕�1

�
Rd2

�
1−e−Δt∕�2

�

⎤⎥⎥⎥⎦
ik +Γwk

(12)

{
x̂k =Ak−1x̂k−1+Bk−1uk−1+Γqk−1

P=AkPk−1AT
k
+ΓQk−1Γ

T



   | 1491WANG et Al.

The noise statistics are corrected continuously by the change 
of the measured data, according to which the filtering preci-
sion is improved and the influence of noise is reduced.

The discretization sampling period is Ts = 1s; E[wk]=qk 
and E[vk]= rk are the mean values of the process noise wk 
and the measurement noise vk, the variance values of which 
are D[wk]=Qkδkj and D[vk]=Rkδkj. In addition, the process 
noise and the measurement noise are uncorrelated, and the 
parameters of qk, rk, Qk and Rk are unknown, which are intro-
duced into the adaptive Kalman filtering calculation process 
to realize its accurate power state estimation. The unmanned 
aerial vehicle lithium battery state of charge estimation is re-
alized by using the adaptive RP-AKF calculation. First of all, 
the parameters can be initialized at the time point of k = 0, 
and then, the initial estimated value of the power state and its 
error covariance are shown in Equation (13).

Then, the state of the k-time uncertainty and the error co-
variance matrix are time-updated from the power state at k−1 
time point together with its error covariance matrix, and the 
calculation process is obtained as shown in Equation (14).

where in the matrix AT is the transposed matrix of A. x̂k and Pk 
are the priori estimation of the power state and its error covari-
ance at time k, respectively. Afterward, the Kalman gain matrix 
Kk is obtained as shown in Equation (15).

If the current state estimation uncertainty is high, Pk will 
become larger which will make Kk larger correspondingly, 
resulting in a bigger update state of the state of charge esti-
mation system. In addition, if the ambient noise is large, Pk−1 
will become larger which will make Kk smaller. Furthermore, 
the measured data are used to update the estimated amount 
of the next time point state and the error covariance contin-
uously, the expression of which is shown in Equation (16).

The state of charge estimation at the next time point is equal to 
the sum of the priori state estimation at that time moment mixed 
with a weighted correction term, among which E is the unit 
matrix. Due to the new information provided by the measured 

values, the state uncertainty is reduced continuously, that is, Pk 
is a decreasing process. At last, the measured data are used to 
estimate the mean and variance of the noise online continuously, 
and the estimated power state can be replaced with the updated 
state values to achieve the alternate update of the estimated state 
quantity considering the noise statistics, the mathematical ex-
pression of which is described as shown in Equation (17).

In the formula, the parameter values of G and dk−1 are set as 
G= (ΓTΓ)ΓT and dk−1 = (1−b)∕(1−bk) , in which b is the for-
getting factor (0 < b < 1) and set as b = 0.96. Γ = [0.01 0.01]T. 
As can be known from the above analysis, qk, rk, Qk, and Rk are 
estimated online in real time and the target of the state variable is 
corrected continuously in the state of charge estimation process 
so as to achieve the adaptive correction purpose, thereby improv-
ing its power state estimation accuracy. On the basis of Kalman 
filtering algorithm, the specific steps of the designed RP-AKF 
calculation algorithm are described as follows. The first step is 
the initialization process, in which the initial values of the power 
state and its covariance are set as shown in Equation (18).

Next, the power state of the energy storage system at time 
k and its error covariance matrix are updated by conducting 
the correction strategies, the calculation process of which is 
described as shown in Equation (19).

Furthermore, the Kalman gain Kk is calculated accord-
ingly from the error covariance matrix of the current state ob-
tained in the previous step that is shown in the Equation (20).

Then, the next time point estimated power state value and 
the error covariance matrix are updated and corrected ac-
cording to the observation value of the power supply system 
as shown in the Equation (21).
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Finally, Q and R are updated by the previous calculated 
parameters, the calculation process of which is described as 
shown in Equation (22).

On the basis of theoretical analysis and design, the power 
state iterate calculation algorithm is realized for the real-time 
power state estimation by the modeling and simulation of 
the adaptive Kalman filtering strategies together with the re-
duced particle optimization.

2.5 | Iterate calculation

As the improved RP-AKF closed-loop observer is con-
structed by using the probability density functions, the time 
and measurement state update treatments are performed 
through the recursive feedback correction. The weight co-
efficients are assigned according to the observation values 
and prior-state values, in which the state of charge values are 
observed in real time during each iterate calculation steps. 
According to the power state estimation modeling strategy, 
the mathematical results of the battery model parameters are 
further optimized by using the estimated results together with 
its correction treatment, according to which the state estima-
tion method of the battery life cycle state can be established 
by using the multiple constraints. After then, the relationship 
between aging, performance degradation, and internal pa-
rameters are analyzed, and the state estimation of the whole 
life cycling process is established for the lithium ion batter-
ies, according to which the state parameter correction strat-
egy is optimized and realized for the real-time power state 
monitoring purpose.

The high robust correction strategy is used together with 
its power state optimization and improvement, in which the 
real-time correction of voltage signal detection is adopted for 
the complex current varying working conditions. Considering 
the coefficient variation and the voltage change rate, and the 
effective average cell voltage Us is obtained by the func-
tional calculation. And then, the obtained effective average 
cell voltage Us is combined with the constructed composite 
equivalent RP-AKF approach and taken as the main. The 
functional relationship is fitted by the identified parame-
ters and estimated by the functional relationship between 
open-circuit-voltage and state of charge, in which the state 
of charge value can be estimated firstly by using the battery 
terminal voltage at k = 0 after the start of the program. It is 
then calculated through the current time integral treatment to 
obtain the state of charge value at k + 1 time point by the end 
of next time point in the voltage current correction process. 

Afterward, the terminal voltage error and filtering Kalman 
gain can be calculated by the modified mathematical power 
state estimation treatment after the correction treatment at the 
time point of k + 1 by the end of the voltage acquisition of 
actual value and estimated value computation according to 
the voltage error. Meanwhile, the output closed-circuit-volt-
age is estimated according to the real-time terminal voltage 
measurement and state of charge calculation. By looping the 
above iterate calculation process, the real-time online state of 
charge estimation is conducted and realized, the calculation 
process of which can be described as shown in Figure 2.

The software of the battery management system is de-
signed for the unmanned aerial vehicle lithium ion batter-
ies and the flow chart of its iterate power state calculation 
is programmed accordingly. By writing and debugging the 
program, the real-time parameter detection of the voltage and 
current is realized finally by the direct parameter measuring 
sensors together with the first in first out memory access. 
And then, the relevant reference data are used to complete 
the driver program of the digital temperature sensor. The 
temperature detection is also conducted, which is displayed 
through the liquid crystal display equipment, realizing the 
targeted functions of the battery management system for 
the power lithium ion batteries. The RP-AKF algorithm 
implements the real-time state of charge estimation, in the 
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equivalent modeling process of which the real-time detection 
of each cell voltage U1, U2, U3,... and Un and the current value 
IL are taken into the calculation process under the influence 
of the operating conditions. Combined with the correction 
strategies, the power state estimation is realized by the iterate 
calculation process as shown in Figure 3.

The correction strategy is obtained for the influencing 
factors of the equivalent modeling process together with the 
random vector probability dynamics, which is combined with 
the theoretical and experimental analysis of the affecting fac-
tors, such as charge-discharge current, temperature change, 
working life, self-discharge rate, and cell-to-cell consistency. 
The characteristics are obtained by using the theoretical anal-
ysis combined with the operating experimental results, in 
which the unscented transform technique is used for the state 
equation and its covariance calculation. The overall modeling 
structure is designed to realize the adaptive online power state 
estimation, in which the inlet parameters are the individual 
cell voltages U1, U2, U3,..., and Un that are used as the main 
factors of the functional equations. The calculation process is 
optimized for the state estimation in the first part of the S1 
step, in which UA and dU is described by Equation (23).

In Equation (23), n is the cell number of the lithium ion 
batteries, the parallel cells of which are expanded as a single 
battery cell. U1, U2, U3,..., and Un are the cell voltages. UA1, 
UA2, UA3,..., and UAm are the average value of UA obtained at 
the first m time points. Furthermore, the equilibrium state pa-
rameter state of balance (SOB) among the inner battery cells 
of the lithium ion battery pack can be obtained as shown in 
Equation (24).

The mean value of the combined voltage are ob-
tained in the S2 calculation step, in which the closed-cir-
cuit-voltage and the voltage difference are combined 
together to obtain the effective average voltage Us. It 
is then substituted for the calculation of Us as shown in 
Equation (25).

In Equation (25), h(*) is a function of the effective mean 
voltage. And then, the input parameters are the measured 
individual cell voltage values of U1, U2, U3,..., and Un and 
the current value IL, which are used in the S3 calculation 
process. The equilibrium state parameter is combined with 
the temperature and aging factor correction to construct 
the equivalent circuit model together with the mathemati-
cal description of its state-space equations. As a result, the 
information covered in the real-time detection signals can 
be mined, realizing the real-time effective state expression 
in combination with the signal change of the input param-
eters. To a certain extent, the adaptability of the algorithm 
is improved by adapting to the state of charge estimation 
model and analysis of the accurate power state estimation 
under different working conditions.

The mechanism in different conditions is used for the un-
manned aerial vehicle battery modeling process, according 
to which the state of charge estimation model framework 
design is completed. The mathematical expressions of the 
strong nonlinear operating characteristics are explored, re-
vealing the mechanism of the operating characteristics. 
Combined with the experimental analysis, the model param-
eters are proved along with piecewise linearization and can 
be obtained for the different dynamic groups, in which the 
mathematical description of the battery characteristics can 
be investigated in different working conditions. Through the 
looping iterative calculation process, the state of charge and 
ohmic resistance are estimated in real time and also used 
for the real-time working state characterization purpose, in 
which the initialization calculation is realized at the first 
stage by Equation (26).
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And then, the measurement equation of the state of charge 
estimation system is obtained by using the idea of the adap-
tive Kalman filtering treatment that is shown in Equation 
(27).

And then, the unscented Kalman filter and extended 
Kalman filter algorithms are combined together in the pro-
posed RP-AKF iterate calculation algorithm for the state of 
charge estimation in order to realize the co-estimation of the 
discharging capacity and the internal resistance at the same 
time. The noise model is obtained by the adaptive adjust-
ment, and the state of charge value is estimated at the premise 
of the unknown process and observation noises, so that the 
estimation error is supposed to be very small. The varying 
range of the parameter covariance is managed to improve its 
stability and convergence, according to which the internal 
resistance values of the power lithium ion battery can be cal-
culated accurately.

The intermittent aging degree measurement and the 
battery estimation model in the RP-AKF iterate calcula-
tion process are investigated to realize the real-time power 
state correction of the unmanned aerial vehicle lithium ion 
batteries. The experimental analysis is conducted in the 
charge-discharge maintenance, in which the model param-
eter principle is taken into consideration in the structural 
power state estimation process. According to the 1C dis-
charging current rate experiments together with the am-
pere-hour integration treatment, the actual discharging 
electric quantity Qn_Deter is obtained that is different from 
the current state together with the symbol Sn. The rated 
capacity Qn_Rated is expressed with S0. Furthermore, the 
relative change ratio δS in the current state is obtained, ac-
cording to which the real-time state calculation is designed 
and realized as shown in Equation (28).

The equivalent modeling treatment is applied into the 
state-space description of the power lithium ion batteries 
and used for the real-time power state estimation, in which 
the aging process influence is characterized and the correc-
tion parameter is calculated to express the influence of the 
rated capacity. In order to realize the available capacity mea-
surement target, the capacity correction coefficient ΔQn is 
calculated toward the superimposed cycling number of the 
rated capacity for the battery capacity varying characteristic 
description.

3 |  EXPERIMENTAL ANALYSIS

The associated battery management system is designed and 
applied for different initial power conditions, parameter 
measuring accuracy together with the battery model equiva-
lent model parameters, according to which the input factor 
influence effect analysis is carried out for the lithium ion 
batteries. The multiple current rate simulation conditions are 
combined with the changing law of the unmanned aerial ve-
hicle working environments, according to which the experi-
ments contain the different time-length combinations under 
normal conditions and the long-time discharging conditions. 
Furthermore, according to the complex time simulation con-
ditions, the comparison of the estimation effects can be in-
vestigated under different noise influences and the reliable 
verification is realized finally together with the equivalent 
modeling effect.

3.1 | Test platform design

The charge-discharge current of the unmanned aerial vehi-
cle lithium ion battery is not only an important external pa-
rameter to describe the working sate, but also an important 
factor of extended Kalman filter to realize the online state 
of charge estimation. The current detection methods include 
current transformer, Holzer induction principle, and serial 
resistance measuring approaches, and the current detec-
tion methods are compared in the experiments, according to 
which the electromagnetic current transformer is introduced 
into the battery management system which has the advan-
tages of simple structure and long service life. As long as 
the sampling resistor is used and the voltage at the two ends 
of the sampling resistor is measured accurately, the charge-
discharge current detection of the lithium ion battery can be 
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realized conveniently. The module hardware circuit of the 
battery management system is designed, in which the design 
and principle of the printed circuit board (PCB) drawing in 
Altium Designer (AD) software is investigated and then used 
to characterize the circuit components with welding and de-
bugging convenience. After the hardware and software de-
sign and realization of the battery management system, the 
associated management equipment is designed and realized 
as shown in the left part of Figure 4.

According to the Holzer effect, the magnetic field pro-
duces to force perpendicular to the electron motion direction 
in the conductor when the current flowing through the con-
ductor is in a magnetic field. It is gathered at the side of the 
electronic conductor, resulting in the conductor effect that 
is formed on both sides of the weak voltage difference. The 
Holzer current sensor is introduced for the current detection 
by using this principle, in which the current flows through the 
conductor that changes into a weak voltage signal. And then, 
the current detection can be realized by its real-time measure-
ment, which has low power consumption and high accuracy. 
The resistance current is to be detected in the current loop in 
series with the precision resistor as the sampling resistor by 
measuring the voltage at both ends of the sampling resistance. 
Then, the current flows through the sampling resistor by the 
calculation of Ohm law at this time point in the loop circuit. 
The circuit is clear about structure, low in cost, good in real 
time, and high in accuracy, which has great influence on tem-
perature and has no isolation effect that is easily disturbed 
by the ground pin. Compared with several current detection 
schemes, the series resistance current detection method has 
the simple circuit structure, high precision, low cost, and easy 
realization advantages, so it is used to detect the current with 
series resistance.

The open-circuit-voltage characteristics of the unmanned 
aerial vehicle lithium ion battery refer to the relationship 
between open-circuit-voltage and the battery remaining ca-
pacity parameter state of charge. The realization process is 
investigated by using the following experimental test. Firstly, 
the predischarge maintenance is conducted by using the 
1C5A discharging current rate until the voltage is up to the 
discharging end of voltage (EOV), the value of which is set 
as EOV = 2.75 V. It is then set static for 1.00 hour in order to 
make the internal interaction to be stable. Secondly, the un-
manned aerial vehicle battery should be charged by using the 
constant-current charging mode with the current rate of 1C5A, 
the maintenance process of which will be stopped until the 
voltage is up to the end voltage limitation (EOV = 4.20 V). 
Thirdly, it should be discharged by using the constant-current 
discharging mode for half an hour by using the 0.10C5A dis-
charging current ratio. Fourthly, the experimental procedure 
is cycled for 20 operations.

The discrete points can be obtained to characterize the 
mathematical relationship between open-circuit-voltage 

and state of charge through the above experimental pro-
cedure changes, which can be obtained through the curve 
fitting method by the solid line that is shown in the right 
part of Figure 4. And then, the relationship between 
open-circuit-voltage and state of charge is obtained for the 
lithium ion battery. Meanwhile, the accurate mathematical 
model of the unmanned aerial vehicle lithium ion battery 
can be constructed, which is combined with the experi-
mental HPPC test, in which the horizontal axis represents 
the state of charge value of the lithium ion battery and the 
vertical axis represents the open-circuit-voltage value.

The discrete point relationship between open-circuit-volt-
age and state of charge can be obtained through the intermittent 
discharging treatment of the lithium ion batteries, according to 
which the overall variation curve can be obtained by using the 
fitting acquisition method. Afterward, the typical unmanned 
aerial vehicle lithium ion batteries are selected as the experi-
mental samples and the experiments are launched to obtain the 
performance characteristics through the voltage and current pa-
rameters by using the comprehensive operations of the multiple 
input factors. The dynamic experimental working state mon-
itoring process of the lithium ion battery can be determined 
by using the comprehensive assessment of different working 
conditions, in which the accuracy of the simulation results can 
be verified by comparing the original nominal value with the 
experimental results. According to the experimental results, the 
dynamic estimation error of the lithium ion battery is less than 
1.00%, which is obtained by comparing the experimental re-
sults with the original values. The polynomial fitting treatment 
is carried out by conducting the curve fitting method and the 
fitting error is 0.48%. The dynamic mathematical state-space 
equation can be obtained by the curve fitting treatment, accord-
ing to which the changes with the three stages of steep and slow 
varying zones can be described mathematically.

3.2 | Multiple current rates

The unmanned aerial vehicle lithium ion battery is se-
lected as the experimental object, and the test equipment 
is subsource BTS 750-200-100-4, the charge-discharge 
maximum power of which is 750 W with maximum current 
100 A and maximum voltage 200 V. The charge-discharge 
experiments are carried out at different magnifications and 
the capacity test is performed, according to which the bat-
tery is fully charged by the phase charging process. Herein, 
the constant current is used to charge the battery at a cur-
rent rate of 0.8 C (40 A) to 4.2 V, and then, the constant 
voltage 4.2 charge treatment should be investigated before 
it is less than 2.5 A. According to the above experimental 
treatment, it is considered that the unmanned aerial vehicle 
battery is charged fully, the charging process of which is 
shown in the left part of Figure 5.
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In the Figure 5, U is the charging process voltage and I is 
the process current. After the charging maintenance is com-
pleted, the battery is set to stand for 1 hour and a constant-cur-
rent discharge maintenance is performed at 1 C (50 A) to the 
cutoff voltage of 2.75 V, according to which the voltage vs time 
curve is obtained. The discharge experiments are then carried 
out in the same manner with the current rates of 0.8, 0.6, 0.4, 
and 0.2  C. The resulting voltage variation curve at different 
discharge rates is shown in the right part of Figure 5. As can 
be known from the experimental results, the voltage changes 
rapidly in the initial stage of the discharge process and the in-
termediate electric pressure changes slowly when it becomes 
an extremely high speed to the cutoff voltage. The discharge 
capacity of the battery is obtained in the case of 1, 0.8, 0.6, 
0.4, 0.2 C, etc, the experimental result of the capacity variation 
along with different current rates can be obtained accordingly, 

in which the discharge capacity changes slightly and the overall 
discharge characteristics are large and the capacity is decreased 
in its overall changing trend. At the beginning of the battery dis-
charge process, the voltage drops and the middle section is rela-
tively flat, according to which the terminal phase drops rapidly.

3.3 | Parameter identification

A batch HPPC experiment is performed mainly from 0.1 to 
1 to simulate its actual application, since the requirement 
for SOC < 0.1 is low and the test cannot be investigated 
when the pulse discharging voltage is lower than the limi-
tation voltage value. During the period of 0.1-1, the experi-
ment is performed once for every 0.1 capacity decrease 
treatment. The single HPPC experimental procedure in 

F I G U R E  4  The battery management system and its open-circuit-voltage characteristics
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every state of charge level is described as follows. Firstly, 
it is placed on hold and discharged at 50 A for 10 seconds, 
and then, it is left for 40 seconds. Afterward, it is charged 
at 50 A for 10 seconds and then set to be shelved again and 
the cycling charge-discharge test will be conducted until 
the HPPC experiment is completed. The experimental test 
data with SOC = 0.9 are described as shown in the left part 
of Figure 6.

The above figure is a graph showing the current and volt-
age data for the HPPC experiments with SOC = 0.9, in which 
t1 is the time point when the voltage is U2, t2 is the time point 
of U3, t3 is the time point of U4, and t4 is the time point of U5. 
There are 10 HPPC experimental tests that are performed se-
quentially from 0.1 to 1 and the overall experimental voltage 
change is shown in the right part of Figure 6. As the discharg-
ing current 50 A is large, the sudden discharge treatment has 

a large pressure drop. When discharging to SOC = 0.1447 in 
this experiment, the unmanned aerial vehicle battery voltage 
reaches the cutoff voltage of 2.75 V, so it cannot be discharged 
smoothly until the experiment is performed at SOC = 0.10 
and the last test is performed at SOC = 0.1447 accordingly.

3.4 | Typical condition test

The typical condition test is applied, in which the working 
characteristics and the estimation effect are analyzed. The 
equivalent circuit model is established together with its pa-
rameter identification by using the experimental HPPC test 
data. In order to verify the validity of the proposed state of 
charge estimation model, the model data and actual data are 
compared and analyzed by investigating various working 

F I G U R E  6  Single and complete HPPC test

F I G U R E  7  Power state estimation and error curve
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conditions of the unmanned aerial vehicle battery which are 
simulated by the constant and current varying pulse power 
discharge for a certain time period. The current value in the 
experimental data of the test equipment is used to obtain the 
estimated power state and its tracking output voltage by the 
simulation model which is then compared with the experi-
mental acquisition terminal voltage. The experimental test 
is investigated and the initial state of charge error is given 
at least 20% in advance, so that the state of charge estima-
tion is performed and its experimental results are described 
in Figure 7.

In Figure 7a, SOC1 is the true value and SOC2 is the es-
timated value using the proposed algorithm. Figure 7b is an 
error curve, in which the two states of charge value curves are 
intended to be subtracted. As can be known from the experi-
mental results, the state of charge estimation error is less than 
2.00%, in which the error of the initial value can be corrected 
very well and has a strong functional correction effect for the 
unmanned aerial vehicle lithium ion batteries.

3.5 | Complex current analysis

The high precision multimeter is used in the experiment, the 
resolution of which is five and a half. In the simulation condi-
tion, Ta is the meter to check the discharging time that is set to 
be 420 seconds; Tb is set to be 5 seconds and Tc is 20 seconds; 
Td is set to be 10 seconds; Te is 420 seconds. The tracking ef-
fect of closed-circuit-voltage along with the current change is 
analyzed for the simulated working condition. U1 and U2 rep-
resent the real-time sampling closed-circuit-voltage data, the 
changing curve of which is recorded for the unmanned aerial 
vehicle battery as time goes by. Through the experimental anal-
ysis, the comparison between the state of charge estimation and 
the ampere-hour integral calculation results is obtained under 

the complex current varying working conditions as shown in 
Figure 8.

The proposed algorithm can track the closed-circuit voltage 
effectively, and its state of charge estimation error is 2.00%, 
which has a good state of charge estimation effect compared 
with the experimental results from the references of.49-52 In 
the iterative calculation process, since the external measurable 
signal parameters are affected by the accuracy of the sampling 
module, the power estimation errors will occur inevitably and 
the observation noise is unavoidable. Furthermore, the influ-
ence of different acquisition module accuracy results is verified 
under time-varying process noise influence together with the 
parameter measuring effect, in which the sampling precision is 
1 mV and 1 mA, respectively, under the complex simulated un-
manned aerial vehicle working conditions. The state of charge 
estimation effect is verified experimentally under the influence 
of observation noise that are set, respectively. The experimental 
results are obtained in observing the limited influence at the 
beginning of the simulated working conditions, which has good 
experimental results in the whole time period of the power sup-
plying process.

4 |  CONCLUSIONS

The online remaining power estimation of the drone is the 
weight with difficulty for the unmanned aerial vehicle lith-
ium ion batteries which are analyzed by carrying out the 
verification experiments and its equivalent model param-
eters are identified based on the improved characterization 
of the power state and its output parameters. The charging-
discharging test is carried out under different magnifications, 
according to which the unmanned aerial vehicle battery op-
erating characteristics are obtained and a novel equivalent 
model is constructed for the lithium ion battery by the model 

F I G U R E  8  The closed-circuit-voltage tracking and state of charge estimation result
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equivalence analysis. An improved reduce particle-adaptive 
Kalman filtering algorithm is put forward based on the com-
pound equivalent circuit model for the state of charge esti-
mation of the lithium ion batteries, the experimental results 
of which show that the has good estimation results under var-
ious working conditions. The state of charge estimation can 
be realized for the lithium ion batteries, in which the real-
time parameter detection is realized for the closed-circuit-
voltage, current and temperature. The state of charge power 
state estimation effect is analyzed through the model param-
eter identification, the working characteristics of which are 
described effectively and used in the experimental study of 
the unmanned aerial vehicle lithium ion batteries, providing 
a effective reference for its energy management process.
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