
BARTLETT, M. and CUSSENS, J. 2017. Integer linear programming for the Bayesian network structure learning
problem. Artificial intelligence [online], 244, pages 258-271. Available from:

https://doi.org/10.1016/j.artint.2015.03.003

Integer linear programming for the Bayesian
network structure learning problem.

BARTLETT, M., CUSSENS, J.

2017

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.1016/j.artint.2015.03.003

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Integer Linear Programming for the Bayesian Network

Structure Learning Problem

Mark Bartlett, James Cussens

Department of Computer Science, University of York, York, UK

Abstract

Bayesian networks are a commonly used method of representing conditional
probability relationships between a set of variables in the form of a directed
acyclic graph (DAG). Determination of the DAG which best explains ob-
served data is an NP-hard problem [1]. This problem can be stated as a
constrained optimisation problem using Integer Linear Programming (ILP).
This paper explores how the performance of ILP-based Bayesian network
learning can be improved through ILP techniques and in particular through
the addition of non-essential, implied constraints. There are exponentially
many such constraints that can be added to the problem. This paper ex-
plores how these constraints may best be generated and added as needed.
The results show that using these constraints in the best discovered con-
figuration can lead to a significant improvement in performance and shows
significant improvement in speed using a state-of-the-art Bayesian network
structure learner.

Keywords: Bayesian networks, Integer Linear Programming, Constrained
Optimisation, Cutting planes, Separation

1. Introduction

Bayesian networks (BNs) use a directed acyclic graph (DAG) to represent
conditional probability relationships between a set of variables. Each node

Email addresses: mark.bartlett@york.ac.uk (Mark Bartlett),
james.cussens@york.ac.uk (James Cussens)

URL: http://www.cs.york.ac.uk/~bartlett (Mark Bartlett),
http://www.cs.york.ac.uk/~jc (James Cussens)

Preprint submitted to Artificial Intelligence Journal February 20, 2015

*Manuscript
Click here to view linked References

http://ees.elsevier.com/artint/viewRCResults.aspx?pdf=1&docID=2348&rev=2&fileID=94358&msid={278FF2FE-0901-4DF0-9292-8F11E8866AC8}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

in the network corresponds to one of the variables. Edges show conditional
dependencies between these variables such that the value of any variable is
a probabilistic function of the values of the variables which are its parents in
the DAG.

While one can analytically create a BN from expert knowledge, there is
considerable interest in learning Bayesian networks in which the relationship
between the variables is not known. In this setting, multiple joint observa-
tions of the variables are first taken and then a BN structure that best ex-
plains the correlations in the data is sought. This is known as the Bayesian
network structure learning problem. For any reasonably sized problem. the
number of possible structures is far too large to evaluate each individually.
Therefore a more intelligent alternative is needed.

In this paper, we tackle the Bayesian network structure learning problem
using the score-and-search approach. Each possible parent set of each vari-
able is first given a score based on the correlations between these variables in
the observed data. A search algorithm is then used to determine which com-
bination of these parent sets yields the DAG with the optimal overall score.
As this search is an NP-hard problem [1], an intelligent search strategy is
needed in order to efficiently optimise the BN structure for large numbers of
variables.

The search for the best BN can be viewed as a constrained optimisation
problem; select the parent sets for variables with the highest combined score
subject to the constraint that these form an encoding of a DAG. Specifi-
cally, there are two constraints that must be respected. First, there must be
exactly one parent set chosen for each variable. Second, there must be no
(directed) cycles in the graph. Furthermore, it is possible to write the score
which is to be optimised and both of these constraints as linear functions of
binary variables, which means that the problem of learning the best BN can
be formulated as an Integer Linear Programming (ILP) problem [2, 3]. For-
mulating the problem in such a way means that highly optimised off-the-shelf
ILP solvers can be used and that decades of research in ILP optimisation can
be used to improve the speed of the search for the optimal BN.

Encoding the constraint that there is only one parent set for each node is
straightforward. However, the constraint that there must be no cycles in the
network is relatively complex to encode as a linear inequality and can either
be enforced through the introduction of auxiliary variables and constraints [4]
or through an exponential number of cluster constraints [2]. Previous work
has revealed that these cluster constraints perform better in practice and so

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the current paper focuses on this encoding. As there are so many of these
cluster constraints, we do not add them all initially, but rather add them to
the problem as additional constraints as needed. That is to say, we first solve
a relaxed version of the problem in which most of the acyclicity constraints
are not present. We then identify some acyclicity constraints violated by
this solution and add them to the problem before resolving. This process
is called separation, as the added constraints separate the relaxed solution
from the space of valid solutions, and the added constraints are known as
cuts or cutting planes as they cut off a portion of the search space containing
the relaxed solution. This process repeats until the solution found does
not violate any additional acyclicity constraints. By so doing, we typically
eliminate the need for most constraints which rule out cycles to ever be
explicitly represented in the problem and so increase the solving speed of the
problem and simultaneously reduce the memory needed.

In addition to the constraints necessary to define the problem, there are
additional implied constraints that can also be added. Doing so may lead to
an increase in performance through further constraining the search space or
may prove detrimental by increasing the number of constraints that need to
be generated and processed at each step.

The contribution of the current paper is to examine several extensions
to the existing ILP based method which relate to improving the constraints
generated and added during the search. The first extension examines the
method by which we search for acyclicity constraints to add, the second
introduces additional implied constraints of a different form, and the third
attempts to ensure that the constraints found by other methods rule out
greater invalid regions of the search space. In addition, the impact of several
solver features is assessed.

The rest of this paper is arranged as follows. In Section 2, the problem of
Bayesian network learning is addressed in more detail before looking at using
Integer Linear Programming for this task. A software platform to carry out
this learning is presented in Section 3. The novel contributions of this paper
are presented in Section 4 before evaluation of these techniques are given in
Section 5. Finally, Section 6 concludes.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2. Background

2.1. Bayesian Network Learning

There are two classes of methods for learning the structure of Bayesian
networks. The first takes advantage of the fact that the structure of the net-
work encodes information about conditional independence. One can perform
multiple conditional independence tests on subsets of variables and use this
information to infer what structure the BN should have.

The alternative method, and the one followed in this paper, is score-and-
search. In this method, for each node, one computes scores for each possible
set of parent nodes for the node and then uses some search algorithm to
attempt to maximise a global score formed from the local scores, subject to
the resulting network being acyclic.

There are many scores that have been proposed for learning BNs, for
example BDeu [5], BIC [6], AIC [7]. These scores have the property of local
decomposability, meaning that the global score can be found as a simple
function of the score associated with each node. In the current paper, we
restrict ourselves to consideration of the BDeu score, though we note that the
software presented has been used to learn networks based on other scores [8,
9, 10].

Having produced local scores for the possible parent sets of each node, it
is necessary to perform a search for the network with the maximum global
score. This can be performed using any search method. These can be di-
vided into heuristic methods that produce a high scoring network but cannot
guarantee to produce the best one, and global searches that not only find the
best network but also establish that no better network is possible. The
work presented in this paper falls into this latter category, alongside recent
approaches such as dynamic programming [11], A* search [12] and Branch-
and-Bound [13]. As the quality of the learned network is identical for all
exact methods, the primary challenge in this case is to produce a search al-
gorithm that runs sufficiently quickly and is sufficiently scalable. Another
recent approach [14, 15] also uses Integer Linear Programming to find an
optimal Bayesian network, but as this has the added constraint of bounded
tree-width, this is not directly comparable to the results presented here.

If there are n nodes in the BN, then the number of possible parent sets for
each node is 2n−1. In practice, for even relatively modest n, this is much too
large to even score each of them in a practicable time, and probably creates
a search space that is too large to explore effectively. In most cases it is

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

possible to show that many parent sets cannot occur in an optimal BN and
so can be pruned [16]. This speeds up scoring considerably. However even
after pruning there typically remain a very large number of candidate parent
sets. To overcome this problem, one must limit the number of parent sets,
typically by restricting the maximum size of parent sets for which scores are
produced. This in turn limits the search function to only considering BNs
in which all nodes have at most a limited number of parents. The networks
found using any of the exact methods are therefore no longer globally optimal,
but optimal under the additional introduced constraint that nodes have a
maximum indegree. This may not be suitable for some applications where
large indegrees are expected. In that case, a heuristic method which allows
more densely connected networks at the expense of guaranteeing optimality
may be more suitable.

2.2. Bayesian Network Learning as an Integer Linear Program

The task of learning the best BN structure given certain observations can
immediately be seen to be an optimisation task. Somewhat less obviously,
the problem can actually be encoded rather straightforwardly as an Integer
Linear Programming (ILP) optimisation problem. That this should be pos-
sible should be no surprise given that the decision version of both ILP and
BN learning are NP-complete [17, 1].

The major advantage of encoding the problem as an ILP problem rather
than directly solving it using a BN specific algorithm is that doing so allows
one to take advantage of the decades of research in ILP optimisation. In
particular, off-the-shelf solvers have been highly optimised and tuned to give
very efficient performance. In addition, any other arbitrary constraint that
can be linearly encoded can be simply introduced in to the problem with-
out having to modify the solving method. For example, based on external
knowledge of the problem domain, one could easily add an extra constraint
to assert that two nodes must have an edge between them in one direction
or the other.

The variables in the ILP encoding represent whether or not a node has
a given parent set in the network. For every possible node, v and parent set
W , a binary variable I(W → v) is created which will be assigned the value
1 if W is the parent set of v in the BN or 0 otherwise.

Using this encoding, one must write the objective function to maximise
as a linear combination of these variables. The BDeu score (as well as many
other locally decomposable scores) defines the score of a BN to be the product

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of the scores of each of its nodes. However, taking the logarithm of this score
turns this into a summation while preserving the ordinality of solution scores.
One can then write the score to be optimised (log BDeu) as the following
linear expression of the ILP variables, where c(v,W) is the log BDeu score
for v having W as parents.∑

v,W

c(v,W)I(W → v) (1)

Having defined the ILP variables and objective function, it simply remains
to define the constraints that must be obeyed by the I(W → v) variables
in order that they encode a valid network. There are two such constraints;
each node must have exactly one parent set, and there cannot be any cycles
in the network.

The first of these constraints can be written very directly as follows.

∀v ∈ V :
∑
W

I(W → v) = 1 (2)

The acyclicity constraint is much less straightforward to encode. Previ-
ously [4] considered two schemes to achieve this involving introducing addi-
tional auxiliary variables and constraints. In one method, additional binary
variables were introduced which recorded whether node u appeared before
v in a partial ordering of the tree, along with simple transitivity and non-
reflexive constraints on these variables. In the other, generation variables
were introduced for each node and the constraint added that parent nodes
must have a lower generation value than their children.

Experience however has revealed that an alternative method of enforcing
acyclicity, cluster constraints, introduced by [2], has superior performance
in practice. Observe that for any set of nodes (a cluster), if the graph is
acyclic, there must be a node in the set which has no parents in that set, i.e.
it either has no parents or all its parents are external to the set. This can be
translated into the following linear set of linear inequalities.

∀C ⊆ V :
∑
v∈C

∑
W :W∩C=∅

I(W → v) ≥ 1 (3)

[3] generalised cluster constraints to k-cluster constraints by noting that
there must be 2 nodes with at most 1 parent in the cluster, 3 nodes with at

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

most 2 parents in the cluster, etc. However, experiments have failed to reveal
any consistent improvement in performance by using these constraints.

Having defined the objective function and the constraints, one can sim-
ply enter these into any ILP solver and, given sufficient time and memory,
an optimal BN will be produced. However, in order to obtain the best per-
formance, some understanding of the method used to solve ILP problems is
needed.

For non-integer LP optimisation, the problem can be solved relatively
efficiently. Imagine each variable as corresponding to a dimension; one can
then represent any possible assignment to these variables as a point in this
space, and a linear equality as a hyperplane in the space. The region con-
taining the valid solutions will be the convex polytope bounded by these
equations and an optimal solution can be found at some vertex of this poly-
tope. This solution can be found relatively quickly using the well-known
simplex algorithm.

For ILP, this simple algorithm is not in general sufficient. The optimal
solution for which the variables are integer may not lay at a vertex of the
polytope but may instead be inside the polytope. Therefore, for ILP optimi-
sation a branch-and-bound approach is taken. First, the simplex algorithm
is used to solve the linear relaxation of the ILP problem (i.e. the ILP prob-
lem with the constraint that certain values must be integers removed). If
this yields a solution in which the variables happen to be integers, then the
true optimum has been found. Otherwise, a variable which has a non-integer
value in the relaxed problem is chosen (v = x) to branch on and a search
tree with two subproblems formed; one in which v ≤ bxc and one in which
v ≥ dxe. In the case of the binary I(W → v) variables used in the BN
learning problem, this corresponds to branching on whether some I(W → v)
is 1 or 0, i.e. whether some v has W as a parent set or not. Each of these
subproblems can be recursively solved in the same way, as part of a standard
tree search algorithm.

A common extension to the branch-and-bound algorithm adopted by
many ILP solvers is the branch-and-cut approach. In this approach, after
the relaxed problem has been solved, additional linear constraints are added
to the problem which separate the current relaxed solution from the space of
any valid integer solutions, i.e. any integer solution will respect the constraint
but the current relaxed solution does not. These constraints are known as
cuts. Consider for example the simple case in which it is deduced that an
integer X ≤ 7.2. As we know X to be integer, we can always add a cut of

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

X ≤ 7 as this will not remove any possible integer solution from the space,
but does usefully remove the parts of the search space where X takes non-
integer values between 7 and 7.2. The search for the relaxed solution and
the addition of extra constraints alternates until no more cuts can be found.
If the variables in the relaxed solution are now integer the problem is solved,
otherwise the problem branches as in the branch-and-bound algorithm.

There are well known cuts that can be added in any domain based on de-
ducing implied constraints from the problem and the current relaxed solution,
for example Gomory cuts [18] or Chvátal-Gomory cuts [19]. Alternatively (or
additionally), one can choose to hold back some necessary known domain-
specific constraints from the problem, adding them as cutting planes only if
a proposed solution violates them. This approach is adopted with the cluster
constraints in the BN learning problem. For a network with |V | nodes, there
are 2|V−1| − 1 cluster constraints; rather than initially adding such a large
number of constraints, they are only added explicitly to the problem as cuts
if a relaxed solution would violate them. In practice, this means that most
cluster constraints are never added to the problem as solutions with cycles
involving that cluster of nodes are never proposed.

Adding problem constraints as cutting planes rather than initially is typ-
ically done when there are very large numbers of such constraints, as is the
case with the cluster constraints. There are two reasons why this may be de-
sirable. First, there may be considerable overhead for the solver in managing
the constraints, many of which may never be needed. Second, large num-
bers of non-redundant constraints lead to a particularly complicated polytope
with very many vertices. As the simplex algorithm works by repeatedly con-
sidering adjacent vertices, the simpler the polytope, the fewer neighbouring
vertices there will be at each step and the fewer vertices there will be on the
path between the initial vertex and the optimal one. The improvement in
the speed with which the simplex algorithm runs though must of course be
weighed against the fact that additional time will be needed to identify the
violated constraints to add and the fact that the simplex algorithm must be
run repeatedly, rather than once at each node of the search tree.

3. GOBNILP

To investigate BN learning using ILP. we have created the software pro-
gram GOBNILP (Globally Optimal Bayesian Network learning using Integer
Linear Programming) which is freely available and uses the ILP formula-

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

tion and branch-and-cut method presented in Section 2.2 to learn optimal
Bayesian networks [3, 20]. It builds on the SCIP framework [21] to perform
the ILP solving along with a further solver for the underlying linear program-
ming solving. In the experiments presented in Section 5, GOBNILP version
1.5 is used with SCIP version 3.1.0 and using CPLEX version 12.5 as the LP
solver.

In addition to the basic ILP formulation presented in the previous section,
GOBNILP has a number of additional features that improve solving time
which are presented below.

3.1. Heuristic Algorithm

During the search process, it is useful to occasionally find sub-optimal
heuristic solutions to the problem. This provides a lower bound on the value
of the true optimal BN and can be used to eliminate sections of the search
tree using branch-and-bound.

In addition, heuristic solutions can be used to turn the solving into an
anytime algorithm; the solving can be halted at any point and a valid, but
suboptimal solution returned. As the current relaxed LP solution is an up-
per bound on the optimal solution, the values of the heuristic solution and
relaxed LP solution together allow one to see how much better than the
current heuristic solution the optimal solution might be. Depending on the
application, it may be acceptable to take a sub-optimal solution which is
guaranteed to be within a few percent of the optimal one rather than wait
much longer for the true optimal solution to be found. Close cuts, which will
be introduced in Section 4.4 also rely on a heuristic solution being known.

SCIP features a number of built-in general purpose heuristic finding meth-
ods based on the current relaxed solution. For example, one could simply try
rounding fractional variables to their nearest integer value and see if this is
feasible. SCIP has 6 such rounding heuristics which we use to look for valid
BNs. It should be noted that often trying to round a relaxed solution will
fail to produce a valid BN. In such cases, no new heuristic solution will be
produced.

We have also implemented a heuristic method specific to the BN learning
application. The algorithm relies on the fact that it is easy to find an optimal
BN given a total ordering of nodes. We therefore carry out what is in essence
a greedy sink finding algorithm; we first choose a sink node (i.e. one that will
have no children), then choose a node that will have no children except
possibly the first, then a node that will have no children except possibly

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the first two, and so on. The algorithm is somewhat akin to the dynamic
programming approach to learning Bayesian networks [11], except we commit
greedy choices at each stage rather than consider all possible subsets.

To choose the ordering for the sink finding heuristic, we utilise both the
scores of each of the I(W → v) in the objective function (i.e. their associated
log BDeu score) and their value in the current relaxed solution. The motiva-
tion for using the former is that we wish to choose high scoring parent sets as
far as possible, and the latter is used as we believe a good heuristic solution
is likely to be found in the vicinity of the current relaxed LP solution.

First, for each node, we arrange the possible parent sets in descending
order according to their log BDeu scores. That is to say, for each node, we
create a list in which the first parent set is the one with the highest BDeu
score and the last parent set is that with the lowest BDeu score. From this
point onwards, we do not make further use of the BDeu scores, but rather
choose our variable ordering according to the parent set lists just created and
the current relaxed LP scores.

On the first iteration of the algorithm, we compute a score for the parent
set at the head of each variables’ list. This score is one minus the current value
of that variable having that parent set in the current relaxed LP solution,
i.e. 1− I(W → v). We then choose the variable with the highest score to be
our sink and its best parent set to be its parent set in our heuristic solution.
Following this, we remove from all the variables’ lists any parent set which
contains our chosen sink variable.

At each subsequent iteration, we carry out a similar process of scoring the
best remaining option for each as yet unchosen variable, selecting the variable
with the highest scoring parent set, and eliminating any remaining parent
sets which contain this newly chosen variable. The only difference between
the first iteration and subsequent ones is that we calculate the scores slightly
differently. In these iterations, we use the sum of the values of all possible
remaining parent sets for that variable minus the value of the best remaining
parent set for the variable, where the values are the scores in current relaxed
LP solution.

Should the algorithm at any stage try to select a parent set for a variable
which is impossible (due to user supplied constraints or the current search tree
branching choices made, for example), the algorithm simply aborts without
returning a heuristic solution.

The sink finding algorithm is very fast, running 9425 times in only 30s in
one case we studied. We therefore allow it run after every LP solution along

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

with the built-in SCIP heuristics.

3.2. Value Propagation

Value propagation is a well-known constraint-based technique. Given
assignments of values to some variables (such as happens when the problem
branches), the constraints that exist between variables can be used to infer
reductions to the feasible domains of other variables. As the ILP encoding
here contains solely binary variables, this is equivalent to fixing variables
to either 1 or 0, i.e. the specified parent set must be selected or cannot be
selected respectively. SCIP features built-in propagators which can perform
the correct inference for linear equations. However, for the constraint that
there must be no cycles in the graph, an extra propagator is needed that
will perform propagation based on the constraint as a whole, not just the
currently added cluster cuts. GOBNILP includes just such a propagator which
attempts to perform this fixing after each branching in the search tree. The
propagation uses basic reasoning such as if A is in all remaining possible
parent sets of B, then all variables in which B is in the parent set of A must
be set to 0.

4. Cutting Planes

Section 2.2 explained how the search for an optimal Bayesian network
using ILP required both branching and cutting planes. Despite various at-
tempts, we have been unable to find a method of choosing variables to branch
on which outperforms SCIP’s default branching strategy. Furthermore, we
note that final solution times for problems appear to increase substantially in
general when the program finds it necessary to start branching early in the
solving process. We therefore focus our attention on finding cutting planes to
constrain the problem as much as possible before carrying out any branching.

This paper introduces cutting extensions to the method for learning
Bayesian networks using Integer Linear Programming presented in Section 2.2.
A major issue identified there was of identifying and adding cutting planes
in an effective manner. As with many other aspects of ILP solving, SCIP
features a number of built-in general purpose cutting plane finding algo-
rithms some of which are examined in Section 5. In addition to these, the
cluster constraints for ruling out cycles in the network are added as cutting
planes. Second, new classes of constraints are introduced which any valid

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

integer solution must obey. These form the complete set of tightest possi-
ble constraints for the problem with 3 or 4 nodes, but as with the original
acyclicity constraints, the issue of which to add and when proves critical to
their success in assisting with solving larger problems. Finally, the use of
close cuts [22, 23] is assessed. These attempt to find cuts that separate more
of the search space from the relaxed solution than usual methods.

4.1. Finding Cluster Cuts with a sub-IP

In the standard ILP formulation of the problem, cycles are ruled out
through adding cluster cuts, which state that there should be no cycles
formed from all elements of that cluster. In practice, it is unnecessary to
add all cluster cuts as solutions to the relaxed problem usually do not vio-
late many of these constraints. Even when a relaxed solution does violate
a constraint, it may not be desirable to add it, as other constraints may be
added that also rule out the relaxed solution.

We now explain how we find cluster cuts. First note that, due to (2),
cluster constraints can be written as follows:

∀C ⊆ V :
∑
v∈C

∑
W :W∩C 6=∅

I(W → v) ≤ |C| − 1 (4)

Intuitively, (4) says that not all nodes in the cluster C can have parents
in C. Our goal is to find a cluster C such that the LHS of inequality (4)
exceeds |C|−1 by as much as possible when the values of the current relaxed
solution x∗ are used for the variables I(W → v). We want to find a cut
which x∗ violates maximally since such cuts are ‘deep cuts’ leading to tight
linear relaxations. We cast this problem as a sub-IP and solve it using SCIP
as follows.

For each I(W → v) in the main problem with non-zero value in the
current relaxed solution, create a binary variable J(W → v) in the cluster
constraint finding subproblem. J(W → v) = 1 indicates that the variable
I(W → v) will be included in the cluster cut as formulated in (4). Also
create binary variables I(v ∈ C) which are 1 iff v is in the chosen cluster,
Rather straightforwardly, we have for each J(W → v)

J(W → v)⇒ I(v ∈ C) (5)

J(W → v)⇒
∨
w∈W

I(w ∈ C) (6)

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

where the first constraint states that I(v ∈ C) must be 1 if J(W → v) is 1
and the second makes a similar assertion for the members of W . In other
words, if J(W → v) is 1, v in the cluster along with at least one member of
W . These constraints can be posted to SCIP directly as logicor constraints,
along with a simple summation constraint that |C| ≥ 2.

For reasons that will become apparent below, we set the objective function
to maximise to −|C| +

∑
x∗(W → v)J(W → v), where x∗(W → v) is the

value of I(W → v) in the current relaxed LP solution and |C| is shorthand
for

∑
v∈V I(v ∈ C). We also use the SCIP function SCIPsetObjlimit to

declare that only solutions with an objective greater than -1 are feasible.
It follows that any valid solution has

−|C|+
∑

x∗(W → v)J(W → v) > −1 (7)

Due to the constraints, for J(W → v) to be non-zero (and hence equal
to 1), v must be in the cluster and at least one element of W must also be
in C. So for any feasible solution (7) can be written as

−|C|+
∑
v∈C

∑
W :W∩C 6=∅

x∗(W → v) > −1 (8)

equivalently ∑
v∈C

∑
W :W∩C 6=∅

x∗(W → v) > |C| − 1 (9)

So x∗ violates the cluster constraint for cluster C and we have found a cutting
plane. The sub-IP is always solved if possible, so if there is a valid cluster
constraint cutting plane, the sub-IP is guaranteed to find it.

On a technical note, we solve the sub-IP using depth first search in
the branching, and use any sub-optimal feasible solutions found during the
search, as well as the final optimal solution. This means that the routine may
sometimes produce multiple cluster constraint based cutting planes that we
add to the main problem.

4.2. Finding Cluster Cuts through Cycles

In the previous section, a separate optimisation process is used to search
for the cluster cut to add at each stage. The downside to such a strategy
is that often only a single cut is added at each separation round whereas it
may be more efficient to find several cuts at once.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

We therefore outline a different method of identifying cuts to add, based
on directly identifying any cycles in the graph encoded by the current relaxed
solution and then adding cluster cuts ruling each of them out.

As the relaxed solution, by definition, has the integrality constraint on
variable values relaxed, it may contain variables which have fractional values.
A solution with fractional variables does not encode a graph structure as
described in Section 2.2, therefore the first step must be to extract a graph
from these variables.

Let G = (V,E) be a directed graph, where V is the set of nodes involved
in the BN. Construct E as follows.1

E =

{
(v1 → v2) : v1, v2 ∈ V,

∑
W :v1∈W

I(W → v2) = 1

}
(10)

This graph is specified in terms of edges, rather than parent sets as in the
main problem. An edge A → B exists in this graph if all parent sets of B
with non-zero current LP solution value contain A. Intuitively, this graph is
a ‘rounded’ version of the graph given by the current LP solution with the
edges that are ‘fractional’ removed.

It is straightforward to extract the elementary cycles of G. In the current
work, the method of [24] is used. This essentially performs repeated depth-
first searches through the graph from each node, blocking any nodes in the
current path to prevent paths with sub-cycles.

Having determined the cycles of this graph, one can simply take the set
of nodes involved in each cycle and add a cluster cut to the problem for each
of these sets. Any cluster cut involving all the nodes in any cycle of G will
separate the current relaxed solution. However, the converse does not hold;
there exist cluster cuts that separate the current relaxed solution which do
not correspond to cycles in G.

Experimentation reveals that the time to identify the cycles of G can
be significantly reduced if one only searches for cycles up to a given length.
However, the trade off against the possibly reduced number of cycles, and
hence the number of cuts, found must be considered. Experimental assess-
ment of the effect of altering the maximum length of cycle to search for is
presented in Section 5.2.

1In practice,
∑

W :v1∈W I(W → v2) > 0.99 is used to permit some tolerance of rounding
errors.

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

As this cycle-based method of finding cuts may not find all valid cluster
cuts for a given relaxed solution, it may be worthwhile to use it in conjunction
with the sub-IP method of GOBNILP. The sub-IP method is guaranteed to
find a valid cluster cut if one is possible but, as noted above, will only typically
find a single cut per execution and involves significant overhead in initialising
an optimisation process. Section 5.2 considers various methods of combining
these two methods for searching for cluster cuts.

4.3. Convex Hull Constraints

It can be useful to think of two polytopes. The first Pcluster is the region
defined solely by the constraints given in Section 2.2, i.e. the polytope whose
vertices are defined by the constraint on one parent set per node, the complete
set of all cluster constraints and the upper and lower bounds on the variables.
This polytope contains all the valid solutions to the BN learning problem,
but many other points as well.

While the inequalities in Section 2.2 are sufficient to correctly classify all
integer assignments to the variables as being a valid BN or not, they do not
completely specify the smallest possible convex polytope for the problem.

Defining this second polytope, known as the convex hull, is desirable as
it has the property that each vertex of the polytope is an integer solution.
This means that the solution to the linear relaxation is the optimal integer
solution and so the simplex algorithm can be used to solve the ILP without
any branching needed.

Let us denote the convex hull to be the polytope P . This is contained
within the larger polytope Pcluster. Adding cutting planes has the effect of
removing some of the polytope Pcluster that lies outside of P , thus reducing
the solution space to search without removing any integer solutions. If we
were able to add all possible valid constraints to Pcluster, we would find it
reduced to P .

Given this observation, it is interesting to ask what the full set of con-
straints necessary to define P is. Given this information, we could simply add
all these constraints (initially or as cutting planes) and find the BN through
the simplex algorithm without branching.

It should be noted that the polytope P is conceptually similar to but
distinct from the well studied acyclic subgraph polytope [25], Pdag, which also
represents an acyclic graph as a set of binary variables. In the case of Pdag,
the variables correspond to the existence of edges in the network, rather
than the existence of a particular parent set as in the current work. Many

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

facets of Pdag are already known but unfortunately this polytope is of little
use in the current application as the scores used in Bayesian networks do
not decompose into a linear function based on the existence of edges, but of
whole parent sets.

The convex hull P appears to be extremely complicated in the general
case, though we have empirically found the complete set of constraints defin-
ing the convex hull of the problem when the number of nodes in the network
is limited to 3 or 4.

The convex hull of the problem with 3 nodes, P3, was found using the
lrs2 algorithm. In this case, it transpires that P3 consists of 17 facets; 9 lower
bounds on the variables’ values, the 3 limits on each node having one parent
set, 4 cluster constraints, and a single extra constraint:

I({2, 3} → 1) + I({1, 3} → 2) + I({1, 2} → 3) ≤ 1 (11)

This can be generalised to give a class of set packing constraints which
are valid for any Bayesian network learning problem, not just those with 3
nodes.

∀C ⊆ V :
∑
v∈C

∑
W :C\{v}⊆W

I(W → v) ≤ 1 (12)

These will always be obeyed by integer solutions but otherwise acceptable
fractional solutions exist which violate these inequalities. GOBNILP therefore
adds such inequalities for all |C| ≤ 4 to the initial formulation, which speeds
up solution times.

As the number of nodes in the BN increases, the convex hull becomes
more complex. For a BN with just 4 nodes, Matti Järvisalo used cdd3 to
show that there are 64 different facets to the convex hull, P4. In addition
to lower bounds on variable values, limits on the number of parent sets per
node and cluster constraints, 7 different classes of facets were identified. We
label these constraints convex4 constraints. A simple generalisation of these
constraints are still valid when applied to a subset of 4 nodes in a larger
Bayesian network learning task. The problem of finding all facets of the
convex hull for a BN of greater than size 4 is, to the best of our knowledge,
unsolved.

2http://cgm.cs.mcgill.ca/~avis/C/lrs.html
3http://www.inf.ethz.ch/personal/fukudak/cdd_home/

16

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.inf.ethz.ch/personal/fukudak/cdd_home/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Rather than continue searching for all facets of the convex hull for ar-
bitrarily large BNs, we instead utilise those found for BNs with 3 and 4
nodes for subsets of the nodes in larger BNs. Inequality (11) generalises to
Inequality (12) and such constraints are added to the initial problem for all
subsets of nodes of size 3 and 4. For the convex4 constraints identified, for
any reasonable large BN problem, there may be too many to add them all
initially to the problem for each subset of 4 nodes. We can therefore add
them as cutting planes during the search in much the same way as acyclicity
constraints are added.

Adding these constraints initially may lead to better initial solutions.
However, it may simply slow down the search by adding constraints that
would never be violated if they were not added to the problem. In addition,
searching for 4 node convex hull cuts which separate a relaxed solution is
itself quite time consuming. As it is difficult to deduce whether these con-
straints should be added initially, as cutting planes, or not at all, we present
experimental results in Section 5.3 assessing the best way to make use of
them.

4.4. Close Cuts

The current solution to a relaxed problem will always be a point on the
surface of the polytope corresponding to the current relaxed problem. It is
possible that a cutting plane added to separate this solution will cut away a
significant portion of the polytope, but it is also possible that it will pare away
only a small region near the surface. In this latter case, the cut removes little
of the solution space and may not assist significantly with finding a solution
to the problem.

GOBNILP’s usual strategy for dealing with this is to use the sub-IP to
search for cutting planes which are efficacious, that is to say, cuts which pass
deep into the polytope. However, this cannot be adapted for other methods
of finding cutting planes, such as using cycle finding. An alternative to try
to ensure arbitrary methods produce deep cuts is needed.

Close cuts [22, 23] are a solution to this problem. Despite the name, they
are not actually a different type of cut, but rather they use the same cuts as
normally used (general-purpose or domain-specific) but attempt to separate
something other than the current relaxed LP solution. Rather than seeking
a cut which removes a point on the surface of the polytope and hoping this is
deep, close cuts pick a point which is deep in the polytope and then attempt
to separate this. Specifically, a point is chosen which lies somewhere on a line

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

between the best known heuristic solution to the problem and the current
solution to relaxed problem, and the usual cutting plane finding methods are
called to separate this point. Let the best known heuristic solution be Sh

and the current relaxed solution be Sr, then the point to be separated by
the cutting plane routine is αSh + (1− α)Sr where the parameter α ∈ [0, 1]
determines how close to the currently known heuristic solution the point to
be separated is. As such, the point to separate is a convex combination of
the current heuristic solution and the current relaxed solution.

There is no guarantee that the chosen point to separate is actually an
invalid solution to the problem. In such a case, the cutting plane finding
algorithms will fail to find any cuts, as there are no possible cuts. This does
not present a logical problem; one can simply revert to finding separating
planes for the solution to the relaxed problem as normal.

Clearly, the larger the parameter α is, the further into the relaxed problem
polytope one is attempting to cut but, conversely, the more likely one is to
choose a point that is a valid solution to the unrelaxed problem. Setting
the value of α correctly is therefore crucial to the success of the technique.
Experiments presented in Section 5.4 assess the best value for this parameter
in the BN learning problem.

5. Results

To test the effectiveness of each of the aspects of adding cutting planes
explored in Section 4, we incorporated them into the GOBNILP software and
allowed their behaviour to be set through user supplied parameters. In some
cases, for example close cuts, the required behaviour was already available
through the SCIP framework.

Experiments were then conducted to assess the impact that each of these
constraints had on the optimisation process. The presented methods will al-
ways find an optimum BN given sufficient time and computational resources.
It therefore makes little sense to evaluate the score of the network found or
the similarity of this network to the true one as this is simply evaluating how
well optimisation of the score works; the same results would be found for
all variants of the ILP technique, as well as for any other exact optimising
technique such as [11] or [12]. Rather, the correct form of evaluation here is
to analyse the time needed to find an optimum BN.

As the NP-hardness of the problem requires a limit on the size of the
parent sets considered, our algorithm may not find the true most likely BN,

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

as it may have larger parent sets than we permit. In cases where nodes with
high in-degree are likely to exist, an alternative, heuristic method may be
more desirable, which finds a high scoring though not guaranteed optimal
network. Such issues, along with choice of scoring function are beyond the
scope of the current paper which is restricted to finding the provably optimal
BN from a choice of scored parent sets; the accuracy of the final network is
solely reliant on the suitability of the scoring function chosen and the validity
of assuming a maximum node in-degree.

The experiments presented are divided into two parts. First, a number of
features of the solver which can best be described as on or off are examined.
Based on prior experience, we believe them all to be generally useful [20].
We begin by turning them all on as a baseline and then conduct experiments
in turning each of them off in turn while the others are all on. This provides
an estimate of how much each feature helps or hinders the solving process.
The features examined in this way are

• The use of Gomory cuts (see Section 2.2)

• The use of Strong Chvátal-Gomory cuts (see Section 2.2)

• The use of Zero-Half cuts (see Section 2.2)

• The sink-based heuristic (see Section 3.1)

• The value propagator (see Section 3.2)

• The use of set packing constraints (see Section 4.3)

It is likely that there are some interactions between these parameters. For
example, for some reason the value propagator might turn out to be more
effective when Gomory cuts are not being used. However, to assess all pos-
sible settings of each of these features together would require a prohibitively
large number of experiments to be run, much of which would produce lit-
tle practical insight; for example, it would be of little use to know if the
value propagator was particularly useful when set packing constraints were
not used if it turned out that using set packing constraints was always of
significant benefit.

Following this set of experiments, the use of a number of extensions which
are more parametric are assessed. These three extensions are the method by
which cluster cuts are found, the point at which convex4 constraints are

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

added and the use of close cuts. In the previous experiments, we fix their
behaviour to using the sub-IP and no cycle finding for identifying cluster
cuts, no use of convex 4 cuts and no use of close cuts.

In the second set of experiments, we began with a system in which all
3 extensions are fully disabled, then assessed the incrementally impact of
adding each in turn. We first assess how changing the method for discovering
cluster cuts to add impacts on the solution time. The best parameter settings
discovered in this experiment are then used as a baseline for the convex4
experiments, studying how well adding these constraints alongside the new
cluster cut mechanism works. Finally, the best settings for the cluster cuts
and convex4 constraints resulting from this experiment are taken forward to
the final experiment, in which the close cut parameter is varied.

One might reasonably expect the observed behaviour with different set-
tings for each of these extensions to exhibit interactions with each other in
non-trivial ways. The outcome of these experiments therefore cannot be
viewed as finding the best parameter settings, though they do represent a
greedy search for these best settings. Nevertheless, this scheme provides a
reasonable balance between studying the individual effects of each of the ex-
tensions and attempting to capture some of the cross-extension interactions.

As an alternative, one could perform a search over the parameter space
of all 3 extensions simultaneously, either in a systematic or heuristic manner.
This would fully capture the interactions between the parameters associated
with the different extensions, but would probably be infeasible to conduct due
to the combinatorial increase in the size of the parameter space and would
make it difficult to assess the individual impact of each of the extensions. At
the other end of the scale, one could neglect the possible interaction between
the various parameters entirely and evaluate each extension in turn with the
other two disabled. The effects of each extension would be readily apparent
but any results would be wholly artificial. Assuming more than one of the
extensions to be beneficial, one would not run the system in this state and
subsequently combining the best individual settings for each extension may
lead to a severely suboptimal system due to previously unseen interaction
effects.

Evaluation of the approaches was performed using a number of datasets
drawn from Bayesian networks from commonly used sources. The datasets
considered are shown in Table 1 and were chosen to test performance on a
wide range of different problems. In each case, the BDeu score was computed
(using the equivalent sample size listed in the table) external to GOBNILP

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Equivalent Number of Parent Set Number of
Name Sample Size Variables Limit Parent Sets
car 1 7 6 35
asia 10 8 2 127
insurance 1 27 6 341
mildew 1 35 3 3520
tic-tac-toe 10 10 3 112
flag 10 30 5 24892
dermatology 10 35 3 5059
hailfinder 1 56 4 4330
kr-vs-kp 10 37 2 12877
soybean-large 2 36 2 10351
sponge 1 46 4 11042
zoo 10 18 4 6461
alarm 1 37 4 8445
diabetes 1 413 2 4441
carpo 1 60 3 16391
lung-cancer 10 57 2 8294

Table 1: Characteristics of the problems studied. “Number of Variables” is the number
of variables in the Bayesian network, while “Number of Parent Sets” corresponds to the
number of ILP variables.

and this preprocessing time is not included in the reported results. Upper
limits on the size of potential parent sets for which scores were calculated
were introduced to make the times to compute the scores feasible. Note
that the number of parent sets corresponds to the number of variables in the
ILP problem. Some pruning of the number of parent sets is possible. For
example, if A having a parent set of just B has a better score than A having
both B and C as parents, we can prune the latter from the dataset, as there
is no situation in which adding the additional parent C would be preferred in
an optimal network. The number of parent sets reported in the table refers
to the number remaining after this type of pruning has occurred.

Experiments were conducted on a single core of a 2.7GHz dual-core pro-
cessor computer with 6GB of memory running Linux. All experiments used
SCIP version 3.1.0 with CPLEX version 12.5 as the underlying LP solver.
A time out limit of 2 hours was set for all experiments. Any experiments
which had not terminated in this time limit have the gap between their best

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

relaxed LP solution and their best known heuristic solution shown in the
following tables, which provides a proxy for how much more work the search
has remaining to do at that point.

As our intention is to evaluate various possible aspects of the ILP BN
learning problem, we do not compare the algorithm to other approaches. As
previously stated, comparing to heuristic methods or conditional indepen-
dence methods assesses the quality of the reconstruction which is not our
concern here. This factor depends hugely on the score chosen and the valid-
ity of the assumption that parent sets are of reasonably small size, the former
of which is outside the scope of the current paper and the latter of which is
problem dependent. Rather our aim is to assess the speed with which we can
find a provably optimal network.

[26] provides an extremely thorough evaluation of the solving times for
a number of recent optimal BN learners including GOBNILP on over 700
problem instances. Rather than repeat this exercise, we state the main find-
ings of relevance here. The default configuration of GOBNILP was found
to be fastest on over 300 instances, and when combined with various other
configurations trialled, GOBNILP was fastest on the majority of problem in-
stances. Various configurations of A*-search [12] were fastest on around 300
instances, but no configuration was fastest on many more than 100 instances.
Branch-and-bound [13] is fastest on none. Overall, GOBNILP solves the en-
tire dataset in 661,539 seconds, as compared to 1,917,293 seconds for the
best A* configuration and over twice that time for Branch-and-Bound.

5.1. General Purpose Cuts and Solver Features

The results of turning various cuts or solver features off are shown in
Table 2. Overall they show a mixed picture for many of the experiments,
with everything being useful for some datasets and increasing solving times
in others. On the whole Gomory cuts appear to be generally useful (i.e. the
solving times rise when they are turned off). The picture for the other two
cuts is less clear, with some big improvements seen in some datasets when
they are used, but slower solving times witnessed in others.

For the solver features, a similar outcome is observed; some features are
particularly helpful sometimes but hinder in other cases. The set packing
constraints appear particularly useful in the mid-difficulty problems, but are
less useful on the harder problems studied. The sink finding heuristic and
value propagation appear more consistently to be useful but there are excep-
tions to this. Overall, the slowdown caused by not having a solver feature

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

N
et

w
or

k
B

as
el

in
e

N
o

C
u
ts

of
T

y
p

e
W

it
h
ou

t
S
ol

ve
r

F
ea

tu
re

G
S
C

G
Z

H
S
P

H
S
P

C
V

P
ca

r
0.

26
s

0.
01

s
0.

01
s

0.
01

s
0.

01
s

0.
15

s
0.

01
s

as
ia

0.
36

s
0.

35
s

0
.9
7
s

0.
34

s
0.

34
s

0
.4
2
s

0.
36

s
in

su
ra

n
ce

0.
83

s
0.

76
s

1
.0
0
s

0.
74

s
0.

81
s

1
.4
7
s

0.
81

s
M

il
d
ew

1.
20

s
1.

16
s

1.
16

s
1.

12
s

1
.2
1
s

2
.0
3
s

1
.2
1
s

ti
c-

ta
c-

to
e

9.
40

s
5.

23
s

9.
18

s
2.

55
s

9.
26

s
8.

41
s

9.
30

s
fl
ag

39
.9

9s
36

.7
9s

17
.7

7s
19

.1
4s

36
.0

9s
7
0
.8
5
s

35
.9

5s
d
er

m
at

ol
og

y
32

.1
7s

31
.1

9s
21

.1
6s

27
.4

9s
31

.6
3s

28
.8

4s
29

.7
4s

h
ai

lfi
n
d
er

11
2.

56
s

79
.2

3s
61

.9
0s

87
.5

6s
1
1
8
.9
7
s

2
2
6
.2
3
s

11
1.

93
s

k
r-

v
s-

k
p

12
4.

37
s

80
.6

4s
75

.4
8s

71
.9

1s
1
2
5
.8
1
s

96
.7

5s
12

2.
47

s
so

y
b

ea
n
-l

ar
ge

98
.4

1s
92

.8
3s

1
3
0
.1
4
s

82
.0

2s
89

.9
0s

1
1
0
.3
8
s

97
.1

4s
al

ar
m

20
0.

64
s

2
8
0
.1
2
s

11
2.

78
s

2
4
4
.5
9
s

2
0
1
.5
0
s

10
8.

71
s

2
2
7
.4
5
s

D
ia

b
et

es
—

—
—

—
—

—
—

sp
on

ge
19

5.
03

s
2
2
5
.2
4
s

3
0
0
.0
2
s

2
3
1
.9
5
s

2
3
0
.1
5
s

2
1
4
.4
6
s

19
1.

36
s

zo
o

26
4.

79
s

2
9
0
.4
0
s

19
1.

36
s

16
6.

54
s

2
6
6
.6
5
s

17
4.

74
s

21
4.

03
s

ca
rp

o
48

3.
69

s
5
2
8
.1
0
s

5
8
7
.4
4
s

5
1
3
.8
9
s

5
7
7
.1
8
s

5
8
9
.4
0
s

5
1
0
.6
2
s

lu
n
g-

ca
n
ce

r
67

0.
76

s
64

6.
50

s
65

1.
57

s
58

3.
45

s
67

0.
66

s
64

2.
77

s
62

7.
88

s

T
ab

le
2:

Im
p

ac
t

on
ti

m
e

to
fi

n
d

th
e

b
es

t
B

ay
es

ia
n

n
et

w
o
rk

o
f

va
ri

o
u

s
fe

a
tu

re
s.

A
ll

ti
m

es
a
re

g
iv

en
in

se
co

n
d

s
to

th
e

n
ea

re
st

w
h

ol
e

se
co

n
d

.
“—

”
in

d
ic

at
es

th
at

th
e

so
lu

ti
on

h
a
d

n
o
t

b
ee

n
fo

u
n

d
a
ft

er
2

h
o
u

rs
.

K
ey

:
G

–
G

o
m

o
ry

cu
ts

,
S

C
G

–
S

tr
o
n

g
C

G
cu

ts
,

Z
H

–
Z

er
o

H
al

f
cu

ts
,

S
P

H
–

S
in

k
P

ri
m

al
H

eu
ri

st
ic

,
S

P
C

–
S

et
P

a
ck

in
g

C
o
n

st
ra

in
ts

,
V

P
–

V
a
lu

e
P

ro
p

a
g
a
to

r.
R

es
u

lt
s

th
a
t

ar
e

w
or

se
th

an
th

e
b

as
el

in
e

ar
e

in
d

ic
at

ed
in

b
ol

d
.

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

appears to be greater than that for not having one of the cutting algorithms
turned on.

5.2. Cycle Finding

The method for deciding which cluster cuts to add in the previous experi-
ment was through a sub-IP. As well as considering simply replacing this with
the cycle finding method, we also considered two schemes in which the two
methods were both used. In the first, both methods were called every time
cuts were searched for. In the second, the cycle finding algorithm was first
used and only if this failed to find any cuts was the sub-IP method used. The
motivation for considering running both methods is that the cycle finding al-
gorithm only searches for cycles in the portion of the graph which corresponds
to edges which are non-fractional in the current LP solution, whereas the sub-
IP will also detect violated cluster constraints involving fractional variables.
This means that the sub-IP can detect cuts to add that are a superset of
those detected by the cycle finding method. This also explains why the idea
of using the cycle finding only if the sub-IP failed was not considered.

In addition, the maximum length of cycle to look for by the cycle finding
algorithm was investigated. The perceived trade-off here is between choosing
a small value which risks missing many longer cycles and choosing a large
value which takes a long time to run with possibly few additional cycles found.
Preliminary experiments were used to identify a sensible range of values for
this parameter over which the presented experiments were conducted.

These preliminary experiments also revealed that using just the cycle
finding without the sub-IP was substantially worse than using them both
together or just the sub-IP. For example, for some maximum cycle lengths it
reached the time out limit on the Mildew problem (which other configurations
typically solve in around a second) and consistently took over 5 minutes to
solve the Flag problem, instead of about 30 seconds for other settings. The
following therefore focuses attention on the techniques involving just the
sub-IP, or the sub-IP and the cycle finding together.

The results shown in Tables 3 and 4 demonstrate a fairly consistent ben-
efit from using the cycle finding method with the sub-IP, rather than the
latter alone. The results for Diabetes are particularly significant, going from
unsolvable in two hours with just the sub-IP to solvable with a wide range
of settings when cycle finding was used as well; in the best case, a solution
was found in under 30 seconds.

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

S
u
b
-I

P
3

4
5

6
7

8
9

10
10

0
ca

r
0.

26
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

as
ia

0.
36

s
1.

52
s

2.
66

s
0
.2
3
s

1.
47

s
0.

40
s

0.
38

s
0.

37
s

0.
38

s
0.

38
s

in
su

ra
n
ce

0.
83

s
0.

63
s

0.
60

s
0.

44
s

0.
44

s
0.

67
s

0
.2
6
s

0.
30

s
0.

39
s

0.
32

s
M

il
d
ew

1.
20

s
0.

97
s

0.
62

s
0.

43
s

0.
48

s
0.

44
s

0.
38

s
0.

37
s

0
.3
5
s

0
.3
5
s

ti
c-

ta
c-

to
e

9.
40

s
9.

85
s

9.
64

s
9.

44
s

9
.3
2
s

9.
46

s
9.

36
s

9.
42

s
9.

88
s

10
.0

1s
fl
ag

39
.9

9s
27

.5
6s

38
.7

0s
27

.1
8s

23
.6

0s
1
7
.8
2
s

22
.5

1s
24

.5
4s

35
.6

8s
32

.2
8s

d
er

m
at

ol
og

y
32

.1
7s

24
.6

6s
30

.9
2s

19
.2

2s
1
5
.5
0
s

16
.3

2s
19

.8
0s

23
.7

6s
19

.9
8s

19
.9

1s
h
ai

lfi
n
d
er

11
2.

56
s

64
.2

8s
61

.0
0s

45
.4

6s
94

.1
8s

65
.4

9s
45

.3
9s

44
.9

3s
44

.3
8s

4
4
.2
4
s

k
r-

v
s-

k
p

12
4.

37
s

78
.3

2s
84

.1
0s

62
.6

6s
64

.1
4s

81
.1

8s
76

.2
0s

5
9
.9
4
s

55
.9

5s
80

.6
6s

so
y
b

ea
n
-l

ar
ge

98
.4

1s
10

4.
42

s
94

.7
9s

8
4
.6
0
s

10
4.

93
s

12
8.

98
s

99
.3

8s
12

6.
13

s
11

3.
29

s
10

1.
23

s
al

ar
m

20
0.

64
s

11
8.

53
s

18
2.

08
s

9
2
.5
2
s

25
2.

18
s

22
4.

47
s

10
0.

47
s

14
8.

26
s

20
5.

13
s

14
2.

27
s

D
ia

b
et

es
[8

.8
8%

]
[3

.1
3

%
]

28
.0

4s
68

.9
1s

12
6.

22
s

33
.9

9s
39

.5
8s

2
3
.5
7
s

35
.0

5s
[3

.4
5

%
]

sp
on

ge
19

5.
03

s
23

5.
87

s
18

9.
77

s
26

6.
40

s
23

2.
30

s
19

9.
99

s
1
7
5
.0
3
s

20
7.

15
s

21
9.

87
s

23
6.

56
s

zo
o

26
4.

79
s

17
1.

19
s

18
7.

98
s

19
9.

36
s

17
4.

38
s

16
9.

66
s

17
5.

07
s

20
7.

95
s

18
8.

68
s

1
5
9
.7
9
s

ca
rp

o
48

3.
69

s
60

4.
97

s
70

2.
44

s
60

5.
55

s
60

4.
94

s
51

9.
70

s
55

3.
36

s
45

8.
73

s
49

4.
55

s
4
0
1
.8
2
s

lu
n
g-

ca
n
ce

r
67

0.
76

s
61

9.
15

s
6
1
7
.5
7
s

65
3.

24
s

62
5.

52
s

67
8.

90
s

67
3.

10
s

67
2.

04
s

65
3.

10
s

65
3.

10
s

T
ab

le
3:

T
im

es
to

fi
n

d
an

op
ti

m
al

B
ay

es
ia

n
n

et
w

o
rk

fo
r

va
ri

o
u

s
m

a
x
im

u
m

cy
cl

e
le

n
g
th

s
w

h
en

b
o
th

cy
cl

e
fi

n
d

in
g

a
n

d
th

e
su

b
-I

P
ar

e
u

se
d

.
R

es
u

lt
s

u
si

n
g

th
e

su
b

-I
P

on
ly

a
re

sh
ow

n
fo

r
co

m
p

a
ri

so
n

.
P

er
ce

n
ta

g
es

in
sq

u
a
re

b
ra

ck
et

s
a
re

sh
ow

n
w

h
en

th
e

p
ro

gr
am

ra
n

ou
t

of
ti

m
e

or
m

em
or

y,
an

d
in

d
ic

a
te

th
e

re
m

a
in

in
g

g
a
p

b
et

w
ee

n
th

e
b

es
t

d
is

co
ve

re
d

so
lu

ti
o
n

a
n

d
th

e
u

p
p

er
b

ou
n

d
on

th
e

b
es

t
p

os
si

b
le

so
lu

ti
on

at
th

is
p

oi
n
t.

T
h

e
fa

st
es

t
co

n
fi

g
u

ra
ti

o
n

fo
r

ea
ch

p
ro

b
le

m
is

sh
ow

n
in

b
o
ld

.

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

S
u
b
-I

P
3

4
5

6
7

8
9

10
10

0
ca

r
0.

26
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

as
ia

0.
36

s
1.

19
s

0.
53

s
0.

21
s

0.
87

s
0
.1
6
s

0
.1
6
s

0
.1
6
s

0
.1
6
s

0
.1
6
s

in
su

ra
n
ce

0.
83

s
0.

81
s

0.
46

s
0.

31
s

0.
33

s
0.

19
s

0
.1
6
s

0.
35

s
0.

23
s

0.
25

s
M

il
d
ew

1.
20

s
0.

93
s

0.
57

s
0.

52
s

0.
49

s
0.

58
s

0
.2
5
s

0.
26

s
0
.2
5
s

0
.2
5
s

ti
c-

ta
c-

to
e

9.
40

s
9.

38
s

9.
43

s
9
.3
6
s

9.
42

s
9.

49
s

9.
48

s
9.

47
s

9.
51

s
9.

42
s

fl
ag

39
.9

9s
28

.7
0s

1
7
.5
2
s

31
.8

3s
23

.4
7s

19
.4

5s
21

.2
6s

51
.7

3s
35

.0
9s

44
.6

7s
d
er

m
at

ol
og

y
32

.1
7s

28
.1

6s
21

.3
2s

1
7
.1
7
s

21
.7

0s
18

.7
2s

20
.5

8s
28

.1
7s

18
.4

2s
17

.4
0s

h
ai

lfi
n
d
er

11
2.

56
s

50
.1

7s
63

.5
7s

80
.8

5s
51

.9
8s

4
0
.2
4
s

41
.5

0s
41

.0
4s

41
.7

9s
41

.5
8s

k
r-

v
s-

k
p

12
4.

37
s

82
.8

1s
73

.8
7s

97
.6

6s
88

.5
5s

84
.2

1s
12

6.
69

s
7
3
.1
1
s

78
.3

1s
76

.3
1s

so
y
b

ea
n
-l

ar
ge

98
.4

1s
11

5.
07

s
11

2.
34

s
8
3
.9
3
s

98
.5

8s
97

.4
9s

98
.9

3s
96

.8
1s

10
8.

90
s

97
.9

2s
al

ar
m

20
0.

64
s

1
1
2
.5
0
s

20
5.

65
s

19
4.

60
s

17
7.

16
s

28
6.

12
s

17
1.

58
s

18
7.

60
s

20
9.

08
s

22
2.

24
s

D
ia

b
et

es
[8

.8
8%

]
[3

.1
4

%
]

31
38

.3
9s

14
75

.2
4s

66
.6

8s
1
8
.1
7
s

17
2.

92
s

54
.0

1s
18

.6
1s

[3
.4

5
%

]
sp

on
ge

19
5.

03
s

19
3.

05
s

1
8
9
.4
9
s

21
2.

11
s

19
0.

22
s

26
2.

17
s

21
5.

36
s

21
7.

67
s

20
8.

63
s

22
6.

65
s

zo
o

26
4.

79
s

16
0.

25
s

18
4.

17
s

16
5.

67
s

1
3
6
.2
3
s

20
5.

22
s

18
0.

08
s

16
5.

40
s

15
4.

15
s

17
5.

48
s

ca
rp

o
48

3.
69

s
72

4.
91

s
60

4.
03

s
60

7.
85

s
51

0.
74

s
4
0
2
.5
1
s

67
8.

05
s

61
1.

93
s

56
1.

09
s

53
1.

79
s

lu
n
g-

ca
n
ce

r
67

0.
76

s
64

5.
22

s
69

7.
98

s
6
3
8
.3
2
s

64
1.

71
s

67
3.

24
s

69
7.

99
s

69
8.

94
s

71
6.

60
s

71
0.

19
s

T
ab

le
4:

T
im

es
to

fi
n

d
an

op
ti

m
al

B
ay

es
ia

n
n

et
w

o
rk

fo
r

va
ri

o
u

s
m

a
x
im

u
m

cy
cl

e
le

n
g
th

s
w

h
en

cy
cl

e
fi

n
d

in
g

is
u

se
d

fo
ll

ow
ed

b
y

th
e

su
b

-I
P

on
ly

if
th

e
fo

rm
er

fa
il

ed
to

fi
n

d
cu

ts
.

R
es

u
lt

s
u

si
n

g
th

e
su

b
-I

P
o
n

ly
a
re

sh
ow

n
fo

r
co

m
p

a
ri

so
n

.
P

er
ce

n
ta

g
es

in
sq

u
ar

e
b

ra
ck

et
s

ar
e

sh
ow

n
w

h
en

th
e

p
ro

gr
am

ra
n

o
u

t
o
f

ti
m

e
o
r

m
em

o
ry

,
a
n
d

in
d

ic
a
te

th
e

re
m

a
in

in
g

g
a
p

b
et

w
ee

n
th

e
b

es
t

d
is

co
ve

re
d

so
lu

ti
on

an
d

th
e

u
p

p
er

b
ou

n
d

on
th

e
b

es
t

p
o
ss

ib
le

so
lu

ti
o
n

a
t

th
is

p
o
in

t.
T

h
e

fa
st

es
t

co
n
fi

g
u

ra
ti

o
n

fo
r

ea
ch

p
ro

b
le

m
is

sh
ow

n
in

b
ol

d
.

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The best value for the maximum cycle length varied from dataset to
dataset but either 5, 6 or 7 were usually amongst the best settings. In
several cases, the difference between the best maximum cycle length and the
worst could lead to a halving of the solution time. However, other datasets
seemed somewhat insensitive to this parameter. This may reflect the density
of the graph on which the cycle-finding algorithm was used; the more edges
in the graph, the greater the increase in time that would be needed to search
for long cycles though, conversely, the more chance of there being a longer
cycle to find.

Using the sub-IP and cycle finding together produced broadly similar
behaviour for both the methods studied. The better method depends on
whether one considers all examples equally important or the longer ones to
be more significant, and on the maximum cycle length chosen.

5.3. Convex4 Constraints

The constraints based on the convex hull of the 4 node BN polytope can
be added to the problem initially or used as cutting planes. In the case where
they are used as cutting planes, they can be searched for whenever a solution
needs separating or only when no efficacious cluster constraints can be found.

In theory, one could consider adding each of the 7 classes of convex4
constraint in a different manner, but we restrict ourselves here to adding
them all in the same way in order to make exploration of the space tractable.

For each option, the cluster constraint finding algorithm is fixed to a rea-
sonably good setting as determined by the previous experiment. Specifically,
we use cycle-finding initially with the maximum cycle length set to 6 and
then call the sub-IP only if this fails to find a useful cluster constraint.

The results, as shown in Table 5, demonstrate a clear pattern amongst
the different strategies explored. There are occasional exceptions, but the
trend is for the best option to be not using the convex4 cuts or using them as
cutting planes only when other efficacious cuts are not found. Overall, adding
them as cutting planes in this way seldom does much harm and sometime
leads to noticeable improvements.

For a couple of datasets, adding these constraints as cutting planes even
when cluster constraints have been found proves very good. However this
must be weighed against the fact that in many other case this strategy proves
slightly detrimental compared to adding them only when cluster constraints
are not found. Adding the constraints initially rather than as cutting planes
almost never provides an improvement over leaving them out all together,

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

As Cuts Always As Cuts If Fails Initially Never
car 0.01s 0.01s 0.01s 0.00s
asia 0.45s 0.52s 1.55s 0.82s
insurance 0.24s 0.31s 0.32s 0.31s
Mildew 0.82s 0.46s 0.62s 0.46s
tic-tac-toe 7.54s 14.46s 8.36s 9.36s
flag 26.40s 23.31s 29.30s 22.88s
dermatology 23.59s 21.64s 29.38s 21.70s
hailfinder 76.14s 75.81s 69.88s 50.61s
kr-vs-kp 113.11s 101.42s 130.71s 87.43s
soybean-large 117.28s 110.79s 102.46s 92.30s
alarm 73.65s 66.05s 368.55s 175.06s
Diabetes 55.67s 67.09s 67.14s 67.16s
sponge 298.49s 257.75s 341.64s 192.58s
zoo 325.34s 156.95s 290.39s 137.67s
carpo 983.76s 653.13s 725.95s 519.82s
lung-cancer 620.26s 639.46s 658.59s 638.05s

Table 5: Times to find an optimal Bayesian network for various ways of adding the convex
hull constraints. The fastest configuration for each problem is shown in bold.

and only provides a small help in those few cases. This suggests that any
advantage they bring to tightening the problem is outweighed by the overhead
of having to process all these additional constraints at each LP iteration.

5.4. Close Cuts

A single parameter associated with close cuts is studied. As explained in
Section 4.4, α is the parameter that determines how far between the relaxed
solution and the currently best known solution the point chosen for separation
is. We investigate setting this parameter between 0.1 and 0.9 in increments
of 0.1. α = 0 corresponds to the case where the relaxed solution is separated
(equivalent to close cuts not being used). It should be noted that the heuristic
methods for finding valid BNs will also have an effect on how well close cuts
work. If a heuristic were able to find the true optimum network consistently,
one might expect that cutting near to this optimum (i.e. a large α) might
lead to the search space near the solution being quickly pruned away and the
problem solved.

As before, cycle finding with a maximum length of 6, followed by the

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

sub-IP if necessary is used with the convex hull constraints added as cutting
planes only when efficacious cluster cuts are not found.

The results in Table 6 illustrate that different values of α can have con-
siderable impact on the solution times. In almost all cases, there exists a
value of α that can improve the method over not using close cuts. However,
there is no value of α that consistently outperforms the others. Furthermore,
there is not even a general trend, for example towards larger αs being better
or to the best α increasing as problem difficulty does. Worst of all, αs that
are very good on one dataset are very poor on another dataset. A particu-
larly extreme example is seen in the Flag dataset, where an α of 0.3 gives
an answer in virtually half the time of not using close cuts, but if this α is
increased or decreased by 0.1, the time is over twice that of not using close
cuts.

Overall, it is correct to say that the use of close cuts can make a consid-
erable improvement to the solving time. However, the choice of an α value
that leads to this performance improvement cannot be deduced from these
experiments. The ramifications of this result are returned to in the following
section.

6. Conclusions

In this paper, the Bayesian network learning problem has been explored
as an ILP problem. In particular, attention has been focused on the problem
of finding and adding appropriate cutting planes to speed the solution times.

Various aspects were studied and some found to be generally beneficial
across a range of problem instances. For others, impact was either modest
or erratic on different instances.

Using cycle finding to determine cutting planes was highly effective when
used in conjunction with a sub-IP approach. The impact of adding con-
straints based on the convex hull of smaller BNs was much less evident.
When used in the best way, they improved performance more often than
they degraded it, though for most datasets the difference in runtime was
negligible.

The modest improvement associated with the additional classes of cut
could call into question whether further work on additional cutting planes
based on implied constraints truly merits attention. [20] showed that includ-
ing implied constraints based on the convex hull of of a 3 node BN led to a
measurable improvement, while [4] states inclusion of an implied constraint

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

O
ff

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

ca
r

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

0
.0
1
s

as
ia

0.
53

s
0.

35
s

0.
55

s
0.

61
s

0.
58

s
0.

54
s

0.
37

s
0
.2
7
s

0.
40

s
0.

58
s

in
su

ra
n
ce

0.
31

s
0.

28
s

0.
31

s
0.

29
s

0.
19

s
0.

19
s

0
.1
8
s

0.
27

s
0.

26
s

0.
19

s
M

il
d
ew

0
.4
6
s

0.
63

s
0.

66
s

0.
65

s
0.

55
s

0.
61

s
0.

63
s

0.
71

s
0.

54
s

0.
58

s
ti

c-
ta

c-
to

e
14

.6
2s

10
.3

7s
10

.7
4s

10
.1

2s
10

.4
5s

15
.1

9s
9
.9
9
s

10
.6

5s
13

.3
7s

11
.3

7s
fl
ag

23
.1

0s
47

.4
3s

62
.2

6s
14

.1
7s

64
.0

2s
57

.7
3s

15
.6

2s
14

.5
9s

1
1
.7
5
s

28
.8

8s
d
er

m
at

ol
og

y
21

.4
9s

21
.6

2s
15

.9
3s

26
.3

8s
17

.8
6s

1
5
.6
7
s

21
.1

8s
22

.5
9s

15
.7

3s
19

.4
2s

h
ai

lfi
n
d
er

75
.3

2s
12

7.
84

s
4
1
.0
8
s

89
.2

2s
66

.4
1s

56
.3

4s
56

.4
6s

55
.3

6s
47

.6
3s

58
.8

3s
k
r-

v
s-

k
p

10
4.

46
s

86
.2

2s
62

.9
8s

5
3
.0
7
s

66
.0

8s
83

.1
6s

68
.3

1s
58

.9
2s

64
.3

5s
66

.7
6s

so
y
b

ea
n
-l

ar
ge

11
0.

96
s

11
6.

13
s

95
.3

8s
7
9
.9
6
s

98
.8

0s
10

7.
94

s
91

.2
8s

10
5.

42
s

11
6.

81
s

93
.2

3s
al

ar
m

66
.3

8s
78

.2
9s

70
.6

2s
59

.0
8s

48
.6

4s
46

.5
1s

70
.9

0s
67

.3
5s

4
6
.1
6
s

76
.3

9s
D

ia
b

et
es

67
.4

6s
26

.2
5s

2
4
.7
3
s

20
2.

65
s

58
.3

7s
36

.5
1s

28
.9

4s
36

.7
9s

48
.3

1s
49

.4
0s

sp
on

ge
25

7.
89

s
1
6
3
.2
8
s

32
0.

99
s

18
0.

75
s

22
2.

62
s

29
9.

64
s

32
6.

30
s

23
2.

73
s

23
9.

47
s

27
6.

13
s

zo
o

1
5
4
.3
4
s

18
1.

41
s

20
3.

72
s

22
1.

17
s

17
7.

98
s

23
7.

12
s

22
7.

44
s

20
2.

42
s

19
9.

60
s

15
4.

56
s

ca
rp

o
66

3.
75

s
67

6.
93

s
66

3.
79

s
66

7.
87

s
62

2.
24

s
60

4.
76

s
5
8
6
.3
5
s

78
7.

34
s

62
0.

65
s

64
0.

97
s

lu
n
g-

ca
n
ce

r
64

2.
65

s
63

5.
13

s
5
9
2
.5
6
s

72
6.

35
s

63
9.

21
s

61
8.

50
s

62
2.

12
s

71
0.

86
s

60
3.

47
s

60
5.

03
s

T
ab

le
6:

T
im

es
to

fi
n

d
an

op
ti

m
al

B
ay

es
ia

n
n

et
w

o
rk

fo
r

va
ri

o
u

s
va

lu
es

o
f

cl
o
se

cu
t

p
a
ra

m
et

er
α

.
O

ff
is

eq
u

iv
a
le

n
t

to
α

=
0
.

T
h

e
fa

st
es

t
co

n
fi

gu
ra

ti
on

fo
r

ea
ch

p
ro

b
le

m
is

sh
ow

n
in

b
o
ld

.

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

that at least one node has no parents led to a dramatic decrease in solving
time. On the other hand, a generalisation of cluster constraints to k-cluster
constraints proposed by [3] has failed to prove to be of any notable benefit.
Clearly, different types of implied constraints vary vastly in their usefulness
and further theoretical work is needed to understand why some are beneficial
for this problem and others are not.

The results of the close cuts experiments are particularly interesting.
Close cuts could almost always provide an improvement in solving time, but
only for the correct value of the α parameter, and there was no consistently
good value for this parameter across datasets. A similar observation could
also be made for the maximum length of cycle to search for in the earlier ex-
periment. Though the technique was of clear benefit, the solution times for
similar maximum lengths varied quite considerably and no value was best
across the whole dataset. These findings suggest that rather than fix the
solver’s method to some compromise ‘best’ configuration, a future approach
may be to change the settings for individual problems. The issue then be-
comes predicting appropriate solver settings for a previously unseen problem
instance. [26] provides a step in this direction. Based on very simple char-
acteristics of a problem instance they are able to determine quite accurately
which of two Bayesian network learning algorithms will be quicker. However,
further work is clearly needed for this to be applicable here, where there are
larger numbers of options from which to choose and where one might reason-
ably expect choosing from amongst various configurations of a single solver
to be more complex than deciding between two entirely separate solvers.

Acknowledgements

This work has been supported by the UK Medical Research Council
(Project Grant G1002312).

[1] D. M. Chickering, Learning Bayesian networks is NP-complete, in:
D. Fisher, H. Lenz (Eds.), Learning from Data: Artificial Intelligence
and Statistics V, Springer-Verlag, 1996, pp. 121–130.

[2] T. Jaakkola, D. Sontag, A. Globerson, M. Meila, Learning Bayesian
network structure using LP relaxations, in: Proceedings of 13th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS
2010), Vol. 9, Journal of Machine Learning Research Workshop and
Conference Proceedings, 2010, pp. 358–365.

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[3] J. Cussens, Bayesian network learning with cutting planes, in: F. G.
Cozman, A. Pfeffer (Eds.), Proceedings of the 27th Conference on Un-
certainty in Artificial Intelligence (UAI 2011), AUAI Press, 2011, pp.
153–160.

[4] J. Cussens, Maximum likelihood pedigree reconstruction using integer
programming, in: Proceedings of the Workshop on Constraint Based
Methods for Bioinformatics (WCB-10), 2010.

[5] W. L. Buntine, Theory refinement on Bayesian networks, in:
B. D’Ambrosio, P. Smets, P. Bonissone (Eds.), Proceedings of the 7th
Conferenece on Uncertainty in Artificial Intelligence (UAI 1991), Mor-
gan Kaufmann, 1991, pp. 52–60.

[6] G. E. Schwarz, Estimating the dimension of a model, Annals of Statistics
6 (2) (1978) 461–464.

[7] H. Akaike, A new look at the statistical model identification, IEEE
Transactions on Automatic Control 19 (6) (1974) 716–723.

[8] E. Brenner, D. Sontag, SparsityBoost: A new scoring function for learn-
ing Bayesian network structure, in: Proceedings of the 29th Conference
on Uncertainty in Artificial Intelligence (UAI 2013), 2013.

[9] M. Scanagatta, C. P. de Campos, M. Zaffalon, Min-BDeu and max-BDeu
scores for learning Bayesian networks, in: Proceedings of Probabilistic
Graphical Models 2014, Vol. 8754 of Lecture Notes in Artificial Intelli-
gence, Springer, 2014.

[10] N. Sheehan, M. Bartlett, J. Cussens, Improved maximum likelihood re-
construction of complex multi-generational pedigrees, Theoretical Pop-
ulation Biology 97 (2014) 11–19.

[11] T. Silander, P. Myllymäki, A simple approach for finding the globally
optimal Bayesian network structure, in: Proceedings of the 22nd Confer-
ence on Uncertainty in Artificial Intelligence (UAI 2006), AUAI Press,
2006.

[12] C. Yuan, B. Malone, Learning optimal Bayesian networks: A shortest
path perspective, Journal of Artificial Intelligence Research 48 (2013)
23–65.

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[13] C. de Campos, Q. Ji, Efficient learning of Bayesian networks using con-
straints, Journal of Machine Learning Research 12 (2011) 663–689.

[14] P. Parviainen, H. S. Farahani, J. Lagergren, Learning bounded tree-
width Bayesian networks using Integer Linear Programming, in: Pro-
ceedings of the 17th International Conference on AI and Statistics (AIS-
TATS), 2014, pp. 751–759.

[15] S. Nie, D. D. Mauá, C. P. de Campos, Q. Ji, Advances in learn-
ing Bayesian networks of bounded treewidth, in: Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.), Advances in
Neural Information Processing Systems 27 (NIPS), Vol. abs/1406.1411,
2014, pp. 2285–2293.

[16] C. de Campos, Q. Ji, Properties of Bayesian Dirichlet scores to learn
Bayesian network structures, in: AAAI-10, 2010, pp. 431–436.

[17] R. M. Karp, Reducibility among combinatorial problems, in: R. E.
Miller, J. W. Thatcher (Eds.), Complexity of Computer Computations,
Plenum, 1972, pp. 85–103.

[18] R. E. Gomory, Outline of an algorithm for integer solutions to linear
programs, Bulletin of the American Mathematical Society 64 (5) (1958)
275–278.

[19] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial prob-
lems, Discrete Mathematics 4 (1973) 305–337.

[20] M. Bartlett, J. Cussens, Advances in Bayesian network learning using
Integer Programming, in: A. Nicholson, P. Smyth (Eds.), Proceedings
of the 29th Conference on Uncertainty in Artificial Intelligence (UAI
2013), AUAI Press, 2013, pp. 182–191.

[21] T. Achterberg, SCIP: Solving constraint integer programs, Mathemati-
cal Programming Computation 1 (1) (2009) 1–41.

[22] D. L. Applegate, R. E. Bixby, V. Chvatal, W. J. Cook, The Travel-
ing Salesman Problem: A Computational Study, Princeton University
Press, 2006.

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[23] W. Ben-Ameur, J. Neto, Acceleration of cutting-plane and column gen-
eration algorithms: Applications to network design, Networks 49 (1)
(2007) 3–17.

[24] D. Johnson, Finding all the elementary circuits of a directed graph,
SIAM Journal on Computing 4 (1) (1975) 77–84.

[25] M. Grötschel, M. Jnger, G. Reinelt, On the acyclic subgraph polytope,
Mathematical Programming 33 (1) (1985) 28–42.

[26] B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, P. Myllymäki, Pre-
dicting the hardness of learning Bayesian networks, in: Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI 2014), AAAI
Press, 2014.

34

	coversheet_journal_article.pdf
	Bartlett_Cussens_2015.pdf

