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ABSTRACT 

The research presented in this thesis integrates theories and techniques from statistical analysis 

and artificial intelligence to develop a more coherent, robust and complete methodology for 

assessing the value of acquiring new information in the context of the oil and gas industry. 

The classical methodology for value of information assessment has been used in the oil and gas 

industry since the 1960s even though it is only recently that more applications have been published. 

It is commonly acknowledged that, due to the large number of data acquisition actions and the 

capital investment associated with it, the oil and gas industry is an ideal domain for developing 

and applying value of information assessments.  

In this research, three main gaps in the classical methodology for value of information are 

identified and addressed by integrating three existing techniques from other domains. Firstly, the 

research identifies that the technique design of experiments can be used in value of information 

for providing a holistic assessment of the complete set of uncertain parameters, selecting the ones 

that have the most impact on the value of the project, and supporting the selection of the data 

acquisition actions for evaluation. Secondly, the fuzziness of the data is captured through 

membership functions, and the expected utility value of each financial parameter is estimated using 

the probability of the states conditioned to the membership functions (in the classical methodology, 

this is conditioned to crisp values of the data). Thirdly, a fuzzy inference system is developed for 

making the value of information assessment, capturing the decision-making human logic into the 

assessment process, and integrating several financial parameters into one.  
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The proposed methodology is applied to a case study describing a value of information assessment 

in an oil field where two alternatives for data acquisition are discussed. The case study shows how 

the three techniques can be integrated within the previous methodology, resulting in a more 

complete theory. It is observed that the technique of design of experiments provides a full 

identification of the input parameters affecting the value of the project and allows a proper 

selection of the data acquisition actions. In the case study, it is concluded that when the fuzziness 

of the data is included in the assessment, the value of the data decreases compared with the case 

where data are assumed to be crisp; this result means that the decision concerning the value of 

acquiring new data depends on whether the fuzzy nature of the data is included in the assessment 

and on the difference between the project value with and without data acquisition. The fuzzy 

inference system developed for this case study successfully follows the logic of the decision maker 

and results in a straightforward system to aggregate decision criteria. Sensitivity analysis of the 

parameters of two different membership functions is made, reaching consistent results in both 

cases. 

 

 

 

 

Keywords: value of information, fuzzy logic, fuzzy inference system, uncertainty, oil and gas industry, 

design of experiments, risk attitude, reservoir. 
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1.1. INTRODUCTION 

The aim of this chapter is to introduce this research project and to outline the subjects underpinning this 

research. The research discussed in this thesis is founded on the classical methodology of the value of 

information (VOI), and applications in the oil and gas industry. It contributes to the development of a more 

robust methodology for valuing data acquisition in projects related to the exploitation of hydrocarbons and 

integrates theories that have not yet been used in classical methodologies, such as the design of experiments 

(DOE), fuzzy logic and fuzzy inference systems (FIS).  

 

1.2. BACKGROUND TO THE THESIS 

VOI is a normative theory (i.e. related to how people should decide in a rational manner) for making 

decisions concerning data acquisition. It was developed in the early 1960s in research by Schlaifer (1959), 

Grayson (1960), Raiffa and Schlaifer (1961) and Newendorp (1967). The purpose of VOI is to assess the 

benefits of gathering information prior to making a decision. 

Most decision-based problems in the real world are characterised by uncertainty, and the oil and gas 

industry is not an exception. Several elements need to be estimated in order to assess the benefits of 

exploring and producing oil and gas fields: (i) the series of future rewards (hydrocarbon production during 

the project period); (ii) the series of current and future investments (the costs of wells, flowlines, surface 

facilities); (iii) future operating costs; (iv) future hydrocarbon prices; and (v) the financial terms included 

in the contract (taxes, royalties, etc.). Of these elements, at least the first four carry uncertainty.  

One of the key aspects of VOI is the possibility of assessing whether it is worthwhile to acquire new 

information, and this depends on the possibility of using new data to change decisions that would be made 

differently without that information. This is an important requirement for meaningful data acquisition and 
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is based on the belief that value is associated with a reduction in uncertainty or an increase in confidence 

(Bratvold, 2007). 

For many of the uncertain input parameters that are responsible for the determination of the value of a 

project, there is nothing that can be done to change the perception of their uncertainties; however, there are 

cases in which data can be collected that can change our understanding of the uncertainties related with one 

or more input parameters, and these changes may impact on the project assessment. 

A review of the published VOI applications in the oil and gas industry (Moras et al., 1987; Gerhardt and 

Haldorsen, 1989; Stibolt and Lehman, 1993) shows that most VOI applications are defined based on 

specific actions. This means that the classical approach is an activity based VOI that assesses the impact 

(positive or negative) of the proposed data acquisition on the project’s value. Using this approach, the 

decision maker loses the chance to take a holistic view of the full set of uncertainties of the project and to 

assess all the (data acquisition) actions that can increase its value, including the possible interactions 

between variables that can influence the best alternative for gathering new data, which is a project-based 

VOI. The authors of this research found only one reference (Coopersmith and Cunningham, 2002) that 

included an attempt to capture a complete view of the potential increase in the project’s value via data 

acquisition; in addition, this reference lacks a methodological approach for reaching that goal and seems to 

be more a declaration of intention than a thorough analysis of this approach for carrying out VOI 

assessments. It is proposed to overcome this existing gap in the classical methodology by using DOE 

techniques. 

As discussed later in Chapter 2 (Literature Review), uncertainty plays a key role in using decision analysis 

techniques to assess decision problems. In the VOI references reviewed in this chapter, uncertainty is 

ascribed to randomness, which is managed using probabilistic tools and techniques. Bellman and Zadeh 

(1970) show, however, that uncertainties arise not only due to randomness (i.e. inaccuracies in measurement 

or a lack of information) but also due to fuzziness in the data. For these authors, this factor is a major source 

of uncertainty in many decision problems. The classical methodology for VOI does not include a 
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consideration of the fuzziness of the data, and this represents a gap in the classical VOI methodology. 

Filling this gap is one of the main contributions of the current work. 

There is also another kind of fuzziness present in the VOI methodology, and this is related to the outcomes 

of the VOI assessment. In classical VOI, the outcomes of a project’s assessments are crisp numbers; 

however, in practice, a decision maker’s reasoning follows fuzzy logic more closely than crisp logic. 

Human logic does not have crisp boundaries in the same way as Boolean logic (zero or one, black or white), 

and involves degrees rather than extreme values. This form of reasoning can be implemented, and 

conclusions can be derived using fuzzy logic and FIS (FIS is explained in Chapter 2). In this research work, 

an FIS is developed to assess the VOI associated with an oil field exploitation project.  

In the 18th century (see Chapter 2, Literature Review), researchers acknowledged that each decision maker 

has a particular attitude to risk that could be described using mathematical expressions. It was also 

understood that a theory for assessing decision problems should include this attitude to risk. Although 

Grayson (1960) and Howard (1966) have shown how risk attitude can be integrated into the classical VOI 

assessment, a review of the published literature on VOI applied to the oil and gas industry shows that the 

risk attitude of the decision maker is rarely included in these assessments; typically, the criterion used to 

assess whether additional data should be acquired is based on the expected monetary value. The use of this 

criterion is equivalent to assuming that the decision maker is risk-neutral, which is generally not the case. 

In the current research, which establishes a complete methodology for VOI, the decision maker’s attitude 

toward risk is included as a fundamental part of the assessment. 

The current study aims to develop a complete VOI methodology that is applicable to projects in the oil and 

gas industry; the distinctive elements of this approach, as compared with the classical one, are the 

integration of theories and methodologies such as DOE, fuzzy logic and fuzzy inference systems for 

assessing VOI decision problems. In the design of the proposed VOI methodology, the decision maker’s 

risk attitude is included as part of the workflow.  
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1.3 VALUE OF INFORMATION IN THE OIL AND GAS INDUSTRY 

The classical approach to VOI has been applied in several domains. The oil and gas industry, characterised 

as making a large number of decisions involving huge amounts of resources, is one domain that can obtain 

great benefits from the use of this methodology.  

In most of the decision problems, several or all input variables have uncertain values, which produces 

uncertainty in the outcomes of the problems; those uncertainties are present because of the limitation of the 

information either due to scarcity, randomness or vagueness. In that sense, acquiring additional data is a 

way to reduce the uncertainty. However, acquiring data has a negative impact in the project’s value either 

due to the cost of the data or because of the delay in implementing the project. VOI is the methodology for 

assessing if acquiring data is worthwhile: it compares the value of the project with the current information 

with the value the project could have if additional data are acquired. 

In the oil and gas industry typically, wells are separated by hundreds of metres to several kilometres, and 

that is the distance between points of hard data, e.g. porosity, saturation, etc.; inferred data are estimated 

between points with hard data, which makes the inferred data have uncertainty; in addition, the way in 

which reservoir properties distributed in nature is very complex, which makes that their description is based 

on randomness. Uncertainties due to measurements and interpretations are also present. All the mentioned 

uncertainties make that taking additional data could be, in particular cases, a convenient manner to reduce 

uncertainty and increase the value of the project. However, due to the cost associated with the acquisition 

of data and the potential delay in the project, getting more data does not always increase the value of the 

project. VOI is the methodology that will tell the decision maker whether acquiring more data is worthwhile.  

In this research, it is proposed to make several changes to the classical VOI approach with the aim of 

optimising its processes and outcomes. 
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1.4 THE CLASSICAL METHODOLOGY FOR VALUE OF INFORMATION 

Through the years, several authors have explained and used methodologies for VOI (Clemen, 1996; 

Newendorp and Schuyler, 2000; Koninx, 2000; Coopersmith and Cunningham, 2002; Bratvold, Bickel and 

Lohne, 2007); however, in most of the applications published, the methodology for VOI is not clearly stated 

and explained.  

During the literature review made by the authors for this research (Chapter 2), several gaps were found, 

which if properly addressed will generate a more robust and consistent methodology for VOI. 

The gaps found are associated with: i) whether the objective of VOI assessment is to prove that one specific 

data acquisition improves the value of the project or to find the data acquisition action that optimises the 

value of the project, ii) acknowledging that, in addition to the uncertainties due to lack of information and 

randomness (see Chapter 2 for a discussion of those terms), there could be also uncertainty due to the 

fuzziness of the data proposed to be acquired, and iii) recognising that decision are made by humans, and 

the tools, algorithms and methodologies helping in the decision-making process should follow a similar 

logic and terms as those used by the decision maker (otherwise, the methodology will be barely used). 

In addition, during the research it was identified that the important concept of utility value (see Chapter 2 

for a discussion on this topic) is scarcely used in the published applications of VOI, although its significance 

was proved by von Neumann and Morgenstern in the 1940s (1944).  

 

1.5 RESEARCH SCOPE 

In this section it will be discussed the justification for making this research work, the research questions 

which we target to answer in this thesis and the contribution to knowledge resulting from this investigation. 
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1.5.1 Research justification 

The three most important justifications of this research work are anticipated as follows: 

1) The classical methodology for VOI is activity-based instead of project-based: it assesses whether 

it is worth acquiring a specific information, but it does not search for which acquisition of 

information maximize the value of the project. 

2) The classical methodology for VOI assumed the data is crisp with no uncertainty due to fuzziness; 

however, data can have uncertainty associated to fuzziness. 

3) The classical methodology for VOI uses Boolean logic for assessing decisions which is different 

from the human logic which characterizes by vagueness. 

In this research, a methodology is developed for carrying out VOI assessments (Chapter 3) that can fill the 

research gaps discussed in Sections 1.2 and 1.4. 

 

1.5.2 Research questions 

Two research questions are raised in the work: 

1) How can the VOI methodology be converted from an activity-based process to a project-based 

process? 

This question is motivated by the observation that the focus of VOI is typically on an assessment of the 

potential increase in the value of the project due to specific data acquisition actions impacting on one 

specific input data; there is no formal and systematic methodology for searching, within the project, for 

several competing data acquisition actions with the objective of maximising the project’s value once all the 

potential alternatives of data acquisition have been considered. In the case of interactions between 

parameters, a given data acquisition action can impact on more than one parameter, and this one-to-many 

relationship should form part of the analysis for VOI optimisation.  
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2) How can the fuzzy nature of data and the fuzzy characteristics of the decision process be integrated 

into the classical VOI methodology? 

This question is prompted by the observation that data in general and reservoir data in particular can be 

fuzzy, and that the uncertainty related to this fuzziness is not captured within the framework of the classical 

VOI.  

In addition, the decision process followed by human beings is based on linguistic variables that obey the 

fuzzy logic, rather than the crisp logic observed in the classical VOI; an FIS can be developed to mimic 

human logic in the VOI assessment.  

 

1.5.3 Contribution to knowledge 

This section shows how the research presented in this thesis has generated a robust set of findings that 

contribute to the body of knowledge in the field of VOI, especially for applications in the oil and gas 

industry. 

The contribution to knowledge of this research work is three-fold: 

1) It integrates the uncertainty associated with the fuzziness of the subsurface data into the VOI 

decision assessment; the classical VOI methodology considers the uncertainty in the data associated 

with randomness and lack of knowledge but does not include the uncertainty due to fuzziness. It is 

proved that the failure to take into account the fuzziness of the data overestimates its value, and 

under certain circumstances, this can affect the final decision on whether to acquire subsurface 

data. 

2) It develops a system for making VOI decisions that resembles a decision maker’s logic; this 

approach is different from the one used in the existing methodology for VOI, which is based on 
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crisp threshold criteria. In addition, the proposed system permits the integration of more than one 

decision criterion into a single criterion used for making the decision. 

3) It develops a holistic approach to determine which of the uncertain input variables have the most 

impact on the project’s value and ranks them; this allows for selecting the data acquisition actions 

that provide more value to the project and assesses the benefits associated with those data 

acquisition actions; this approach pushes forward the classical VOI methodology, which focuses 

on the evaluation of isolated data acquisition activities. 

 

1.6 RESEARCH AIM AND OBJECTIVES 

The aim of this project is to develop a complete methodology for decision making that can assess the value 

of acquiring data in a holistic manner in the context of the oil and gas industry, integrating both the fuzzy 

nature of the data and the fuzzy decision criteria used by the decision maker.  

The objectives of this research are to:  

A. Integrate in the VOI assessment all the uncertain input parameters that impact on the value of 

the project; 

B. Include the fuzzy nature of the data in the VOI assessment; 

C. Develop a VOI decision-making assessment that uses the logical rules followed by the (human) 

decision maker.  
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1.7 RESEARCH METHODOLOGY 

Based on a review of prior work carried out on the VOI methodology applied in the oil and gas industry, as 

well as in other domains,  several gaps in the methodology are identified and some theories and techniques 

are proposed which, when appropriately integrated within the classical VOI methodology, will provide a 

much more robust assessment. 

The identification and ranking of the main uncertain parameters that impact reservoir performance and the 

decision criteria is carried out through the application of statistical methods, DOE techniques, on the 

different production forecasts, which result from smart combinations of the uncertain parameters.   

Fuzzy logic is used to characterise the uncertainty associated with the fuzziness of the data; the 

mathematical model describing the proposed VOI assessment for fuzzy data is discussed in this work and 

it is compared with the classical VOI assessment.  

In this research an FIS is developed for assessing the VOI decision problem using more than one financial 

parameter, the utilities of NPV and IRR.   

This new methodology for VOI is applied to a case study, in order to compare the classical approach with 

the proposed alternative. 

 

1.8 OUTLINE OF THE THESIS 

The thesis is divided into five chapters. The first chapter is the introduction of and justification for the 

research and describes the general background, emphasising the gaps found in the classical VOI approach 

and identifying the theories and methods proposed in this research to fill these gaps. In this chapter, the 

research questions are also discussed, as well as the methodology used in the current study, which is 

compared to the classical methodology for assessing VOI in the oil and gas industry. The theories and 

methodologies integrated within the VOI assessment have been previously used in other domains and with 
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other objectives; it is shown that they can be successfully used to fill the gaps found in the classical VOI 

assessment. 

A literature review is presented in Chapter 2; this draws on the literature related to VOI, describes the 

limitations of existing studies and reviews the theories and methodologies that are used in this research to 

fill the gaps in the classical methodology. This chapter provides the theoretical background supporting the 

VOI assessment and the theories of DOE, fuzzy logic and FIS that are used in this research; in addition, it 

also discusses the importance of including the decision maker’s attitude to risk in the proposed 

methodology. 

Chapter 3 discusses the current VOI methodology and acknowledge its limitations; then, it builds the 

proposed new methodology for VOI using methods and techniques develop on other domains. 

Chapter 4 presents a case study of a VOI assessment based on an oil and gas project. The proposed 

methodology is fully applied in this case study and the results of both the classical and proposed VOI 

methodologies are reported, compared and critically discussed, and explanations for the reasons 

underpinning these results are included, where necessary. 

Chapter 5 revisits the research questions formulated in Chapter 1 on the basis of the results of this research; 

discussion on future researches relevant to the field that were identified during this research is presented in 

this chapter; a final summary of this research is presented at the end.  
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Chapter Two 

 

Literature Review 
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2.1 INTRODUCTION 

This chapter presents the literature review for this research. It draws on the existing academic and practical 

applications of the classical VOI theory to identify the gaps in this methodology and inform other theories 

that can be integrated with the classical approach for generating a more reliable theory for data acquisition.  

This research work is founded on four pillars: the discipline of decision analysis; the classical methodology 

for valuing the gathering of information; the design of experiments; and fuzzy logic and fuzzy inference 

systems; additionally, it assesses risk attitudes using utility functions. These theories are integrated with the 

aim of generating a robust methodology for VOI. This section is dedicated to discussing in more detail 

certain aspects of these disciplines and theories that are especially important in our research. Section 2.2 

discusses the development of decision analysis theory, the origin of expected value as a decision criterion 

for making decisions and the concepts and theory supporting the assessment of the risk attitude of the 

decision maker by means of the utility functions; although this is a fundamental part of decision theory, it 

is rarely used in the VOI applications reported in the oil and gas domain. Section 2.3 discusses the 

development of the value of information theory, in particular in the oil and gas industry, and develops the 

main equations required to make assessments regarding data acquisition. Section 2.4 discusses important 

concepts used in this research, such as uncertainty, risk, probability and decisions. Section 2.5 reviews the 

theory of DOE and the main aspects of this methodology that are used in this research. Section 2.6 explains 

fuzzy logic, fuzzy data and how a fuzzy inference system is implemented in practical applications for 

making decisions; it also includes an update of the equations for assessing value of information (discussed 

in Section 2.3 for crisp data) for the case when the data is fuzzy. 
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2.2 DECISION ANALYSIS, RISK AVERSION AND UTILITY FUNCTIONS 

A decision is choosing what to do or not do, resulting in a desirable outcome (Tang, 2006); Howard (1966) 

defines a decision as an absolute allocation of resources, absolute meaning that it is not possible or it is very 

costly to change back to the original situation before making the decision; so, a decision is the actual search 

for the course of action, not a mental obligation. 

Decision analysis defines the procedures for logically trading off the factors influencing a decision, 

including uncertainties, values and preferences, in a design that models the decision. The last objective of 

decision analysis is to support decision makers to make better decisions. Decision analysis is a normative 

discipline that describes how people should logically make decisions (McNamee and Celona, 2008); 

normative models are distinct from descriptive models, which describe how people make decisions, 

regardless of rationality (Howard, 1988). Howard (1968) described decision analysis as the formal 

introduction of logic and preferences into the decisions through a combination of philosophy, methods, 

practice and applications. Decision making is the most important activity of a manager and, very often, it 

is a difficult task (Taghavifard, Khalili and Tavakkoli, 2009). In decision problems, the decision maker has 

at least two or more alternatives from which to choose which one is more desirable according to his/her 

preferences and values. 

In 1654, Pierre de Fermat and Blaise Pascal proposed using the Expected Value (EV) method to choose 

between alternatives when the value and probability of each alternative are known. According to 

Schoemaker (1982), EV has been the major paradigm and the ruling method of making decisions since the 

1940s. EV incorporates the chances of realizing the alternatives and, according to Hansson (2005), it is the 

approach used most often for decision making under risk. 

Using EV, the decision maker chooses between risky alternatives by comparing their EV, i.e., multiplying 

the value of all the possible outcomes by their probabilities (Newendorp and Schuyler, 2000). In this 
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definition, value is what matters to the decision maker and, when the value is monetary value, it is called 

Expected Monetary Value (EMV). When EMV is the decision criterion, the decision maker is impartial to 

money (Newendorp and Schuyler, 2000); however, most of the time, people are not impartial to money; 

this limitation of the theory of EV in real case situations was discussed by mathematicians back in the 

seventeenth century, giving rise to the concept of utility. 

There are other methods, besides EV, which suit more simple applications and have been proposed for 

alternative selection in the presence of uncertainty, some of which are (Aguiar, 2004): 

• Maximin or Wald criterion: no information on probabilities, select the alternative with the higher 

minimum. This is a conservative approach for choosing between alternatives and does not use all 

the information available. 

• Maximax criterion: no information on probabilities, select the alternative with the higher 

maximum. This is an optimistic approach for choosing between alternatives and does not use all 

the information available. 

• Hurwicz criterion: the weighted sum of the alternatives with extreme values; the weighted factors 

should sum to one; similarly, to Maximin and Maximax, not all the available information is used. 

• Laplace’s sufficient reason criterion: assign the same probability for each alternative and sum the 

values times probability. 

The first three criteria have important limitations because the chances of realizing the different alternatives 

are not incorporated into the analysis; this means that, because there is no criterion to decide which of these 

three criteria is more suitable, the final assessment will be influenced by the subjectivity of the decision 

maker in selecting one method over the other.  

Laplace’s criterion uses the same probability for each alternative, which is unlikely to occur in a real 

situation. However, all these methods can be considered objective in the sense that once the method is 

decided, the assessment produces the same outcome. 
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In the earlier application of EV, the value was monetary value and the recommendation was to decide 

positively if the expected wealth increased; the probabilities were based on objective frequencies, similar 

to those observed in dice games (Hansson, 2005). 

The expected value of a lottery A with outcomes 𝑥𝑖 and probabilities of occurrence 𝑝𝑖 is 

𝐸(𝐴) = ∑ 𝑥𝑖𝑝𝑖𝑖            (1) 

For the case in which the outcomes form a continuous range of values 

𝐸(𝐴) = ∫ 𝑥
∞

−∞
𝑑𝑝          (2) 

The expected value is the average value of a lottery played many times. Until the middle of the 20th century, 

this concept was used for deciding between lotteries, whose uncertainty is represented by the probabilities. 

This criterion assumes that the decision maker’s only concern is the value of the money. 

Another criterion for choosing between alternatives is the Bayesian which combines the Hurwicz and 

Laplace criteria, using the information of the value of all alternatives and assigning, subjectively, 

probabilities to each alternative. The result of the action is the sum of the value of each alternative times 

their probabilities. The name Bayesian refers to the mathematician Thomas Bayes, who developed the 

theory for updating probabilities based on new information. The Bayesian criterion was not in fact 

developed by Bayes, even though it takes his name. 

In 1713, the mathematician Nicolas Bernoulli posed a problem, now known as the Saint Petersburg paradox, 

in which outcomes using the EV method contradict common sense. This paradox was solved years later by 

his cousin, Daniel Bernoulli in 1738, as cited by D. Bernoulli (1954), using for the first time the concepts 

of utility value (instead of value) and expected utility value (EUV) (instead of expected value) maximization 

for assessing gamblers’ preferences; he realized that the contradiction between the maximization of the EV 

criterion and the decision maker’s common sense can be solved if it is assumed that the value that people 

assign to money, their preferences, is not a linear function of money but can be represented by a logarithmic 

function that describes a diminishing marginal utility for money. 
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The Saint Petersburg paradox consists of a lottery with a fixed entranced fee, in which a fair coin is tossed 

repeatedly until a “tail” appears, which ends the game. If the number of times the coin is tossed until a “tail” 

appears is 𝑘 and the bidder wins 2𝑘−1 units of money, how much would the decision maker be willing to 

pay as an entrance fee to play this lottery? 

Following the criterion of expected value, the decision maker should be willing to pay an entrance fee equal 

to or less than the expected value. The probability that a fair coin shows a tail after k times not having 

shown a tail in the previous k-1 times is 

𝑃𝑘 = (
1

2
)𝑘           (3) 

Consequently, the expected value is   

𝐸(𝐴) = ∑ 𝑥𝑘𝑝𝑘 = ∑ 2𝑘−1(
1

2
)𝑘 = ∑

1

2
= +∞∞

𝑘=1
∞
𝑘=1

∞
𝑘=1       (4) 

This means that, according to the expected value criterion, the decision maker should be willing to pay an 

arbitrarily large amount of money to participate in the lottery; however, the probability that the decision 

maker will win 128 = 27 units of money is less than 1%. Therefore, it is very unlikely to win any important 

amount of money because the probability of occurrence is very low. Thus, contrary to the results of using 

the expected value of money as a decision criterion, most people refuse to pay more than just a few units 

of money to participate in this lottery. 

Daniel Bernoulli realised that the expected monetary value criterion assumes that the same amount of 

money gained or lost might have a different meaning to a person, depending on several factors, which 

means that the appetite for money is not a linear function, e.g., if you have one million dollars your 

preference for winning another million dollars is higher than if you have one billion dollars, or not always 

is doubling the money twice as good. Based on these discussions, Bernoulli suggested that the parameter 

for making a decision should not be the value of money but the utility that the decision maker assigns to 

that money, which is a measure of the desirability or usefulness that the decision maker has. 

This reasoning means that instead of maximising the expected monetary value, what should be maximised 

is the expected utility value, where the utility is a function 𝑢 that assigns to every monetary value a number 
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that represents the person’s utility of that value; the monetary value of a project is its value in money terms 

while the utility value of a project is its value considering the risk attitude of the decision maker. The 

expected utility is 

𝐸(𝑢) = ∑ 𝑢(𝑥𝑖)𝑝𝑖𝑖           (5) 

or for continuous outcomes 

𝐸(𝑢) = ∫ 𝑢(𝑥)𝑑𝑝
∞

−∞
          (6) 

Let us assume that the utility function has a logarithmic form, 𝑢(𝑥) = ln⁡(𝑥), then for the Saint Petersburg 

lottery 

𝐸(𝑢) = ∑ 𝑢(𝑥𝑘)𝑝𝑘 = ∑ ln(2𝑘−1) (
1

2
)
𝑘
= (𝑙𝑛2)∑

𝑘−1

2𝑘
< +∞𝑘𝑘𝑘      (7) 

This proves that using a utility function with a diminishing value of money (ln⁡(𝑥) grows more slowly as 

𝑥 increases) generates an expected value for the Saint Petersburg paradox that is closer to the value that a 

person assigns to this problem.   

Similar results can be obtained with other concave functions, such as squared root or exponential functions. 

In general, a function 𝑢: 𝑅 → 𝑅 is concave on an interval (𝑎, 𝑏)⁡𝑖𝑓⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙 𝑥1, 𝑥2⁡ ∈ (𝑎, 𝑏)⁡𝑎𝑛𝑑⁡𝜆 ∈ (0,1), 

the following inequality holds: 

𝜆𝑢(𝑥1) + (1 − 𝜆)𝑢(𝑥2) ≤ 𝑢(𝜆𝑥1 + (1 − 𝜆)𝑥2)       (8) 

𝑢 is strictly concave if the above inequality is always strict. 

Similarly, a function 𝑢: 𝑅 → 𝑅 is convex on an interval (𝑎, 𝑏)⁡𝑖𝑓⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙 𝑥1, 𝑥2⁡ ∈ (𝑎, 𝑏)⁡𝑎𝑛𝑑⁡𝜆 ∈ (0,1) , 

the following inequality holds: 

𝜆𝑢(𝑥1) + (1 − 𝜆)𝑢(𝑥2) ≥ 𝑢(𝜆𝑥1 + (1 − 𝜆)𝑥2)       (9) 

𝑢 is strictly convex if the above inequality is always strict. 

A person is risk-averse if he prefers the expected value of the lottery or less over the lottery itself, and a 

person is risk-seeking if he prefers every lottery over its expected value or more. 
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The theory for decision making based on Bernoulli’s ideas is called the expected utility theory (EUT), also 

known as the subjective expected utility theory to stress that in some cases the probabilities are subjective 

rather than objective numbers.  

Most people’s risk attitude is described as risk-averse and the corresponding utility functions are concave, 

such as logarithm, exponential and square root functions; however, under specific circumstances, people’s 

attitude can be described as risk-seeking or risk-neutral (for more details see this section below). 

In his work, Bernoulli assumed that: 1) the utility function exists (the issue being the functional form or 

shape of it), and 2) probabilities are objective, resulting from the chances that each option has of occurring 

in a gamble or lottery. EUV combines profitability estimates with quantitative estimates of the degree of 

risk, producing a risk-adjusted decision criterion (Newendorp and Campbell, 1971) that is useful for 

comparing the desirability of different investment alternatives available to the decision maker. The 

Expected Utility Theory (EUT) can be understood as an extension of the Expected Value Theory (EVT), 

including the preferences of the decision maker. 

It was more than two centuries later when Bernoulli’s ideas about risk attitudes were formalized by John 

von Neumann and Oskar Morgenstern (1944) as part of a broader study about the theory of strategies against 

an opponent (Game Theory). Von Neumann and Morgenstern (vNM) developed a mathematical theory 

consisting of four axioms; completeness, transitivity, continuity and independence, which are the necessary 

and sufficient conditions for ensuring that the decision maker’s attitude towards risk can be described 

quantitatively by a utility function that completely describes his/her value system with respect to money. 

When the decision maker’s preferences follow those axioms, the decision maker is called a rational decision 

maker; in the case that the set of outcomes is infinite, the sure-thing axiom should be added to the four 

axioms, to ensure the existence of the utility function. vNM theory was a significant step in the theory of 

decision making because it ensures the existence of a utility function as long as the decision maker’s 

preferences follow a set of axioms. 
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What vNM developed was a set of minimum axioms which, if satisfied by the decision maker’s preference 

system, secure the existence of a utility function, with the properties described by Bernoulli. 

The vNM theory lies on the four axioms described below: 

1) Completeness axiom:  For every pair of possible alternatives, A and B, either 𝐴 ≺ 𝐵, 𝐴 ≻ 𝐵⁡𝑜𝑟⁡𝐴 ∼

𝐵. 

This axiom ensures that the decision maker always has some opinion when deciding between alternatives. 

EUT satisfices this axiom as long as the utility function has a finite value. 

2) Transitivity axiom: For every alternative, 𝐴, 𝐵, 𝐶  with  𝐴 ≼ 𝐵⁡𝑎𝑛𝑑⁡𝐵 ≼ 𝐶, it has 𝐴 ≼ 𝐶 

This axiom provides order to the alternatives. EUT satisfies transitivity axioms because utility functions 

are real number functions satisfying transitivity. 

3) Independence axiom: Let 𝐴 and 𝐵 be two lotteries with 𝐴 ≻ 𝐵, and let 𝜆 ∈ (0,1], then for every 

lottery 𝐶, it must hold that 

𝜆𝐴 + (1 − 𝜆)𝐶 ≻ 𝜆𝐵 + (1 − 𝜆)𝐶       (10) 

This axiom implies that when a rational decision maker chooses between two lotteries that are partially 

identical, the decision depends on the difference between the two lotteries, not on the identical part. 

This third axiom makes use of the notion of combining lotteries: let 𝐴 and 𝐵 be lotteries and 𝜆 ∈ [0,1], then 

𝜆𝐴 + (1 − 𝜆)𝐵 is a new lottery where 𝐴 has probability 𝜆 and 𝐵 has probability 1 − 𝜆. 

4) Continuity axiom (or Archimedean axiom): Let 𝐴, 𝐵, 𝐶 be lotteries with 𝐴 ≽ 𝐵 ≽ 𝐶, then there 

exists a probability 𝑝 such that 𝐵 ∼ 𝑝𝐴 + (1 − 𝑝)𝐶 

This axiom makes a reasonable statement that, having three lotteries with an established order of 

preferences, there should be a way to mix between the most and the least preferred lotteries with a similar 

preference as the medium preference lottery. 

The first two axioms of the vNM theory are not related with lotteries, while the other two are.  

In view of the vNM axioms, the EUT can be formulated as follows: 
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Theorem: A preference relation that satisfies the completeness, transitivity, independence and continuity 

axioms can be represented by an EUT functional. 

Because the four axioms are very reasonable and it is typically said that a reasonable person obeys them, 

EUT is a good prescriptive theory of decisions under risk. 

The achievement of the vNM theory is that it progresses EUT from the special and concrete ideas of 

Bernoulli to a very general and abstract formulation.   

Bayes (1764) developed a method, Bayes’ theorem, for updating probabilities based on new information. 

However, Bayes’ theorem does not specify how to estimate the original or prior probabilities.  

The utility function described by Bernoulli and vNM theories contains the decision maker’s attitude towards 

risk.  Let us assume that the utility function is an increasing function 𝑢: 𝑅⁡ → 𝑅, which represents the 

decision maker’s preferences over lotteries on his or her wealth, where a lottery is a set of outcomes or 

consequences with their corresponding probabilities of occurrence 𝐹:𝑋⁡ → ⁡ [0,1]. It will be assumed that 𝑢 

is differentiable as needed and, given a continuous lottery, the expected utility is: 

𝐸𝐹(𝑢) ≡ ∫𝑢(𝑥)𝑑𝐹(𝑥)          (11) 

Similarly, the expected wealth for a given 𝐹 is: 

𝐸𝐹(𝑥) ≡ ∫𝑥𝑑𝐹(𝑥)          (12) 

A comparison of Equations (48) and (49) defines the risk attitude of the decision maker. A decision maker 

whose preferences are described by the inequality in Equation (13) is called a risk-averse decision maker: 

𝐸𝐹(𝑢) ≤ 𝑢(𝐸𝐹(𝑥))          (13) 

Similarly, if the decision maker’s preferences are described by Equation (14), he or she is called a risk-

neutral decision maker: 

𝐸𝐹(𝑢) = 𝑢(𝐸𝐹(𝑥))          (14) 
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Finally, a decision maker with preferences described by the inequality in Equation (15) is called a risk-

seeker: 

 𝐸𝐹(𝑢) ≥ 𝑢(𝐸𝐹(𝑥))          (15) 

These criteria can also be described in terms of the concavity of the utility function, using a set of conditions 

relating risk attitude to the shape of the curve: 

A) A decision maker is risk-averse if and only if 𝑢 is concave; 

B) A decision maker is risk-neutral if and only if 𝑢 is linear; 

C) A decision maker is a risk-seeker if and only if 𝑢 is convex. 

 

The risk attitude can be represented using utility functions and, for a risk-averse decision maker, the utility 

function is curved and opens downward (a concave shape), which converts money units ($) into utility 

units. Figure 2.1 represents a risk-averse utility function. 

 

Figure 2.1. Risk-averse function 
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The utility function can be specified using a table of data, a graph (as in Figure 2.1) or a mathematical 

expression. In the case of a mathematical expression, a typical risk aversion function has the form of an 

exponential, square root or logarithm: 

𝑈(𝑥) = 1 − 𝑒−𝑥/𝑅, exponential         (16) 

𝑈(𝑥) = √𝑥, square root          (17) 

𝑈(𝑥) = log⁡(𝑥), logarithm          (18) 

All of these functions are characterised by an upward slope and a concave shape. The upward slope indicates 

that an increase in value corresponds to an increase in utility, while concavity implies that the individual is 

risk averse. 

In practical applications, a decision maker is risk-averse when the value he or she assigns to a lottery is 

lower than the expected value of that lottery; in other words, a sure thing is preferred for a lower value 

rather than the lottery for its expected value. The secure value that the decision maker is willing to pay for 

the lottery is the certainty equivalent; the difference between the expected value of the lottery and the 

certainty equivalent that the decision maker assigns to the lottery is called the risk premium, which is the 

amount that the decision maker is willing to pay to avoid the risk of the lottery. Figure 2.2 shows how 

expected utility, certainty equivalent, expected value and risk premium all tie together; by definition, the 

utility function of the certain equivalent is the expected utility of the gamble (the decision maker is 

indifferent to the choice between them). 

Following Equations (11) to (15), the certainty equivalent is: 

𝐶𝐸 = 𝑢−1(𝐸𝐹(𝑢))          (19) 
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Figure 2.2. Certainty equivalent, utility function and risk premium 

 

However, although most people show a risk-averse attitude most of the time, there are cases in which their 

attitudes are risk-seeking, meaning that a decision maker is willing to pay more for a lottery than its 

expected value; this is typically the risk behaviour shown by lottery gamblers. In general, risk attitude is 

not a fixed characteristic of individuals but depends on the circumstances of everyone. 

Figure 2.3 shows a typical curve representing the behaviour of risk-averse, risk-seeking and risk-neutral 

individuals. 
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Figure 2.3. Risk attitudes for individuals 

The certainty equivalent can be used to rank projects: a project with a higher certainty equivalent has a 

higher value according to the decision maker’s risk preferences. 

Based on the previous definition of certainty equivalents and risk premium, it can be easily understood that 

for a risk-averse attitude, the risk premium is positive, and for a risk-seeker, it is negative. The set of 

conditions relating risk attitude to the certainty equivalent are: 

1) A decision maker is risk-averse if and only if 𝐶𝐸 ≤ 𝐸𝐹(𝑥) for all 𝐹 

2) A decision maker is risk-neutral if and only if 𝐶𝐸 = 𝐸𝐹(𝑥) for all 𝐹 

3) A decision maker is risk-seeking if and only if 𝐶𝐸 ≥ 𝐸𝐹(𝑥) for all 𝐹 

One important measure of risk aversion is the absolute risk aversion, or the Arrow‒Pratt coefficient of 

absolute risk aversion (Pratt, 1964), defined by: 

𝑟𝐴(𝑥) = −
𝑢′′(𝑥)

𝑢′(𝑥)
           (20) 
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where 𝑢′′measures the concavity of the utility function and 𝑢′ normalises the concavity, since the utility 

representation is unique under any affine transformation; the larger the 𝑟𝐴 the more risk-averse is the person. 

For 𝑢, a monotone increasing function, negative values of 𝑟 correspond to risk-seeking persons while 

positive values of 𝑟 correspond to risk-averse persons. 

The general characteristics of the utility function in describing different risk attitudes have been discussed 

above. However, there is no mathematical method for computing these utility functions. There are two 

semi-quantitative methods for determining the decision-making utility function: (i) an assessment based on 

certainty equivalents, which involves an iterative calculation of the certainty equivalents for several lotteries 

until the utility function is constructed for a sufficient number of points, using a fixed probability 

distribution; and (ii) assessments using fixed amounts and varying probabilities to construct the utility 

function.  

The exponential utility function is a particular case, as it has several unique characteristics. It depends on 

the tolerance factor, RT, which has a simple interpretation in terms of lotteries: RT is the largest value a 

decision maker is willing to risk in a gamble with a 50% probability of winning (Y) $ and 50% probability 

of losing (Y/2) $. This allows us to estimate the utility function via a process other than the two discussed 

in the previous paragraph. Pratt (1964) proved that, in this case, the certainty equivalent can be 

approximated by: 

𝐶𝐸 ≈ 𝜇 −
0.5𝜎2

𝑅𝑇
          (21) 

where 𝜇 and 𝜎 are the expected value and the variance of the outcomes. 

In an exponential utility function, the larger the RT, the more risk-seeking the decision maker; conversely, 

the smaller the RT, the more risk-averse the decision maker. 

Howard (1988) suggests, based on experience, that, for a company, a reasonable estimate value for RT is 

1.24 times company sales or 6.4% of company total sales or 15.7% of company equity. 
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As discussed previously, even though the concept of utility values has been acknowledged before the 

development of the VOI methodology, most of the reported applications do not use it. This research 

recognises the importance of using utility values and includes it in the workflow for evaluating VOI 

decisions; the risk attitude of the decision maker is an integral part of the VOI methodology developed in 

the case study discussed in Chapter 4 of this thesis. 

vNM theory is known as expected utility theory under risk; this theory is concerned with the assessment of 

risky prospects where the outcomes (or utility values) and the probabilities of the outcomes are known. In 

decision analysis nomenclature, this theory assumes that the lottery is known. The assumption that 

probabilities are known is an important characteristic of this theory and also a limitation in assessing real 

decision problems. This limitation gave rise to further developments that contributed to the formulation of 

the expected utility theory under uncertainty based on subjective probabilities, and to the Bayesian theory, 

which is described below. 

Jacques Bernoulli (uncle of Nicolas and Daniel Bernoulli) (1713) defined the concept of subjective 

probabilities for the first time (in the book “Ars conjectandi” published 8 years after his death) as the degree 

of confidence a person has for the alternatives available, as cited by Hansson (2005). It was Ramsey (1926) 

who claimed that for decision under uncertainty, it is feasible for the decision maker to estimate the 

subjective probabilities for different alternatives associated with that decision. Years later, De Finetti (1937) 

discussed subjective probabilities and proposed that probability may not exist in any substantial sense, being 

just a numerical artefact of the uncertain property created by the observer (Mongin, 1997). 

Founded on the works of Bernoulli, Ramsey, De Finetti and von Neumann and Morgenstern, Savage (1954) 

established a set of seven postulates (Karni, 2014) that are the necessary and sufficient conditions for 

representing the decision maker’s preference by the expectations of a utility function on the set of possible 

consequences weighted with a set of subjective probabilities, where the utility function is a real-value and 

bounded function, unique up to positive affine transformation, and the probability is a unique, nonatomic 

and finitely additive probability measure (existence and uniqueness of utility and probability). The key 
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point to understand is that Savage’s theorem does not assume the existence of probabilities, which vNM 

does. Savage’s theory is based on the idea that options can be valued using subjective probabilities and 

utilities that can be derived as long as the decision maker’s preferences follow Savage’s postulates. 

Savage’s theory proposes to infer from the decision maker’s choices the prior probabilities (his beliefs) and 

utility function (his attitude toward risk) involved in his decision-making process. What Savage’s model 

means is that if a decision maker follows the seven postulates shown below, then it secures the existence of 

the prior probabilities and utility function for that decision maker. 

Savage’s model is based on three sets: S or the set of states, C or the set of consequences and F or the set 

of choices which map from the set of states to the set of consequences and are called acts. Decisions are 

characterised by a preference relation ≥ on F: f ≥ g means the act f is preferred or as preferred as act g. The 

seven postulates supporting the theory of Savage are: 

Postulate 1, weak order: the preference relation is a transitive and complete binary relation of F. 

Postulate 2, sure-thing principle: for all acts, 𝑓, 𝑓′, ℎ  and ℎ′ and for every event 𝐸, 𝑓𝐸ℎ⁡ ≥ 𝑓𝐸
′ℎ if 

and only if 𝑓𝐸ℎ
′ ≥ 𝑓𝐸

′ℎ′. 

Postulate 3, ordinal event independence: for every non-null event 𝐸 and all constant acts, 𝑥 and 𝑦, 

𝑥 ≥ 𝑦 if and only if 𝑥𝐸𝑓 ≥ 𝑦𝐸𝑓 for every act 𝑓. 

Postulate 4, comparative probability: for all events 𝐸 and 𝐸′ and constant acts 𝑥, 𝑦, 𝑥′ and 𝑦′ such 

that 𝑥⁡ > 𝑦 and 𝑥′ > 𝑦′, 𝑥𝐸𝑦 ≥ 𝑥𝐸′𝑦 if and only if 𝑥𝐸
′ 𝑦′ ≥ 𝑥𝐸′

′ 𝑦′. 

Postulate 5, non-degeneracy: for some constant acts 𝑥 and 𝑥′, 𝑥 > 𝑥′ 

Postulate 6, small-event continuity: for all acts 𝑓, 𝑔⁡and ℎ, satisfying 𝑓 > 𝑔, there is a finite partition 

(𝐸𝑖)𝑖=1
𝑛  of the state space such that, for all 𝑖 , 𝑓 > ℎ𝐸𝑖𝑔  and  ℎ𝐸𝑖𝑓 > 𝑔 

 Postulate 7, dominance: for every event 𝐸 and all acts 𝑓 and 𝑓′, if 𝑓 > 𝑓′𝐸
⁡ (𝑠) for all 𝑠 in 𝐸 then 

𝑓⁡ ≥ 𝑓′𝐸
⁡  and if 𝑓′(𝑠) > 𝑓𝐸

⁡  for all 𝑠 in 𝐸 then 𝑓′ ≥ 𝑓𝐸
⁡  
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Savage’s theorem formulates that the postulates 1 to 7 are the necessary and sufficient conditions for the 

representation of the decision maker’s preferences by the expectations of a utility function on the set of 

consequences with respect to a probability measure on the set of events. 

In most situations in the real world, objective probabilities are not known and, for this kind of uncertainty, 

vNM theorem does not work. However, Savage’s theorem provides us with a consistent method that can 

be used for making decisions, even in these situations. 

Savage’s model, once it is proven that the decision maker’s preferences satisfy the seven axioms, is named 

the expected utility value under uncertainty, and it uses the following steps: 

1) Assign subjective probabilities to the available alternatives; 

2) Assign utility values to the consequence of the actions; 

3) Estimate the expected utility of each lottery; 

4) Compare numerically different lotteries and select the one that maximizes the value. 

For practical applications, the use of subjective or Bayesian probability is a modification of Laplace’s 

criteria and vNM theory, improved by the knowledge and experience of the decision maker or analyst. 

In this way, there are two versions of the EUT: 1) EUT under risk, also known as von Neumann-

Morgenstern theory (vNMT), where the probabilities associated with the outcomes are known and the 

unknown information is the decision maker’s attitude towards risk, which is described with relations of the 

type “more desirable than” and is quantified via the utility function, and 2) EUT theory under uncertainty, 

also known as Subjective Expected Utility Theory (SEUT), which is supported by Savage’s work, where 

both the decision maker’s attitude towards risk and the associated probabilities, relations of the type “more 

likely than”, describing the decision maker’s beliefs in the likelihood of the events, are unknown; SEUT is 

also known as Bayesian decision theory. Any application of the Bayesian approach for decision making 

should follow the four principles of Bayes, described below: 
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1) The decision maker should have a coherent set of probabilistic beliefs, which means formal 

coherence or compliance with the mathematical law of probability. 

2) The decision maker has a complete set of probabilistic beliefs, which means he assigns a subjective 

probability to each proposition. 

3) When exposed to new evidence, the decision maker changes his beliefs in accordance with Bayes’ 

theorem, which is discussed below. 

4) A rational decision maker chooses the option with the highest expected utility.  

 The probability theory is founded on several axioms: 

1) The probabilities of each outcome must lie between 0 and 1, 0 ≤ 𝑝𝐴 ≤ 1 where 𝑝𝐴 is the probability 

of outcome 𝐴. 

2) The sum of the probabilities of all outcomes must add up: for two mutually exclusive outcomes, 

the probability that both one and the other occur is the sum of the individual probabilities. 

3) The total probability (the probability of the set consisting of all the outcomes) must equal 1: for a 

set of mutually exclusive and collectively exhaustive outcomes, the probability of that set is 1. 

4) Conditional probability: given two outcomes 𝐴 and 𝐵, the probability of both occurring at the same 

time is called joint probability and is written as 𝑃(𝐴⁡𝑎𝑛𝑑⁡𝐵). The conditional probability of 

outcome 𝐴 given that the outcome⁡𝐵 occurs is written as 𝑃(𝐴|𝐵) and is given by: 

𝑃(𝐴|𝐵) = ⁡
𝑃(𝐴⁡𝑎𝑛𝑑⁡𝐵)

𝑃(𝐵)
          (22) 

where 𝑃(𝐵) is the probability of outcome 𝐵. 

5) Independence: two events 𝑋 and 𝑌, with outcomes 𝐴1, … , 𝐴𝑛 and outcomes 𝐵1, … , 𝐵𝑚 , 

respectively, are independent if and only if 

𝑃(𝐴𝑖|𝐵𝑗) = 𝑃(𝐴𝑖)          (23) 

 for all possible outcomes 𝐴𝑖 and 𝐵𝑗. 
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6) Conditional independence: two events 𝑋 and 𝑌 (with outcomes, 𝐴1, … , 𝐴𝑛 and 𝐵1, … , 𝐵𝑚, 

respectively) are conditionally independent given an event 𝑍 (with outcomes 𝐶1, … , 𝐶𝑙 ) if and only 

if 

𝑃(𝐴𝑖|𝐵𝑗, 𝐶𝑘) = 𝑃(𝐴𝑖|𝐶𝑘)         (24) 

for all possible outcomes 𝐴𝑖, 𝐵𝑗 and 𝐶𝑘. 

7) Complements: Let �̅� be the outcome that is the complement of 𝐵, that is, �̅� occurs if and only if 𝐵 

does not occur. 

8) Total probability of an event: for any two events 𝐴 and 𝐵, the following is true: 

𝑃(𝐴) = 𝑃(𝐴⁡𝑎𝑛𝑑⁡𝐵) + 𝑃(𝐴⁡𝑎𝑛𝑑⁡�̅�) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴|�̅�)𝑃(�̅�)    (25) 

9) Bayes’ theorem: because of the symmetry of the definition of conditional probability, the following 

is true: 

𝑃(𝐵|𝐴)𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵)         (26) 

 This can be rearranged to have 

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
          (27) 

 which, after expanding the total probability as described in 7), can be written as 

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴|𝐵)𝑃(𝐵)+𝑃(𝐴|�̅�)𝑃(�̅�)
         (28) 

This equation is referred to as Bayes’ theorem and is the basis for value of information assessment. 

SEUT is a central theory of the present economic theory; it explains how people should behave under 

uncertain conditions and, in that sense, it is a normative theory. However, as a descriptive theory of how 

people actually behave, there have been long debates based on counterexamples that show contradictions. 
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One of the critiques of the SEUT approach was posed by Allais in 1953, as cited by van de Kuilen and 

Wakker (2006); Allais, working on the economic feasibility of exploring assets in Algeria, proposed 

examples of decision problems where the common-sense choices contradict the SEUT approach, violating 

the independence axiom (Hansson, 2005) (see Allais’s paradox below in this section). 

The development of a normative theory is highly important to advise the decision maker on how to make 

decisions; however, it is important to understand how people make decisions in reality, whether those 

decisions are rational and how they impact the benefits (Welsh and Begg, 2008). 

Kahneman and Tversky (1979) analysed the responses in surveys taken on different groups of people that 

were exposed to a set of decision questions. They concluded that: 1) people have the tendency to make 

decisions in terms of deviations from a reference point, while EUT is defined in terms of a net wealth; 2) 

the utility functions that people use to make valuations are different for losses than for gains (risk-averse 

for gains and risk-seeking for losses) and the “feel” of loss is stronger than the “feel” of gain for equivalent 

amounts, and 3) people tend to weight outcomes according to a “decision weight”, not the probabilities 

(most people overweight low probabilities and underweight high and medium probabilities). For solving 

these issues, they proposed a descriptive decision theory known as Prospect Theory. 

The vNM EUT is a prescriptive theory in the sense that it shows how decisions should be made; however, 

it is not necessarily the way people decide. This is the reason for the development of theories for describing 

how people deviate from EUT or descriptive theories. 

The vNM EUT was tested against decision problems posed in surveys that question the validity of the EUT 

for representing actual decision making. Here two examples are shown, in the form of surveys, explaining 

why the EUT is not able to capture the decisions taken by humans. 

Asian disease paradox: for a country expecting to have an outbreak of an unusual disease that is expected 

to kill 600 people, two alternatives have been proposed to combat the pandemic, Table 2.1.: 
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Table 2.1. Asian disease outbreak – alternatives 1 and 2. 

ALTERNATIVE 1 ALTERNATIVE 2 

Number of people 

saved from the 

disease 

Probability 

(%) 

Number of people 

saved from the 

disease 

Probability 

(%) 

200 100 600 33 

  0 66 

 

 

This question was posed in a survey and 72% preferred alternative 1. 

For the same disease outbreak, two other alternatives were questioned, Table 2.2.: 

 

Table 2.2. Asian disease outbreak – alternatives 3 and 4. 

ALTERNATIVE 3 ALTERNATIVE 4 

Number of deaths 

from the disease 

Probability 

(%) 

Number of deaths 

from the disease 

Probability 

(%) 

400 100 0 33 

  600 66 

 

 

This question was posed in the same survey, with 78% preferring alternative 4. 

However, this is a contradictory result because alternatives 1 and 2 are the same as 3 and 4, respectively. 

This contradictory result can be explained because of the way the problem was framed; this is the “framing 

effect”. In the first example, two cases are compared in positive terms or gains: 200 people saved versus a 

33% probability of saving 600 people; in these situations, people tend to be risk averse. The second example 

is the same as the first but posed in negative terms or losses: 400 people to die versus a 66% probability 

that 600 people will die; in these situations, people tend to be risk-seeking.  
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The Asian disease paradox is an example of the “framing effect”, which means people decide by making a 

comparison with a “frame” or point of reference and the choice of the frame can be influenced by the way 

the problem is phrased. 

Another case is the well-known Allais paradox that has been presented in several ways, one of which is 

included here: the decision maker has two decisions (1 and 2) to make each with two alternatives (A, B, C 

and D), Tables 2.3. and 2.4.: 

Decision 1: 

 

Table 2.3. Allais paradox – alternatives A and B. 

ALTERNATIVE A ALTERNATIVE B 

Win (MMUS$) Probability (%) Win (MMUS$) Probability (%) 

1 100 5 10 

  1 89 

  0 1 

 

 

Decision 2: 

 

Table 2.4. Allais paradox – alternatives C and D. 

ALTERNATIVE C ALTERNATIVE D 

Win (MMUS$) Probability (%) Win (MMUS$) Probability (%) 

1 11 5 10 

0 89 0 90 
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Surveys indicated that 82% of people prefer A over B and 83% prefer D over C. This means that the 

perception of the probability of winning nothing is larger between A and B than the small difference 

between alternatives C and D. This is an example of people overweighting small probabilities. 

Choosing A for the first decision and D for the second decision is in contradiction to the EUT. 

Let us assume that, for the best and the worst outcomes, 𝑈($0) = 0 and 𝑈($5⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛) = 1, then 

𝐸𝑈(𝐴) = 𝑈($1⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛)         (29) 

𝐸𝑈(𝐵) = 0.10 + 0.89𝑈($1⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛)        (30) 

If A is preferred to B 

𝐸𝑈(𝐴) > 𝐸𝑈(𝐵)          (31) 

or 

𝑈($1⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛) > 0.91          (32) 

From decision 2 

𝐸𝑈(𝐶) = 0.11𝑈($1⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛)         (33) 

𝐸𝑈(𝐷) = 0.10           (34) 

If D is preferred to C 

𝑈($1⁡𝑚𝑖𝑙𝑙𝑖𝑜𝑛) < 0.91          (35) 

These contradictory results show that these decisions are not consistent with the EUT. Kahneman and 

Tversky (1981) attributed the lack of consistency to the certainty effects, by which they mean the tendency 

of people to increase the value of the certain outcomes versus the uncertain ones. 

There is other experimental evidence that shows that people make decisions that do not always follow the 

EUT; however, this theory remains the most reliable one for how people should make decisions. 

There are several ways to assess utility functions. Two of the most frequently used are: 1) based on the 

certainty equivalents, and 2) based on probabilities (for more details on this topic see Clemen, 1996). These 

methods are dependent on the decision maker’s preferences. Similarly, because of the nature of probability 
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assignment, different analysts will get different results depending on their assignment of probabilities 

(Aguiar, 2004). 

All the previous progress toward building a theoretical framework to make decisions that include the 

preferences of the decision maker has not significantly permeated the world of real applications. In the 

analysis made by Corner and Corner (1995) of the published decision analysis applications from 1985–

1995, 67% of those applications used the expected value as a decision-making criterion instead of the 

expected utility value. Howard (1988) reported that the decision maker’s attitude towards preferences is of 

real practical concern in only 5–10% of business decision analyses, even though the concept is a 

fundamental part of decision-making theory. 

However, Keefer (1991) showed that, in some cases, including the risk aversion attitude of the decision 

maker can change the assessment. Similarly, Kirkwood (2002) concluded, based on a set of artificial cases, 

that expected utility analysis led to different conclusions than expected value analysis for many cases, and 

suggested a straightforward way of identifying when that might happen. 

In 1999, Hammond proposed a variant of Savage’s utility function approach by considering the case where 

the domain of consequences is state dependent (“constant acts” mapping states and consequences may not 

be always true) and deriving a method to estimate subjective probabilities and utilities. 

The oil and gas industry should be one of the domains that benefit more from all these developments, 

considering the large number of decisions and their associated cost. Grayson (1962) discussed and 

compared, for the first time, the workflow of the classical and Bayesian approach in a decision associated 

with the drilling of an exploration well, highlighting the advantages of the latter approach. Newendorp 

(1967) presented the pioneering application of utility theory concepts to a decision problem consisting of 

deciding whether to drill an oil production well; in his work, Newendorp recognized that obtaining 

probability estimates for the outcomes that might occur from drilling a well is a complex problem in itself, 

and he decided to focus on the selection of the value, keeping the chances of the alternatives occurring as a 
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separate problem to be addressed in future work. Newendorp argued that EUT provides a value system that 

is superior to EMV because it includes the risk preferences of the decision maker in addition to losses or 

gains, turning it into a better approach for making drilling investment decisions. Newendorp pointed out 

that constructing a functional representation of a decision maker’s risk preference is the main obstacle to 

using utility functions to value a decision problem, which is the reason why he dedicated his PhD thesis 

work to developing a method, based on surveys of drilling decision makers, to build representative utility 

functions. Utility theory allows the decision maker’s preferences and biases regarding money to be included 

qualitatively in the expected value criterion, producing an EUV for each alternative (Newendorp and 

Campbell, 1971). In the meantime, Arps and Arps (1974) explored decisions concerning oil and gas 

explorations without using either utility or subjective probabilities in favour of a more traditional approach 

for decision making based on a “break even” and “gambler’s ruin” criterion to make decisions, concluding 

that the greater the available risk capital, the greater the risk that the operator can take. 

Most applications of decision analysis in the oil and gas industry are related to western countries; however, 

Hirakawa and Kato (1972) discussed the need to include the uncertainty in project valuation through the 

use of decision analysis tools and how new information (perfect information) can impact the valuation of 

the project. 

Even though the oil and gas industry is characterized by taking large numbers of very costly decisions in 

situations of great uncertainty, the number of reported cases using EUT is very limited. Applications of 

EUT can be found in Silbergh and Brons (1972), who explore different methods to quantify project 

profitability and include a section describing utility theory for considering decision maker preferences. 

Newendorp and Campbell (1971) briefly discussed using a utility function, although in most of the work 

EVT was used. Cozzolino (1977) proposed a simplified utility framework for risk representation supported 

by three axioms that uniquely suggest that the utility function should be an exponential function and used 

that utility function for describing decision maker preference for drilling an exploratory well in an oil field. 

In 1978 Cozzolino discussed the traditional way to introduce risk in project valuation: 1) through increasing 



38 
 

the discount factor—the higher the risk of the project, the higher the interest rate, and/or 2) an excessively 

high cut-off rate of return; he elucidated the problems associated with including risk in the discounted value 

of money and presented the utility function theory from a practical point of view with several examples 

taken from the oil and gas industry. He introduced the term “risk-adjusted rate” or RAD, which is equivalent 

to the term certainty equivalent in utility theory nomenclature. MacKay (1995) acknowledged this 

development and introduced one of the first computer applications of these theories and applied it to several 

cases related to the oil and gas industry. Akindele and Shapiro (1978) used utility function concepts in the 

context of the problem associated with generating the probability distribution of the profitability index of a 

project; they acknowledge that the utility function describes the amount of risk someone would take 

involving money under conditions of uncertainty. Walls, Morahan and Dyer (1995) developed a proprietary 

software for ranking oil exploration projects based on the use of EUT, allowing managers to evaluate 

projects with a consistent risk attitude policy and to rank projects based on overall performance; sensitivities 

to risk parameters are applied during this process; the valuation measure was the certainty equivalent and 

they used the exponential utility function for its ease of use, good approximations to other general forms of 

utility and because it is useful for treating multiple independent projects separately. Begg, Bratvold and 

Campbell (2003) stated that the use of utility theory in the decision making allows for incorporating the 

risk-attitude of the decision maker and the relative values for incremental increases in money. Walls (2005) 

discussed how to estimate the utility functions’ parameters for ranking a portfolio of projects in the 50 

largest US-based oil companies over a 20-year period; he concluded that the risk attitude for a company 

impacts its performance—highly risk-averse companies perform worse than poorly risk-averse ones; 

similarly, risk tolerance increases as companies become larger. Vilela, Oluyemi and Petrovski (2017) 

compared the VOI assessments using values and utility values and discussed the results of sensitivity 

analysis on the value of the exponential factor, concluding that the assessment is impacted depending on 

the degree of risk aversion of the decision maker. 
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Rose (2004) pointed out that there is a need to continue monitoring a firm’s level of risk aversion because 

of the changing corporate and industry environment, as well as the changing technologies developed for 

the Exploration and Production (E&P) business. Routine comparison and analysis of a company’s risk 

aversion results in a consistent and robust decision-making policy. 

It has been seen that decision analysis and risk preference concepts have permeated the theory and 

application of decision making in the oil and gas industry. One of the key decisions is data acquisition and 

the value it provides to the project where it is inserted. In the next section, the VOI in the oil and gas industry 

is discussed.  

 

2.3 VALUE OF INFORMATION IN THE OIL AND GAS INDUSTRY 

This section discusses, first, the main milestones in developing the methodology of VOI; in the second part, 

the focus is on VOI in relation to the oil and gas industry and, in the third part it develops the mathematical 

formulation of the VOI theory. However, it is sometimes difficult to separate the development of the theory 

from the applications in the oil and gas industry because some of the key developments that drove the theory 

development were strongly related to applications in the oil and gas industry.  

VOI is a prescriptive methodology to assess the value that gathering data in the future may add to the present 

value of a project. VOI gives no value to uncertainty reduction but aims to make the best decision based on 

the underlying uncertainties (Bratvold, Bickel and Lohne, 2007). VOI is part of the broader Decision 

Analysis discipline discussed in Section 2.2. 

In a project, investment decisions are made at some point in time and those investments have subsequent 

monetary consequences. Data gathering is a possible investment decision. Data gathering has a cost 

(investment). Does this data gathering generate monetary benefits compared with the no-data gathering 

option? If so, it is worth gathering the data. 
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Raiffa and Schlaifer (1961), Raiffa (1968) and Schlaifer (1969) developed the fundamental concepts and 

tools of VOI in the context of business administration; their goal was to enable business administrators to 

make wiser decisions. Their approach consists of using statistical inference and sampling tools in practical 

problems of decision making under conditions of uncertainty, where additional information about the state 

of the world can be obtained through experimentation. Before them, Grayson (1960) published his 

dissertation (converted into a book the same year), applying the VOI methodology to drilling decisions to 

be made by oil and gas operators, where uncertainties are exceptionally great; Grayson’s work is the first 

reference showing the use of utility theory and subjective probability theory applied to an oil and gas 

decision problem that the authors of this research are aware of. Grayson (1962) used statistical inference 

nomenclature to analyse the drilling decision and the value associated with gathering additional 

information. 

The next milestone for VOI in the oil and gas industry was the PhD thesis of Newendorp (1967), who 

discussed the necessity of developing and using the risk attitude of the decision maker as part of the VOI 

assessment; he discussed, specifically, the use of the exponential utility function to capture the decision 

maker’s risk attitude. 

Newendorp (1972) discussed in detail the logic, mathematical proof and methodology of Bayes’ theorem 

(developed by Thomas Bayes in 1763), which is a fundamental mathematical tool behind VOI (this 

reference to Bayes’ theorem did not include comments on VOI). He also discussed the concept of sequential 

sampling or sequential data acquisition. Subsequently, further research and applications expanded the scope 

of the subject and provided more robustness to the methodology. 

Even though Dougherty (1971) did not present any novelty to the theory of VOI, he discussed, in a concise 

manner, the tools of VOI for the oil and gas industry and included several realistic examples of applications. 

Warren (1983) discussed a methodology for deciding between initiating or rejecting a project and deferring 

the decision until more information is acquired, using a field development decision problem as an example. 
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Lohrenz (1988) presented four examples in the petroleum engineering domain, using decision trees to value 

data acquisition. 

Silbergh and Brons (1972) wrote their paper at a time when the use of decision analysis and VOI was still 

a novelty in the oil and gas industry. They reviewed standard methods of profitability valuation, such as 

Profit Discounted by the Cost of Money to the Firm, Discounted Cash Flow and Rate of Return, showing 

the limitations of these methods when valuing uncertain projects, and discussed concepts such as utility 

functions and VOI. The importance of this paper lies in bringing the development and application of, what 

at that time was a new theory of VOI, to real-world problems. 

In Moras, Lesso and MacDonald (1987), a different type of VOI application is discussed; the aim of this 

paper is to determine the value associated with different numbers of observation wells to monitor 

underground gas storage reservoir pressure so as to avoid gas migration and estimating the optimum number 

of observation wells using reservoir simulation tools. It is one of the first applications found in the literature 

where VOI and reservoir modelling are used in conjunction. 

Gerhardt and Haldorsen (1989) contributed to the use of decision analysis tools, especially VOI, showing 

in simple examples how these methodologies work, e.g. in a long term well test on a vertical well, a polymer 

pilot project and an extended production test on a horizontal well. Other applications, such as that of Dunn 

(1992) for the estimation of well log information, and Stibolt and Lehman (1993) on the value of seismic 

information in an exploration asset applied as a European call option, broadened the scope of the VOI 

methodology in the oil and gas industry. Many of the initial developments and applications of VOI in the 

oil and gas industry were in the subsurface exploration domain. Rose (1987) described exploration activities 

as a series of investment decisions, whether to develop a project, acquire additional data or modify the 

hydrocarbon interest sharing. 

In the subsurface domain, appraisal activities are those consisting of information-gathering with the 

objective of reducing reservoir uncertainties that may affect the field development; consequently, VOI has 
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an important contribution to the assessment of appraisal activities, which was discussed in detail by 

Demirmen (1996) for the two types of appraisal activities, screening and optimization. This is a major 

contribution to VOI which effectively enlarged the scope of VOI assessment to a broader audience in the 

oil and gas industry. 

Newendorp and Schuyler (2000) developed fundamental ideas related to VOI, including examples from the 

exploration and appraisal of oil and gas projects. Koninx (2000) discussed VOI from a methodological 

perspective, adding examples related to the value of 3D seismic acquisition and appraisal to clearly define 

the hydrocarbon composition. In other research, Coopersmith and Cunningham (2002) proposed a step-

wise methodology to facilitate VOI assessment and, through SPE-related publications, Bratvold, Bickel and 

Lohne (2007) showed that, although the use of systematic qualitative methods in VOI has increased in 

recent years, it is still far from being a standard application, even when large investments are involved. 

In the more than 50 years since Grayson’s work, very few real VOI applications have been published 

beyond some occasional reports, even in the case of large capital investments (Bratvold, Bickel and Lohne, 

2007). 

Begg and Bartvold (2002) introduced alternative concepts for assessing the value of an uncertain project, 

such as the value of flexibility, a complementary methodology to VOI. Kullawan, Bratvold and Bickel 

(2014) discussed an important application of VOI in a geosteering operation in which a large number of 

real-time operations are executed day to day, demonstrating the flexibility of the VOI methodology in 

adapting to challenging circumstances. Similarly, Clemen (1996) and Suslick and Schiozer (2004) 

discussed applications and methods which enriched the VOI process. 

The first step in applying the classical VOI method is to define a set of 𝑛 discrete states of nature (known 

as ‘cases’) 𝑠1, ……𝑠𝑛 that describe the range of all possible project outcomes. Each state has a probability 

of occurrence 𝑝(𝑠𝑖), where (Clemen, 1996): 

∑ 𝑝(𝑠𝑖) = 1𝑛
𝑖=1            (36) 
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The probabilities in Equation (36) are known as “prior probabilities”, since they represent the current belief 

(i.e. before the acquisition of new data) regarding the likelihood that a state will occur. Experts assign these 

probabilities based on their experience and judgment. 

Let us now consider a decision problem in which 𝑚 alternative solutions are included in a set A: 

𝐴 = {𝑢1. 𝑢2. 𝑢3………𝑢𝑚}         (37) 

For each pair (each alternative 𝑢𝑗 and state of nature 𝑠𝑖) there is a value 𝑢𝑗𝑖 that will materialise in the future 

if 𝑢𝑗 and 𝑠𝑖 both occur.  

The expected value (𝐸𝑉) corresponding to the 𝑗𝑡ℎ alternative is defined as: 

𝐸𝑉(𝑢𝑗) = ∑ 𝑢𝑗𝑖𝑝(𝑠𝑖)
𝑛
𝑖=1           (38) 

The decision criterion that is most often used is the selection of the alternative with the maximum 𝐸𝑉: 

𝐸𝑉(𝑢∗) =
𝑚𝑎𝑥𝐸𝑉(𝑢𝑗)

𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
          (39) 

Equation (39) represents the value of the project without information (i.e. with the current information). In 

the subsurface domain, this typically includes several uncertainties in input parameters, which will in turn 

result in uncertainties in the outcomes. 

There are situations in which additional data may be acquired (in the future) that could narrow the 

uncertainty in the input parameters responsible for the spread (uncertainties) in the outcomes. The 

acquisition of these data would affect the value of each discrete state and would also modify the 

probabilities assigned to each state. The net effect of the changes in the values and probabilities of the states 

(cases) is a change in the value of the project.  

In general (Bratvold et al., 2007): 

𝑉𝑂𝐼 = 𝐸𝑉𝑤𝑖𝑡ℎ⁡𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡⁡𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛      (40) 
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The values 𝐸𝑉𝑤𝑖𝑡ℎ⁡𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 and 𝐸𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡⁡𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 represent what it is believed the outcomes of the 

project would be in two different future situations. 

Let us assume that the outcomes resulting from the acquired data are discretised in the following set 𝑋 of 𝑙 

values: 

𝑋 = {𝑥1, ………… . , 𝑥𝑙}          (41) 

Here, the elements of set 𝑋, 𝑥1, … . . 𝑥𝑙 are the values that are measured or estimated during the data 

acquisition process; they may be values of porosity, permeability, pressure or depth, for example (with their 

corresponding units). The reliability probabilities 𝑝(𝑥𝑘|𝑠𝑖) are assigned by experts in the same way as the 

prior probabilities in Equation (36). These reliability probabilities measure the likelihood that the data 

accurately identify the states of nature. Since real-world data are imperfect, the reliability probabilities are 

always less than one. In the Bayesian inference system, the concept of imperfect data is the opposite to that 

of perfect data, which represents an ideal (not a real-world) concept and assumes that these data can 

accurately predict the state of nature.  

The reliability probabilities are flipped using Bayes’ theorem to generate the posterior probabilities, as 

shown in Equation (42): 

𝑝(𝑠𝑖|𝑥𝑘) =
𝑝(𝑥𝑘|𝑠𝑖)𝑝(𝑠𝑖)

𝑝(𝑥𝑘)
          (42) 

The denominator in Equation (42) is the marginal probability of the new data 𝑝(𝑥𝑘), which is defined using 

the total probability theorem given in Equation (43): 

𝑝(𝑥𝑘) = ∑ 𝑝(𝑥𝑘
𝑛
𝑖=1 |𝑠𝑖)𝑝(𝑠𝑖)         (43) 

Given a data outcome 𝑥𝑘, the 𝐸𝑉 for the 𝑗𝑡ℎ alternative is: 

𝐸𝑉(𝑢𝑗|𝑥𝑘) = ∑ 𝑢𝑗𝑖𝑝(𝑠𝑖
𝑛
𝑖=1 |𝑥𝑘)         (44) 

where 𝐸𝑉(𝑢𝑗|𝑥𝑘) is the expected value of the project for the 𝑗𝑡ℎ alternative and the data outcome 𝑥𝑘. 
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The optimum alternative is that which maximises the 𝐸𝑉: 

𝐸𝑉(𝑢∗|𝑥𝑘) =
𝑚𝑎𝑥𝐸𝑉(𝑢𝑗|𝑥𝑘)

𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
         (45) 

The unconditional maximum 𝐸𝑉 (i.e. the 𝐸𝑉 of the project considering the data acquisition outcomes) is 

the sum of the conditional 𝐸𝑉 weighted with the corresponding marginal probabilities: 

𝐸𝑉(𝑢𝑥
∗) = ∑ 𝐸𝑉(𝑢∗|𝑥𝑘)𝑝(𝑥𝑘

𝑚
𝑘=1 )              (46) 

Finally, the VOI is the difference between the 𝐸𝑉 of the project with information and the 𝐸𝑉 of the project 

without information (Bratvold et al., 2007), as given in Equations (46) and (39): 

𝑉𝑂𝐼 = 𝐸𝑉(𝑢𝑥
∗) − 𝐸𝑉(𝑢∗)         (47) 

 

If there were no uncertainties in a problem, making a decision concerning data acquisition would be a 

straightforward problem consisting of assessing the optimum course of action. However, uncertainty is 

everywhere.  

Uncertainty reduction through data acquisition is worthwhile only if it can change a decision and the 

expected benefit of uncertainty reduction, mitigating the downside risk and capturing the upside 

opportunities, these being higher than its cost. Data acquisition is worthwhile when its outcomes changed 

our knowledge of the uncertain variables, increasing the value of the project (Bratvold, Bickel and Lohne, 

2007). 

Uncertainty, risk and probability are terms used frequently in this research; understand their meaning and 

significance is very important to properly frame our research problem and the solutions proposed.  
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2.4 UNCERTAINTY, RISK, PROBABILITY AND DECISIONS 

Uncertainty is an adjective used to characterise a quantity that is not known accurately; it is said that a 

quantity carries uncertainty when it is not possible to assign to it an accurate value without doubt. 

At the beginning of his well-known book, Knight (1921) proposed to reserve the term uncertainty for a non-

quantifiable or unmeasurable quantity and the term risk for a quantity susceptible to measurement or 

quantifiable. This statement has been criticised (Begg, Bratvold and Welsh, 2014), arguing that all 

uncertainty is quantifiable. However, a few chapters later, Knight, expands his dissertation on subjective 

probabilities and makes a further distinction between risk and uncertainty—risk means that the values of 

the alternatives and their objective probabilities are known, and uncertainty means that, while knowing the 

values of the alternatives, an objective value for their probabilities is not known.  

Luce and Raiffa (1957) stated that decisions are taken in one of the following states: 1) certainty, when 

each action is known to result in a specific outcome; 2) risk, when each action is known to result in one of 

a set of outcomes with a known probability; 3) uncertainty, when each action results in one of a set of 

outcomes where the probabilities are unknown, and 4) ignorance, when each action results in an unknown 

outcome with unknown probability (Hansson, 2005). 

Probability is how the likelihood of an event occurring is measured (Clemen, 1996). Probability theory has 

two main branches, the frequentist and the Bayesian approaches.  

The frequentist inference approach of probability draws conclusions from sample data and figures defined 

by its frequency. The origins of this approach to probability can be found in Aristotle and, later, in Poisson 

and Gauss (Simon, 2006). This is the framework on which methodologies of significance testing (Fisher, 

1973), statistical hypothesis testing (Neyman, 1961 and Pearson, 1895) and confidence intervals (Neyman, 

1961) are based. In this approach, the information resulting from testing is used in analysis and, 

consequently, there are no subjectivities on the parameters. 
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The Bayesian inference approach of probability draws conclusions based on the beliefs or knowledge of 

the analyst. The “prior” probability about the states of nature is assigned and, once new information is 

added, the “posterior” probability of the state can be estimated (updated probability), which is used to make 

inferences. The term Bayesian derives from the extensive use of Bayes’ theorem, which was introduced by 

Thomas Bayes in 1763. The use of the Bayesian approach was further developed by Wald (1949) and 

Savage (1954). Megill (1977) argued that in no other industry does the subjective probability play such an 

important role as in the oil and gas industry. 

These two branches of probability theory, frequentist and Bayesian, serve to assess two different terms, 

variability and uncertainty. Variability describes the multiple values that a quantity can have, and 

uncertainty describes our inability to characterize a quantity by a number due to lack of knowledge, random 

nature of the quantity or its vagueness. These two terms are frequently confused, affecting good decision 

assessment (Begg, Bratvold and Welsh, 2014).  

Uncertainty is a result of our incomplete knowledge about the world or incumbent system (McNamee and 

Celona, 2008). When there is uncertainty about something, that means it is not known if an event is true or 

false (Begg, Bratvold and Welsh, 2014). 

Lack of knowledge is an expression used to characterise a state when part or all of the information about a 

quantity is unknown; e.g. in the description of an oil and gas field, data are acquired in the wells, such as 

porosity values; however, between wells, porosity has an unknown value which is characterised by saying 

that there is lack of knowledge about porosity values between wells.   

Risk considerations involve the size of the investment regarding budget, potential gain or loss, and outcome 

probability. Properties of nature can be measured or determined within some degree of accuracy, which 

makes them uncertain by nature with a degree of uncertainty that could vary from very small to very large 

and all the intermediate values; subsequently, any quantities derived from them carry uncertainty too. 

However, following Taghavifard, Khalili and Tavakkoli (2009), business decision making is always made 
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in conditions of uncertainty. Authors such as Rose (1987), Newendorp and Schuyler (2000), Macmillan 

(2000) and Simpson et al. (2000) agree that uncertainty is part of the decision-making process and it is a 

major issue for effective capital investment. 

Uncertainty is implicit everywhere in the oil and gas industry (Bratvolt and Begg, 2006), and it is the reason 

behind the underperformance of many projects (Begg, Bratvold and Campbell, 2003). Bashear, Becker and 

Gabriel (1999) analysed the performance of E&P companies from 1977–1996. They concluded that, 

although many companies screen projects based on an internal rate of return between 15% and 25%, the 

average investment return for the 20-year period was 5.5% with a maximum of 7.6% and minimum of 

3.4%. That low performance occurs even through the high oil prices from 1986–1996. Begg and Bratvold 

(2002) discussed statistics taken during the period 1990–2001, which show that both major and independent 

oil and gas companies underperformed when compared with the standard share index in the USA. 

McVay and Dossary (2012) showed, using probabilistic modelling, that a moderate overconfidence bias 

(underestimating of uncertainty) and optimism bias can result in an expected disappointment of between 

30–35% of the estimated Net Present Value (NPV), while greater degrees of overconfidence and optimism 

can produce more than 100% deviation with respect to estimated NPV. The modelling results agree with 

the industrial performance in the 1990s; these deviations are attributed to poor project assessment and 

selection due to uncertainty bias. 

Randomness occurs when there is no pattern or law that governs the outcomes of an event and those random 

events are difficult to predict; in cases when a process is too considerably complex to be explained by 

simple equations, it is described as random process; e.g. in oil and gas reservoirs, several complex processes 

are described as random, such as the sand distribution in a reservoir.  
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Caers (2011) predicted that there are two sources of uncertainties: 

A) uncertainties due to randomness: because of the randomness of nature, some processes are 

unpredictable and chaotic. 

B) uncertainties due to limited understanding: limited or lacking knowledge of the analyst; depending 

upon what information is available , whether it has happened or not before and how that relates to 

the future. 

 

Probability theory provides the tools and techniques for quantifying the degree of these kinds of uncertainty. 

It measures our degree of belief in the event occurring; probabilities are assigned based on judgment rather 

than on measure, as in quantities like length, porosity or temperature (Begg, Bratvold and Welsh, 2014). 

However, randomness and lack of knowledge are not the only sources of uncertainty. According to Bellman 

and Zadeh (1970), there is another source of uncertainty that is associated with fuzziness, which is one of 

the main sources of uncertainty. Fuzziness can be present in the goals, the constraints and the consequences 

of a problem. 

The tool to manage fuzziness is not probability, which assigns a value quantifying the likelihood that an 

event belongs to a set, but fuzzy theory, which assigns a value quantifying the degree to which an event 

belongs to a set. 

Quantifying uncertainty in the initial phases of a project makes it possible to assess risk and plan for a range 

of probable project outcomes (Peake, Abadah and Skander, 2005), capturing the outcome uncertainties. 

There are different manners to classify the reservoir uncertainties.  
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For subsurface oil and gas appraisal projects, Demirmen (2001) classified the uncertainties into three types, 

uncertainty in hydrocarbon-in-place, uncertainty in well or reservoir productivity and uncertainty in fluid 

properties. However, a more complete classification of uncertainties is discussed by Corre, de Feraudy and 

Vincent (2000), who define five types of subsurface uncertainties: 

Geophysical uncertainty 

Geophysical uncertainty is related to any of the geophysical processes: acquisition, processing and 

interpretation (Corre, de Feraudy and Vincent, 2000). Tyler et al. (1996) and Sandsdalen et al. (1996) 

included the following as the sources of the more significant uncertainties: 

A) Uncertainties and errors due to depth conversion methods; 

B) Uncertainties and errors due to the seismic-to-well tie; 

C) Uncertainties and errors in horizon picking; 

D) Differences of geological interpretation; 

E) Uncertainties in pre-processing and seismic migration; 

F) Uncertainties in the top reservoir amplitude map 

Geological uncertainties 

Geological models carry uncertainties due to different geological schemes, the nature of reservoir rocks, 

extent and properties, and the sedimentary concept (Corre, de Feraudy and Vincent, 2000). The most 

significant sources of geological uncertainties are: 

A) Uncertainty in gross rock volume; 

B) Uncertainty in the extension and orientation of sedimentary bodies; 

C) Uncertainty in the net-to-gross of the different layers; 

D) Uncertainty in the fluid contacts; 

E) Uncertainty in the porosity values and distribution; 

F) Uncertainty in distribution, shape and limits of the reservoir rock types;  
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G) Uncertainty in facies distribution; 

H) Uncertainty in permeability values and distribution 

Petrophysical uncertainties 

Petrophysical data comes from wells drilled, which even in a developed field, account for less than 0.1% 

of the total reservoir volume. On top of that, reservoirs typically have different degrees of heterogeneity, 

which makes reservoir properties highly uncertain, especially away from the wells. There is also uncertainty 

associated with measuring, intrinsic difficulties due to borehole and borehole fluids, and changes in the 

samples from the hole to the laboratory. 

Dynamic uncertainties 

Dynamic uncertainties are those affecting the flow of fluids inside the reservoir, such as relative 

permeability, fault transmissibility, horizontal barriers, well injectivity, well damage, well productivity 

index, and the vertical-to-horizontal permeability ratio, among others (Corre, de Feraudy and Vincent, 

2000). 

Geochemical uncertainties 

These uncertainties are related with the identification of different paleoenvironments, the ages and maturity 

of hydrocarbons, migration and accumulation processes, and reservoir continuity; appropriate geochemical 

assessment of hydrocarbons  can enhance petroleum discovery rates and improve the efficiency of reservoir 

development plans. 

Geomechanical uncertainties 

Knowing the stress regime (normal, strike-slip, or reverse) is a key element for well direction placement 

and fracture design; another important variable is the mud weight required to drill the well during the 

different phases; mud weight increases with deviation when horizontal stresses are low; however, mud 

weights are higher in the strike-slip regime, and there could be a large variation with drilling direction, 
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especially at higher deviations. When no wells have been drilled in new exploration areas, estimation of 

mud weights can have considerable uncertainties. Currently, field development uses reservoir 

characterisation techniques that include mechanical properties of the field and initial stress distribution 

together with dynamic models for assessing the dynamic stress evolution of the field when production and 

injection occur. 

Fluid uncertainties 

Uncertainties in oil, gas and water characterization are very common in the reservoir, especially in the initial 

stages of development. The most significant are: 

A) Uncertainties in fluid characteristics in different areas of the reservoir; 

B) Uncertainties in the compositional analysis; 

C) Uncertainties in the fluids’ interfacial tension; 

D) Uncertainties in volumetric measurements in the PVT analysis; 

E) Uncertainties due to sampling inaccuracies; 

F) Laboratory uncertainties and equipment calibration 

Bratvold and Begg (2006) refer to the research done by Merrow (2003), who studied more than 1,000 

exploration and production projects with investment between 1 million – 3 billion US$, observing that more 

than 10% of them showed at least two of the following forms of underperformance compared with the 

original plan: cost growth (more than 40%), time slippage (more than 40%) and 1st year operability (less 

than 50%), which they argued are a consequence of poor understanding of the uncertainties, which leads to 

overestimating returns or underestimating the risk of loss. 

Uncertainty is the source of the need for data acquisition; however, uncertainty by itself is not enough to 

gather more data, rather the increase in the value of the project associated with reduced uncertainty is the 

criterion. The fact that most of the decision problems carry uncertainties makes it particularly important to 
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properly assess which parameters carry uncertainty and which are more important than others in the context 

of the full project; this is the subject of the following section.  

 

2.5 DESIGN OF EXPERIMENTS FOR SUBSURFACE ANALYSIS 

Most of the references discussed so far on the methodology to calculate VOI consider “isolated” data 

gathering activities in the context of a project’s value. However, references for a holistic assessment of VOI 

activities in the scope of a project are limited. Typically, in the examples shown, a data acquisition action 

impacting one of the uncertainties of the problem is identified and the VOI of that data acquisition is 

computed.  

Koninx (2000) described a three-step process for VOI that is representative of most of the assessments 

reported. In 2002, Coopersmith and Cunningham described a twelve-step process for VOI, which, although 

considering the project in its completeness, lacks a comprehensive methodology for the identification and 

quantification of uncertainties and their interaction. 

However, this approach fails the target and locates the centre of interest in the wrong place; indeed, the 

centre of interest of the VOI is the complete project and the identification and quantification of all the 

uncertainties impacting the project’s value; this failure can be overcome using the methodology discussed 

in this thesis.  

According to Rose (2004), the bias in estimating the parameters controlling the E&P projects is the main 

reason causing the oil companies delivering only about half of the predicted reserves from 1982–2002. This 

statement reflects the importance that the correct identification and valuation of the project’s parameters 

have for the estimation of the value of the project, which impacts the decision-making process, such as 

project investments, development strategy, data acquisition, etc. The biases are present to some extent in 

all decisions and sometimes they interfere with our ability to make decisions consistent with our objectives 

(Begg, Bratvold and Campbell, 2003). 
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Design of Experiments (DOE), also called Experimental Design (ED), is a structured and organized method 

to conduct and analyse controlled tests to assess the factors affecting a response variable. Factors are varied 

simultaneously and independently of each other, making it possible to obtain a causal predictive model. By 

applying DOE, a series of experiments are done while systematically changing the process variables, 

observing and quantifying the changes in the output (Montgomery, 2005). DOE is designed to produce the 

maximum information from the least number of experiments. DOE can improve the performance of a 

process and reduce its variability or production cost (Telford, 2007). 

Until the beginning of the nineteenth century, scientists used one-factor-at-a-time (OFAT) when conducting 

experiments. In OFAT, one factor is varied at a time while the other factors remain fixed at their original 

values (Davin, 2012); this process continues until all factors are varied. OFAT has two main drawbacks: 1) 

it needs a large number of experiments (time and money) and 2) it is not able to capture the interaction 

between parameters. However, testing several variables at the same time can provide information about 

possible interactions between factors (Durakovic, 2017), which is one of the great advantages of DOE. 

DOE was invented by statistician Ronald Fisher (1935) at the Rothamsted Experimental Station, an 

agricultural research station near London; he conducted research with the aim of increasing crop yield in 

the UK and showed how valid conclusions can be drawn efficiently from experiments with natural 

fluctuations in the presence of nuisance variables. 

There are three main approaches for DOE: Classical, Taguchi and Shainin (Tanco, Viles and Pozueta, 

2009). 

1) Classical approach 

Montgomery (2005) affirms that the classic approach to DOE was developed in four stages: 

Stage 1 started in the 1920s with the experimentation carried out by Fisher that characterizes the 

introduction of scientific thinking and the development and application of factorial designs, fractional 

factorial designs and the analysis of variance (ANOVA) in experimental scientific research. Fractional 
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factorial designs were introduced during the 1930s and 1940s as a solution to the large number of 

experiments required by factorial designs. DOE was initially used on agricultural problems, and it was later 

applied in other domains (military and industry by the 1940s): 

Stage 2 started with Box and Wilson (1951), who developed the Response Surface Method (RSM). Box 

also developed DOE for optimizing chemical processes. These authors noticed that industrial experiments 

differ from agricultural experiments in two aspects: Immediacy (the answer can be observed very quickly 

as opposed to agricultural experiments that need long times) and Sequentially (experiments can be planned 

after evaluating other ones). During this stage, several designs, with limited numbers of experiments, were 

developed to estimate quadratic functions, which allow interaction effects between factors to be computed: 

central composite designs (CCD), face central composite (FCD) and the Box‒Behnken design (Ilzarbe et 

al., 2007). In this period, Deming brought DOE concepts to Japan, resulting in improving product quality 

by following Deming’s 14 principles (Deming, 1982). 

Stage 3 started at the end of the 1970s with the increasing interest from industries in improving their 

processes. In the 1970s and 1980s, Box, Hunter and Hunter made key contributions in the area of ED for 

physical experiments in chemistry, chemical engineering and industrial engineering. In this period, the 

approaches from Taguchi and Shainin were developed, which are characterized by their simplicity and 

efficiency. 

Stage 4 started in the 1990s with the development of optimal designs and several software tools for DOE 

analysis, increasing the use of DOE in almost every industry. The computer-aided automatization of 

calculus and plots allow technique simplification. 

2) Taguchi’s approach 

Taguchi’s main focus was the development of robust design and method for quality improvement that 

helped spread the interest and use of DOE in several areas (electronics, aerospace, etc.). Taguchi made his 

developments in Japan during the 1940s and 1950s; however, it was in the 1980s that this approach was 
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introduced in the USA and Europe. Taguchi’s approach was more engineering than theoretical and 

statistical; he believed that a product of quality is one that causes a minimum loss during its lifetime. 

Taguchi developed what is known as Quality Engineering, which consists of three phases: system design, 

parameter design and tolerance design. In system design, the objective is to know the system factors and 

the levels to which the system should operate. In parameter design, the aim is to improve the performance 

of a process or product by adjusting the factor levels (this if the phase related with DOE). During tolerance 

design, the objective is to determine the control parameters for each factor. Taguchi introduced the loss 

function which was an important contribution to statistics. 

Taguchi’s emphasis was to develop tools for the easy application of DOE, and prepared standard DOE, 

graphical tools to assign factors in the design, guides to easy results interpretation, methods to study 

uncontrollable factors using robust design techniques, etc. 

3) Shainin approach 

This approach was protected by Dorian Shainin with intellectual property rights and it was known only by 

his clients. This circumstance means that this approach is rarely discussed in technical forums. 

In 2000, Keki Bhote and Adi Bhote were authorized to publish information on Shainin’s approach because 

Motorola (where Bhote worked) won the 2000 American Management Association's Malcolm Baldrige 

National Quality Award (the first corporation to do so) and the award obliged the winner to share their 

methodologies with other US companies. Shainin’s approach combines new and old techniques in a 

coherent manner that, if applied as suggested, can improve process efficiency. Shainin’s approach proposed 

1) use Pareto’s principle (identify the factor with the main contribution to a process), 2) prefer factorial 

instead of fractional factorial design (identify factors influencing the response variability and reduce the 

variation to reduce the number of factors) and 3) highlight the importance of discussing the design with 

those ultimately responsible for the data assessment (Tanco, Viles and Pozueta, 2009). 
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In summary, the classical approach is the general methodology of DOE which leaves to the analyst the 

selection of the design, variables, levels, etc. using its own criteria and judgements; the freedom of the way 

to perform the analysis comes together with a high level of complexity which is the main limitation of this 

approach: indeed, this was the approach preferred by analysts with strong mathematical or statistical 

backgrounds. 

The Taguchi and Shainin methods look for obtaining products of “quality” which include the DOE 

methodology as part of the assessment; both procedures consist of clearly stated recipes that target 

generating products with low variability or robustness. The Taguchi and Shainin methods were developed 

independently, one in Japan during 1940s and the other in USA during 1950s; both methods try to be simple 

and consider a standard set of experimental designs to make the evaluation be easy. Taguchi and Shainin 

developed their own set of plots for making a quick interpretation of the results. The main controversies 

about the Taguchi approach were about the use of the signal-to-noise ratio as the response, the tools 

proposed for analysing the experiments and the selection of experiments. In the case of Shainin’s approach, 

several tools proposed for this method have been strongly criticised, such as Variable SearchTM and Pre-

ControlTM. 

The Shainin method is considered a method for improving the efficiency. It was stablished as a three-stage 

process characterised by its high efficiency; first, the method identifies all the variables of the problem, and 

several tools (Multy-Vary, Component SearchTM, Paired ComparisonTM) are used to reduce the number of 

variables involved in the process; these tools use DOE and response variation; during the second stage, the 

tool Variable SearchTM is used for sequential experimentation which allows to reduce even more the number 

of variables and permit using the factorial design; other tools (B vs. CTM, Response Surface, Scatterplots) 

are used to confirm and optimise the results; in the third and last stage, tools such as PositrolTM, Process 

certification and pre-control are used to secure sustainable results.  

Each project has a metric that measures the value of the project under different assumptions of the input 

parameters. The value of the project is typically measured by the net present value (NPV) or internal rate 
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of return (IRR) that the project is expected to deliver over its duration. In the oil and gas industry, these 

financial parameters or objective functions depend on the expected production and price of hydrocarbons 

over the period plus the anticipated investments, operating costs and contractual elements. 

As previously discussed in this chapter, the uncertainty in hydrocarbon production is a function of various 

subsurface parameters such as reservoir permeability, water saturation, etc. 

DOE is a technique for carrying out a series of tests in which specific changes are made to the input variables 

of a system or process and the effects of these changes are measured in terms of the response variables 

(Telford, 2007). During experimentation, the effects of the parameters on the response are measured. 

DOE is used to understand a system or process through experimentation. Figure 2.4 illustrates the 

methodology of DOE. 

 

Figure 2.4. Diagram of the design of experiments approach 
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The following notation is used in this diagram: 

• System or process: This is the function, model or manufacturing process used to transform input 

into output; 

• Input: The parameters, variables or material subject to the system; 

• Response or output: the product derived from the system or process; 

• Controllable factors: the factors that experimenters can control; 

• Uncontrollable factors: the factors that experimenters cannot control. 

In DOE, factors can be (White and Royer, 2003): 

i) Controllable: can be varied for the analyst; 

ii) Observable: can be measured relatively accurately, but cannot be controlled; 

iii) Uncertain: can neither be controlled nor measured accurately. 

The response or objective function is the basis for decisions, and is related to the value of the project, e.g. 

the cumulative oil production at a defined time, the oil rate target, the time to water breakthrough, etc. 

The goal of DOE is to maximise the amount of information obtained from a study with the minimum 

number of experiments. 

DOE can be used for various purposes, including:  

1) Comparison, i.e. to determine from two or more sets of inputs (e.g. raw materials for making a final 

product, or parameters in an experiment) which set produces the optimum results. For comparison 

purposes, the most frequently used approach is one-factor design. 

2) Variable screening, i.e. to identify the most important variables affecting the performance of a 

product or system. For variable screening, the most widely used methods are two-level factorial 

design (full factorial or fractional factorial; the full factorial method is used for variable screening 

in our case study in Chapter 4), the Taguchi orthogonal array and Plackett‒Burman design. 
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3) Transfer function exploration, i.e. to assess the value of the most influential variables in terms of 

the system performance. This application has been especially fruitful in the use of response surface 

methods to model complex systems by proxy or surrogate models using linear and quadratic 

functions.  

4) System optimisation, i.e. when the objective is to improve the performance of the system, such as 

its quality, efficiency or reliability. 

For identification of the transfer function and optimisation of the system, the approaches most often used 

are central composite design (CCD) and Box‒Behnken design. 

5) System robustness, i.e. when the objective is to make the system robust against “noise” such as 

uncontrollable or environmental factors.  

 

For system robustness, the most widely used approach is Taguchi robust design. 

In the case study discussed in this research, DOE is used for the purposes of (i) comparison and (ii) variable 

screening. Hence, the discussion in this section primarily relates to the methods associated with these two 

purposes, although methods used for other purposes are briefly described. 

In the context of this research, the DOE technique is used to assess which input variables have the greatest 

impact on the project’s value; the use of DOE differentiates the proposed VOI from the classical VOI 

methodology which focuses on one selected input variable without regard to other input variables that may 

have a higher impact on the project value.  In this research, instead of assessing whether a specific data 

acquisition action adds value to the project, DOE is used for searching amongst all the uncertain input 

variables and ranking them according to their impact on the uncertain value of the project; this procedure 

means that the data acquisition action is selected wisely, the one that optimises the value of the project. 

Methodologically, DOE is implemented in seven steps (Guo and Mettas, 2012): 
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A) Clarify and state objectives: In this step, the objective of the experiment is defined. This step helps 

in preparing the list of problems that will be addressed by the experiment.  

B) Choose responses: This refers to the outcome of the experiments for which the responses should be 

measurable. 

C) Choose factors and levels: This refers to the variables that are studied in the experiments in order 

to measure the effects on the responses. The value range of these factors is defined based on expert 

knowledge, and the values used in the experiments (the factor levels) are chosen within this value 

range.  

D) Choose the DOE: The analyst selects the factors, the factor levels and the design type. The selection 

of the design depends on the number of parameters, the levels considered, the purpose of the study, 

the time frame for delivery of results, and whether interactions between parameters are defined.  

E) Perform the experiments: The design matrix (i.e. the matrix of experiments to be performed) should 

guide the experiment. Each experiment includes one level per variable.  

F) Analyse the data: Statistical methods, ANOVA and the analyst’s knowledge of system performance 

are the tools used to analyse the outcome of the DOE. 

G) Draw conclusions and deliver recommendations: Conclusions are drawn from an analysis of the 

data and recommendations for decision making are made in the final step of the design of the 

experimental process.  

When choosing factors, it is important to know whether there are interdependencies between factors, as 

these can be used to reduce their number; for example, in some cases, uncertainty in remaining oil 

saturations (𝑠𝑜𝑟), irreducible water saturation (𝑠𝑤𝑖𝑟) and the shape of the relative permeability curve can be 

combined into a single “relative permeability” uncertainty. However, this practice may reduce the 

possibility of assessing the value of the individual parameters in the overall reservoir assessment.  

Once the parameters have been selected, their ranges must be determined; if wrongly chosen, these can 

negatively affect the selection of the most influential parameters (the ‘heavy hitters’). 
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The main objective of the screening study is to determine the most influential parameters, i.e. those that 

cause the largest changes in the response of interest when their defined ranges are varied. For screening 

purposes, a one-factor-at-a-time (OFAT) design is used. In this approach, in order to estimate the effect of 

each of the possible k factors, the response is evaluated using the two extreme values of the parameter of 

interest, maintaining the remaining k-1 factors at a certain set of values. The difference in the response 

functions at those values of the parameter k then represents the effect of this parameter in the response 

function. The whole process is then repeated to assess each of the other factors individually. This strategy 

is inefficient in terms of the number of simulation runs required; it does not allow for the measurement of 

any interactions (and in fact assumes that there are no such interactions). 

A Pareto chart is used to visualise the impact of the factor on the response. This shows the absolute values 

of the standardised effects, from the largest to the smallest. The standardised effects are t-statistics used to 

test the null hypothesis that the effects are zero; the vertical dashed line shows which effects are larger than 

the reference line. A Pareto chart determines the magnitude and the importance of the effects but cannot 

determine which of them increase or decrease the response, as it represents the absolute values of these 

effects. 

Factorial design is an experimental strategy in which variables are varied simultaneously, rather than one 

at a time. A full factorial design assesses the effect of each factor on the response variable, as well as the 

effects of interactions between factors on the response variable. A full two-level factorial design with 𝑘 

factors requires 2𝑘 runs, which for large values of 𝑘 can be prohibitive. Each set of values is called a design 

point. In cases with n levels, the number of experiments is 𝑛𝑘, and it is therefore clear that the number of 

experiments required increases quickly with n. However, full factorial design has the great advantage that 

it accounts not only for the main effects (i.e. those arising from each parameter), but also for interaction 

effects (i.e. those resulting from the influences between parameters). 

When the number of variables is large, and time and resources are limited, fractional factorial design can 

be used. This involves a subset of the experimental runs of a full factorial design, and hence requires a 
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smaller number of simulation runs but confounding or aliasing some factor interactions. Fractional factorial 

design was developed by Fisher (1935). 

In order to optimise (reduce) the number of experiments, further developments in DOE have given rise to 

other designs, such as: (i) Plackett‒Burman design, which is a low-resolution two-level design that is 

adequate for a screening study in which the objective is to identify the ‘heavy hitters’ but not to compare 

them (PB has the advantage that it requires a relatively low number of simulation runs); and (ii) optimal 

designs that give greater flexibility in terms of factor selection and interactions and that increase the number 

of levels of the factors (Leiviska, 2013).   

For a three-level design, a composite design consists of a 2𝑘 design, with 2⁡𝑥⁡𝑛 start points and one centre 

point. The 2⁡𝑥⁡𝑛 start points correspond to each parameter at its highest and lowest values, keeping the 

remainder at the most likely value.  

For a reservoir with “n” uncertain parameters, 2(𝑛 + 1) models need to be run: one run with all the 

parameters at their most likely value, and two runs for each other parameter, one for the lowest value and 

one for the highest.   

The design can be represented in a compact, tabular form called a design matrix, which facilitates 

calculations of the factor effects and their interactions. 

The visual analysis of results is carried out using a normal plot generated by the tool called ANOVA.  

The significance level is calculated as one minus the confidence level for the analysis. 

The main effects plot shows the differences between the mean levels for each factor. The main effects occur 

when different levels of a factor affect the response differently; in the main effects plot, a steeper slope for 

the line indicates a larger magnitude for the effect. 

Contour plots are designed to display a two-dimensional view in which points with the same response are 

connected through a contour map. These contour maps are constructed based on a model that is generated 
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based on the matrix design and the input response. In a contour plot of two variables, the rest of the variables 

are held constant, meaning that these plots are valid only for fixed levels of the other variables. 

An ANOVA normal plot of the effects shows the standardised effects of the factors, relative to a distribution 

fit line that corresponds to the case where all the effects are zero. The standardised effects are t-statistics 

testing the null hypothesis, which assumes that the effects are zero. For each factor, the farther from zero 

the value on the vertical axis, the larger the statistical significance of that factor. The effects are positive if 

the response increases when settings change from a lower value to a higher one, and vice versa. 

ANOVA is a statistical method that allows us to detect the most significant factors in a multi-factor model.  

In brief, ANOVA is used to determine whether there are statistically significant differences between the 

outputs of experiments resulting from different selections of input parameters. When several sets of 

experiments are available, a t-test can be used to check whether the experiments produce different results 

due to random variation or due to changes in the input parameters. The null and the alternative hypotheses 

used in this process are as follows: 

𝐻0:⁡𝜇1 = 𝜇2 = ⋯ .= 𝜇𝑘 = 0         (48) 

𝐻1:⁡𝜇𝑗 ≠ 0⁡𝑓𝑜𝑟⁡𝑎𝑡⁡𝑙𝑒𝑎𝑠𝑡⁡𝑜𝑛𝑒⁡𝑗⁡𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡⁡𝑡ℎ𝑎𝑛⁡𝑧𝑒𝑟𝑜      (49) 

In order to carry out the test, an ANOVA estimation is first generated, and an F-test is then performed based 

on this. The observed value is the ratio of the experimental mean squares (𝑀𝑆𝑇𝑟) and error mean squares 

𝑀𝑆𝐸 (error variance): 

𝐹0 =
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸
=

𝑆𝑆𝑇𝑟
𝑎−1
𝑆𝑆𝐸

𝑎(𝑛−1)

          (50) 

where 𝑆𝑆𝑇𝑟⁡is the sum of squares of the experiments, 𝑆𝑆𝐸 is the sum of squares of the errors, (𝑎 − 1) is the 

degrees of freedom of the experiment, 𝑎(𝑛 − 1)⁡is the degrees of freedom of the error, 𝑎 is the number of 
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experiments, and 𝑛 is the number of observations for each experiment. The total sum of squares (𝑆𝑠𝑇) is 

the sum of the sum of squares for experiments and sum of squares for error: 

𝑆𝑆𝑇 = 𝑆𝑆𝑇𝑟 + 𝑆𝑆𝐸 = ∑ (�̂�𝑖 − �̅�⁡)2𝑛
𝑖=1 + ∑ (𝑦𝑖 − �̂�𝑖 ⁡)

2𝑛
𝑖=1       (51) 

where �̂�𝑖 is the predicted value for the 𝑖𝑡ℎtest, �̅� is the mean of the response variable observations, and 𝑦𝑖 

is the 𝑖𝑡ℎ⁡observed value of the response variable. 

Based on the value of 𝐹0, 𝐻0 is accepted or rejected as follows: 

𝐻0⁡𝑖𝑠⁡𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑⁡𝑖𝑓⁡𝐹0 > 𝐹𝛼,(𝑎−1),𝑎(𝑛−1)        (52) 

𝐻0⁡𝑖𝑠⁡𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑⁡𝑖𝑓⁡𝐹0 < 𝐹𝛼,(𝑎−1),𝑎(𝑛−1)        (53) 

𝐻0 is rejected if the observed value of 𝐹0 is greater than its critical value 𝐹𝛼,(𝑎−1),𝑎(𝑛.1). The critical value 

is taken from the statistical table for significance level 𝛼, the degrees of freedom for the numerator (𝑎 − 1), 

and the degrees of freedom for the denominator 𝑎(𝑛 − 1). 𝐻0 is accepted if the observed value is lower 

than the critical value.  

When the DOE is used to generate the transfer function, a general linear regression model on the 𝑘 input 

parameters should be estimated: 

𝑦 = ⁡𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯… . . +𝛽𝑘𝑥𝑘 + 𝜀       (54) 

where 𝑦 is the response variable, 𝛽𝑗.⁡⁡𝑗 = 0,1, … , 𝑘 are the regression coefficients representing the change 

in response variable per unit change in input variable, 𝑥𝑗⁡is the input variable, and Ɛ is a random error that 

is assumed to be normally distributed with 𝑁(0, 𝜎2). 

The least squares method is used to estimate the parameters in multiple linear regression models. For a 

system with 𝑘 input variables in which 𝑛 experiments are conducted, there exists a system of 𝑛 equations 

of the form: 
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𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 + 𝜀𝑖 ⁡; 𝑖 = 1,2,… , 𝑛𝑘
𝑗=1        (55) 

The 𝛽 parameters can be calculated by minimising the sum of squares for error, 𝜀2. This equation is a 

surrogate model representing the system or process. 

Lenth’s analysis 

Lenth’s PSE, also called pseudo standard error, is a method used for calculating critical values for the 

effects when there are no replicates, which is the case in computer simulation experiments. For this 

calculation, it is assumed that the standard deviation of a sample from a normal distribution 𝑁(0, 𝜎) with 0 

mean and standard deviation 𝜎 may be estimated as 1.5 times the median (absolute values). When some 

effects are non-null, a two-step process should be followed to delete the effects that exceed 2.5 times this 

estimate and to compute again. The critical value for the effects is reached by multiplying PSE by the 

appropriate critical value for 𝑡 with 𝑚/3 degree of freedom, where 𝑚 is the number of effects assessed. 

DOE was originally developed for real-world experimentation and classical applications are found in Box 

and Wilson (1951), Hunter and Hunter (1978) and Box and Draper (1987). Law and Kelton (1991) and 

Myers and Montgomery (2002) include sections on DOE for simulation purposes but as part of a broader 

scope. The applications of DOE have expanded to several domains such as the chemical industry (Yang, 

Bi and Mao, 2002; Sjoblom et al., 2005; Ruotolo and Gubulin, 2005), materials (Suffield, Dillman and 

Haworth, 2004; Liao, 2003; Hoipkemeier-Wilson et al., 2004), industrial engineering (Tong, Kwong and 

Yu, 2004; Galantucci, Percoco and Spina, 2003; Du et al., 2002), electronic (Ogle and Hornberger, 2001) 

or mechanical engineering (Passmore, Patel and Lorentzen, 2001; Nataraj, Arunachalam and Dhandapani, 

2005; Farhang-Mehr and Azann, 2005; Cervantes and Engstrom, 2004), aerospace (Zang and Green, 1999) 

and the analysis and optimization of nonlinear systems (Sacks et al., 1989). 

Computational simulations and reservoir simulations especially differ from experiments in agriculture or 

medicine in that they do not have random error, so the same input will always produce the same output. In 

simulation work, the objective of DOE is to determine the factors that have the most impact on the response 
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and get that result with the least number of simulation runs (Law, 2015), which is called factor screening 

or sensitivity analysis. Subsequently, using statistical techniques, response surface models can be obtained 

to build a surrogate model of the original complex model representing the system. 

In the oil and gas industry, DOE was first introduced in reservoir engineering assessment in the early 

nineties by Damsleth, Hage and Volden (1992), Egeland et al. (1992) and Larsen, Kristoffersen and Egeland 

(1994) and, since then, it has been used in the petroleum industry for many purposes, such as: for identifying 

the main geological parameters responsible for oil recovery (White et al., 2001); for uncertainty integration 

to quantify their impact on original oil in place, recoverable reserves and production profiles (Corre, de 

Feraudy and Vincent, 2000); for assessing uncertainties in production profiles (Venkataraman, 2000); 

investigating the impact of geologic heterogeneities and uncertainties in different development schemes 

(Wang and White, 2002); and for defining the minimum number of reservoir simulation runs needed to 

identify and quantify the factors accountable for the uncertainties of the reservoir performance (Peake, 

Abadah and Skander, 2005). Additionally, studies on production forecasting and ultimate recovery 

estimates representing the numerical reservoir simulation by a surrogate response surface model are 

discussed by Friedmann, Chawathe and Larue (2001) and Murtha et al. (2009), while Dejean and Blanc 

(1999) discussed DOE, dividing the uncertain factors into uncontrollable and controllable and adapting 

DOE accordingly, and Law (2017) discussed the workflow for applying DOE to simulation modelling. 

In our research work, the interest in DOE is not for building a response surface model but for the 

identification of the parameters that most impact the project value, the first step before assessing any data 

acquisition. 

 

2.6 FUZZY LOGIC, FUZZY DATA AND FUZZY INFERENCE SYSTEMS 

Crisp data are data that can be unequivocally characterised by either totally membership in a set or no 

membership at all; in this section of the thesis, this concept is contrasted with fuzzy data which describe 
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data with a partial degree of membership in several sets. Crisp data use single values in their description, 

and fuzzy data use a set of numbers in their description. Fuzziness is the quality of a quantity to be fuzzy 

or unclear. 

In Section 2.4, uncertainty, risk, probability and decisions, it is stated that, in addition to uncertainties due 

to randomness and lack of knowledge, uncertainty due to fuzziness also exists. It is also mentioned that 

fuzzy logic theory, described in this section, is the tool to manage that kind of uncertainty. 

Classical logic is supported by two fundamental laws (Garrido, 2012): 

1) The principle of excluded-middle: propositions are true or false with no other possibility 

2) The principle of non-contradiction: a statement cannot be true and false simultaneously 

This dichotomy between true and false generates several paradoxes that highlight the limitations of classical 

logic and the need for finding other forms of logic. Aristotle (380 B.C.) and Plato, the Greek philosopher, 

were the pioneers in considering that things do not have to be of one kind or the other but in an intermediate 

range; so, they said that there are different degrees of truth or falsity. The American philosopher Charles 

Sander Peirce (1902) was the first to consider vagueness instead of the true-false dichotomy, to understand 

how the world and humans work and their relationship with uncertain language human habits (Garrido, 

2012). 

At the beginning of the 20th century, Bertrand Russell (1908) discussed the limitations of classical logic and 

used the paradox of Epimenides for illustration—when Epimenides, the Cretan, says that all Cretans lied, 

is he lying or telling the truth? These paradoxes cannot be solved using classical logic. Russell argued that 

classical logic will inevitably result in contradictions and concluded that vagueness, which is part of 

language, is a matter of degrees. Russell also explored other paradoxes, such as the one arising from the 

contradiction that the set of all sets does not contain itself, or the paradox of the barber, which similarly 

exposes the contradictions of the classical logic. 



69 
 

The theory of “vague sets” originates in the work of Heisenberg and Black. Heisenberg (1927) introduced 

the uncertainty principle of quantum mechanics, which state that there is a fuzziness in nature, a form of 

fundamental limit to what can be known about the behaviour of quantum particles; he said that the most 

that can be expected is to calculate probabilities for where things are and how they will behave. Max Black 

(1937), as cited by Garrido (2012), analysed modelling vagueness using classical logic and discussed the 

vagueness of the terms a human being used and the application of a profile or curve for the analysis of 

ambiguity, which is the beginning of what came to be known as the membership function in the frame of 

fuzzy logic. 

Ludwig Wittgenstein (1953) studied different meanings of the same word, concluding that in language, the 

same word expresses different modes and manners that represent the vagueness of the terms. 

Jan Lukasiewicz (1920), as cited by Garrido (2012), proposed a logic of three values, or trivalent logic 

(later extended to multi-value logic), which, in addition to the true and false values, accepts a value of 

indeterminate truth, which was assigned a value or grade of membership of 0.5. This was the first logic of 

vagueness; the elements of an asset have a possible degree of belonging not restricted to 0 and 1.0; 

Lukasiewicz’ works give origin to possibility theory. 

Lotfi Zadeh published the paper Fuzzy Set in 1965, describing the mathematics of fuzzy numbers and how 

fuzzy logic can be used to describe events that have a partial degree of belonging to sets. In his work, Zadeh 

applied the logic developed by Lukasiewicz to the objects of a set and developed the algebra of fuzzy sets. 

While Russell and Black used the term vagueness to refer to the new logic, Zadeh preferred the term fuzzy. 

The German mathematician Dieter Klaua presented, in 1965 and 1966, two versions of a cumulative 

hierarchy of what he named many-valued sets, of which Zadeh’s sets are a particular case (Gottwald, 2010). 

While at the beginning, Zadeh’s ideas were rejected by the western scientific community, Zadeh and other 

scientists such as Bellman and Zadeh (1970), Lakoff (1978), Dunn (1992), Bezdek (1993, 2014), Negoita 

and Ralescu (1977), Goguen (1967), Bandler and Kohout (1978), Sugeno and Murofushi (1987), Sugeno 
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and Kang (1988), Mizumoto and Tanaka (1976, 1981), Tanaka, Taniguchi and Wang (1999), Zimmermann 

and Sebastian (1994), Zimmermann (1996), etc. continued the development of the new theory. Zadeh 

(1968) showed how fuzzy events can be described using fuzzy set theory. In 1971, Zadeh published 

“Quantitative Fuzzy Semantics”, where he developed the formal elements for the use of fuzzy logic and its 

applications, as this theory is known. 

Fuzzy logic adapts to human reasoning and expressions more effectively than Boolean logic and achieves 

this through the use of quantifiers of the “degree of belonging” that elements (data values, whether 

measured or estimated) have on a set of categories (linguistic terms such as qualifiers or decisions). 

Fuzzy logic deals with linguistic terms such as “high”, “low”, or “little”, and allows us to replicate human 

reasoning capabilities.  

Fuzzy set theory is a generalisation of a two-value crisp set to a membership function fuzzy set, and is an 

extension of multi-valued logic, which can be implemented for approximate reasoning problems. It involves 

the use of fractional truth, where the values of truth range between fully false and fully true. 

Formally, a fuzzy set consists of a universe of discourse and a membership function that maps each element 

in the universe of discourse into a membership value, in the interval zero to one. It is assumed that 𝑋 is the 

universe of discourse and x is one element of  𝑋; then the fuzzy set 𝐴 is characterised by the mapping: 

µ𝐴⁡(𝑥):𝑋⁡ → ⦋⁡0, 1⦌⁡          (56) 

where the membership function 𝜇𝐴(𝑥) represents the degree of belonging of 𝑥 to 𝐴 and can be any value 

between zero and one. In contrast, in the two-value set, the value of 𝜇𝐴(𝑥) can be either zero or one. 

Classical set theory, developed by Georg Cantor in the 19th century, defines how crisp sets are related by 

logic operators such as intersection (AND), union (OR) and complement (NOT) operating based on two-

value logic. These operators are the same as those used in fuzzy sets, but in this case are applied for all 

possible fuzzy values, which are real values between zero and one.  
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Let 𝑋 be the course of discourse and 𝐴 and 𝐵 two fuzzy sets defined over 𝑋; the set operators are defined 

as follows: 

A) The intersection (AND) operator 

In classical set theory, the intersection is defined as the elements that belong to both 𝐴 and 𝐵 simultaneously. 

In fuzzy set theory, the intersection represents how many of the elements are in both sets. This is defined 

by: 

𝜇𝐴⁡∩𝐵(⁡𝑥) = min(𝜇𝐴(⁡𝑥), 𝜇𝐵(𝑥⁡)) ⁡⁡⁡⁡⁡⩝ 𝑥 ∈ 𝑋⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡            (57) 

B) The union (OR) operator 

In the classical set theory, the union operator represents those elements that belong to either set. In fuzzy 

set theory, the union operator measures how much of each element is in either set, and it is represented by: 

𝜇𝐴⁡∪𝐵(⁡𝑥) = max(𝜇𝐴(⁡𝑥), 𝜇𝐵(𝑥⁡)) ⁡⁡⁡⁡⁡⩝ 𝑥 ∈ 𝑋⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡      (58) 

C) Complement (NOT) operator: Let �̅�  denote the complement of the fuzzy set 𝐴. 

In classical set theory, the complement operator defines those elements that do not belong to the set. In 

fuzzy set theory, the complement measures the extent to which an element does not belong to the set. This 

operator is mathematically formulated as follows: 

𝜇�̅�(⁡𝑥) = 1 − 𝜇𝐴(𝑥) ⁡⁡⁡⁡⁡⁡⁡⩝ 𝑥⁡ ∈ 𝑋          (59) 

D) Containment operator: A fuzzy set 𝐴 is a subset of fuzzy set 𝐵 if and only if  

µ𝐴(⁡𝑥) ≤ ⁡µ𝐵(𝑥⁡) ⁡⁡⩝ 𝑥⁡ ∈ 𝑋⁡         (60) 

In classical set theory, elements of a subset belong entirely to that set; however, in fuzzy theory, they may 

only partially belong. 
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The membership function can be of any shape and type. It should represent the expert’s opinion and must 

satisfy two basic conditions: (i) a lower limit of zero and an upper limit of one; and (ii) for each 𝑥 ∈ 𝑋, µ𝐴  

has to be sole. 

Membership functions may be symmetrical or asymmetrical, and have three regions: the core, support and 

boundary. 

The core is the region of the membership function in which the elements have a value of one: 

𝑐𝑜𝑟𝑒(𝐴) = {𝑥 ∈ 𝑋⁡|⁡𝜇𝐴(𝑥⁡) = 1}        (61) 

The support is the region of the membership function in which the value of the elements is greater than 

zero: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) = {𝑥 ∈ 𝑋⁡|⁡𝜇𝐴(𝑥⁡) ⁡> 0}        (62) 

The boundary is the region of the membership function in which the elements have a value between zero 

and one: 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐴) = {𝑥 ∈ 𝑋⁡|⁡0⁡ < ⁡𝜇𝐴(𝑥⁡) ⁡< 1}       (63) 

The membership function is characterised by a height, which represents its maximum value: 

ℎ𝑒𝑖𝑔ℎ𝑡(𝐴) = {𝑥 ∈ 𝑋⁡|⁡𝑚𝑎𝑥(𝜇𝐴(𝑥⁡))}        (64) 

For each fuzzy set, there is a belonging function that quantifies the degree to which each element belongs 

to the set; these functions are typically, linear, triangular, trapezoid etc. 

Zadeh (1973) introduced the main ideas underlying the analysis of complex systems, in which human 

knowledge is captured within a set of fuzzy rules. A fuzzy rule is a conditional statement in the form: 

𝐼𝐹⁡𝑥⁡𝑖𝑠⁡𝐴⁡𝑇𝐻𝐸𝑁⁡𝑦⁡𝑖𝑠⁡𝐵          (65) 

The IF part of the rule is the antecedent, and the THEN part is the consequence. 
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These rules are defined based on the knowledge and experience of experts within the relevant domain. 

More than anywhere else, Zadeh’s ideas were welcome in Japan, South Korea, China and India. Since 1973, 

fuzzy logic started to be used and applied by several Japanese universities. Terano and Shibata in Tokyo 

and Tanaka and Asai in Osaka made important contributions to the development of fuzzy logic and its 

applications (Garrido, 2012). 

The classical VOI assumes that the outcome of a data acquisition action is a data value without fuzziness 

or imprecision, which is not typically the situation in the real world; the imprecision occurs due to the 

measurement made during the data acquisition, and due to the linguistic variables used to describe the state 

of nature on the project of interest. In the proposed VOI methodology, fuzzy variables are used instead of 

crisp variables, to account for the imprecision in the data. 

In the oil and gas industry, uncertainty may be the result of a lack of information, inaccuracy of 

measurement or lexical vagueness, as discussed in Chapter 2. Typical examples of a lack of information are 

the porosity and permeability values used to populate the reservoir models between existing wells. 

Probability techniques are used to manage uncertainties due to a lack of complete information. 

Inaccuracy of measurement relates to the measuring tools used and to the classification and interpretation 

of the measurement. For example, pressure gradient measurements have uncertainties associated with the 

measured value and depth; similarly, the saturation values of the remaining oil usually carry uncertainties 

related to the methods, conditions and accuracy of the logs and laboratory experiments. The subjectivity of 

the interpreter also adds uncertainty to the values resulting from the data, since the interpretation of results 

often results in categories with lexical vagueness, such as “large”, “profitable”, “small”, etc. Uncertainties 

arising from inaccuracy of measurement and lexical vagueness introduce imprecision into the data. In this 

thesis, it is shown how fuzzy logic can be used to manage uncertainty in VOI assessments in the oil and gas 

industry.  
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There are two approaches that can be used in understanding the outcome of data acquisition involving crisp 

or fuzzy data. In the crisp approach, the outcome of the data acquisition falls into only one of the discrete 

intervals into which the range of possible outcomes of the data acquisition is divided; in the fuzzy approach 

(fuzzy VOI), the outcome of the data may fall into more than one of these discrete intervals. 

In classical logic, an element or event either “belongs” to a set of outcomes or does not, and this can be 

described using the binary representation of zero or one. In classical set theory, this is referred to as the 

characteristic function for the set of events. Fuzzy logic extends the concept of the characteristic function 

to a membership function, which represents the meaning of “belonging” as a continuous value between 

zero and one. In this way, the degree to which an event belongs to these sets of outcomes is represented by 

the membership function of the event on those sets.  

Fuzzy logic captures the concept of vagueness via the membership function, which is a mapping from a 

given universe of discourse 𝑋 to a unit interval containing the membership values. 

In a crisp set of events 𝑀, the probability of occurrence of the events in the set is: 

𝑃(𝑀) = ∑ 𝑝(𝑥)𝜇𝑀𝑥𝜖𝑋 = ∑ 𝑝(𝑥𝑘)𝑥𝑘∈𝑀         (66) 

where: 𝑀 ⊂ 𝑋           (67) 

In Equation (66), 𝑝(𝑥) is the probability of the occurrence of event 𝑥, µ𝑀 is the characteristic function 

(defined in Equation (68) below), and 𝑝(𝑥𝑘) are the probabilities of the events for which the characteristic 

function is one. 

The characteristic function is (Zadeh, 1965):    

𝜇𝑀 =⁡ {
⁡⁡⁡1, ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑘 ⁡ ∈ 𝑀⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡

                    (68) 

For a fuzzy set, the probability of a fuzzy event �̃� is: 

𝑃(�̃�) = ∑ 𝜇�̃�(𝑥𝑘
𝑟
𝑘=1 )𝑝(𝑥𝑘)         (69) 



75 
 

where 𝜇�̃�(𝑥𝑘) is the membership function 𝜇�̃� evaluated for the value 𝑥𝑘. 

The posterior probabilities of the states of nature, given a fuzzy event �̃�, are given by Equation (41), 

assuming that the reliability, prior probabilities and membership functions of the fuzzy events are known 

(Ross, 2010): 

𝑃(𝑠𝑖|�̃�) =
∑ 𝑝(𝑥𝑘|𝑠𝑖)𝜇�̃�(𝑥𝑘)𝑝(𝑠𝑖)
𝑟
𝑘=1

𝑃(�̃�)
=

𝑃(�̃�|𝑠𝑖)𝑝(𝑠𝑖)

𝑃(�̃�)
                (70) 

where the fuzzy reliability probabilities are: 

𝑃(�̃�|𝑠𝑖) = ∑ 𝑝(𝑥𝑘|𝑠𝑖)𝜇�̃�(𝑥𝑘)
𝑟
𝑘=1         (71) 

An orthogonal fuzzy system is a set ∅ of fuzzy sets, ∅ = {�̃�1, �̃�2, … . . �̃�𝑙}, satisfying the condition: 

∑ 𝜇�̃�𝑓

𝑙
𝑓=1 (𝑥𝑚) = 1  {for all 𝑥𝑚 ⁡ ∈ 𝑋 }       (72) 

For fuzzy events, if the fuzzy system is an orthogonal set and the data outcome is represented by the fuzzy 

set �̃�𝑘, then the 𝐸𝑉 of the 𝑗𝑡ℎ alternative and membership function �̃�𝑓  is given by: 

𝐸𝑉(𝑢𝑗|�̃�𝑓) = ∑ 𝑢𝑖𝑗𝑝(𝑠𝑖|�̃�𝑓)
𝑛
𝑖=1          (73) 

The optimum alternative for the fuzzy set �̃�𝑘 is that which maximises the 𝐸𝑉: 

𝐸𝑉(𝑢∗|�̃�𝑓) =
max𝐸𝑉(𝑢𝑗|�̃�𝑓)

𝑗⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
         (74) 

The unconditional maximum 𝐸𝑉 takes the form: 

𝐸𝑉(𝑢∅
∗) = ∑ 𝐸𝑉(𝑢∗|�̃�𝑓)𝑝(�̃�𝑓)

𝑙
𝑓=1         (75) 

Finally, the VOI is the difference between the 𝐸𝑉 with information and the 𝐸𝑉 without information, from 

Equations (75) and (39): 

𝑉𝑂𝐼 = 𝐸𝑉(𝑢∅
∗) − 𝐸𝑉(𝑢∗)         (76) 



76 
 

An important milestone in the development of fuzzy logic was the construction of the first fuzzy controller 

for a steam engine  by Assilian and Mamdani (1974); in this paper, fuzzy logic is used to convert heuristic 

control rules into an automatic control strategy. However, the first real implementation of a fuzzy controller 

was made by the Danish engineers Lauritz Peter Holmbland and Jens Jurgen Ostergaard (1980), who 

developed the commercial system of fuzzy control working for F.L, Smidth & Co. in a cement factory in 

Denmark (Larsen, 1980; Umbers and King, 1980), which resulted in one of the first successful test runs on 

a full-scale industrial process. 

Fuji Company developed a fuzzy logic controller for chemical injection in water treatment plants for the 

first time in Japan (Yagishita, Itho and Sugeno, 1984). Researchers at Bell Laboratories developed the first 

fuzzy chip (1985), which was later used in several products, such as camcorders, cameras, etc. 

In 1988, Yamakawa published the article “Fuzzy Controller Hardware System”, in which the first fuzzy 

controller in integrated circuits was developed. Hitachi introduced the first-time fuzzy controller to control 

Sendai’s underground in 1987 by applying predictive fuzzy theory and succeeded in making the train 

operate better than with the traditional Proportional-Integral-Derivative control method, and it has been 

used since then (Yasunobu, Miyamoto and Ihara, 1983); this is one of the more spectacular fuzzy control 

systems built. In 1985, Omron electronics developed the first fuzzy computer. 

Simultaneously with all these successful applications of fuzzy logic for real-world problems, researchers 

continued theoretical developments following Mamdani’s path. In 1985, Takagi and Sugeno developed a 

tool to build a fuzzy model of a system where both fuzzy implications and reasoning are used. 

Neural network and fuzzy systems share similarities and that has resulted in the development of neuro-

fuzzy systems, which use learning methods based on neural networks to identify and optimize their 

parameters. Finally, genetic algorithms, together with neural networks and fuzzy systems, are very strong 

tools in control systems. 
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Although fuzzy systems and probability work in the same range ([0.0, 1.0]), it is important to distinguish 

them. Probability refers to our ignorance regarding a statement, while fuzziness refers to the degree to 

which something happens, or a condition exists. 

In classical logic, there exists a mapping function, named the characteristic function, which associates the 

elements of the universe of discourse with one of the elements of the set {0,1}; fuzzy logic generalizes this 

concept by defining a membership function for mapping the universe of discourse with the closed interval 

[0,1]. In this sense, fuzzy set theory is a generalization of classical set theory. 

The main objective of fuzzy logic is to build a system based on the behaviour and thinking of humans; it is 

based on experts’ experience and knowledge. From the practical perspective, fuzzy logic is implemented 

using a Fuzzy Inference System (FIS), which is the actual process of mapping from a given input to an 

output using fuzzy logic. As stated by Negnevitsky (2005), “Fuzzy logic is not logic that is fuzzy, but a 

logic that is used to describe fuzziness”. 

Fuzzy inference is the process of mapping from a given input to an output, using fuzzy logic. There are two 

types of FIS, the Mamdani type and the Sugeno type, and these vary in terms of the way in which the 

outputs are determined.  

The most frequently used fuzzy inference method was proposed by Mamdani and Assilian (1975) for the 

design of a system to control a steam engine and boiler combination. It is based on Zadeh’s work on fuzzy 

algorithms to control complex systems. The output of a Mamdani method is a fuzzy set for each output, 

and these are aggregated and finally defuzzified. In certain situations, the output of the membership function 

is a single spike rather than a fuzzy set; this type of output is called a singleton membership function and is 

a pre-defuzzified fuzzy set. Singletons are used to enhance the efficiency of the defuzzification process, 

since, rather than computing the centroid of a two-dimensional function, the weighted average of only a 

few points can be calculated.  
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The Mamdani fuzzy inference system is a process consisting of four steps: fuzzification of input variables, 

rule evaluation, aggregation of outputs and defuzzification.  

Step1: Fuzzification of the input variables 

This involves determining the degree to which the input variables belong to the appropriate fuzzy sets 

described by the membership functions. The input is a crisp number defined in the universe of discourse, 

with ranges determined by expert judgment; the output of the fuzzification process is a fuzzy degree of 

membership, in the range zero to one, in the fuzzy set. This fuzzification process is followed for each of the 

input variables against the fuzzy sets.  

Step 2: Rule evaluation 

This step consists of applying the fuzzified inputs to the antecedents of the fuzzy rules. When the fuzzy 

rules have more than one antecedent, fuzzy operators (AND or OR) are used to obtain a single number 

representing the result of the antecedent evaluation, and this number is then applied to the consequence 

membership function. To evaluate the disjunction in the rule antecedents, the OR fuzzy operation (Equation 

58) can be used; similarly, to evaluate the conjunction in the rule antecedents, the AND fuzzy operator 

(Equation 57) can be applied. The antecedents are the degree of the input variables after fuzzification and, 

regardless of whether the antecedent of a rule has one or more parts, the fuzzy operator results in a single 

number that represents the outcome of the antecedents for that rule. 

Each rule has a weight that is applied to the number given by the antecedent. These weights represent the 

relative importance of each rule and lie in the range zero to one. The results of the antecedent evaluation 

can be applied to the membership function of the consequence. In this manner, the consequence 

membership function is clipped or reshaped to the level of the truth value of the rule antecedent. The 

consequence membership is typically cut at the level of the antecedent truth, and this method is known as 

clipping or the correlation minimum. Since this method involves the loss of some information, an alternative 

method is to use the scaling or correlation product, which preserves the original shape of the fuzzy set. In 
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this case, the rule consequence is adjusted by multiplying the membership degrees by the truth value of the 

rule antecedent.  

Step 3: Aggregation of outputs 

Decisions should be based on the result of applying all the rules simultaneously. Aggregation refers to the 

process in which the rules are compiled to produce a single fuzzy set. During aggregation, the fuzzy sets 

representing the output of each rule are combined into a single fuzzy set. The input of the aggregation is 

the list of truncated output functions returned by the implication process of each rule, and the output is a 

single fuzzy set for each output variable. The most common methods for aggregation are MAX (maximum), 

PROBOR (probabilistic OR) and SUM (simple sum of the output of each rule). 

Step 4: Defuzzification 

The input of the defuzzification process is a fuzzy set, and the output is a single number. Although fuzziness 

helps in the rule evaluation step, the final desired output for each variable is generally a number that can be 

calculated using the defuzzification process. 

The most popular defuzzification method is the centroid calculation, which returns the point at which a 

vertical line divides the aggregated set into two equal masses. Mathematically, this centroid, or centre of 

gravity (COG), technique is expressed by 

𝐶𝑂𝐺 =
∫ 𝜇𝐴(𝑥⁡)𝑥𝑑𝑥
𝑏

𝑎

∫ 𝜇𝐴(𝑥⁡)𝑑𝑥
𝑏

𝑎

          (77) 

Equation (77) is the continuous version of the COG technique, which can also be discretised for finite 

intervals. Other possible methods include bisector, middle of maximum, largest of maximum and smallest 

of maximum approaches. 

The Sugeno fuzzy inference system was developed 10 years after the Mamdani´s method (Sugeno, 1985); 

it is very similar to Mamdani’s and uses the same steps. The main difference between Sugeno´s and 
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Mandani´s methods is that, instead of the rule consequence being a fuzzy set, it is a function that is generally 

a singleton; this is the zero order Sugeno fuzzy model. In the Sugeno system, instead of clipping the fuzzy 

set, the spike of the singleton is cut at the value of the antecedent evaluation. Aggregation is carried out 

based on a weighted sum of the cut spikes. 

In practice, fuzzy logic is implemented using an FIS. This is a nonlinear procedure that derives its output 

based on fuzzy reasoning and a set of IF-THEN rules. It performs approximate reasoning in the same way 

as the human brain, albeit in a much more primitive manner. 

The FIS is one of the most widely used applications of fuzzy logic, and has been applied in very different 

contexts and within various problem domains such as the assessment of water quality in rivers (Ocampo, 

2008); improvements in the quality of image expansion (Sakalli, Yan and Fu, 1999); the differential 

diagnosis of non-toxic thyropathy (Guo and Ling, 2008); the development of a fuzzy logic controller for a 

traffic junction (Pappis and Mamdani, 1997); the design of a sensor-based fire monitoring system for coal 

mines using fuzzy logic (Muduli, Jana and Mishra, 2018); estimation of the impact of tax legislation reforms 

on potential tax (Musayev, Madatova and Rustamov, 2016); pipeline risk assessment (Jamshidi et al., 

2013); the diagnosis of depression (Chattopadhyay, 2014); the assessment of predicted river discharge 

(Jayawardena et al., 2014); calculation of geological strength indices and slope stability assessments 

(Sonmez, Gokceoglu and Ulusay, 2004); regulation of industrial reactors (Ghasem, 2006); the use of a 

fuzzy logic approach for file management and organisation (Gupta, 2011).  

In the domain of the oil and gas industry, several applications of FIS have been reported, such as the 

streamline-based fuzzy logic workflow to redistribute water injection by accounting for operational 

constraints and number of supported producers in a pattern (Bukhamseen et al., 2017), the identification of 

horizontal well placement (Popa, 2013), estimating strength of rock using FIS (Sari, 2016), and predicting 

the rate of penetration in shale formations (Ahmed et al., 2019). Fuzzy logic has been used in combination 

with other Artificial Intelligence techniques such as Adaptative Neuro-Fuzzy Inference System (ANFIS) in 

practical applications, e.g. to predict the inflow performance of vertical wells producing two-phase flow 
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(Basfar et al., 2018) or to predict geomechanical failure parameters (Alloush et al., 2017); FIS has also been 

used in conjunction with Analytical Hierarchical processes to evaluate the water injection performance in 

heterogeneous reservoirs (Oluwajuwon and Olugbenga, 2018) and to make decisions in the application of 

fuzzy inference systems for VOI in the oil and gas industry (Vilela, Oluyemi and Petrovski, 2019).  

From a methodological perspective, an FIS can be understood as a general procedure that transforms a set 

of input variables into a set of outputs, following the workflow shown in Figure 2.5.  

 

Figure 2.5. Fuzzy inference system workflow 

 

Figure 2.5 shows the FIS as a procedure consisting of four blocks (or steps) in which the inputs and outputs 

are in crisp form (although in some cases these may be fuzzy).  

The variables describing decisions (e.g. endorse or reject a project) are fuzzy variables, suited for the human 

logic but not for the Boolean logic used in the classical VOI methodology;  in this context, an FIS is 

developed in this research work for replicating the human decision process for data acquisition. 
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For capturing the imprecision in the data and to evaluate the criteria to accept/reject a VOI assessment, it is 

proposed to integrate fuzzy theory into the classical methodology; Vilela, Oluyemi and Petrovski (2018) 

discussed a novel application to manage the fuzziness of subsurface data into the framework of VOI 

assessment.  

 

2.7 SUMMARY 

Decision analysis and VOI techniques have been applied to several domains, including the oil and gas 

industry where, due to the large number of decisions and monetary capital investment involved, it is an 

especially rich domain for exploiting their benefits. 

While decision analysis and VOI were theoretically formulated before the 1970s, their application in the 

oil and gas industry was very limited until the 1980s. Even today, the application of these techniques is not 

as frequent as it should be, considering the potential benefits and the research that has been carried out on 

the link between the use of those techniques and good business performance (MacMillan, 2000).  

Fuzzy logic burst onto the scene during the 1970s and 1980s and its applications were mostly related with 

control systems and automation. The relationship between decisions and fuzzy logic comes through FIS, 

with applications in areas as dissimilar as medicine and engineering. In the oil and gas industry domain, the 

applications of FIS have mostly been used for the optimisation of field operations. 

Experiments that were initially designed, developed and applied in the 1920s to agricultural problems began 

to be applied to computational problems with the appearance of high-speed computers in the 1980s; this 

made it possible to use DOE in problems related to the computational modelling of hydrocarbon fields for 

the screening of relevant parameters as well as in reservoir optimisation studies and uncertainty analysis 

(when applied in conjunction with response surface modelling).  
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According to our research questions (Section 1.5), several issues remain in need of improvement in the 

classical approach for VOI and, for each, this research proposes a technique or methodology to solve the 

corresponding issue, integrated into a new methodology for VOI development in this research.  

Our research work proposes the use of fuzzy logic to integrate the fuzziness of the data in the assessments, 

as well as a fuzzy inference system to aggregate the typically imprecise terms used in the assessments and 

DOE techniques, to provide an optimum understanding of the more relevant parameters of data acquisition; 

it also goes back to the sources of SEUT theory, recognising the importance of including the decision 

maker’s attitude towards risk in the assessment. 
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Chapter Three 

 

Methodology for Value of Information: classical and 
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3.1 INTRODUCTION 

This chapter reviews the classical methodology for VOI and discusses the weakness observed; then, several 

techniques and methods that can be used to improve the classical methodology for VOI are discussed; the 

chapter concludes with a description, step by step, of the new VOI methodology proposed in this research 

and how the new techniques and methods are integrated in the proposal methodology.  

 

3.2 CLASSICAL METHODOLOGY FOR VALUE OF INFORMATION 

The classical methodology of VOI (which is well described by Clemen 1996, Newendorp and Schuyler 

2000, Koninx 2000, Coopersmith and Cunningham 2002, Bratvold, Bickel and Lohne 2007) has been 

applied in several case studies in the oil and gas industry and it differs from application to application; 

however, it can be broadly described by 12 steps, as follows: 

1) Define a discrete set (usually three) of states of nature (each state of nature is defined by a selected 

set of values for the uncertain input parameters); 

2) Calculate the value (monetary values, e.g. Net Present Value, Internal Rate of Return, etc.) of each 

state of nature; 

3) Estimate the (Bayesian) prior probabilities associated with each state of nature; 

4) Calculate the expected monetary value of the project, assuming the no data acquisition; 

5) Identify one uncertain parameter that affects the value of the project; 

6) Select one data acquisition action which can impact on the uncertainty of the parameter identified 

in Step 5; 

7) Calculate the cost associated with the data acquisition proposed in Step 6, i.e. the investment needed 

to acquire the data and the associated production losses (if any); 

8) Estimate the reliability probabilities associated with the data acquisition; 
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9) Apply Bayes’ theorem (Bayes’ theorem is discussed in Chapter 2) to obtain the posterior 

probabilities (using the prior probabilities and the reliability probabilities); 

10) Calculate the expected value of the project, assuming the proposed data acquisition; 

11) Subtract the expected value of the project with the present information from the expected value of 

the project with the proposed data acquisition (i.e. the value calculated in Step 10 minus the value 

in Step 4);  

12) If the difference in Step 11 is higher than the associated cost of data acquisition in Step 7, it is 

worthwhile gathering the data; otherwise, gathering the new data is not recommended. 

 

 

3.3 LIMITATIONS IN THE CLASSICAL METHODOLOGY FOR VALUE OF INFORMATION 

Based on the analysis made in the Literature Review (Chapter 2), authors of this research conclude that the 

classical methodology for VOI has the following weaknesses:  

1) Typically, the classical approach for VOI assessment is carried out when it has been identified that 

the value of the project depends on an uncertain input variable that may be better defined if a 

specific piece of data is acquired. This approach lacks a complete analysis of the project 

uncertainties and the impact that the different inputs and their interactions have on the project’s 

value. This procedure to assess the value for acquiring data can limit the opportunities to improve 

the project’s value; 

2) The classical approach to VOI does not provide an integral assessment of the impact that a specific 

data gathering activity may have on the uncertainty of more than one variable; 

3) VOI does not consider that the data to be acquired may carry uncertainties that are due not only to 

randomness but also to fuzziness; 

4) Although the utility value is a well-known concept, it is not typically used in VOI assessments; 
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5) The criteria used by decision makers for making decisions (e.g. to reject a project or to accept a 

data acquisition proposal) are fuzzy. However, the results from the classical VOI assessment are 

crisp numbers; the handling of this dichotomy requires different tools from the ones used in the 

classical approach for VOI; 

In many cases, more than one objective function is used to make decisions; in these cases, they are treated 

separately, and the results from the different objective functions may be contradictory, depending on the 

outcome resulting from the assessment made for each objective function. An integrated result for the 

different objective functions is required. 

 

3.4 TECHNIQUES FOR IMPROVING THE CLASSICAL METHODOLOGY FOR VALUE OF 

INFORMATION  

Once the limitations in the classical methodology for VOI have been identified, several techniques and 

methods are suggested for improving the methodology. 

For moving from an activity-based assessment to a project-based assessment, the authors propose to use 

the technique of DOE (described in Chapter 2, Literature Review); DOE allows a consistent and coherent 

analysis of all the project input variables and their uncertainties and concludes with a ranking of variables 

and their interactions in terms of their impact on the project’s value; this analysis can be subsequently used 

for the identification of the most valuable data acquisition actions for the specific project under 

consideration. This analysis allows also to compare two or more data acquisition actions in terms of their 

value to the project and decide accordingly. 

As has been discussed in the Literature Review, the uncertainty in the project is not only due to lack of data 

and randomness, but it can be also due to fuzziness in the data proposed to be acquired. In the classical 

methodology for VOI, the data is assumed crisp, and the assessment is based on that assumption; Section 
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2.6, equations 69 to 76 show the modifications that have to be made to equations 41 to 47 (Section 2.3) to 

account for the fuzziness of the data in the framework of VOI assessment. 

Decisions in the real world are taken using linguistic variables, such as large, high, and good, which are 

fuzzy or vague in meaning; however, the classical methodology for VOI is crisp. This dichotomy can be 

solved if the methodology is built using a logic that follows human reasoning; this can be achieved by 

means of a Fuzzy Inference system, which the authors of this research develop as an example for the case 

study discussed in this research work. 

 

3.5 NEW METHODOLOGY FOR VALUE OF INFORMATION 

To remove the limitations found in the classical VOI methodology, described on Section 3.3, a new 

methodology for VOI is proposed in this research work, which consists of the 17 steps described below and 

shown in Figure 1.1.  

1) Define a discrete set (usually three) of states of nature (each state of nature is defined by a selected 

set of the values for the uncertain input parameters); 

2) Calculate the values of the decision criteria  (monetary values, e.g. Net Present Value, Internal Rate 

of Return, etc.) of each state of nature; 

3) Estimate the utility-value for each of the decision criteria (e.g. utility values of parameters 

calculated in Step 2) for the different state of nature; 

4) Estimate the (Bayesian) prior probabilities associated with each state of nature; 

5) Calculate the expected value of the project for each of the selected utility-value decision criteria 

parameters, assuming the no data acquisition;  

6) Develop an FIS using decisions rules over the utility-value decision criteria and the “linguistic 

variables” decisions options for assessing the optimum decision;  
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7) Calculate the expected utility value of the project for the no data acquisition case using the FIS 

built in step 6. 

8) Identify and rank all uncertain parameters and their interactions by their impact on the value of the 

project using DOE techniques; 

9) Identify data acquisition actions that can change the perception of the uncertainty of the main 

parameters and their interactions;  

10) Select one of the data acquisition actions identified in Step 9 and calculate the cost associated with 

it, i.e. the investment needed to acquire the data and the production losses (if any); 

11) Assess the imprecision of the new data outcomes: the imprecision of the data outcomes is captured 

via the membership functions in the fuzzy logic framework; 

12) Estimate the reliability probability associated with the data acquisition; 

13) Apply Bayes’ theorem to obtain posterior probabilities (using the prior probabilities, the  reliability 

probabilities and the membership functions);  

14) Calculate the expected value of the project for each of the selected utility-value decision criteria 

parameters, assuming the proposed data acquisition action;  

15) Using the FIS already develop in step 6, calculate the expected value of the project for the data 

acquisition selected in step 10;  

16) Repeat Steps 10, 11, 12, 13, 14 and 15 for each of the possible data acquisition actions; 

17) Carry out the VOI assessment: choose the alternative with the highest defuzzified value, between 

the no data acquisition and the data acquisition alternatives.   
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Figure 3.1. Proposed value of information methodology 

 

3.6 SUMMARY  

The proposed methodology for VOI successfully removes the limitations found in the classical VOI; it 

logically integrates methodologies from other domains within the VOI assessment to conclude with a more 

complete methodology. The case study discussed in Chapter 4 is a practical application of the proposed 

methodology; of course, a real case has its own limitations and may not allow to show all the benefits of 

the methodology proposed; however, in this research work, the case study illustrates very well the main 

aspect of the new methodology for VOI. 
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4.1 CASE STUDY 

The case study was carried out using an actual field. The field is not identified for confidentiality reasons. 

This project was at the early appraisal phase when the operating company decided to terminate it due to the 

risk of failure. 

Here, reservoir data and a dynamic simulation model are used to illustrate how the methodology developed 

in this research work for assessing the VOI could have been applied in this case for making data acquisition 

decisions. In addition to reservoir data, company financial information is used, such as the cost of wells and 

facilities; financial criteria for the same company are also used to evaluate the benefits of their projects, 

such as the net present value and internal rate of return. 

 

4.2 RESERVOIR DESCRIPTION 

The case study is on a clastic reservoir, a nearly flat structure located at 1,050 m TVDSS. The reservoir 

thickness is between 15 and 20 m, and the area of the reservoir is 12.5 km by 5.4 km. Based on the seismic 

information and the wells that have already been drilled, there is no indication of fractures or any other 

anomalies. The sedimentary environment is marine. 

Fluid surface samples taken from three of the exploration and appraisal wells indicate that the reservoir is 

filled with dead oil with a bubble point pressure (pressure at which the gas in solution into the oil begins to 

come out of solution) of 1,194 psi and a dissolved gas concentration (𝑅𝑠)  (portion of the gas dissolved in 

the crude oil) of 0.5681 MSCF/STB. The oil viscosity (measure of the amount of resistance that oil 

experience to flow in the porous media) was measured in all the samples as 1.08 cp. 

The discovery well was P01, which was followed by appraisal wells P02, P03 and P04. Although the first 

three wells show good petrophysical properties, P04 has very poor characteristics. An analysis of the 
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porosity (measure of the void space in a material) ‒permeability (measure of the number of inches per hour 

that a fluid moves in a rock) relationship shows that the Timur’s correlation reflects the relationship between 

these two parameters well and 𝑠𝑤𝑖𝑟𝑟  (that is the minimum water saturation, reached when the hydrocarbon 

content is at maximum). Three lab measured values of  𝑠𝑤𝑖𝑟𝑟 resulted in 15%, which is assumed constant 

throughout the field until more information is gathered. It has the functional form: 

𝜅 = 0.136 × ∅4.4/𝑠𝑤𝑖𝑟𝑟
2           (78) 

Tables A1-1 and A1-2 in Appendix 1 show the values of the average porosity and permeability measured 

in the four wells in the nine layers used for simulation modelling. 

The reason for the contrasting values observed for porosity and permeability between the three wells located 

to the west (P01, P02 and P03) and the appraisal well to the east (P04) is not clear; however, two approaches 

are considered to be equally valid in explaining these differences:  

1) A diagenetic phenomenon acting over the reservoir degrades its properties from west to east; 

2) The values of these properties measured for the fourth well are due to a local effect in this 

location or are the result of measurement issues that make them unrepresentative of the distribution 

of the properties of the reservoir. 

The irreducible water saturation 𝑠𝑤𝑖𝑟𝑟 was measured for two plugs, and the average value was 15%. 

 

4.3 RESERVOIR MODEL 

A simulation model is used to forecast the performance of the field and wells. The dynamic model was 

built in Eclipse (SchlumbergerTM) for the authors of this research, based on a static model provided by the 

operator company. Figure 4.1 shows the location of the four appraisal wells on the depth map extracted 

from the model. 
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Figure 4.1. Structural map of the field with the exploration and appraisal wells 

 

The depth of the reservoir datum (reservoir reference depth) is 1,010 m TVDSS with a corresponding initial 

reservoir pressure of 3,626 psi (pressure=3,626 psi @datum). 

The dynamic model that was built to predict development scenarios contains 234,000 cells, with 180*150 

areal cells and nine layers. The average values of DX and DY are 69.4 and 36.3 m respectively, and the 

average layer thickness is 1.75 m, with a minimum of 0.61 m and a maximum of 3.8 m. 

Tables A1-3 and A1-4 in Appendix 1 show the mean porosity and permeability values per layer for the 

low, medium and high models. 
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4.4 MODEL UNCERTAINTIES 

Based on the information gathered during the exploration and appraisal phases, and experience gained from 

analogue fields, the technical team members estimate that the forecasted reservoir performance has six 

major sources of uncertainty: 

1) horizontal permeability distribution (PXY); 

2) vertical permeability (PZE); 

3) oil and water relative permeability (REP); 

4) aquifer support, volume and productivity index (AQU); 

5) oil/water contact (OWC);  

6) well productivity index (WPI). 

These uncertainties are described in more detail below. 

1) The permeability values measured in wells P01, P02 and P03 are high, in the range 320 to 1,650 

mD; however, the permeability values measured in well P04 are exceptionally low, at less than 1.0 

mD. In addition, the well test conducted on P04 was unsuccessful, and no fluid was measured at 

the surface, thus confirming the very low permeability measured for this well. The degradation in 

porosity and permeability around well P04 is attributed to: i) diagenesis in this area of the reservoir 

or ii) a local effect (see Section 4.2). Neither the area of the reservoir affected by diagenesis nor the 

extent of these poor properties is known, meaning that permeability distribution is one of the 

uncertainties impacting on the performance of this field. To represent the uncertainty in the 

horizontal permeability, three scenarios are considered: 

1.1. Large area of good permeability: This case assumes that the low values of porosity and 

permeability in well P04 are the result of a local effect around this well, meaning that 

these values are not used to populate the model. 
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1.2. Small area of good permeability: This case assumes that the low values of porosity and 

permeability observed for well P04 are a consequence of a diagenetic phenomenon 

affecting the reservoir, in which the values measured for the first three wells are 

gradually reduced towards the fourth well; in this case, porosity is reduced from the 

values observed for P01, P02 and P03 to the values measured for P04. 

1.3. Medium area of good permeability: This case assumes that the low values extend 

beyond the P04 well but not as far as in the low case. 

Figures A1-1, A1-2 and A1-3 in Appendix 1 show the permeability distribution for the high, 

medium and low cases. 

2) The vertical permeability was not measured for the core samples taken from the exploration and 

appraisal wells. Based on analogue fields, it is assumed that the 
𝑘𝑣

𝑘ℎ
  is between 0.01 and 10.0 

(analogue fields show this range of values between vertical and horizontal permeability).   

3) Relative permeability experiments were not conducted in the lab, since neither core was available 

for these tests; however, the irreducible water saturation (𝑠𝑤𝑖𝑟𝑟), critical water saturation (𝑠𝑤𝑐𝑟) and 

initial water saturation (𝑠𝑤𝑖) were measured, and their values were 0.15, 0.21 and 0.18 respectively. 

These figures and the Corey’s exponent relationship were used to build the relative permeability 

curves for this two-phase fluid. The uncertainty in the remaining oil saturation is estimated using 

values of 0.15, 0.17 and 0.20 for the high, medium and low cases, respectively. Figure A1-4 in 

Appendix 1 shows the relative permeability curve for the high, medium and low scenarios.  

4) The aquifer strength is another source of uncertainty. While some fields in the same basin 

experienced an important aquifer influx after a few weeks of production, others experienced the 

opposite. In the dynamic model, the aquifer was modelled using the analytical Fetkovich aquifer, 

and its strength is driven by two parameters:  

i) volume: between 2.52𝑒9 and 2.52𝑒13 STB and, 

ii) productivity index : between 217 and 868 STB/d/psi 
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5) The oil‒water contact measured using electric logging is different for wells P01, P02 and P03, with 

values in the range 1,070 to 1,080 m TVDSS. 

6) The history matching of the well test conducted on wells P01, P02 and P03 requires changes in the 

productivity index (PI) of each well. These adjustments to the PIs are justified on the basis of the 

uncertainties in the static and dynamic parameters that are not properly captured in the model, 

mainly because of the limited data available. The uncertainty in the PI is implemented by a PI 

multiplier applied to future wells: for the low case, the PI multiplier is 0.90, for the medium case 

8.90 and for the high case 18.40, which are the factors used to match the well test results obtained 

for the wells P01, P02 and P03 respectively. 

Table 4.1 summarises the low, medium and high values of each of the six uncertain parameters. 

Table 4.1. Uncertain parameters: low, medium and high values 

UNCERTAIN 

PARAMETERS 

LOW MEDIUM HIGH 

Horizontal 

permeability 

 

Extended diagenesis 

Medium case 

diagenesis 

 

Local diagenesis 

Vertical 

permeability (mD) 

 

0.01 

 

0.50 

 

10.00 

Relative 

permeability 

Co=3.1 / Cw=3.3 / 

Sorw= 0.15 

Co=2.5 / Cw=4.4 / 

Sorw=0.17 

Co=1.8 / Cw=5.5 / 

Sorw=0.20 

Aquifer strength, 

AQU Vol. / AQI PI 

STB/(STB/d/psi) 

 

2.52𝑒9 / 217 

 

2.52𝑒11 / 434 

 

2.52𝑒13 / 868 

Oil/water contact 

(m) 

 

1,070 

 

1,075 

 

1,080 

Well PI multiplier 0.90 8.90 18.40 
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4.5 FIELD DEVELOPMENT PLAN 

Analogue fields located close to this field have been developed using horizontal wells. For this reason, and 

due to the intention to use exploration and appraisal wells for future field development, all the exploration 

and appraisal wells drilled were horizontal, with an average horizontal section of between 600–700 m in 

the reservoir section; this is the estimated horizontal section planned for the development phase. 

To maximise the oil recovery and due to the hydrocarbon characteristics, the development strategy assumes 

that for each oil producer well, a nearby parallel water injector well will be drilled for sweeping the oil and 

supporting the reservoir pressure. Of the four wells already drilled, P01, P02 and P03 can be utilised for 

the field development; however, due to its poor rock properties, P04 is not feasible for the exploitation 

phase and the plan is to abandon it.  

The objective of the project is to produce the first oil in January 2021, with six producer wells on stream 

(three already existing wells and three additional ones to be drilled during 2020); at the beginning of 2022, 

water flooding will start with six water injection wells, each paired with one of the producer wells. Six 

months after starting water injection (July 2022), depending on the static scenario, two or four new 

producers will be drilled and completed. Six months later (Jan 2023), the corresponding water injectors will 

start injecting. 

The areal extension of the reservoir is determined by the extension of the good permeability and by the 

depth of the OWC.  The number of wells in each case is designed in such a way as to avoid well interference. 

Table 4.2 shows the number of oil producers and water injectors for each scenario of permeability. 
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Table 4.2. Number of oil producers and water injectors for the three scenarios of good permeability areal 

extension 

WELL TYPE LARGE SMALL MEDIUM 

Producers 10 6 8 

Injectors 10 6 8 

 

Here, Large means that the measured permeability values in P04 are a local effect and that the good 

permeability extends over the entire reservoir except for a very limited area around P04; Small means that 

the P04 value is the result of a distribution trend involving high values for P01, P02 and P03 and a low 

value for P04; and Medium is an intermediate case between the Large and the Small scenarios. 

The depth of the OWC is also a parameter limiting the number of wells when developing the field. Table 

4.3 summarises the number of wells for each OWC scenario. 

Table 4.3. Number of oil producers and water injectors for the three scenarios of OWC 

WELL TYPE DEEP SHALLOW MEDIUM 

Producers 10 6 8 

Injectors 10 6 8 

 

Here, Deep means that the OWC is the deepest possible (1,080 m); Shallow means that the OWC is the 

shallowest possible (1,070 m); and Medium is the arithmetic mean of the two extreme cases (1,075 m). 

These two parameters, the extension of good permeability and OWC, limit the number of development 

wells: the number of wells in each case is the minimum allowed between the two parameters. 

In the cases involving small and medium areas of extension of good permeability, two dry wells are included 

in the economic analysis. Similarly, in the case of the shallow OWC, two dry wells are used. The reason 
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for including these dry wells is that before any other wells are drilled, there is no information that indicates 

the underlying conditions, meaning that drilling in unproductive locations is possible.  

If an additional well is drilled for data acquisition, only one dry well is required rather than two. Figure 4.2 

shows the schedule for connection of the oil producers (OP) and water injectors (WI) to the stream. 

 

 

Figure 4.2. Schedule for oil producers and water injectors  

 

4.6 DECISION PROBLEM 

The decision that the operator company must take is whether to proceed with or to terminate the project. 

However, the acquisition of data can change the value of the project, thereby impacting the decision 

problem. 

In the case where the operator decides to acquire additional data, this action carries a cost and possible 

delay in the project start; these negative impacts may be worthwhile if compensated by the positive impact 

of risk reduction and an increase in the project’s value. 

In Section 4.7, an uncertainty analysis is conducted to determine which uncertain parameters have a larger 

effect on the response. This assessment will be used to steer the data acquisition actions required to 

maximise the project’s value. 
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4.7 UNCERTAINTY ANALYSIS: DESIGN OF EXPERIMENTS 

DOE methodology is used here to carry out an uncertainty analysis and identify those uncertain parameters 

that have the most impact on the value of the project and can steer the data acquisition needs. 

The objective functions for the uncertainty analysis are the NPV and the utility of the NPV (UNPV). 

With the six factors discussed in Section 4.4, a full factorial design requires 64 simulation runs. Despite 

this large number of runs, this design is selected because it allows us to determine the main and interaction 

effects using a design that is still manageable from the computational side. Dynamic reservoir simulations 

are performed using Eclipse software (a commercial application from Schlumberger).  

The six uncertain reservoir parameters vary between their maximum and minimum, following the design 

matrix shown in Tables 4.5 and 4.6. The cumulative forecast for oil for the 64 runs is shown in Figure 4.3. 

 

Figure 4.3. Uncertainty in cumulative oil production 
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Tables A1-5 and A1-6 in Appendix 1 show the results for cumulative oil production for the 64 dynamic 

simulation runs. The maximum and minimum values are 206 MM STB (run 56) and 88 MM STB (run 1), 

and the dispersion in the objective function is large (118 MM STB). 

In Figure 4.3 the range of cumulative oil has been divided into four intervals, and Table 4.4 shows the 

number of runs with cumulative oil  within each interval. 

Table 4.4. Number of runs with cumulative oil cumulative within selected intervals 

INTERVAL MINIMUM INTERVAL, 

MM STB 

MAXIMUM INTERVAL, 

MM STB 

NUMBER 

OF RUNS 

1 86 118 28 

2 118 150 20 

3 150 182 12 

4 182 214 4 

 

The financial model used to evaluate the project benefits, NPV, is built using Excel software (Windows 

Office). This model includes the oil production forecast resulting from the simulation runs and the CAPEX 

(Capital Expenditure or investment), OPEX (Operational expenditure), oil price forecast and tax, as shown 

in Tables A1-7, A1-8 and A1-9 in Appendix 1. Because at the time of this analysis there was no information 

available on royalties and rights to minerals, those were excluded from the calculations. 

Following Walls (2005) and as suggested in Section 2.2, the utility function used is the exponential, which 

in this study case will have a tolerance factor (TF) of US$ 4,000 MM. This TF is representative of the 

company’s historic attitude toward risk for projects. Figure 4.4 shows the resultant utility function for the 

uncertainty analysis of this case study. 
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Figure 4.4. Utility value function 

The matrix design is a compact representation of the values assigned to each variable for each case: when 

the variable is assigned to the highest value, +1 is used; when the variable is assigned to the lowest value, 

−1 is used; and when the variables is assigned to the middle value, 0 is used. Tables 4.5 and 4.6 show the 

matrix design, NPV and UNPV for each of these cases.  
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Table 4.5. Full factorial design matrix (first 32 runs) 

RUN OWC PXY REP PZE AQU WPI VALUE, MM US$ UNPV 

Run 1 -1 -1 -1 -1 -1 -1 - 514.6 - 0.14 

Run 2 1 -1 -1 -1 -1 -1 174.3 0.04 

Run 3 -1 1 -1 -1 -1 -1 - 502.2 - 0.13 

Run 4 1 1 -1 -1 -1 -1 984.8 0.22 

Run 5 -1 -1 1 -1 -1 -1 16.1 0.00 

Run 6 1 -1 1 -1 -1 -1 552.1 0.13 

Run 7 -1 1 1 -1 -1 -1 44.1 0.01 

Run 8 1 1 1 -1 -1 -1 1,566.8 0.32 

Run 9 -1 -1 -1 1 -1 -1 - 499.5 - 0.13 

Run 10 1 -1 -1 1 -1 -1 123.6 0.03 

Run 11 -1 1 -1 1 -1 -1 - 489.8 - 0.13 

Run 12 1 1 -1 1 -1 -1 1,015.2 0.22 

Run 13 -1 -1 1 1 -1 -1 - 76.4 -  0.02 

Run 14 1 -1 1 1 -1 -1 452.3 0.11 

Run 15 -1 1 1 1 -1 -1 - 54.8 - 0.01 

Run 16 1 1 1 1 -1 -1 1,463.3 0.31 

Run 17 -1 -1 -1 -1 1 -1 - 69.2 - 0.02 

Run 18 1 -1 -1 -1 1 -1 854.5 0.19 

Run 19 -1 1 -1 -1 1 -1 19.1 0.00 

Run 20 1 1 -1 -1 1 -1 1,693.0 0.35 

Run 21 -1 -1 1 -1 1 -1 662.8 0.15 

Run 22 1 -1 1 -1 1 -1 1,406.7 0.30 

Run 23 -1 1 1 -1 1 -1 784.5 0.18 

Run 24 1 1 1 -1 1 -1 2,490.6 0.46 

Run 25 -1 -1 -1 1 1 -1 - 133.8 - 0.03 

Run 26 1 -1 -1 1 1 -1 642.0 0.15 

Run 27 -1 1 -1 1 1 -1 - 41.7 - 0.01 

Run 28 1 1 -1 1 1 -1 1,510.6 0.31 

Run 29 -1 -1 1 1 1 -1 507.1 0.12 

Run 30 1 -1 1 1 1 -1 1,211.1 0.26 

Run 31 -1 1 1 1 1 -1 631.4 0.15 

Run 32 1 1 1 1 1 -1 2,256.0 0.43 
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Table 4.6. Full factorial design matrix (last 32 runs) 

RUN OWC PXY REP PZE AQU WPI VALUE, MM US$ UTILITY 

Run 33 -1 -1 -1 -1 -1 1 - 508.7 - 0.14 

Run 34 1 -1 -1 -1 -1 1 181.8 0.04 

Run 35 -1 1 -1 -1 -1 1 - 498.1 - 0.13 

Run 36 1 1 -1 -1 -1 1 985.3 0.22 

Run 37 -1 -1 1 -1 -1 1 24.6 0.01 

Run 38 1 -1 1 -1 -1 1 558.0 0.13 

Run 39 -1 1 1 -1 -1 1 47.0 0.01 

Run 40 1 1 1 -1 -1 1 1,566.0 0.32 

Run 41 -1 -1 -1 1 -1 1 - 480.2 - 0.13 

Run 42 1 -1 -1 1 -1 1 135.3 0.03 

Run 43 -1 1 -1 1 -1 1 - 477.4 - 0.13 

Run 44 1 1 -1 1 -1 1 1,029.0 0.23 

Run 45 -1 -1 1 1 -1 1 - 57.3 - 0.01 

Run 46 1 -1 1 1 -1 1 460.9 0.11 

Run 47 -1 1 1 1 -1 1 - 43.4 - 0.01 

Run 48 1 1 1 1 -1 1 1,468.3 0.31 

Run 49 -1 -1 -1 -1 1 1 - 56.5 - 0.01 

Run 50 1 -1 -1 -1 1 1 860.9 0.19 

Run 51 -1 1 -1 -1 1 1 29.9 0.01 

Run 52 1 1 -1 -1 1 1 1,707.4 0.35 

Run 53 -1 -1 1 -1 1 1 672.0 0.15 

Run 54 1 -1 1 -1 1 1 1,409.8 0.30 

Run 55 -1 1 1 -1 1 1 792.5 0.18 

Run 56 1 1 1 -1 1 1 2,506.2 0.47 

Run 57 -1 -1 -1 1 1 1 - 119.8 - 0.03 

Run 58 1 -1 -1 1 1 1 645.3 0.15 

Run 59 -1 1 -1 1 1 1 -  31.1 - 0.01 

Run 60 1 1 -1 1 1 1 1,532.4 0.32 

Run 61 -1 -1 1 1 1 1 520.9 0.12 

Run 62 1 -1 1 1 1 1 1,212.0 0.26 

Run 63 -1 1 1 1 1 1 640.8 0.15 

Run 64 1 1 1 1 1 1 2,290.7 0.44 
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The ANOVA technique allows us to estimate the parameters that most affect the objective function 

(UNPV). In this study, ANOVA is implemented using the commercial software MiniTab17.3.1. 

Figure 4.5 shows a Pareto chart of the effects of these parameters on the utility function, with a significance 

level of 5%. The magnitudes of these effects indicate that the most important parameters are those labelled 

A, E, C, B, AB and AC, which correspond to the reservoir parameters OWC, AQU, REP, PXY and the 

interaction terms OWC/PXY and OWC/REP. Other factors that are much less important are D or PZE, the 

three-term interaction ABE or OWC/PXY/AQU and the two-term interactions CD, DE and CE 

corresponding to the factors REP/PZE, PZE/AQU and REP/AQU. 

 

Figure 4.5. Pareto chart of the effects of the parameters, with a significance level of 0.05 
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In computational experiments there are no replications (all experiments done with the same inputs produce 

the same result; the estimation of standard error is done using the Lenth approach (see Chapter 2 for more 

details); Figure 4.5 shows at the left bottom the calculated Lenth’s PSE (pseudo standard error).  

Figure 4.6 shows a normal plot of the effects for the utility function with a significance level of 5%. The 

normal plot shows that, while an increase in the values of OWC, AQU, REP, PXY and the interaction terms 

OWC/PXY and REP/AQU increases the utility function, an increase in the values of PZE or the interaction 

terms OWC/REP, OWC/PXY/AQU, OWC/AQU and PZE/AQU decreases the response utility value.  

 

Figure 4.6. Normal plot of the effects of parameters, with a significance level of 0.05 

 

The normal plot also confirms that the main factors impacting the response function are OWC, PXY, REP 

and AQI. 

The slope of the plot of the effects in Figure 4.7 confirms that OWC is the factor with the highest impact 

on the response, followed by AQU and REP, which have very similar impacts on the response. PXY also 
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has an important effect, while PZE and WPI have much less relevance in terms of their effect in the 

response. 

 

Figure 4.7. Main plot of utility values 

The interaction effects are shown in Figure 4.8, from which it can be seen that the effect of OWC on the 

response depends on the PXY, REP and AQU values and is independent of the PZE and WPI values. The 

PXY effect is impacted by the level selected for REP and AQU but is independent of the levels of PZE and 

WPI. The effect of REP depends on the AQU values but is independent of the values of PZE and WPI. PZE 

depends on the AQU level but not on the WPI values and, finally, the AQU values are independent of the 

WPI figures.  
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Figure 4.8. Interaction plot of utility values 

Figure 4.9 shows the cube plot, which is a 3D view of the utility values for all combinations of the 64 

runs. 

 

Figure 4.9. Cube plot (fitted means) of utility 
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The results of the uncertainty analysis indicate that the four uncertainty parameters that impact the most on 

the UNPV are as follows, in order of importance: OWC, AQU, REP and PXY. There are also interaction 

terms which are important, i.e. combinations of the previous four factors (OWC/PXY and OWC/REP). 

 

4.8 PROJECT ASSESSMENT WITH CURRENT DATA 

In Section 4.7, it was shown that the four parameters OWC, AQU, REP and PXY are the main responsible 

for the uncertainty in the value of the project.  

To estimate the expected value of the project with the current data and uncertainty, simulation models were 

run for each combination of high (1) and low (-1) values for these four parameters, keeping the other two 

parameters, WPI and PZE, at their medium values. This means that 16 dynamic simulation models need to 

be run, according to the matrix design shown in Table 4.7.  

Table 4.7. Matrix design for the assessment of the project 

CASE OWC AQU REP PXY 

S1 1 1 1 1 

S2 1 1 1 -1 

S3 1 1 -1 1 

S4 1 1 -1 -1 

S5 1 -1 1 1 

S6 1 -1 1 -1 

S7 1 -1 -1 1 

S8 1 -1 -1 -1 

S9 -1 1 1 1 

S10 -1 1 1 -1 

S11 -1 1 -1 1 

S12 -1 1 -1 -1 

S13 -1 -1 1 1 

S14 -1 -1 1 -1 

S15 -1 -1 -1 1 

S16 -1 -1 -1 -1 
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The value of the project is the expected value of the metrics used to value the project; in this case, these are 

the utility values of the NPV and the internal rate of return (for the sensitivity analysis in Section 4.7, only 

the NPV is used). 

Technical experts in this reservoir (geologists, geophysicists, reservoir engineers, etc.) estimate the prior 

probabilities of occurrence of each of these 16 cases; these probabilities are assigned based on the 

experience and knowledge that the experts have on this reservoir and analogue ones in the same basin. 

The utility assessment is done using the utility function discussed in Section 4.7 and shown in Figure 4.4, 

with a TF of US$ 4,000 MM for the NPV and 12% for the IRR. These TFs represent the company’s attitude 

toward risk for projects with similar investment needs. The utility values of the NPV and IRR are called 

the UNPV and UIRR respectively. 

Figures 4.10 and 4.11 show the utility values versus NPV and IRR values for this case study.  

 

Figure 4.10. Utility values against NPV for the project 
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Figure 4.11. Utility values against IRR for the project 

Taking into consideration the CAPEX of the project and typical figures for bank interest rates, it can be 

seen that the company shows a moderate risk aversion attitude which is, in fact, close to risk neutrality.  

The 16 simulation runs are built and run, resulting in a yearly cumulative forecast. These figures are 

evaluated with the financial model, resulting in an estimation of the cash flow, NPV and IRR, and in each 

case, the respective utility values are calculated. 

Table 4.8 shows the prior probabilities, cumulative oil production, NVP, IRR and the respective utility 

values for the 16 cases described above. 
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Table 4.8. Prior probability, cumulative oil production, NPV, IRR and utility values for each case 

CASE PRIOR 

PROBABILITY 

OIL CUM, 

MM STB 

NPV, US$ 

MM 

UNPV IRR, % UIRR 

S1 0.0042 198 2,361 0.446 22 0.551 

S2 0.0098 162 1,287 0.275 17 0.328 

S3 0.0078 164 1,631 0.335 19 0.452 

S4 0.0182 135 754 0.172 15 0.190 

S5 0.0168 159 1,540 0.320 19 0.440 

S6 0.0392 128 596 0.138 14 0.136 

S7 0.0312 139 1,058 0.232 17 0.327 

S8 0.0728 113 205 0.050 11 -0.052 

S9 0.0168 133 706 0.162 14 0.175 

S10 0.0392 127 584 0.136 14 0.130 

S11 0.0312 107 45 0.011 10 -0.150 

S12 0.0728 103 -47 -0.012 10 -0.215 

S13 0.0672 106 26 0.006 10 -0.164 

S14 0.1568 105 7 0.002 10 -0.176 

S15 0.1248 90 -426 -0.112 7 -0.557 

S16 0.2912 90 -431 -0.114 7 -0.566 

 

These outcomes are used in Section 4.12 to assess the value of the project for the case where no data are 

acquired. 

4.9 DATA ACQUISITION PROPOSAL FOR THE MAIN UNCERTAIN VARIABLES 

The uncertainty analysis shows that the parameters with the largest effect on the response are as 

follows, in order of importance:  

A) OWC: oil/water contact 

B) AQU: aquifer support, volume and productivity index 
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C) REP: oil and water relative permeability 

D) PXY: horizontal permeability distribution 

4.9.1 Description of the main uncertain parameters 

OWC: As shown in Table 4.1 in Section 4.4, in our case study, the OWC varies between 1,070 and 

1,080 m with a mean value of 1,075 m. This range of uncertainty of 10 m results because in three 

of the wells (P01, P02 and P03) different values were measured, and in the fourth well (P04) the 

OWC could not be identified. To better characterise this parameter and thus reduce the uncertainty, 

data acquisition is suggested in terms of drilling a new well and defining the OWC using logs and 

the Drill Stem Test (DST). Most of the cost associated with this data acquisition is related to the 

drilling operation, while logs and DST represent only a marginal cost. 

AQU: Defining the strength of an aquifer is a difficult task if wells have not been in production for 

enough time to receive the aquifer influx. It was estimated by the technical team that, based on the 

characteristics of the reservoir, a well should be tested over at least four months to determine the 

aquifer strength. This extended well testing can be done on a new well or on one of the existing 

wells. The latter option is much cheaper than the former; however, if an existing well is used for 

the extended well test, the only uncertain parameter that will be impacted is the aquifer strength, 

leaving the other three parameters unchanged. There are several logistical issues that need to be 

solved regarding the handling of production fluids, oil, water and gas during this testing. If an 

existing well is used, most of the cost is associated with the handling of fluids during the testing 

operation. 

REP: Due to the lack of a core that would enable a Special Core Analysis Lab (SCAL) test to 

determine the relative permeability curve and end-point saturations, the uncertainty reduction in 

this data requires the acquisition of new cores in different sections of the reservoir interval and, for 

this, a new well must be drilled. Most of the cost associated with this data acquisition action is 

related to the drilling operation, while the core and lab analysis represents only a marginal cost. 
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PXY: The areal extension of the good permeability zone can be measured only by a new well 

located in the area between the good permeability zone (wells P01, P02 and P03) and the bad 

permeability zone (P04). The closer the new well is to well P04, the higher the risk of finding bad 

permeability; this analysis requires a core to be taken and a Conventional Core Analysis Lab 

(CCAL) test to be performed. Most of the cost associated with this data acquisition action is related 

to the drilling operation, while the core and lab analysis are only a marginal cost. 

 

4.9.2 Data acquisition alternatives 

Two alternative data acquisition activities are discussed: (i) drilling a new well and performing an extended 

well test; and (ii) performing an extended well test on an existing well. 

i. Drilling a new well and performing an extended well test for data acquisition 

Drilling a new well can affect the four uncertain parameters. The well should be in a location between the 

area of proven good permeability (P01, P02, P03) and the location of bad permeability (P04). This well 

de-risks the PXY distribution (Section 4.9.1) and can simultaneously be used to measure the OWC. Several 

cores can be taken from this well at different depths and can be subsequently analysed in the laboratory to 

estimate a reliable range for the relative permeability curve. Finally, an extended well test can be carried 

out to capture the strength of the aquifer. It has been estimated that the well test will take between three and 

six months; if the impact of the aquifer (high water cut in the well) can be measured over a short time, this 

means that the aquifer is strong, and otherwise it is weak. 

ii. Performing an extended well test on an existing well 

Using an existing well for an extended well test incurs only the cost associated with the test itself. In either 

data acquisition action, the extended well test involves several logistical challenges such as disposal of the 

fluids produced during the well test (since no infrastructure is available at present) and continuous test 
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monitoring in an isolated location. A temporary setup can be arranged during the test period at an extra 

cost.  

4.10 CLASSICAL VALUE OF INFORMATION 

In this study, fuzzy logic tools are used to integrate the imprecision in the data in the methodology to assess 

the value of acquiring data. For comparison purposes, the results of both the classical methodology and the 

proposed fuzzy methodology are shown. 

 

4.10.1 Classical value of information for drilling a new well and performing an extended well test 

As discussed in Chapter 2, the analyst needs to estimate the probability of each state occurring for each 

case or reliability probability. In this case study, there are 16 cases (as shown in the matrix in Table 4.7, 

Section 4.8). 

For each of the four parameters (OWC, AQU, REP and PXY), two possible outcomes are assumed: high 

and low. The number of reliability probabilities to estimate is 256, which results from an estimation for 

each state (each of the 16 runs) of the probability of occurrence of the 16 combinations of high and low for 

the parameters. 

Bayes’ theorem is used to transform the reliability probabilities into posterior probabilities, which are then 

used as input to estimate the value of each data outcome. These values are combined with the residual 

probabilities to estimate the expected value of the data acquisition alternative.  

In Appendix 1, Tables A1-10 to A1-15 show the reliability probabilities and Tables A1-16 to A1-21 show 

the posterior probabilities. The residual probabilities are shown in Table A1-22. 

The expected values of each possible data acquisition outcome using NPV, IRR, UNPV and UIRR are 

summarised in Tables 4.9 and 4.10. 
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Table 4.9. Expected value for drilling a new well and performing an extended well test with classical 

VOI methodology (first eight cases) 

EXPECTED VALUE 

DATA OUTCOME 

NPV, MM 

US$ 

IRR, % UNPV UIRR 

Exp (Dev, hhhh) 148.1 -1.3 0.0280 -0.1610 

Exp (No Dev, hhhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hhhh) 148.1 -1.3 0.0280 -0.1610 

Exp (Dev, hhhl) 97.3 -1.6 0.0168 -0.1896 

Exp (No Dev, hhhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hhhl) 97.3 -1.6 0.0168 -0.1896 

Exp (Dev, hhlh) 51.7 -2.0 0.0041 -0.2370 

Exp (No Dev, hhlh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hhlh) 51.7 -2.0 0.0041 -0.2370 

Exp (Dev, hhll) 12.0 -2.3 -0.0040 -0.2537 

Exp (No Dev, hhll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hhll) 12.0 -2.3 -0.0040 -0.2537 

Exp (Dev, hlhh) 70.2 -1.8 0.0091 -0.2176 

Exp (No Dev, hlhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hlhh) 70.2 -1.8 0.0091 -0.2176 

Exp (Dev, hlhl) 29.6 -2.1 0.0008 -0.2348 

Exp (No Dev, hlhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hlhl) 29.6 -2.1 0.0008 -0.2348 

Exp (Dev, hllh) -2.7 -2.4 -0.0085 -0.2715 

Exp (No Dev, hllh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hllh) -2.7 -2.4 -0.0075 -0.2715 

Exp (Dev, hlll) -36.8 -2.6 -0.0154 -0.2837 

Exp (No Dev, hlll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,hlll) -15.0 -2.6 -0.0075 -0.2837 



118 
 

Table 4.10. Expected value for drilling a new well and performing an extended well test with classical 

VOI methodology (last eight cases) 

EXPECTED VALUE 

DATA OUTCOME 

NPV, MM 

US$ 

IRR, % UNPV UIRR 

Exp (Dev, lhhh) 17.3 -2.2 0.0533 -0.1039 

Exp (No Dev, lhhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,lhhh) 17.3 -2.2 0.0533 -0.1039 

Exp (Dev, lhhl) -8.0 -2.4 -0.0076 -0.2551 

Exp (No Dev, lhhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,lhhl) -8.0 -2.4 -0.0075 -0.2551 

Exp (Dev, lhlh) -60.5 -2.8 -0.0214 -0.3024 

Exp (No Dev, lhlh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,lhlh) -15.0 -2.8 -0.0075 -0.3024 

Exp (Dev, lhll) -79.8 -2.9 -0.0252 -0.3086 

Exp (No Dev, lhll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,lhll) -15.0 -2.9 -0.0075 -0.3086 

Exp (Dev, llhh) -41.6 -2.6 -0.0163 -0.2824 

Exp (No Dev, llhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,llhh) -15.0 -2.6 -0.0075 -0.2824 

Exp (Dev, llhl) -58.6 -2.7 -0.0195 -0.2868 

Exp (No Dev, llhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,llhl) -15.0 -2.7 -0.0075 -0.2868 

Exp (Dev, lllh) -118.0 -3.2 -0.0354 -0.3458 

Exp (No Dev, lllh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,lllh) -15.0 -3.2 -0.0075 -0.3458 

Exp (Dev, llll) -149.9 -3.4 -0.0427 -0.3661 

Exp (No Dev, llll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*,llll) -15.0 -3.4 -0.0075 -0.3661 
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These figures are used in Section 4.13.1 to assess the value of drilling a new well and performing an 

extended well test using classical VOI methodology. 

 

4.10.2 Classical value of information for performing an extended well test on an existing well 

In this case, the data acquisition activity involves performing an extended well test on one of the existing 

wells (appraisal wells P01, P02 or P03). The outcome of this data acquisition affects only one of the 

uncertain variables, that is, the strength of the aquifer. In the 16 cases shown in Table 4.7 (Section 4.8), 

eight of them have a high level of strength for the aquifer (aquifer volume and PI) and the other eight cases 

have a low level.  

In the same way as shown in Section 4.9.1, the reliability probability for each case is estimated and the 

posterior probabilities are computed using Bayes’ theorem. 

Tables A1-23 to A1-35 in Appendix 1 show the reliability, posterior and residual probabilities. These 

probabilities and the project values are used to estimate the expected value of each possible data acquisition 

outcome using NVP, IRR, UNPV and UIRR, as shown in Tables 4.11 and 4.12 below. 
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 Table 4.11. Expected value for performing an extended well test on an existing well with 

classical VOI methodology (first eight cases) 

EXPECTED VALUE 

DATA OUTCOME 

NPV, MM 

US$ 

IRR, % UNPV UIRR 

Exp (Dev, hhhh) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, hhhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hhhh) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, hhhl) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, hhhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hhhl) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, hhlh) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, hhlh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hhlh) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, hhll) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, hhll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hhll) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, hlhh) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, hlhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hlhh) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, hlhl) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, hlhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hlhl) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, hllh) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, hllh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hllh) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, hlll) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, hlll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, hlll) -15.0 -2.4 -0.0075 -0.2470 
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Table 4.12. Expected value for performing an extended well test on an existing well with classical VOI 

methodology (last eight cases) 

EXPECTED VALUE 

DATA OUTCOME 

NPV, MM 

US$ 

IRR, % UNPV UIRR 

Exp (Dev, lhhh) 267.6 -0.3 0.0930 0.0121 

Exp (No Dev, lhhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, lhhh) 267.6 -0.3 0.0930 0.0121 

Exp (Dev, lhhl) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, lhhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, lhhl) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, lhlh) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, lhlh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, lhlh) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, lhll) 267.6 -0.3 0.0558 -0.0791 

Exp (No Dev, lhll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, lhll) 267.6 -0.3 0.0558 -0.0791 

Exp (Dev, llhh) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, llhh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, llhh) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, llhl) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, llhl) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, llhl) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, lllh) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, lllh) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, lllh) -15.0 -2.4 -0.0075 -0.2470 

Exp (Dev, llll) -16.2 -2.4 -0.0081 -0.2470 

Exp (No Dev, llll) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, llll) -15.0 -2.4 -0.0075 -0.2470 
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These figures are used in Section 4.13.1 to assess the value of performing an extended well test on an 

existing well using the classical VOI methodology. 

 

4.11 VALUE OF INFORMATION WITH FUZZY DATA 

In this section, a fuzzy data acquisition methodology is developed to include the imprecision in the data 

that it is proposed to be acquired. 

 

4.11.1 Value of information with fuzzy data for drilling a new well and performing an extended well 

test 

In order to include the imprecision in the data, three membership functions, 𝑀1 or high,  𝑀2 or medium, 

⁡𝑀3 or low are used, which correspond to the data acquisition outcome described by the linguistic variables 

high, medium and low respectively. Here, high means that the compound effect of data acquisition on the 

four parameters is high, although one or more parameters may not have this effect, and a similar description 

applies for medium and low. The value assigned to each compound state for each membership function 

describes the degree of membership that the compound state has in the respective membership function.  

The degree of membership is defined based on the author’s experience and understanding of the field and 

subsurface data acquisition. The compound value of the four parameters in the membership function is the 

average value. Table 4.13 shows the membership functions, 𝑀1 𝑀2 and 𝑀3, for each potential data outcome. 
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Table 4.13. Membership functions for each compound parameter 

 (hhhh) (hhhl) (hhlh) (hhll) (hlhh) (hlhl) (hllh) (hlll) 

𝑴𝟏 0.638 0.550 0.525 0.438 0.500 0.413 0.388 0.300 

𝑴𝟐 0.250 0.263 0.275 0.288 0.250 0.263 0.275 0.288 

𝑴𝟑 0.113 0.188 0.200 0.275 0.250 0.325 0.338 0.413 

 

 (lhhh) (lhhl) (lhlh) (lhll) (llhh) (llhl) (lllh) (llll) 

𝑴𝟏 0.525 0.438 0.413 0.325 0.388 0.300 0.275 0.188 

𝑴𝟐 0.263 0.275 0.288 0.300 0.263 0.275 0.288 0.300 

𝑴𝟑 0.213 0.288 0.300 0.375 0.350 0.425 0.438 0.513 

 

Based on these membership functions and the reliability probabilities, the probability of the membership 

functions associated with each state can be estimated and then the posterior probabilities and the residual 

probabilities, as summarised in Tables A1-36, A1-37 and A1-38 in Appendix 1. 

The above information is used to estimate the expected value of the project using NPV, IRR and the utility 

values of NPV and IRR. 

Table 4.14 summarises the expected values with NVP, IRR and utility values. 
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Table 4.14. Expected values for each membership function for drilling a new well and performing an 

extended well test 

 NPV, MM US$ IRR UNPV UIRR 

Exp (Dev, 𝑴𝟏) -1.6 -2.3 -0.0072 -0.2604 

Exp (No Dev, 𝑴𝟏) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟏) -1.6 -2.3 -0.0072 -0.2604 

Exp (Dev, 𝑴𝟐) -25.3 -2.5 -0.0128 -0.2764 

Exp (No Dev, 𝑴𝟐) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟐) -15.0 -2.5 -0.0075 -0.2764 

Exp (Dev, 𝑴𝟑) -43.0 -2.6 -0.0169 -0.2883 

Exp (No Dev, 𝑴𝟑) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟑) -15.0 -2.6 -0.0075 -0.2883 

 

In Section 4.12, the results of this assessment are discussed. 

 

4.11.2 Value of information with fuzzy data for performing an extended well test on an existing well 

In the same way as for the VOI with fuzzy data for the new well alternative discussed in the previous 

section, the imprecision in the data for the extended well test in an existing well is included using three 

membership functions,  𝑀1,  𝑀2, 𝑀3 , for the high, medium and low data acquisition outcomes. These 

outcomes correspond to the only parameter that is evaluated with the data acquisition, that is, the aquifer 

strength. The value assigned to each membership function, shown in Table 4.15, describes the degree of 

membership that the state has for the respective membership function.  
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Table 4.15. Membership functions for each compound parameter 

 (hhhh) (hhhl) (hhlh) (hhll) (hlhh) (hlhl) (hllh) (hlll) 

𝑴𝟏 0.700 0.700 0.700 0.700 0.150 0.150 0.150 0.150 

𝑴𝟐 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

𝑴𝟑 0.100 0.100 0.100 0.100 0.650 0.650 0.650 0.650 

 

 (lhhh) (lhhl) (lhlh) (lhll) (llhh) (llhl) (lllh) (llll) 

𝑴𝟏 0.700 0.700 0.700 0.700 0.150 0.150 0.150 0.150 

𝑴𝟐 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 

𝑴𝟑 0.100 0.100 0.100 0.100 0.650 0.650 0.650 0.650 

 

Table 4.16 summarises the expected values for the NVP, IRR and utility. 

Table 4.16. Expected values for each membership function for performing an extended well test on an 

existing well 

 NPV, MM US$ IRR, % UNPV UIRR 

Exp (Dev, 𝑴𝟏) 198.6 -0.8 0.0402 -0.1199 

Exp (No Dev, 𝑴𝟏) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟏) 198.6 -0.8 0.0402 -0.1199 

Exp (Dev, 𝑴𝟐) 97.3 -1.5 0.0174 -0.1798 

Exp (No Dev, 𝑴𝟐) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟐) 97.3 -1.5 0.0174 -0.1798 

Exp (Dev, 𝑴𝟑) 10.2 -2.2 -0.0022 -0.2314 

Exp (No Dev, 𝑴𝟑) -15.0 -12.0 -0.0075 -1.7183 

Exp (*, 𝑴𝟑) 10.2 -2.2 -0.0022 -0.2314 

 

In Section 4.12, the results of this assessment are discussed. 
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4.12 DEVELOPMENT OF FUZZY INFERENCE SYSTEM FOR THE UTILITY VALUES 

MATLAB® R2015a software is used to build the FIS through the Fuzzy Logic Designer application. Figure 

4.12 shows a schematic of the FIS developed in this work. 

 

 

Figure 4.12. Fuzzy inference system for the value of information 

 

The FIS is used to carry out the project assessment once the utility values are known. In this work, the 

UNPV and the UIRR are used to value the project, and each utility is assigned to the three membership 

functions corresponding to high, medium and low: UNPV_ High, UNPV_Medium, UNPV_Low, 

UIRR_High, UIRR_Medium and  UIRR_Low.  

In FIS, a crisp number is input into the system and it is fuzzified by the mapping of the number in the set 

of membership functions; then, the fuzzified inputs are applied to the antecedent of the fuzzy rules, and 

when the rule has multiple antecedents, operators are used to obtain a single number which is then applied 

over the consequent membership functions to obtain the rule evaluation, which is a set; the same procedure 

is repeated over all the rules; the sets resulting from rule evaluations are aggregated to obtain a resulting 

fuzzy set. In most cases, the final fuzzy set is defuzzified to obtain a single number which will be the final 
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outcome of the FIS. The whole intention of the defuzzification process is to get a single number from the 

assessment which can be used for the decision. 

In the proposed methodology for VOI, we use this method; however, the option to represent the final 

solution as a fuzzy set can also be considered; during defuzzification, information is lost, but it allows to 

make an assessment based on one number, which is easier to handle and interpret. More investigation can 

be carried out to propose solutions based on fuzzy sets instead of single numbers, which is outside the scope 

of this research work.    

Triangular and truncated triangular functions are used to model the membership functions. These functions 

are built in such a way that for very high or very low utility values, the outcome belongs to only one 

membership function, while for utility values near zero there is an overlap between the three membership 

functions. The decision options are ‘to endorse’, ‘not to endorse’ or ‘to reframe the project’. Figures 4.13, 

4.14 and 4.15 show the membership functions used. 

 

Figure 4.13. Membership function for UNPV 
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In this case study a wider membership function is used for the middle section of the UIRR compared with 

that of the UNPV to represent a larger fuzziness in this utility value, which is an author’s selection.  

 

Figure 4.14. Membership function for UIRR 

 

Figure 4.15. Membership function for decision 
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IF…..THEN rules are designed to reflect the imprecision in the decision process. 

Nine decision rules have been built in the FIS for VOI decision making; this is not the only set of rules that 

can be built, but it represents previous decisions taken by this operator company (the decision maker). These 

rules are problem dependent and need to be constructed for each problem. 

Three possibilities for rules consequences are considered: endorsement (accept the project), no endorsement 

(reject the project), and reframing (continue analysis until an alternative is found). 

Two parameters, UNPV and UIRR, are used as antecedents in the decision rules, each one defined at three 

levels, high, medium and low. The combination of one level of one parameter and one level of the other 

resulted in one of the three possible consequences.  

The review of confidential information regarding the decisions taken by the operator during the last 5 years 

suggested that the operator’s decision system can be encapsulated in the proposed rules included in Table 

4.17.  
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Table 4.17. Decision rules 

RULE IF THEN 

Rule 1 (UNPV is UNPV_LOW) AND (UIRR is 

UIRR_HIGH) 

(DECISION IS REFRAMING) 

Rule 2 (UNPV is UNPV_LOW) AND (UIRR is 

UIRR_MEDIUM) 

(DECISION IS NO_ENDORSEMENT) 

Rule 3 (UNPV is UNPV_LOW) AND (UIRR is 

UIRR_LOW) 

(DECISION IS NO_ENDORSEMENT) 

Rule 4 (UNPV is UNPV_MEDIUM) AND (UIRR is 

UIRR_HIGH) 

(DECISION IS ENDORSEMENT) 

Rule 5 (UNPV is UNPV_MEDIUM) AND (UIRR is 

UIRR_MEDIUM) 

(DECISION IS REFRAMING) 

Rule 6 (UNPV is UNPV_MEDIUM) AND (UIRR is 

UIRR_LOW) 

(DECISION IS NO_ENDORSEMENT) 

Rule 7 (UNPV is UNPV_HIGH) AND (UIRR is 

UIRR_HIGH) 

(DECISION IS ENDORSEMENT) 

Rule 8 (UNPV is UNPV_HIGH) AND (UIRR is 

UIRR_MEDIUM) 

(DECISION IS ENDORSEMENT) 

Rule 9 (UNPV is UNPV_HIGH) AND (UIRR is 

UIRR_LOW) 

(DECISION IS REFRAMING) 

 

4.13 CASE STUDY RESULTS 

In the methodology proposed in this study, a decision is made using an FIS. Compared with the classical 

methodology, the use of the FIS has the advantage of including the imprecision in the terms used to decide 

between the possible options for the project, which is a characteristic of human reasoning. In this section, 

both methodologies, the classical approach (Section 4.13.1) and the proposed fuzzy VOI approach (Section 

4.13.2) are discussed. 
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The results of these assessments are described below for both the classical and FIS methodologies: the 

expected values for the no data and data acquisition cases, using the classical and the fuzzy data approaches. 

4.13.1 Expected value results 

In Section 4.8.1, two data acquisition alternatives are discussed, i.e. drilling a new well and performing an 

extended well test and performing the extended well test in an existing well. Here, the results of these 

alternatives are presented. 

4.13.1.1  Expected value for drilling a new well and performing an extended well test data acquisition 

Based on the results presented in Tables 4.7-9 and 4.13, the NPV, IRR and utility values, in the case of 

drilling a new well and performing an extended well test, the outcomes of the assessment are shown in 

Table 4.18. 

Table 4.18. Expected value assessment for drilling a new well and performing an extended well test data 

acquisition proposal 

 NO DATA CRISP DATA FUZZY DATA 

NPV (MM US$) 3.02 12.19 -9.78 

IRR (%) -2.30 -2.49 -2.49 

UNPV -0.0069 0.0006 -0.0074 

UIRR -0.2536 -0.2665 -0.2741 
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UNPV analysis: 

Using UNPV as the decision criterion, Table 4.18 shows that when the classical methodology is used the 

value of the alternative drilling a new well and performing an extended well test is higher (0.0006) than the 

alternative do not acquire data (-0.0069). However, this conclusion is misleading, because when the fuzzy 

characteristics of the data are included in the analysis, the value of drilling a new well and performing an 

extended well test is reduced (to -0.0074); that is, it is below the value of the do not acquire data case. 

Overall, the best option is do not acquire data. 

UIRR analysis: 

When using UIRR as a decision criterion with the classical methodology, the alternative drilling a new well 

and performing an extended well test (-0.2665) has a lower value than the alternative do not acquire data 

(-0.2536). Concluding: using both crisp and fuzzy data, the value of the project drilling a new well and 

performing an extended well test is lower than the do not acquire data project, as shown in Table 4.18. 

4.13.1.2  Expected value for performing an extended well test on an existing well data acquisition 

Based on the results presented in Tables 4.8, 4.11, 4.12 and 4.16 for the option of performing an extended 

well test on an existing well, the values of the NPV, IRR and the respective utilities are shown in Table 

4.19. 

Table 4.19. Expected value assessment for performing an extended well test on an existing well 

 NO DATA CRISP DATA FUZZY DATA 

NPV (MM US$) 3.02 98.04 97.31 

IRR (%) -2.30 -1.53 -1.53 

UNPV -0.0069 0.0197 0.0174 

UIRR -0.2536 -0.1752 -0.1798 

 

 



133 
 

UNPV analysis: 

Using UNPV as a decision criterion, for the data acquisition case of performing an extended well test on an 

existing well, the classical methodology shows that both the crisp and fuzzy values are higher than the case 

of do not acquire data, which makes this alternative (i.e. performing an extended well test on an existing 

well) the recommended decision.  

UIRR analysis: 

When the UIRR is used as a decision criterion to assess the case of performing an extended well test on an 

existing well, the classical methodology shows that the best project (i.e. the highest UIRR) is the data 

acquisition alternative, because both crisp and fuzzy data acquisition have higher values than the do not 

acquire data alternative. In this case, it is observed that when the fuzzy characteristics of the data are 

included in the analysis, the value of the data acquisition is reduced, as expected. 

4.13.1.3  Expected value for the  data acquisition alternatives 

Using the UNPV as a decision criterion and considering that the data is fuzzy, Tables 4.18 and 4.19 show 

that a comparison between the two alternatives (i.e. drilling a new well and performing an extended well 

test, and performing an extended well test on an existing well) indicates that the best option is the latter. 

This is because the utility value of the extended well test on an existing well is 0.0174, which is higher than 

the utility value of drilling a new well and performing an extended well test of -0.0074; in the case when 

the data is assumed crisp, even though the outcomes are different, the same conclusion holds. In addition, 

the data acquisition alternatives (drilling a new well and performing and extended well test and performing 

an extended well test on an existing well) are better than the do not acquire data alternative. 

On the other hand, using UIRR as a decision criterion and considering the data to be fuzzy, Tables 4.18 and 

4.19 show that a comparison of both projects (i.e. drilling a new well and performing an extended well test, 

and performing an extended well test on an existing well) indicates that performing an extended well test 

on an existing well is the best project, since its value (-0.1798) is higher than that of the drilling a new well 
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and performing an extended well test (-0.2741). The same conclusion holds in the case when the data is 

assumed to be crisp; however, the data acquisition alternative is only better than the do not acquire data 

alternative when the data is fuzzy; for the new well alternative with crisp data, the best option is do not 

acquire data. 

 

4.13.2 Fuzzy inference system assessment 

The FIS discussed in Section 4.11 is used in this work for the assessment of the two alternatives annotated: 

the drilling a new well and performing an extended well test alternative is discussed first, and then 

performing an extended well test on an existing well. 

4.13.2.1  Fuzzy inference system for drilling a new well and performing an extended well test and 

performing an extended well test on an existing well using utility values 

The FIS is used to assess the value of the project for each of the different alternatives. 

Based on the utility values (which include the risk attitude of the decision maker), Table 4.20 shows the 

values for the cases of do not acquire data, crisp data acquisition and fuzzy data acquisition. 

Table 4.20. Fuzzy inference system assessment for the case study using utility values 

PROJECT NO DATA CRISP DATA FUZZY DATA 

New well -0.274 -0.268 -0.289 

Extended well test -0.274 -0.171 -0.178 

 

Considering the results shown in Table 4.20, it can be concluded that for the case of drilling a new well and 

performing an extended well test, the best decision is to endorse the project without acquiring data. For the 

case of performing an extended well test on an existing well, the best option is to acquire the data. In 

addition, a comparison of the drilling a new well and performing an extended well test project with the 
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performing an extended well test on an existing well project shows that the best decision is to perform an 

extended well test on an existing well. 

 

4.13.2.2  Fuzzy inference system for drilling a new well and performing an extended well test and 

performing an extended well test on an existing well using values 

For completeness, the same analysis shown in Section 4.12.2.1, but in terms of values rather than utility 

figures, is included here. Table 4.21 shows the values for do not acquire data, crisp data acquisition and 

fuzzy data acquisition. 

Table 4.21. Fuzzy inference system assessment for the case study using values 

PROJECT NO DATA CRISP DATA FUZZY DATA 

New well -0.217 -0.170 -0.359 

Extended well test -0.217 0.444 0.444 

 

The results shown above indicate that for the case of drilling a new well and performing an extended well 

test data acquisition, the best option is no data acquisition. For performing an extended well test on an 

existing well, the optimum option is to acquire the data. A comparison of the two projects (drilling a new 

well and performing an extended well test and performing an extended well test on an existing well) shows 

that the best decision is to perform a well test on one of the existing wells. 

 

4.13.3 Fuzzy inference system sensitivity analysis 

In Section 4.12 the characteristics of triangular membership functions used in the FIS are discussed; the 

functional form and the parameters of the membership functions are chosen to model the degree of 

belonging of the utility values within the fuzzy sets describing outcomes and decisions.  However, these 
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selections are not unique, and other possibilities are also feasible. In this section two kind of sensitivities 

are made: 1) sensitivity to the functional form of the membership function, and 2) sensitivity to the 

parameters of the membership functions.  

For assessing the sensitivity to the functional form, in addition to the triangular membership functions 

described in Section 4.12, the sigmoidal functions are used in the sensitivity analysis (see Chapter 2 for 

details of these membership functions). The parameters of triangular as well as sigmoidal functions are 

systematically changed to model different degrees of membership per each utility value into the several 

decision alternatives. Figures 4.16 and 4.17 show two examples of the sigmoidal membership function used 

in this analysis, where the former shows a sharp split of the range and the latter shows a blunt split of the 

range which is used to represent less or more fuzziness. 

 

Figure 4.16. Sharp sigmoidal membership function 
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Figure 4.17. Flat sigmoidal membership function 

Multiple evaluations of the utility values contained in Tables 4.18 and 4.19 (Sections 4.13.1.1 and 4.13.1.2) 

are made by varying the parameters of the triangular and sigmoidal functions; these parameter variations 

make the functions sharper or flatter; to simplify the notation, an index is defined to represent the level of 

sharpness in the function: the higher the index, the sharper is the function, and the lower the index, the 

flatter is the function (the index results from the combination of the parameters of the function whose effect 

is to make the function sharper or flatter). These evaluations assess how decisions change between the three 

alternatives discussed, do not acquire data, performing the extended well test on an existing well and 

drilling a new well and performing an extended well test, when the membership functions are changed from 

a sharper to a flatter function for the two membership functions, triangular and sigmoidal; the results of 

these assessments are shown in Figures 4.18 and 4.19. 
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Figure 4.18. Assessment of the three alternatives with iterative selections of the triangular membership 

function’s parameters 

 

 

Figure 4.19. Assessment of the three alternatives with iterative selections of the sigmoidal membership 

function’s parameters 
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For reference, in the plot of the triangular membership function, the values associated with the sigmoidal 

assessment of the three alternatives are included; the same applies for the sigmoidal membership function. 

Figures 4.18 and 4.19 show that, consistently, in the range of variation of the parameters of both 

membership functions, triangular and sigmoidal, the best alternative is performing an extended well test on 

an existing well.   

When comparing the two alternatives: i) do not acquire data and, ii) drilling a new well and performing an 

extended well test, the former seems to be a better option for most of the values of the parameters of both 

functions, but when the functions are very sharp or very flat, these two options produce similar outcomes. 

 

4.14 DISCUSSION OF THE RESULTS 

This section discusses the results of the case study presented in Section 4.1. In this research, even though it 

is recognized that the subsurface data discussed in the case study are fuzzy, an analysis assuming that the 

data are crisp (which is the assumption of the classical VOI) is included; this allow to have a better 

understanding of the results of this research by means of a comparison between the results of the crisp and 

the fuzzy approaches 

 

4.14.1 Approaches results 

The results of the case study presented in this chapter are discussed using two decision making approaches:  

i) Crisp assessment for crisp and for fuzzy data; 

ii) FIS assessment for crisp and for fuzzy data. 
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4.14.1.1  Crisp assessment for the crisp and fuzzy data 

When using the crisp assessment approach, there are two separate cases: for the utility of NPV and the 

utility of IRR. The results corresponding to UNPV are shown in Figure 5.1, and the results of the UIRR are 

shown in Figure 5.2; in Figures 5.1 and 5.2, the relation “>” represents the preference relationship, e.g. A 

> B means A is preferred to B, or the relationship: Data > No data means acquire data is preferred to do not 

acquire data.  

For UNPV: when crisp data are used, drilling a new well and performing an extended well test is a better 

alternative than the do not acquire data alternative, and the extended well test on an existing well is a better 

alternative than the do not acquire data alternative. However, when comparing the two projects (drilling a 

new well and performing an extended well test versus performing an extended well test on an existing well), 

the alternative performing an extended well test on an existing well is the best one. 

When the data are assumed to be fuzzy, the do not acquire data option is better than drilling a new well 

and performing an extended well test, and the extended well test on an existing well option is better than 

the do not acquire data option. When comparing these two projects (drilling a new well and performing an 

extended well test versus performing an extended well test on an existing well), the best alternative is to 

make an extended well test on an existing well. 

The analysis of the project drilling a new well and performing an extended well test produces different 

recommendations depending on whether the data are assumed to be crisp or fuzzy: drilling a new well and 

performing an extended well test is recommended when the data are assumed to be crisp, and do not drill a 

well when the data are assumed to be fuzzy. In the project performing an extended well test on an existing 

well, the recommendation is the same whether the data are crisp or fuzzy. 
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To summarise, using crisp or fuzzy data produces different recommendations for the drilling a new well 

and performing an extended well test data acquisition alternative and the same recommendation in the 

performing an extended well test on an existing well data acquisition alternative. 

 

Figure 4.20. Results of the crisp criterion for the case study using UNPV 

In Figure 4.20, for the utility UNPV and, as can be observed in the two upper squares, for the new well case 

using crisp data, data acquisition is preferred to no data acquisition, but, when using fuzzy data, no data 

acquisition is preferred to data acquisition; from the two lower squares, for the extended well test case, data 

acquisition is preferred to no data acquisition in both cases, crisp and fuzzy data. In addition, using crisp 

data, the extended well test is preferred to the new well, as highlighted by the preferred symbol in the 

vertical direction (in red in the figure); similarly, for fuzzy data, the extended well test is preferred to the 

new well. 

For UIRR: when crisp data are used, the do not acquire data alternative is better than the drilling a new 

well and performing an extended well test data acquisition option, and performing an extended well test on 

an existing well is a better option than the do not acquire data alternative; similar recommendations result 

when the data are assumed to be fuzzy. When comparing these projects (drilling a new well and performing 
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an extended well test versus performing an extended well test on an existing well), the best alternative is to 

perform an extended well test on an existing well. 

In the project drilling a new well and performing an extended well test, the recommended action is do not 

acquire data (do not drill the well) in both cases, whether crisp or fuzzy data; in the project performing an 

extended well test on an existing well, the recommendation is to acquire the data whether the data are crisp 

or fuzzy. 

The conclusion is that, whether the data are crisp or fuzzy, the conclusions are similar: do not acquire data 

is a better alternative than drilling a new well and performing an extended well test, and the alternative 

performing an extended well test on an existing well is a better option than the do not acquire data 

alternative.  

 

Figure 4.21. Results of the crisp criterion for the case study using UIRR 

In Figure 4.21, for the utility UIRR and, as can be observed in the two upper squares, for the new well case 

using crisp and fuzzy data, data acquisition is preferred to no data acquisition; from the two lower squares, 

for the extended well test case, data acquisition is preferred to no data acquisition in both cases, crisp and 

fuzzy data. In addition, using crisp data, the extended well test is preferred to the new well, as highlighted 
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by the preferred symbol in the vertical direction (in red in the figure); similarly, for fuzzy data, the extended 

well test is preferred to the new well. 

These results mean that, in this case study, taking into account the fuzzy nature of the data has a great 

impact on the decision when the alternative is drilling a new well and performing an extended well test; 

however, in the alternative performing an extended well test on an existing well, the same decision is 

recommended whether the data are assumed crisp or fuzzy. 

From the assessments presented in Tables 4.20 and 4.21, it is observed that the value of the data is higher 

when they are assumed to be crisp than when they are assumed fuzzy. The reduction in the value of the data 

depends on the membership function used to describe the fuzziness of the data. 

VOI is a method for deciding whether acquiring new data is worthwhile; to do so, it compares the value of 

the project with and without the new data: when the former is higher than the latter, the methodology 

suggests that acquiring the data is worthwhile and not acquiring it otherwise.  

In the cases where the reduction in the value of the data due to their fuzziness is higher than the VOI on the 

crisp assessment, the fuzzy data approach for VOI produces different results than the crisp approach for 

VOI. In these cases, the fuzzy assessment is more accurate or representative than the crisp assessment 

because it considers the fuzzy nature of the data, which is not done in the crisp approach. 

In our case study, the project performing an extended well test on an existing well is much better than do 

not acquire data, which explains the reason why crisp and fuzzy data assessments produce the same 

recommendation; however, the project drilling a new well and performing an extended well test, which has 

a crisp assessment slightly higher than that of do not acquire data, produces different results when the data 

are assumed to be crisp than when they are assumed to be fuzzy. 

Summarising, considering the fuzzy nature of the data in the VOI assessment reduces the value of the 

data. In the cases where the reduction in the value of the data due to fuzziness is higher than the classical 

VOI, the acknowledgement that the data are fuzzy changes the decision from acquire to do not acquire. 
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4.14.1.2 Crisp assessment for the crisp and fuzzy data 

When FIS is used for assessing the decision criteria, only one ‘aggregated’ result is obtained, as shown in 

Figure 4.22.  

For FIS:  when crisp data is used, the projects drilling a new well and performing an extended well test and 

performing an extended well test on an existing well are better alternatives than do not acquire data. For 

the case assuming that the data are fuzzy, do not acquire new data is better than drilling a new well and 

performing an extended well test, and it is better to perform an extended well test on an existing well than 

do not acquire data. For both cases, whether the data are crisp or fuzzy, the best alternative is performing 

an extended well test on an existing well.   

 

 

Figure 4.22. Results of the FIS criteria for the case study 

In Figure 4.22, as can be observed in the two upper squares, for the new well case using crisp data, data 

acquisition is preferred to no data acquisition, but, when using fuzzy data, no data acquisition is preferred 
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to data acquisition; from the two lower squares, for the extended well test case, data acquisition is preferred 

to no data acquisition in both cases, crisp and fuzzy data. In addition, using crisp and fuzzy data, the 

extended well test is preferred to the new well, as highlighted by the preferred symbol in the vertical 

direction (in red in the figure). 

These results indicate that the evaluation of the drilling a new well and performing an extended well test 

alternative is affected whether the fuzzy nature of the data is included in the assessment. However, in the 

performing an extended well test on an existing well alternative, the same recommendation is obtained 

whether crisp or fuzzy data are assumed. 

This FIS assessment has a great advantage over the crisp assessment in that it avoids the contradictory 

recommendations discussed above, i.e. those that occur between the assessments based on UNPV and UIRR 

for the drilling a new well and performing an extended well test alternative. 

In all of the alternatives assessed in our case study, it was observed that the value of the data, when they 

are assumed to be fuzzy, is always lower than the value of the data when they are assumed to be crisp.  

Based on previous discussions, it could be that, in some cases, while the value of the crisp data acquisition 

alternative is higher than the value of no data acquisition, when the fuzzy nature of the data is considered 

in the analysis, the results change the recommendation from do acquire data to do not acquire data (indeed, 

this happens in the UNPV in the drilling a new well and performing an extended well test data acquisition 

alternative, Table 4.17). There are also cases in which the decrease in the value of the data does not change 

the decision, as occurs with UIRR for the drilling a new well and performing an extended well test data 

acquisition (Table 4.17). 

These results mean that, potentially, the consideration of the fuzzy nature of the data can change the 

decision, providing a more accurate evaluation of the data and, consequently, the fuzzy nature of the data 

should be included in the analysis for assessing the value that new data has in the value of the project.  
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The sensitivity analysis performed using triangular and sigmoidal membership functions shows that, 

independently of the level of flattening or sharpening of the functions, the alternative performing an 

extended well test on an existing well is always better than drilling a new well and performing an extended 

well test and do not acquire new data; however, the alternative drilling a new well and performing an 

extended well test is not always better than do not acquire data, which only occurs when the functions are 

neither very sharp nor very flat: for very flat or very sharp membership functions, the drilling a new well 

and performing an extended well test and the do not acquire data alternatives have similar utility values.  

The sensitivity analysis also shows that the utility values of the triangular membership functions are higher 

than the utility values of the sigmoidal membership functions, even though efforts were made to calibrate 

both sets of functions to the same values at the “0” level. 

 

4.14.2 Application of the VOI methodology in other fields 

A request for data acquisition is not limited to the oil and gas industry, and in general it is needed in domains 

where uncertainty is present in the set of input variables, and that uncertainty translated to the outcomes.  

To apply this methodology to other domains other than the oil and gas industry, it should be possible to 

build a model (mathematical or empirical) of the system that describes its future performance in terms of 

the uncertain variables; to do that, one objective function describing what matters to the decision maker 

should be defined. 

Another requirement for applying the VOI methodology is that it should be feasible (economically, 

physically and timely) to acquire additional data, and experts have to be able to assign prior and reliability 

probability to the several combinations of probable cases. Finally, it should be possible to change the current 

decision based on the data acquisition outcome (otherwise, it does not make sense acquire the data). In case 

the previous conditions can be fulfilled, the methodology of VOI can be used to assess the value that new 

data have to the project. 
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In the agricultural domain, decisions associated with expected benefits for changing the type of seed, in the 

automotive business the best material for specific parts of the engine, in the civil engineering the process 

for selecting the best materials in terms of strength and durability for constructions materials, in the mining 

domain decisions concerning with the identification of mines larger than the minimum economical size are 

examples where the proposed methodology can be easily adapted. 

 

4.14.3 Limitations of the proposed methodology 

Even though the proposed method fills the gaps found in the classical method for VOI, it still has a few 

limitations, which are discussed below. 

1) A complete evaluation of the main parameters impacting on the value of a project can be a very 

time-consuming task when the assessment is made on a complex reservoir: the resources and time 

required to complete the study can be greater than those available for the study. It is not uncommon 

to find simulation runs taking more than 6 hours to complete, which makes this assessment 

expensive and time-consuming when many dynamic simulation runs are required.   

2) The identification and assessment of different data acquisition alternatives may be challenging in 

complex problems, and the difficulty increases when there are multiple alternatives. At present, 

there is no method that ensures that all the data acquisition alternatives related with the uncertainties 

of a given reservoir are considered in the VOI acquisition assessment.   

3) The selection of the membership functions used for assessing the fuzziness of the data, and those 

used for assessing the decision criteria, are highly subjective, lacking a formal process for their  

definition and parametrization, which may result in biases in the selection of the membership 

functions. There is a need to have a consistent and formal process for selecting the membership 

functions in order to avoid bias in the decisions. An intelligent system can be developed to create 
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the membership functions associated with the fuzziness of several types of data, based on previous 

decisions.   

4) The concept of fuzzy data is not a common topic for the professionals involved in subsurface 

evaluations, making it difficult to apply. The use of fuzzy logic and probability theory requires a 

special training for the specialist on subsurface topics. 

5) In Section 2.2, the Asian disease and the Allais paradoxes were used to exemplify that when making 

decisions, in some cases, the decision maker does not follow the vNM theory, or how rational 

people should make decisions, but the Prospect Theory, which describes how people make 

decisions while impacted for several effects such as reflection and framing which condition the 

decision maker’s assessment; the proposed methodology is a prescriptive theory which does not 

consider these effects. 
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5.1 INTRODUCTION 

This chapter answers the research questions posed in the first chapter. It also shows how the proposed 

theories, techniques and methodologies can enhance the classical VOI methodology, thus generating a more 

robust and complete methodology that is valuable to the decision makers and to oil and gas industry 

practitioners. 

 

5.2 THE RESEARCH QUESTIONS REVISITED 

In Chapter 1 two research questions were proposed that this study had aimed to address. Each question 

corresponds to a gap found in the classical VOI methodology. This section focuses on each question and 

shows how, using the combined set of theories, methodologies and techniques discussed in this research, 

those gaps can be filled, allowing a more robust methodology for VOI to emerge. 

The first research question aimed at changing the strategy for applying VOI from an activity-based 

assessment to a project-based assessment. This question was motivated by the observation that most of the 

reported applications of VOI focus on identifying uncertain input variables and defining a data acquisition 

activity that can impact on our understanding of the associated uncertainty. Under this premise, the classical 

VOI methodology is applied to assess whether the proposed data acquisition activity is worthwhile. The 

objective function used in the reported assessments is mostly the cumulative hydrocarbon production or 

expected monetary value of the project. In addition, the risk attitude of the decision maker is rarely part of 

the assessment.  

This approach lacks a methodological consideration of the complete set of uncertain input variables that 

the project has to deal with. In other words, it may be missing the opportunity to implement more beneficial 

data acquisition activities. Additionally, when several data acquisition activities are feasible, choosing the 
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most beneficial one should be based on the ranking of the impact that each variable and their interactions 

has on the utility value of the project. The approach presented in this research assumes that the objective of 

any decision related with data acquisition is to optimize the value of the project, not just to improve its 

value.  

To overcome this issue, DOE techniques are used for the identification and ranking of the uncertain input 

variables according to selected metrics. In the case study presented, a dynamic reservoir simulation model 

is used to predict field performance; all the profiles are subject to financial assessment to define the project 

value and utility value for each input selection. It is important to clarify that, in general, even in cases where 

dynamic simulation is not available, the methodology can be used inasmuch as different profiles can be 

assigned to different combinations of input parameters.  

In this research, the definition and ranking of uncertain variables is carried out using DOE techniques; a 

full factorial design and ANOVA analysis are used for ranking all the variables and their main interactions. 

Depending on the number of variables, other designs (such as fractional factorial design or compositional 

design) can be used to produce quicker answers.  

The second research question concerned two aspects related to fuzzy logic: i) assessing the impact of 

including the fuzzy nature of the reservoir data within the VOI and, ii) designing as well as developing a 

fuzzy decision system suitable for assessing VOI problems (a decision system that is more closely aligned 

to human logic than the classical decision approach based on crisp criteria).  

The first aspect of the second research question aimed to establish whether the fuzzy nature of the 

subsurface data has an impact on the VOI assessment. Fuzziness in the data is one form of uncertainty that 

cannot be captured by using probabilistic tools and it is associated with the imprecision inherent in the data. 

In the classical VOI methodology, a set of production profiles corresponding to crisp values of the input 

parameters are evaluated assuming that the data are crisp, which means that the outcome of the data 

acquisition is a sharp value that corresponds exactly to one of the cases being evaluated. However, this does 
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not correspond with what happens in reality. The data are always measured with imprecision and do not 

accurately match the cases being evaluated.  In this research, fuzzy logic and fuzzy membership functions 

are used to describe and measure the imprecision in the data. The fuzzy VOI approach developed in this 

research uses the same mathematical description as classical VOI, replacing the crisp variables with fuzzy 

ones. The concept of fuzzy data acquisition is developed by integrating the fuzzy nature of the data proposed 

to be acquired within the VOI methodology, which can then be used in problems relating to the oil and gas 

industry.  

The second aspect of the second research question attempted to address whether a decision system for 

making VOI assessment that follows the same logic as the human mind can be developed. This question is 

motivated by the recognition that human thinking uses fuzzy description criteria, whilst the classical VOI 

uses a Boolean logic; these differences make it difficult to reconcile the outcome of the assessment with 

the thinking of the decision maker.  

The research presented in this thesis addressed this question by developing a FIS. The first advantage of 

the FIS is its capability to aggregate the effects of several decision criteria into one outcome and, secondly, 

the possibility to replicate the human decision process by the FIS through the use of membership functions. 

In this research work an FIS is developed to account for the assessment associated with data acquisition. 

The FIS has been used previously for several different applications in engineering and here the use of an 

FIS for the assessment of the VOI is developed. In this research, selected membership functions are used 

to capture the imprecision in the data that it is proposed to be gathered. 

In this research, the importance is recognised of using utility values instead of values for capturing the 

decision maker’s attitude towards risk. The concept of utility value was used in VOI assessments for the oil 

and gas industry in the 1950s; however, since then, most of the reported cases of VOI use financial 

parameters (such as NPV, IRR, DPI or other utility values) instead of their utility values, which has the 

clear disadvantage of underestimating the importance that the risk attitude of the decision maker has on the 
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VOI decisions; even though it is not one of the research topics, the risk attitude of the decision maker is 

included in the fuzzy methodology for VOI.  

 

5.3 RECOMMENDATIONS FOR FUTURE WORK 

Whilst conducting the research underpinning this thesis, it is recognised that some areas of research were 

not explored that could be the subject of future work, as will be discussed in this section. 

Due to the limitations discussed in Section 4.14.2 related to the large resources required for the assessment 

of complex reservoirs, it is important to find other ways to include dynamic modelling; one possible line of 

investigation is to use proxy models in VOI assessment for predicting the reservoir performance instead of 

using dynamic simulation models. This technique (proxy modelling) has been used before for probabilistic 

assessment and modelling optimization; however, it can also be used within the VOI framework for a quick 

identification of the significant parameters.  

Another area of research that can be pursued is the generation of a consistent and comprehensive method 

for identifying the data acquisition actions associated with subsurface assessments. This is not a simple 

issue, but it can be addressed using sophisticated expert systems. This requires the building of a complete 

database of the uncertainties and data acquisition actions, including the mappings between them; the 

association rules can select and rank the data acquisition actions based on the uncertainties and type of 

reservoirs. 

In relation to the observed limitation in the way the membership functions are selected for making VOI 

assessment, additional research can be conducted in the domain of intelligent systems to build, for VOI 

assessments, membership functions to i) describe the fuzziness associated with different types of subsurface 

data, and ii) capture the fuzziness associated with the decision criteria used to make decisions concerning 

data acquisition. 
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APPENDIX 1: CASE STUDY SUPPORTING INFORMATION 

Table A1.1. Porosity values measured on the appraisal wells 

LAYER POROSITY 

%, P01 

POROSITY 

%, P02 

POROSITY 

%, P03 

POROSITY 

%, P04 

1 28 25 25 5 

2 28 26 26 5 

3 29 27 27 5 

4 29 27 27 5 

5 28 25 24 5 

6 27 23 22 5 

7 26 24 22 5 

8 26 23 21 5 

9 23 22 20 5 

 

Table A1.2. Permeability values measured on the appraisal wells 

LAYER PERMEABILITY 

mD, P01 

PERMEABILITY 

mD, P02 

PERMEABILITY 

mD, P03 

PERMEABILITY 

mD, P04 

1 1415 860 850 1 

2 1400 1030 1025 1 

3 1655 1210 1190 1 

4 1630 1190 1210 1 

5 1395 840 730 1 

6 1210 595 495 1 

7 1025 710 490 1 

8 1015 585 395 1 

9 585 485 315 1 
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Table A1.3. Mean porosity values 

LAYER MEDIUM, % HIGH, % LOW, % 

1 16.6 17.4 12.1 

2 16.9 17.7 12.4 

3 17.2 18.1 12.7 

4 17.2 18.0 12.6 

5 16.3 17.1 11.9 

6 15.9 16.7 11.6 

7 15.7 16.7 11.5 

8 15.3 16.3 11.2 

9 14.4 15.5 10.5 

 

Table A1.4. Mean permeability values 

LAYER MEDIUM, mD HIGH, mD LOW, mD 

1 337 376 284 

2 370 412 313 

3 413 461 353 

4 403 450 342 

5 301 341 251 

6 275 306 230 

7 253 289 208 

8 229 262 187 

9 159 193 119 
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Table A1.5. Cumulative Oil 

RUN OIL CUMULATIVE, 

MM STB 

RUN OIL CUMULATIVE, 

MM STB 

1 87.5 17 102.4 

2 113.0 18 140.5 

3 88.1 19 105.7 

4 137.8 20 166.7 

5 106.5 21 131.3 

6 128.2 22 168.9 

7 107.9 23 136.5 

8 160.3 24 205.4 

9 89.1 25 101.9 

10 111.9 26 132.9 

11 89.7 27 105.5 

12 140.0 28 161.5 

13 104.8 29 126.6 

14 125.5 30 160.3 

15 105.9 31 131.8 

16 158.5 32 195.3 
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Table A1.6. Oil Cumulative 

RUN OIL CUMULATIVE, 

MM STB 

RUN OIL CUMULATIVE, 

MM STB 

33 87.5 49 102.7 

34 113.1 50 140.9 

35 88.2 51 106.1 

36 137.9 52 167.5 

37 106.5 53 131.7 

38 128.2 54 169.3 

39 107.9 55 137.0 

40 160.4 56 206.4 

41 89.4 57 102.3 

42 112.1 58 133.2 

43 89.9 59 105.9 

44 140.5 60 162.4 

45 104.9 61 127.1 

46 125.7 62 160.7 

47 106.0 63 132.3 

48 158.5 64 197.5 
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Table A1.7. CAPEX, OPEX, oil price forecast (14 years) 

YEAR OIL PRICE, 

US$ 

OPEX, 

MM US$ 

CAPEX LOW,   

MM US$ 

CAPEX MEDIUM, 

MM US$ 

CAPEX HIGH,   

MM US$ 

2019 80 50 3330 3330 3330 

2020 81 50 163 146 129 

2021 82 50 0 100 166 

2022 82 50 0 0 0 

2023 83 50 0 0 0 

2024 84 50 0 0 0 

2025 85 50 0 0 0 

2026 86 50 0 0 0 

2027 87 50 0 0 0 

2028 87 50 0 0 0 

2029 88 50 0 0 0 

2030 89 50 0 0 0 

2031 90 50 0 0 0 

2032 91 50 0 0 0 
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Table A1.8. CAPEX, OPEX, Oil Price Forecast (14 years) 

YEAR OIL PRICE, 

US$ 

OPEX, 

MM US$ 

CAPEX LOW,   

MM US$ 

CAPEX MEDIUM, 

MM US$ 

CAPEX HIGH,   

MM US$ 

2033 92 50 0 0 0 

2034 93 50 0 0 0 

2035 94 50 0 0 0 

2036 95 50 0 0 0 

2037 96 50 0 0 0 

2038 97 50 0 0 0 

2039 98 50 0 0 0 

2040 99 50 0 0 0 

2041 100 50 0 0 0 

2042 101 50 0 0 0 

2043 102 50 0 0 0 

2044 103 50 0 0 0 

2045 104 50 0 0 0 

2046 105 300 0 0 0 
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Table A1.9. Cost estimates 

CONCEPT COST, MM US$ 

Cost producer well w completion 20.0 

Cost producer well w/o completion 17.0 

Cost injector well w completion 21.5 

Cost injector well w/o completion 18.0 

Facilities cost 3,270.0 
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Table A1.10. Data acquisition: one well. Reliability probabilities  

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s1) 0.110 P(hhhh|s2) 0.080 P(hhhh|s3) 0.080 

P(hhhl|s1) 0.090 P(hhhl|s2) 0.140 P(hhhl|s3) 0.060 

P(hhlh|s1) 0.090 P(hhlh|s2) 0.060 P(hhlh|s3) 0.140 

P(hhll|s1) 0.060 P(hhll|s2) 0.080 P(hhll|s3) 0.080 

P(hlhh|s1) 0.090 P(hlhh|s2) 0.060 P(hlhh|s3) 0.060 

P(hlhl|s1) 0.060 P(hlhl|s2) 0.080 P(hlhl|s3) 0.040 

P(hllh|s1) 0.060 P(hllh|s2) 0.040 P(hllh|s3) 0.080 

P(hlll|s1) 0.040 P(hlll|s2) 0.060 P(hlll|s3) 0.060 

P(lhhh|s1) 0.090 P(lhhh|s2) 0.060 P(lhhh|s3) 0.060 

P(lhhl|s1) 0.060 P(lhhl|s2) 0.080 P(lhhl|s3) 0.040 

P(lhlh|s1) 0.060 P(lhlh|s2) 0.040 P(lhlh|s3) 0.080 

P(lhll|s1) 0.040 P(lhll|s2) 0.060 P(lhll|s3) 0.060 

P(llhh|s1) 0.060 P(llhh|s2) 0.040 P(llhh|s3) 0.040 

P(llhl|s1) 0.040 P(llhl|s2) 0.060 P(llhl|s3) 0.020 

P(lllh|s1) 0.040 P(lllh|s2) 0.020 P(lllh|s3) 0.060 

P(llll|s1) 0.010 P(llll|s2) 0.040 P(llll|s3) 0.040 
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Table A1.11. Data acquisition: one well. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s4) 0.060 P(hhhh|s5) 0.080 P(hhhh|s6) 0.060 

P(hhhl|s4) 0.080 P(hhhl|s5) 0.060 P(hhhl|s6) 0.080 

P(hhlh|s4) 0.080 P(hhlh|s5) 0.060 P(hhlh|s6) 0.040 

P(hhll|s4) 0.140 P(hhll|s5) 0.040 P(hhll|s6) 0.060 

P(hlhh|s4) 0.040 P(hlhh|s5) 0.140 P(hlhh|s6) 0.080 

P(hlhl|s4) 0.060 P(hlhl|s5) 0.080 P(hlhl|s6) 0.140 

P(hllh|s4) 0.060 P(hllh|s5) 0.080 P(hllh|s6) 0.060 

P(hlll|s4) 0.080 P(hlll|s5) 0.060 P(hlll|s6) 0.080 

P(lhhh|s4) 0.040 P(lhhh|s5) 0.060 P(lhhh|s6) 0.040 

P(lhhl|s4) 0.060 P(lhhl|s5) 0.040 P(lhhl|s6) 0.060 

P(lhlh|s4) 0.060 P(lhlh|s5) 0.040 P(lhlh|s6) 0.020 

P(lhll|s4) 0.080 P(lhll|s5) 0.020 P(lhll|s6) 0.040 

P(llhh|s4) 0.020 P(llhh|s5) 0.080 P(llhh|s6) 0.060 

P(llhl|s4) 0.040 P(llhl|s5) 0.060 P(llhl|s6) 0.080 

P(lllh|s4) 0.040 P(lllh|s5) 0.060 P(lllh|s6) 0.040 

P(llll|s4) 0.060 P(llll|s5) 0.040 P(llll|s6) 0.060 
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Table A1.12. Data acquisition: one well. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s7) 0.060 P(hhhh|s8) 0.040 P(hhhh|s9) 0.080 

P(hhhl|s7) 0.040 P(hhhl|s8) 0.060 P(hhhl|s9) 0.060 

P(hhlh|s7) 0.080 P(hhlh|s8) 0.060 P(hhlh|s9) 0.060 

P(hhll|s7) 0.060 P(hhll|s8) 0.080 P(hhll|s9) 0.040 

P(hlhh|s7) 0.080 P(hlhh|s8) 0.060 P(hlhh|s9) 0.060 

P(hlhl|s7) 0.060 P(hlhl|s8) 0.080 P(hlhl|s9) 0.040 

P(hllh|s7) 0.140 P(hllh|s8) 0.080 P(hllh|s9) 0.040 

P(hlll|s7) 0.080 P(hlll|s8) 0.140 P(hlll|s9) 0.020 

P(lhhh|s7) 0.040 P(lhhh|s8) 0.020 P(lhhh|s9) 0.140 

P(lhhl|s7) 0.020 P(lhhl|s8) 0.040 P(lhhl|s9) 0.080 

P(lhlh|s7) 0.060 P(lhlh|s8) 0.040 P(lhlh|s9) 0.080 

P(lhll|s7) 0.040 P(lhll|s8) 0.060 P(lhll|s9) 0.060 

P(llhh|s7) 0.060 P(llhh|s8) 0.040 P(llhh|s9) 0.080 

P(llhl|s7) 0.040 P(llhl|s8) 0.060 P(llhl|s9) 0.060 

P(lllh|s7) 0.080 P(lllh|s8) 0.060 P(lllh|s9) 0.060 

P(llll|s7) 0.060 P(llll|s8) 0.080 P(llll|s9) 0.040 
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Table A1.13. Data acquisition: one well. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s10) 0.060 P(hhhh|s11) 0.060 P(hhhh|s12) 0.040 

P(hhhl|s10) 0.080 P(hhhl|s11) 0.040 P(hhhl|s12) 0.060 

P(hhlh|s10) 0.040 P(hhlh|s11) 0.080 P(hhlh|s12) 0.060 

P(hhll|s10) 0.060 P(hhll|s11) 0.060 P(hhll|s12) 0.080 

P(hlhh|s10) 0.040 P(hlhh|s11) 0.040 P(hlhh|s12) 0.020 

P(hlhl|s10) 0.060 P(hlhl|s11) 0.020 P(hlhl|s12) 0.040 

P(hllh|s10) 0.020 P(hllh|s11) 0.060 P(hllh|s12) 0.040 

P(hlll|s10) 0.040 P(hlll|s11) 0.040 P(hlll|s12) 0.060 

P(lhhh|s10) 0.080 P(lhhh|s11) 0.080 P(lhhh|s12) 0.060 

P(lhhl|s10) 0.140 P(lhhl|s11) 0.060 P(lhhl|s12) 0.080 

P(lhlh|s10) 0.060 P(lhlh|s11) 0.140 P(lhlh|s12) 0.080 

P(lhll|s10) 0.080 P(lhll|s11) 0.080 P(lhll|s12) 0.140 

P(llhh|s10) 0.060 P(llhh|s11) 0.060 P(llhh|s12) 0.040 

P(llhl|s10) 0.080 P(llhl|s11) 0.040 P(llhl|s12) 0.060 

P(lllh|s10) 0.040 P(lllh|s11) 0.080 P(lllh|s12) 0.060 

P(llll|s10) 0.060 P(llll|s11) 0.060 P(llll|s12) 0.080 
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Table A1.14. Data acquisition: one well. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s13) 0.060 P(hhhh|s14) 0.040 P(hhhh|s15) 0.040 

P(hhhl|s13) 0.040 P(hhhl|s14) 0.060 P(hhhl|s15) 0.020 

P(hhlh|s13) 0.040 P(hhlh|s14) 0.020 P(hhlh|s15) 0.060 

P(hhll|s13) 0.020 P(hhll|s14) 0.040 P(hhll|s15) 0.040 

P(hlhh|s13) 0.080 P(hlhh|s14) 0.060 P(hlhh|s15) 0.060 

P(hlhl|s13) 0.060 P(hlhl|s14) 0.080 P(hlhl|s15) 0.040 

P(hllh|s13) 0.060 P(hllh|s14) 0.040 P(hllh|s15) 0.080 

P(hlll|s13) 0.040 P(hlll|s14) 0.060 P(hlll|s15) 0.060 

P(lhhh|s13) 0.080 P(lhhh|s14) 0.060 P(lhhh|s15) 0.060 

P(lhhl|s13) 0.060 P(lhhl|s14) 0.080 P(lhhl|s15) 0.040 

P(lhlh|s13) 0.060 P(lhlh|s14) 0.040 P(lhlh|s15) 0.080 

P(lhll|s13) 0.040 P(lhll|s14) 0.060 P(lhll|s15) 0.060 

P(llhh|s13) 0.140 P(llhh|s14) 0.080 P(llhh|s15) 0.080 

P(llhl|s13) 0.080 P(llhl|s14) 0.140 P(llhl|s15) 0.060 

P(lllh|s13) 0.080 P(lllh|s14) 0.060 P(lllh|s15) 0.140 

P(llll|s13) 0.060 P(llll|s14) 0.080 P(llll|s15) 0.080 
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Table A1.15. Data acquisition: one well. Reliability probabilities 

COMPOUND STATE CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s16) 0.020 

P(hhhl|s16) 0.040 

P(hhlh|s16) 0.040 

P(hhll|s16) 0.060 

P(hlhh|s16) 0.040 

P(hlhl|s16) 0.060 

P(hllh|s16) 0.060 

P(hlll|s16) 0.080 

P(lhhh|s16) 0.040 

P(lhhl|s16) 0.060 

P(lhlh|s16) 0.060 

P(lhll|s16) 0.080 

P(llhh|s16) 0.060 

P(llhl|s16) 0.080 

P(lllh|s16) 0.080 

P(llll|s16) 0.140 
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Table A1.16. Data acquisition: one well. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s1|hhhh) 0.011 P(s2|hhhh) 0.019 P(s3|hhhh) 0.015 

P(s1|hhhl) 0.008 P(s2|hhhl) 0.028 P(s3|hhhl) 0.009 

P(s1|hhlh) 0.008 P(s2|hhlh) 0.012 P(s3|hhlh) 0.023 

P(s1|hhll) 0.005 P(s2|hhll) 0.014 P(s3|hhll) 0.011 

P(s1|hlhh) 0.007 P(s2|hlhh) 0.011 P(s3|hlhh) 0.009 

P(s1|hlhl) 0.004 P(s2|hlhl) 0.013 P(s3|hlhl) 0.005 

P(s1|hllh) 0.004 P(s2|hllh) 0.007 P(s3|hllh) 0.010 

P(s1|hlll) 0.002 P(s2|hlll) 0.008 P(s3|hlll) 0.007 

P(s1|lhhh) 0.007 P(s2|lhhh) 0.011 P(s3|lhhh) 0.009 

P(s1|lhhl) 0.004 P(s2|lhhl) 0.013 P(s3|lhhl) 0.005 

P(s1|lhlh) 0.004 P(s2|lhlh) 0.007 P(s3|lhlh) 0.010 

P(s1|lhll) 0.002 P(s2|lhll) 0.008 P(s3|lhll) 0.007 

P(s1|llhh) 0.004 P(s2|llhh) 0.006 P(s3|llhh) 0.005 

P(s1|llhl) 0.002 P(s2|llhl) 0.007 P(s3|llhl) 0.002 

P(s1|lllh) 0.002 P(s2|lllh) 0.003 P(s3|lllh) 0.006 

P(s1|llll) 0.000 P(s2|llll) 0.004 P(s3|llll) 0.003 
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Table A1.17. Data acquisition: one well. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s4|hhhh) 0.027 P(s5|hhhh) 0.033 P(s6|hhhh) 0.057 

P(s4|hhhl) 0.029 P(s5|hhhl) 0.020 P(s6|hhhl) 0.063 

P(s4|hhlh) 0.031 P(s5|hhlh) 0.021 P(s6|hhlh) 0.033 

P(s4|hhll) 0.046 P(s5|hhll) 0.012 P(s6|hhll) 0.042 

P(s4|hlhh) 0.014 P(s5|hlhh) 0.044 P(s6|hlhh) 0.058 

P(s4|hlhl) 0.017 P(s5|hlhl) 0.021 P(s6|hlhl) 0.088 

P(s4|hllh) 0.018 P(s5|hllh) 0.022 P(s6|hllh) 0.039 

P(s4|hlll) 0.021 P(s5|hlll) 0.014 P(s6|hlll) 0.045 

P(s4|lhhh) 0.014 P(s5|lhhh) 0.019 P(s6|lhhh) 0.029 

P(s4|lhhl) 0.017 P(s5|lhhl) 0.011 P(s6|lhhl) 0.038 

P(s4|lhlh) 0.018 P(s5|lhlh) 0.011 P(s6|lhlh) 0.013 

P(s4|lhll) 0.021 P(s5|lhll) 0.005 P(s6|lhll) 0.022 

P(s4|llhh) 0.005 P(s5|llhh) 0.020 P(s6|llhh) 0.035 

P(s4|llhl) 0.009 P(s5|llhl) 0.013 P(s6|llhl) 0.040 

P(s4|lllh) 0.010 P(s5|lllh) 0.013 P(s6|lllh) 0.021 

P(s4|llll) 0.012 P(s5|llll) 0.007 P(s6|llll) 0.026 
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Table A1.18. Data acquisition: one well. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s7|hhhh) 0.046 P(s8|hhhh) 0.071 P(s9|hhhh) 0.033 

P(s7|hhhl) 0.025 P(s8|hhhl) 0.088 P(s9|hhhl) 0.020 

P(s7|hhlh) 0.053 P(s8|hhlh) 0.092 P(s9|hhlh) 0.021 

P(s7|hhll) 0.034 P(s8|hhll) 0.105 P(s9|hhll) 0.012 

P(s7|hlhh) 0.046 P(s8|hlhh) 0.081 P(s9|hlhh) 0.019 

P(s7|hlhl) 0.030 P(s8|hlhl) 0.093 P(s9|hlhl) 0.011 

P(s7|hllh) 0.073 P(s8|hllh) 0.097 P(s9|hllh) 0.011 

P(s7|hlll) 0.036 P(s8|hlll) 0.146 P(s9|hlll) 0.005 

P(s7|lhhh) 0.023 P(s8|lhhh) 0.027 P(s9|lhhh) 0.044 

P(s7|lhhl) 0.010 P(s8|lhhl) 0.047 P(s9|lhhl) 0.021 

P(s7|lhlh) 0.031 P(s8|lhlh) 0.048 P(s9|lhlh) 0.022 

P(s7|lhll) 0.018 P(s8|lhll) 0.062 P(s9|lhll) 0.014 

P(s7|llhh) 0.028 P(s8|llhh) 0.043 P(s9|llhh) 0.020 

P(s7|llhl) 0.016 P(s8|llhl) 0.055 P(s9|llhl) 0.013 

P(s7|lllh) 0.033 P(s8|lllh) 0.057 P(s9|lllh) 0.013 

P(s7|llll) 0.021 P(s8|llll) 0.064 P(s9|llll) 0.007 
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Table A1.19. Data acquisition: one well. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s10|hhhh) 0.057 P(s11|hhhh) 0.046 P(s12|hhhh) 0.071 

P(s10|hhhl) 0.063 P(s11|hhhl) 0.025 P(s12|hhhl) 0.088 

P(s10|hhlh) 0.033 P(s11|hhlh) 0.053 P(s12|hhlh) 0.092 

P(s10|hhll) 0.042 P(s11|hhll) 0.034 P(s12|hhll) 0.105 

P(s10|hlhh) 0.029 P(s11|hlhh) 0.023 P(s12|hlhh) 0.027 

P(s10|hlhl) 0.038 P(s11|hlhl) 0.010 P(s12|hlhl) 0.047 

P(s10|hllh) 0.013 P(s11|hllh) 0.031 P(s12|hllh) 0.048 

P(s10|hlll) 0.022 P(s11|hlll) 0.018 P(s12|hlll) 0.062 

P(s10|lhhh) 0.058 P(s11|lhhh) 0.046 P(s12|lhhh) 0.081 

P(s10|lhhl) 0.088 P(s11|lhhl) 0.030 P(s12|lhhl) 0.093 

P(s10|lhlh) 0.039 P(s11|lhlh) 0.073 P(s12|lhlh) 0.097 

P(s10|lhll) 0.045 P(s11|lhll) 0.036 P(s12|lhll) 0.146 

P(s10|llhh) 0.035 P(s11|llhh) 0.028 P(s12|llhh) 0.043 

P(s10|llhl) 0.040 P(s11|llhl) 0.016 P(s12|llhl) 0.055 

P(s10|lllh) 0.021 P(s11|lllh) 0.033 P(s12|lllh) 0.057 

P(s10|llll) 0.026 P(s11|llll) 0.021 P(s12|llll) 0.064 
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Table A1.20. Data acquisition: one well. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(13|hhhh) 0.098 P(s14|hhhh) 0.153 P(s15|hhhh) 0.122 

P(s13|hhhl) 0.054 P(s14|hhhl) 0.190 P(s15|hhhl) 0.050 

P(s13|hhlh) 0.057 P(s14|hhlh) 0.066 P(s15|hhlh) 0.158 

P(s13|hhll) 0.024 P(s14|hhll) 0.113 P(s15|hhll) 0.090 

P(s13|hlhh) 0.100 P(s14|hlhh) 0.175 P(s15|hlhh) 0.139 

P(s13|hlhl) 0.064 P(s14|hlhl) 0.200 P(s15|hlhl) 0.080 

P(s13|hllh) 0.067 P(s14|hllh) 0.104 P(s15|hllh) 0.166 

P(s13|hlll) 0.038 P(s14|hlll) 0.135 P(s15|hlll) 0.107 

P(s13|lhhh) 0.100 P(s14|lhhh) 0.175 P(s15|lhhh) 0.139 

P(s13|lhhl) 0.064 P(s14|lhh) 0.200 P(s15|lhhl) 0.080 

P(s13|lhlh) 0.067 P(s14|lhlh) 0.104 P(s15|lhlh) 0.166 

P(s13|lhll) 0.038 P(s14|lhll) 0.135 P(s15|lhll) 0.107 

P(s13|llhh) 0.139 P(s14|llhh) 0.185 P(s15|llhh) 0.148 

P(s13|llhl) 0.068 P(s14|llhl) 0.277 P(s15|llhl) 0.094 

P(s13|lllh) 0.071 P(s14|lllh) 0.124 P(s15|lllh) 0.230 

P(s13|llll) 0.045 P(s14|llll) 0.138 P(s15|llll) 0.110 
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Table A1.21. Data acquisition: one well. Posterior probabilities 

COMPOUND STATE CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s16|hhhh) 0.142 

P(s16|hhhl) 0.236 

P(s16|hhlh) 0.246 

P(s16|hhll) 0.314 

P(s16|hlhh) 0.217 

P(s16|hlhl) 0.279 

P(s16|hllh) 0.290 

P(s16|hlll) 0.333 

P(s16|lhhh) 0.217 

P(s16|lhhl) 0.279 

P(s16|lhlh) 0.290 

P(s16|lhll) 0.333 

P(s16|llhh) 0.258 

P(s16|llhl) 0.294 

P(s16|lllh) 0.307 

P(s16|llll) 0.450 
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Table A1.22. Data acquisition: one well. Residual probabilities 

COMPOUND STATE RESIDUAL PROBABILITIES 

P(hhhh) 0.041 

P(hhhl) 0.049 

P(hhlh) 0.047 

P(hhll) 0.056 

P(hlhh) 0.054 

P(hlhl) 0.063 

P(hllh) 0.060 

P(hlll) 0.070 

P(lhhh) 0.054 

P(lhhl) 0.063 

P(lhlh) 0.060 

P(lhll) 0.070 

P(llhh) 0.068 

P(llhl) 0.079 

P(lllh) 0.076 

P(llll) 0.091 
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Table A1.23. Data acquisition: extended well test. Reliability probabilities  

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s1) 0.100 P(hhhh|s2) 0.100 P(hhhh|s3) 0.100 

P(hhhl|s1) 0.100 P(hhhl|s2) 0.100 P(hhhl|s3) 0.100 

P(hhlh|s1) 0.100 P(hhlh|s2) 0.100 P(hhlh|s3) 0.100 

P(hhll|s1) 0.100 P(hhll|s2) 0.100 P(hhll|s3) 0.100 

P(hlhh|s1) 0.025 P(hlhh|s2) 0.025 P(hlhh|s3) 0.025 

P(hlhl|s1) 0.025 P(hlhl|s2) 0.025 P(hlhl|s3) 0.025 

P(hllh|s1) 0.025 P(hllh|s2) 0.025 P(hllh|s3) 0.025 

P(hlll|s1) 0.025 P(hlll|s2) 0.025 P(hlll|s3) 0.025 

P(lhhh|s1) 0.100 P(lhhh|s2) 0.100 P(lhhh|s3) 0.100 

P(lhhl|s1) 0.100 P(lhhl|s2) 0.100 P(lhhl|s3) 0.100 

P(lhlh|s1) 0.100 P(lhlh|s2) 0.100 P(lhlh|s3) 0.100 

P(lhll|s1) 0.100 P(lhll|s2) 0.100 P(lhll|s3) 0.100 

P(llhh|s1) 0.025 P(llhh|s2) 0.025 P(llhh|s3) 0.025 

P(llhl|s1) 0.025 P(llhl|s2) 0.025 P(llhl|s3) 0.025 

P(lllh|s1) 0.025 P(lllh|s2) 0.025 P(lllh|s3) 0.025 

P(llll|s1) 0.025 P(llll|s2) 0.025 P(llll|s3) 0.025 
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Table A1.24. Data acquisition: extended well test. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s4) 0.100 P(hhhh|s5) 0.100 P(hhhh|s6) 0.100 

P(hhhl|s4) 0.100 P(hhhl|s5) 0.100 P(hhhl|s6) 0.100 

P(hhlh|s4) 0.100 P(hhlh|s5) 0.100 P(hhlh|s6) 0.100 

P(hhll|s4) 0.100 P(hhll|s5) 0.100 P(hhll|s6) 0.100 

P(hlhh|s4) 0.025 P(hlhh|s5) 0.025 P(hlhh|s6) 0.025 

P(hlhl|s4) 0.025 P(hlhl|s5) 0.025 P(hlhl|s6) 0.025 

P(hllh|s4) 0.025 P(hllh|s5) 0.025 P(hllh|s6) 0.025 

P(hlll|s4) 0.025 P(hlll|s5) 0.025 P(hlll|s6) 0.025 

P(lhhh|s4) 0.100 P(lhhh|s5) 0.100 P(lhhh|s6) 0.100 

P(lhhl|s4) 0.100 P(lhhl|s5) 0.100 P(lhhl|s6) 0.100 

P(lhlh|s4) 0.100 P(lhlh|s5) 0.100 P(lhlh|s6) 0.100 

P(lhll|s4) 0.100 P(lhll|s5) 0.100 P(lhll|s6) 0.100 

P(llhh|s4) 0.025 P(llhh|s5) 0.025 P(llhh|s6) 0.025 

P(llhl|s4) 0.025 P(llhl|s5) 0.025 P(llhl|s6) 0.025 

P(lllh|s4) 0.025 P(lllh|s5) 0.025 P(lllh|s6) 0.025 

P(llll|s4) 0.025 P(llll|s5) 0.025 P(llll|s6) 0.025 
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Table A1.25. Data acquisition: extended well test. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s7) 0.100 P(hhhh|s8) 0.100 P(hhhh|s9) 0.038 

P(hhhl|s7) 0.100 P(hhhl|s8) 0.100 P(hhhl|s9) 0.038 

P(hhlh|s7) 0.100 P(hhlh|s8) 0.100 P(hhlh|s9) 0.038 

P(hhll|s7) 0.100 P(hhll|s8) 0.100 P(hhll|s9) 0.038 

P(hlhh|s7) 0.025 P(hlhh|s8) 0.025 P(hlhh|s9) 0.088 

P(hlhl|s7) 0.025 P(hlhl|s8) 0.025 P(hlhl|s9) 0.088 

P(hllh|s7) 0.025 P(hllh|s8) 0.025 P(hllh|s9) 0.088 

P(hlll|s7) 0.025 P(hlll|s8) 0.025 P(hlll|s9) 0.088 

P(lhhh|s7) 0.100 P(lhhh|s8) 0.100 P(lhhh|s9) 0.038 

P(lhhl|s7) 0.100 P(lhhl|s8) 0.100 P(lhhl|s9) 0.038 

P(lhlh|s7) 0.100 P(lhlh|s8) 0.100 P(lhlh|s9) 0.038 

P(lhll|s7) 0.100 P(lhll|s8) 0.100 P(lhll|s9) 0.038 

P(llhh|s7) 0.025 P(llhh|s8) 0.025 P(llhh|s9) 0.088 

P(llhl|s7) 0.025 P(llhl|s8) 0.025 P(llhl|s9) 0.088 

P(lllh|s7) 0.025 P(lllh|s8) 0.025 P(lllh|s9) 0.088 

P(llll|s7) 0.025 P(llll|s8) 0.025 P(llll|s9) 0.088 
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Table A1.26. Data acquisition: extended well test. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s10) 0.038 P(hhhh|s11) 0.038 P(hhhh|s12) 0.038 

P(hhhl|s10) 0.038 P(hhhl|s11) 0.038 P(hhhl|s12) 0.038 

P(hhlh|s10) 0.038 P(hhlh|s11) 0.038 P(hhlh|s12) 0.038 

P(hhll|s10) 0.038 P(hhll|s11) 0.038 P(hhll|s12) 0.038 

P(hlhh|s10) 0.088 P(hlhh|s11) 0.088 P(hlhh|s12) 0.088 

P(hlhl|s10) 0.088 P(hlhl|s11) 0.088 P(hlhl|s12) 0.088 

P(hllh|s10) 0.088 P(hllh|s11) 0.088 P(hllh|s12) 0.088 

P(hlll|s10) 0.088 P(hlll|s11) 0.088 P(hlll|s12) 0.088 

P(lhhh|s10) 0.038 P(lhhh|s11) 0.038 P(lhhh|s12) 0.038 

P(lhhl|s10) 0.038 P(lhhl|s11) 0.038 P(lhhl|s12) 0.038 

P(lhlh|s10) 0.038 P(lhlh|s11) 0.038 P(lhlh|s12) 0.038 

P(lhll|s10) 0.038 P(lhll|s11) 0.038 P(lhll|s12) 0.038 

P(llhh|s10) 0.088 P(llhh|s11) 0.088 P(llhh|s12) 0.088 

P(llhl|s10) 0.088 P(llhl|s11) 0.088 P(llhl|s12) 0.088 

P(lllh|s10) 0.088 P(lllh|s11) 0.088 P(lllh|s12) 0.088 

P(llll|s10) 0.088 P(llll|s11) 0.088 P(llll|s12) 0.088 
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Table A1.27. Data acquisition: extended well test. Reliability probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s13) 0.038 P(hhhh|s14) 0.038 P(hhhh|s15) 0.038 

P(hhhl|s13) 0.038 P(hhhl|s14) 0.038 P(hhhl|s15) 0.038 

P(hhlh|s13) 0.038 P(hhlh|s14) 0.038 P(hhlh|s15) 0.038 

P(hhll|s13) 0.038 P(hhll|s14) 0.038 P(hhll|s15) 0.038 

P(hlhh|s13) 0.088 P(hlhh|s14) 0.088 P(hlhh|s15) 0.088 

P(hlhl|s13) 0.088 P(hlhl|s14) 0.088 P(hlhl|s15) 0.088 

P(hllh|s13) 0.088 P(hllh|s14) 0.088 P(hllh|s15) 0.088 

P(hlll|s13) 0.088 P(hlll|s14) 0.088 P(hlll|s15) 0.088 

P(lhhh|s13) 0.038 P(lhhh|s14) 0.038 P(lhhh|s15) 0.038 

P(lhhl|s13) 0.038 P(lhhl|s14) 0.038 P(lhhl|s15) 0.038 

P(lhlh|s13) 0.038 P(lhlh|s14) 0.038 P(lhlh|s15) 0.038 

P(lhll|s13) 0.038 P(lhll|s14) 0.038 P(lhll|s15) 0.038 

P(llhh|s13) 0.088 P(llhh|s14) 0.088 P(llhh|s15) 0.088 

P(llhl|s13) 0.088 P(llhl|s14) 0.088 P(llhl|s15) 0.088 

P(lllh|s13) 0.088 P(lllh|s14) 0.088 P(lllh|s15) 0.088 

P(llll|s13) 0.088 P(llll|s14) 0.088 P(llll|s15) 0.088 

 

 



204 
 

Table A1.28. Data acquisition: extended well test. Reliability probabilities 

COMPOUND STATE CONDITIONAL 

PROBABILITY 

RELIABILITY 

PROBABILITY 

P(hhhh|s16) 0.038 

P(hhhl|s16) 0.038 

P(hhlh|s16) 0.038 

P(hhll|s16) 0.038 

P(hlhh|s16) 0.088 

P(hlhl|s16) 0.088 

P(hllh|s16) 0.088 

P(hlll|s16) 0.088 

P(lhhh|s16) 0.038 

P(lhhl|s16) 0.038 

P(lhlh|s16) 0.038 

P(lhll|s16) 0.038 

P(llhh|s16) 0.088 

P(llhl|s16) 0.088 

P(lllh|s16) 0.088 

P(llll|s16) 0.088 
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Table A1.29. Data acquisition: extended well test. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s1|hhhh) 0.008 P(s2|hhhh) 0.020 P(s3|hhhh) 0.016 

P(s1|hhhl) 0.008 P(s2|hhhl) 0.020 P(s3|hhhl) 0.016 

P(s1|hhlh) 0.008 P(s2|hhlh) 0.020 P(s3|hhlh) 0.016 

P(s1|hhll) 0.008 P(s2|hhll) 0.020 P(s3|hhll) 0.016 

P(s1|hlhh) 0.001 P(s2|hlhh) 0.003 P(s3|hlhh) 0.003 

P(s1|hlhl) 0.001 P(s2|hlhl) 0.003 P(s3|hlhl) 0.003 

P(s1|hllh) 0.001 P(s2|hllh) 0.003 P(s3|hllh) 0.003 

P(s1|hlll) 0.001 P(s2|hlll) 0.003 P(s3|hlll) 0.003 

P(s1|lhhh) 0.008 P(s2|lhhh) 0.020 P(s3|lhhh) 0.016 

P(s1|lhhl) 0.008 P(s2|lhhl) 0.020 P(s3|lhhl) 0.016 

P(s1|lhlh) 0.008 P(s2|lhlh) 0.020 P(s3|lhlh) 0.016 

P(s1|lhll) 0.008 P(s2|lhll) 0.020 P(s3|lhll) 0.016 

P(s1|llhh) 0.001 P(s2|llhh) 0.003 P(s3|llhh) 0.003 

P(s1|llhl) 0.001 P(s2|llhl) 0.003 P(s3|llhl) 0.003 

P(s1|lllh) 0.001 P(s2|lllh) 0.003 P(s3|lllh) 0.003 

P(s1|llll) 0.001 P(s2|llll) 0.003 P(s3|llll) 0.003 

 

 



206 
 

Table A1.30. Data acquisition: extended well test. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s4|hhhh) 0.036 P(s5|hhhh) 0.034 P(s6|hhhh) 0.078 

P(s4|hhhl) 0.036 P(s5|hhhl) 0.034 P(s6|hhhl) 0.078 

P(s4|hhlh) 0.036 P(s5|hhlh) 0.034 P(s6|hhlh) 0.078 

P(s4|hhll) 0.036 P(s5|hhll) 0.034 P(s6|hhll) 0.078 

P(s4|hlhh) 0.006 P(s5|hlhh) 0.006 P(s6|hlhh) 0.013 

P(s4|hlhl) 0.006 P(s5|hlhl) 0.006 P(s6|hlhl) 0.013 

P(s4|hllh) 0.006 P(s5|hllh) 0.006 P(s6|hllh) 0.013 

P(s4|hlll) 0.006 P(s5|hlll) 0.006 P(s6|hlll) 0.013 

P(s4|lhhh) 0.036 P(s5|lhhh) 0.034 P(s6|lhhh) 0.078 

P(s4|lhhl) 0.036 P(s5|lhhl) 0.034 P(s6|lhhl) 0.078 

P(s4|lhlh) 0.036 P(s5|lhlh) 0.034 P(s6|lhlh) 0.078 

P(s4|lhll) 0.036 P(s5|lhll) 0.034 P(s6|lhll) 0.078 

P(s4|llhh) 0.006 P(s5|llhh) 0.006 P(s6|llhh) 0.013 

P(s4|llhl) 0.006 P(s5|llhl) 0.006 P(s6|llhl) 0.013 

P(s4|lllh) 0.006 P(s5|lllh) 0.006 P(s6|lllh) 0.013 

P(s4|llll) 0.006 P(s5|llll) 0.006 P(s6|llll) 0.013 
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Table A1.31. Data acquisition: extended well test. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s7|hhhh) 0.062 P(s8|hhhh) 0.146 P(s9|hhhh) 0.013 

P(s7|hhhl) 0.062 P(s8|hhhl) 0.146 P(s9|hhhl) 0.013 

P(s7|hhlh) 0.062 P(s8|hhlh) 0.146 P(s9|hhlh) 0.013 

P(s7|hhll) 0.062 P(s8|hhll) 0.146 P(s9|hhll) 0.013 

P(s7|hlhh) 0.010 P(s8|hlhh) 0.024 P(s9|hlhh) 0.020 

P(s7|hlhl) 0.010 P(s8|hlhl) 0.024 P(s9|hlhl) 0.020 

P(s7|hllh) 0.010 P(s8|hllh) 0.024 P(s9|hllh) 0.020 

P(s7|hlll) 0.010 P(s8|hlll) 0.024 P(s9|hlll) 0.020 

P(s7|lhhh) 0.062 P(s8|lhhh) 0.146 P(s9|lhhh) 0.013 

P(s7|lhhl) 0.062 P(s8|lhhl) 0.146 P(s9|lhhl) 0.013 

P(s7|lhlh) 0.062 P(s8|lhlh) 0.146 P(s9|lhlh) 0.013 

P(s7|lhll) 0.062 P(s8|lhll) 0.146 P(s9|lhll) 0.013 

P(s7|llhh) 0.010 P(s8|llhh) 0.024 P(s9|llhh) 0.020 

P(s7|llhl) 0.010 P(s8|llhl) 0.024 P(s9|llhl) 0.020 

P(s7|lllh) 0.010 P(s8|lllh) 0.024 P(s9|lllh) 0.020 

P(s7|llll) 0.010 P(s8|llll) 0.024 P(s9|llll) 0.020 
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Table A1.32. Data acquisition: extended well test. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s10|hhhh) 0.029 P(s11|hhhh) 0.023 P(s12|hhhh) 0.055 

P(s10|hhhl) 0.029 P(s11|hhhl) 0.023 P(s12|hhhl) 0.055 

P(s10|hhlh) 0.029 P(s11|hhlh) 0.023 P(s12|hhlh) 0.055 

P(s10|hhll) 0.029 P(s11|hhll) 0.023 P(s12|hhll) 0.055 

P(s10|hlhh) 0.046 P(s11|hlhh) 0.036 P(s12|hlhh) 0.085 

P(s10|hlhl) 0.046 P(s11|hlhl) 0.036 P(s12|hlhl) 0.085 

P(s10|hllh) 0.046 P(s11|hllh) 0.036 P(s12|hllh) 0.085 

P(s10|hlll) 0.046 P(s11|hlll) 0.036 P(s12|hlll) 0.085 

P(s10|lhhh) 0.029 P(s11|lhhh) 0.023 P(s12|lhhh) 0.055 

P(s10|lhhl) 0.029 P(s11|lhhl) 0.023 P(s12|lhhl) 0.055 

P(s10|lhlh) 0.029 P(s11|lhlh) 0.023 P(s12|lhlh) 0.055 

P(s10|lhll) 0.029 P(s11|lhll) 0.023 P(s12|lhll) 0.055 

P(s10|llhh) 0.046 P(s11|llhh) 0.036 P(s12|llhh) 0.085 

P(s10|llhl) 0.046 P(s11|llhl) 0.036 P(s12|llhl) 0.085 

P(s10|lllh) 0.046 P(s11|lllh) 0.036 P(s12|lllh) 0.085 

P(s10|llll) 0.046 P(s11|llll) 0.036 P(s12|llll) 0.085 
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Table A1.33. Data acquisition: extended well test. Posterior probabilities 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s13|hhhh) 0.050 P(s14|hhhh) 0.118 P(s15|hhhh) 0.094 

P(s13|hhhl) 0.050 P(s14|hhhl) 0.118 P(s15|hhhl) 0.094 

P(s13|hhlh) 0.050 P(s14|hhlh) 0.118 P(s15|hhlh) 0.094 

P(s13|hhll) 0.050 P(s14|hhll) 0.118 P(s15|hhll) 0.094 

P(s13|hlhh) 0.078 P(s14|hlhh) 0.183 P(s15|hlhh) 0.146 

P(s13|hlhl) 0.078 P(s14|hlhl) 0.183 P(s15|hlhl) 0.146 

P(s13|hllh) 0.078 P(s14|hllh) 0.183 P(s15|hllh) 0.146 

P(s13|hlll) 0.078 P(s14|hlll) 0.183 P(s15|hlll) 0.146 

P(s13|lhhh) 0.050 P(s14|lhhh) 0.118 P(s15|lhhh) 0.094 

P(s13|lhhl) 0.050 P(s14|lhhl) 0.118 P(s15|lhhl) 0.094 

P(s13|lhlh) 0.050 P(s14|lhlh) 0.118 P(s15|lhlh) 0.094 

P(s13|lhll) 0.050 P(s14|lhll) 0.118 P(s15|lhll) 0.094 

P(s13|llhh) 0.078 P(s14|llhh) 0.183 P(s15|llhh) 0.146 

P(s13|llhl) 0.078 P(s14|llhl) 0.183 P(s15|llhl) 0.146 

P(s13|lllh) 0.078 P(s14|lllh) 0.183 P(s15|lllh) 0.146 

P(s13|llll) 0.078 P(s14|llll) 0.183 P(s15|llll) 0.146 
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Table A1.34. Data acquisition: extended well test. Posterior probabilities 

COMPOUND STATE CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(s16|hhhh) 0.218 

P(s16|hhhl) 0.218 

P(s16|hhlh) 0.218 

P(s16|hhll) 0.218 

P(s16|hlhh) 0.340 

P(s16|hlhl) 0.340 

P(s16|hllh) 0.340 

P(s16|hlll) 0.340 

P(s16|lhhh) 0.218 

P(s16|lhhl) 0.218 

P(s16|lhlh) 0.218 

P(s16|lhll) 0.218 

P(s16|llhh) 0.340 

P(s16|llhl) 0.340 

P(s16|lllh) 0.340 

P(s16|llll) 0.340 
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Table A1.35. Data acquisition: extended well test. Residual probabilities 

COMPOUND STATE RESIDUAL PROBABILITIES 

P(hhhh) 0.050 

P(hhhl) 0.050 

P(hhlh) 0.050 

P(hhll) 0.050 

P(hlhh) 0.075 

P(hlhl) 0.075 

P(hllh) 0.075 

P(hlll) 0.075 

P(lhhh) 0.050 

P(lhhl) 0.050 

P(lhlh) 0.050 

P(lhll) 0.050 

P(llhh) 0.075 

P(llhl) 0.075 

P(lllh) 0.075 

P(llll) 0.075 
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Table A1.36. Data acquisition: one well. Reliability probability for the membership functions 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

P(𝑴𝟏|s1) 0.4825 P(𝑴𝟐|s1) 0.2650 P(𝑴𝟑|s1) 0.2525 

P(𝑴𝟏|s2) 0.4650 P(𝑴𝟐|s2) 0.2675 P(𝑴𝟑|s2) 0.2675 

P(𝑴𝟏|s3) 0.4600 P(𝑴𝟐|s3) 0.2700 P(𝑴𝟑|s3) 0.2700 

P(𝑴𝟏|s4) 0.4425 P(𝑴𝟐|s4) 0.2725 P(𝑴𝟑|s4) 0.2850 

P(𝑴𝟏|s5) 0.4550 P(𝑴𝟐|s5) 0.2750 P(𝑴𝟑|s5) 0.2700 

P(𝑴𝟏|s6) 0.4375 P(𝑴𝟐|s6) 0.2775 P(𝑴𝟑|s6) 0.2850 

P(𝑴𝟏|s7) 0.4325 P(𝑴𝟐|s7) 0.2800 P(𝑴𝟑|s7) 0.2875 

P(𝑴𝟏|s8) 0.4150 P(𝑴𝟐|s8) 0.2825 P(𝑴𝟑|s8) 0.3025 

P(𝑴𝟏|s9) 0.4600 P(𝑴𝟐|s9) 0.2675 P(𝑴𝟑|s9) 0.2725 

P(𝑴𝟏|s10) 0.4425 P(𝑴𝟐|s10) 0.2700 P(𝑴𝟑|s10) 0.2875 

P(𝑴𝟏|s11) 0.4375 P(𝑴𝟐|s11) 0.2725 P(𝑴𝟑|s11) 0.2900 

P(𝑴𝟏|s12) 0.4200 P(𝑴𝟐|s12) 0.2750 P(𝑴𝟑|s12) 0.3050 

P(𝑴𝟏|s13) 0.4325 P(𝑴𝟐|s13) 0.2775 P(𝑴𝟑|s13) 0.2900 

P(𝑴𝟏|s14) 0.4150 P(𝑴𝟐|s14) 0.2800 P(𝑴𝟑|s14) 0.3050 

P(𝑴𝟏|s15) 0.4100 P(𝑴𝟐|s15) 0.2825 P(𝑴𝟑|s15) 0.3075 

P(𝑴𝟏|s16) 0.3925 P(𝑴𝟐|s16) 0.2850 P(𝑴𝟑|s16) 0.3225 
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Table A1.37. Data acquisition: one well. Fuzzy Posterior probability 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(𝒔𝟏|𝑴𝟏) 0.4825 P(𝒔𝟏|𝑴𝟐) 0.2650 P(𝒔𝟏|𝑴𝟑) 0.2525 

P(𝒔𝟐|𝑴𝟏) 0.4650 P(𝒔𝟐|𝑴𝟐) 0.2675 P(𝒔𝟐|𝑴𝟑) 0.2675 

P(𝒔𝟑|𝑴𝟏) 0.4600 P(𝒔𝟑|𝑴𝟐) 0.2700 P(𝒔𝟑|𝑴𝟑) 0.2700 

P(𝒔𝟒|𝑴𝟏) 0.4425 P(𝒔𝟒|𝑴𝟐) 0.2725 P(𝒔𝟒|𝑴𝟑) 0.2850 

P(s5|𝑴𝟏) 0.4550 P(𝒔𝟓|𝑴𝟐) 0.2750 P(𝒔𝟓|𝑴𝟑) 0.2700 

P(𝒔𝟔|𝑴𝟏) 0.4375 P(𝒔𝟔|𝑴𝟐) 0.2775 P(𝒔𝟔|𝑴𝟑) 0.2850 

P(𝒔𝟕|𝑴𝟏) 0.4325 P(𝒔𝟕|𝑴𝟐) 0.2800 P(𝒔𝟕|𝑴𝟑) 0.2875 

P(𝒔𝟖|𝑴𝟏) 0.4150 P(𝒔𝟖|𝑴𝟐) 0.2825 P(𝒔𝟖|𝑴𝟑) 0.3025 

P(𝒔𝟗|𝑴𝟏) 0.4600 P(𝒔𝟗|𝑴𝟐) 0.2675 P(𝒔𝟗|𝑴𝟑) 0.2725 

P(𝒔𝟏𝟎|𝑴𝟏) 0.4425 P(𝒔𝟏𝟎|𝑴𝟐) 0.2700 P(𝒔𝟏𝟎|𝑴𝟑) 0.2875 

P(𝒔𝟏𝟏|𝑴𝟏) 0.4375 P(𝒔𝟏𝟏|𝑴𝟐) 0.2725 P(𝒔𝟏𝟏|𝑴𝟑) 0.2900 

P(𝒔𝟏𝟐|𝑴𝟏) 0.4200 P(𝒔𝟏𝟐|𝑴𝟐) 0.2750 P(𝒔𝟏𝟐|𝑴𝟑) 0.3050 

P(𝒔𝟏𝟑|𝑴𝟏) 0.4325 P(𝒔𝟏𝟑|𝑴𝟐) 0.2775 P(𝒔𝟏𝟑|𝑴𝟑) 0.2900 

P(𝒔𝟏𝟒|𝑴𝟏) 0.4150 P(𝒔𝟏𝟒|𝑴𝟐) 0.2800 P(𝒔𝟏𝟒|𝑴𝟑) 0.3050 

P(𝒔𝟏𝟓|𝑴𝟏) 0.4100 P(𝒔𝟏𝟓|𝑴𝟐) 0.2825 P(𝒔𝟏𝟓|𝑴𝟑) 0.3075 

P(𝒔𝟏𝟔|𝑴𝟏) 0.3925 P(𝒔𝟏𝟔|𝑴𝟐) 0.2850 P(𝒔𝟏𝟔|𝑴𝟑) 0.3225 
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Table A1.38. Data acquisition: one well. Residual probability of the membership functions 

MEMBERSHIP 

FUNCTION 

RESIDUAL 

PROBABILITY 

p(𝑴𝟏) 0.3906 

P(𝑴𝟐) 0.2770 

P(𝑴𝟑) 0.3324 
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Table A1.39. Data acquisition: extended well test. Reliability probability for the membership functions 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

FUZZY 

RELIABILITY 

PROBABILITY 

P(𝑴𝟏|s1) 0.5900 P(𝑴𝟐|s1) 0.2000 P(𝑴𝟑|s1) 0.2100 

P(𝑴𝟏|s2) 0.5900 P(𝑴𝟐|s2) 0.2000 P(𝑴𝟑|s2) 0.2100 

P(𝑴𝟏|s3) 0.5900 P(𝑴𝟐|s3) 0.2000 P(𝑴𝟑|s3) 0.2100 

P(𝑴𝟏|s4) 0.5900 P(𝑴𝟐|s4) 0.2000 P(𝑴𝟑|s4) 0.2100 

P(𝑴𝟏|s5) 0.5900 P(𝑴𝟐|s5) 0.2000 P(𝑴𝟑|s5) 0.2100 

P(𝑴𝟏|s6) 0.5900 P(𝑴𝟐|s6) 0.2000 P(𝑴𝟑|s6) 0.2100 

P(𝑴𝟏|s7) 0.5900 P(𝑴𝟐|s7) 0.2000 P(𝑴𝟑|s7) 0.2100 

P(𝑴𝟏|s8) 0.5900 P(𝑴𝟐|s8) 0.2000 P(𝑴𝟑|s8) 0.2100 

P(𝑴𝟏|s9) 0.3150 P(𝑴𝟐|s9) 0.2000 P(𝑴𝟑|s9) 0.4850 

P(𝑴𝟏|s10) 0.3150 P(𝑴𝟐|s10) 0.2000 P(𝑴𝟑|s10) 0.4850 

P(𝑴𝟏|s11) 0.3150 P(𝑴𝟐|s11) 0.2000 P(𝑴𝟑|s11) 0.4850 

P(𝑴𝟏|s12) 0.3150 P(𝑴𝟐|s12) 0.2000 P(𝑴𝟑|s12) 0.4850 

P(𝑴𝟏|s13) 0.3150 P(𝑴𝟐|s13) 0.2000 P(𝑴𝟑|s13) 0.4850 

P(𝑴𝟏|s14) 0.3150 P(𝑴𝟐|s14) 0.2000 P(𝑴𝟑|s14) 0.4850 

P(𝑴𝟏|s15) 0.3150 P(𝑴𝟐|s15) 0.2000 P(𝑴𝟑|s15) 0.4850 

P(𝑴𝟏|s16) 0.3150 P(𝑴𝟐|s16) 0.2000 P(𝑴𝟑|s16) 0.4850 
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Table A1.40. Data acquisition: extended well test. Fuzzy posterior probability 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

COMPOUND 

STATE 

CONDITIONAL 

PROBABILITY 

POSTERIOR 

PROBABILITY 

P(𝒔𝟏|𝑴𝟏) 0.0067 P(𝒔𝟏|𝑴𝟐) 0.0042 P(𝒔𝟏|𝑴𝟑) 0.0021 

P(𝒔𝟐|𝑴𝟏) 0.0156 P(𝒔𝟐|𝑴𝟐) 0.0098 P(𝒔𝟐|𝑴𝟑) 0.0048 

P(𝒔𝟑|𝑴𝟏) 0.0124 P(𝒔𝟑|𝑴𝟐) 0.0078 P(𝒔𝟑|𝑴𝟑) 0.0038 

P(𝒔𝟒|𝑴𝟏) 0.0290 P(𝒔𝟒|𝑴𝟐) 0.0182 P(𝒔𝟒|𝑴𝟑) 0.0089 

P(s5|𝑴𝟏) 0.0268 P(𝒔𝟓|𝑴𝟐) 0.0168 P(𝒔𝟓|𝑴𝟑) 0.0082 

P(𝒔𝟔|𝑴𝟏) 0.0625 P(𝒔𝟔|𝑴𝟐) 0.0392 P(𝒔𝟔|𝑴𝟑) 0.0191 

P(𝒔𝟕|𝑴𝟏) 0.0498 P(𝒔𝟕|𝑴𝟐) 0.0312 P(𝒔𝟕|𝑴𝟑) 0.0152 

P(𝒔𝟖|𝑴𝟏) 0.1161 P(𝒔𝟖|𝑴𝟐) 0.0728 P(𝒔𝟖|𝑴𝟑) 0.0356 

P(𝒔𝟗|𝑴𝟏) 0.0143 P(𝒔𝟗|𝑴𝟐) 0.0168 P(𝒔𝟗|𝑴𝟑) 0.0189 

P(𝒔𝟏𝟎|𝑴𝟏) 0.0334 P(𝒔𝟏𝟎|𝑴𝟐) 0.0392 P(𝒔𝟏𝟎|𝑴𝟑) 0.0442 

P(𝒔𝟏𝟏|𝑴𝟏) 0.0266 P(𝒔𝟏𝟏|𝑴𝟐) 0.0312 P(𝒔𝟏𝟏|𝑴𝟑) 0.0352 

P(𝒔𝟏𝟐|𝑴𝟏) 0.0620 P(𝒔𝟏𝟐|𝑴𝟐) 0.0728 P(𝒔𝟏𝟐|𝑴𝟑) 0.0821 

P(𝒔𝟏𝟑|𝑴𝟏) 0.0572 P(𝒔𝟏𝟑|𝑴𝟐) 0.0672 P(𝒔𝟏𝟑|𝑴𝟑) 0.0758 

P(𝒔𝟏𝟒|𝑴𝟏) 0.1335 P(𝒔𝟏𝟒|𝑴𝟐) 0.1568 P(𝒔𝟏𝟒|𝑴𝟑) 0.1769 

P(𝒔𝟏𝟓|𝑴𝟏) 0.1062 P(𝒔𝟏𝟓|𝑴𝟐) 0.1248 P(𝒔𝟏𝟓|𝑴𝟑) 0.1408 

P(𝒔𝟏𝟔|𝑴𝟏) 0.2479 P(𝒔𝟏𝟔|𝑴𝟐) 0.2912 P(𝒔𝟏𝟔|𝑴𝟑) 0.3284 
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Table A1.41. Data acquisition: extended well test. Residual probability of the membership functions 

MEMBERSHIP 

FUNCTION 

RESIDUAL 

PROBABILITY 

p(𝑴𝟏) 0.3700 

P(𝑴𝟐) 0.2000 

P(𝑴𝟑) 0.4300 

 

 

 

 

Figure A1.1. Permeability distribution for the PXY high case 
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Figure A1.2. Permeability distribution for the PXY low case 

 

 

 

Figure A1.3. Permeability distribution for the PXY medium case 
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Figure A1.4. Relative permeability: high, medium and low cases 

 

Figure A1.5. FIS evaluation for the no data acquisition alternative 
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Figure A1.6. FIS evaluation for the data acquisition alternative: one well 

 

Figure A1.7. FIS evaluation for the data acquisition alternative: one well fuzzy data 
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Figure A1.8. FIS evaluation for the data acquisition alternative: extended well test 

 

Figure A1.9. FIS evaluation for the data acquisition alternative: extended well test fuzzy data 
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Figure A1.10. FIS evaluation for the no data acquisition values 

 

Figure A1.11. FIS evaluation for the data acquisition values: one well 
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Figure A1.12. FIS evaluation for the data acquisition values: one well fuzzy 

 

Figure A1.13. FIS evaluation for the data acquisition values well test 
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Figure A1.14. FIS evaluation for the data acquisition values fuzzy well test 
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