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Abstract

It may take weeks or months before a stealthy attack is detected. As networks
scale up in size and speed, monitoring for such attempts is increasingly a chal-
lenge; collection and inspection of individual packets is difficult as the volume
and the rate of traffic rise. This paper presents an efficient method to overcome
such a challenge. Data reduction has become an integral part of passive network
monitoring, which could be motivated as long as it preserves the required level
of precision. This paper examines the feasibility of employing traffic sampling
together with a simple, but a systematic, data fusion technique for monitoring;
and whether the design of the network affects on non-sampling error. Proposed
approach is capable of monitoring for stealthy suspicious activities using 10%-
20% size sampling rates without degrading the quality of detections.

Keywords: stealthy attacks, Bayesian, simulation, traffic sampling, anomaly
detection

1. Introduction

Launching stealthy attacks is one of sophisticated techniques used by skillful
attackers to avoid detection and can take months to complete the attack life
cycle. Tools and techniques to launch such attacks are widely available. In order
to detect stealthy activities it is necessary to maintain a long history of what
is happening in the environment. Most systems cannot keep enough event data
to track across extended time intervals for this purpose due to the performance
issues and computational constraints [1, 2]. Decision to inspect each and every
individual packet for security analysis may consume more resources at network
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devices for packet processing and more bandwidth for transmissions them to
collection points [3]. Sophisticated computing systems may be required for
analysis and storage such a huge volume of data. The performance of network
can be affected by such overheads and hence to quality of the service. All
these facts motivate for a data reduction which could be motivated as long as
it preserves the required level of precision for the monitoring objectives which
can be either traffic engineering, accounting or security specific.

This paper presents a study for an efficient monitoring scheme for stealthy
attacks on computer networks which can consider as an early warning system.
Traffic sampling is employed together with a simple data fusion technique to
propose the algorithm which applies over the sampled traffic. The study has two
objectives. First, investigating the feasibility of proposed method for stealthy
activity monitoring; and secondly, examining whether design of the network
affects on detection. The rest of the paper is organised as follows. Section 2
provides a brief overview of intrusion detection in computer systems, and ex-
plains why conventional methods which are largely developed for rapid attacks
cannot be employed in stealthy activity monitoring. Section 3 presents a moni-
toring algorithm which identifies Bayesian approach as a method for information
fusion. Sampling technique employed by the monitoring scheme is presented in
Section 4. Section 5 presents a methodological way to trace anonymous stealthy
activities to their approximate sources. Experimental design is presented in
Section 6. Sections 7 presents experimental outcomes. Related literature is pre-
sented in Section 8. Finally, conclusions are drawn in Section 9 where further
work is also suggested.

2. Security Monitoring

Computer systems are dynamic systems having many components such as
clients, servers, switches, firewalls and Intrusion Detection Systems (IDSs). At
each time interval these components produce large amounts of event based data
which, in principal, can be collected and used for security analysis. The sig-
nature elements of an attack is scattered spatially and temporally, and often
embedded within the totality of events of the distributed systems, and motiva-
tion' and source? behind some events are not always certain. In addition there
are number of monitoring obstacles in such an attack scenario: evidence scarcity
(weak), colluded activities, large attack surfaces, variety of users and devices,
high volume high speed environments, normal variations to node behaviours
and anomalies keep changing over the time [4, 5]. Due to the above challenges
most of the existing anomaly detection techniques solve a specific formulation
of the problem which induces by various factors such as data types and types

11. An alert of multiple login failures, 2. An execution of cmd.exe 3. An abuse of legitimate
credentials either by individuals or malware.

2Using various proxy methods and zombie nodes. manipulation of TCP/IP elements, using
relay or random routing.
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of anomalies of interested, and encourage unsupervised anomaly detection tech-
niques [6]. Proposed monitoring scheme in this paper is an effort to address
most of above obstacles in one solution.

In signature based intrusion detection an attack scenario signature is needed
to distinguish a given attack (say A) from other attacks (B and C) and from
normal network activities. When a stealthy attack is progressing the critical
challenge is how to correlate these events across spatial and temporal spaces
to track various attack scenarios such as A, B and C. The detection accuracy
relies on the accuracy of scenario signature as well as the accuracy of event
correlation [7]. Maintaining state information of every packets and comparisons
between current packets and previous all packets are needed in event correla-
tion. Most systems cannot keep enough event data to track across extended
time intervals to do this when a stealthy attack is progressing. As a result the
scarcity of attack data within a short period of time allows a stealthy attacker
to go undetected hiding her attempts in the background noise and other traffic.
Hence using signature detection techniques for stealthy activity monitoring is a
challenge.

Proposed monitoring algorithm in this paper is anomaly based. Finding non-
conforming patterns or behaviours in data is referred to as anomaly detection.
An intrusion is different from the normal behaviour of the system, and hence
anomaly detection techniques are applicable in intrusion detection domain [6].
Intrusive activity is always a subset of anomalous activity is the ordinary belief
of this idea [8, 9]. When there is an intruder who has no idea of the legitimate
user’s activity patterns, the probability that the intruder’s activity is detected
as anomalous is high. This has been formulated in [10] as a pattern recog-
nition problem. When the actual system behaviour deviates from the normal
profiles in the system an anomaly is flagged. Information fusion would be a pos-
sible method for data reduction. However given the nature of problem domain,
anomaly detection techniques need to be computationally efficient to handle
large sized of inputs. Hence considering any complex method, e.g. methods like
Principal Components Analysis [11], for information fusion is ignored as they
introduce extra computational overheads which aimed to minimise as much as
possible in this work.

3. Monitoring Algorithm

The monitoring algorithm is inspired by previous work [12] which is inspired
by [13]. It is an incremental approach which updates normal node profiles
dynamically based on changes in network traffic (events). If some aberrant
changes happen in network traffic over the time, it should be reflected in profiles
as well and suspicious activities can be raised based on that profiles is the basic
assumption. The algorithm has two functions: profiling and analysis.

3.1. Profiling

The profiling is the method for evidence fusion across space and time by
updating node profiles dynamically based on changes in evidence. Simply put,
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it computes a suspicion score for each node in the system during a smaller time
window w and that score is updated as time progresses to compute a node score
for a larger observation window W. By just looking at an alert generated by an
event it is impossible to simply judge the motivation (cause) behind it. Other
contextual information can be used to narrow down the meaning of such an
event [14]. For example, suspicious port scanning activity may have the following
characteristics: a single source address, one or more destination addresses, and
target port numbers increasing incrementally. When fingerprinting such traffic
analysts examine multiple elements (multivariate) and develop a hypothesis for
the cause of behaviour on that basis. A similar manner (multivariate approach)
can be followed in the profiling to acknowledge the motivation uncertainty. Note
that What and Why are two different questions. Projecting Why into What
based on your own guesses is methodologically irresponsible. Hence it needs
a simple, but systematic, approach to profile suspects based on motivation of
activities instead of number of activities (what you see). In other words, security
events must be analysed from as many sources as possible in order to assess
threat and formulate appropriate responses. Extraordinary levels of security
awareness can be attained by simply listening to what its all indicators are
telling you [15]. Note that proposed profiling technique in this paper fuses
information gathered from different sources into a single score for a minimum
computational cost. It reduces data into a single value which is important to
maintain information about node activities for a very long observation period
W. A multivariate version of simple Bayes’ formula is used for this task.

3.2. The Bayesian paradigm
The posterior probability of the hypothesis H given that E is given by the
well-known Bayes formula:

p(E/Hy) p(Hk)
p(E)

The hypothesis for the monitoring algorithm is built as follows. Let H; and
H;y be two possible states of a node in a network and define H; - the node
acts as an attacker and Hs - the node does not act as an attacker. Then H;
and Hs are mutually exclusive and exhaustive states. P(Hj) is an expression
of belief, in terms of probability, that the node is in state H; in the absence
of any other knowledge. Once obtained more knowledge on the proposition H;
through multiple information sources (m indicators), in the form of evidence
E={e1,e2,€3,....6m} on attack surface including the human element, the belief
can be expressed in terms of conditional probabilities as p(H;/FE). Using the
Bayes’ theorem in Equation 1 and assuming statistical independence between
information sources:

p(Hi/E) = (1)

, 1P(6j/H1)-P(H1)

e
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When likelihoods p(e;/H;) and prior p(H;) are known, the posterior p(H;/E)
can be calculated for a given w. These posterior terms p(H;/F) can be accumu-
lated by time to use as a metric to distinguish suspected nodes from other nodes
during a W. Note that distinct types of information sources such as signature
based IDSs, anomaly detection components, file integrity checkers, SNMP-based
network monitoring systems can be used for this purpose. Hence the assump-
tion on statistical independence above is reasonable. Any influence/interested
technical and socio-technical indicators of changes in behaviour (e.g. changes
in access patterns, differences in use of language, typing patterns, transferring
large amounts of data onto or off the node, etc; if human actors are involved)
can be included as input variables (i.e. elements of F) in the profiling algo-
rithm as long as such indicators operate statistically independent. Extending
proposed approach to a very large scale attack surface is easy since it is a matter
of adding a new indicator (attack vector) in E. Existing domain knowledge will
serve to enhance the performance of this monitoring algorithm since it takes
advantage of prior knowledge about the parameters. Which is especially use-
ful when technical data is scarce. However prior and likelihoods are the most
critical parameters to this approach since Bayes’ factors are sensitive to them.
Proposed monitoring algorithm would be useful in monitoring threats listed in
Table 1. The potential threats and their indicators in Table 1 is not exhaustive
and for illustrating purpose only.

3.8. Analysis

The analysis comprised of detecting anomalous profiles in a given set of
node profiles. If attacker activity pattern is sufficiently reflected by profiles then
detecting anomalous profiles would be sufficient to identify attackers. This work
uses a statistical method to detect anomalies. An anomaly is an observation
in a dataset which is suspected of being partially or wholly irrelevant because
it is not generated by the stochastic model assumed for that dataset is the
underlying principle of any statistical anomaly detection technique [17]. Such
techniques are based on the key assumption that normal data instances occur in
high probability regions of a stochastic model, while anomalies occur in the low
probability regions of the stochastic model [6]. Based on these concepts Peer
and Discord analysis is proposed in this work for detecting stealthy activities in
a given set of node profiles. Both techniques acknowledge the fact that baseline
behaviour on networks is not necessarily stable, for example, operational or
exercise deployments often mean the behaviour of nodes will potentially change
dramatically. Hence, a defence method that is effective today may not remain
effective for tomorrow, and any novel algorithm should account for this level
of complexity. Proposed approach evolves the baseline behaviour by the time
according to the other network parameters and their current states.
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3.3.1. Peer analysis

Aggregating posterior probability terms in Equation 2 over the time helps
to accumulate relatively weak evidence for long periods. These accumulated
probability terms Y p(H1/E) (¢ is time), known as node scores, can be used

as a measurement (t)f the level of suspicion of a given node at any given time
with respect to her peers as follows. A given set of node profiles, e.g. profiles
corresponding to a similar peer group, is a uni-variate data set. Hence it is
possible to use the uni-variate version of Grubb’s test [18] (maximum normed
residual test) to detect anomalous points in the set, subject to the assumption
that normal node profiles in a given set follow an unknown Gaussian distribu-
tion [19]. The set-up where it has the distribution is very well a mixture of
Gaussian. Because testing of the hypothesis for any given time is a Bernoulli
trial in this work. Accumulated Bernoulli trials makes a Binomial distribution
which can be approximated by a Normal distribution. For each profile score w,

its z score is computed as:
w—w

3)

Where @ and s are mean and standard deviation of the data set. A test instance
is declared to be anomalous at significance level « if:

z =
S

R N -1 ti/N,N72
- VN N—2+ti/NﬂN72

where N is the number of profile points in the set, and t, /v y_2 is the
value taken by a t-distribution (one tailed test) at the significance level of
and degrees of freedom (N — 2). The « reflects the confidence associated with
the threshold and indirectly controls the number of profiles declared as anoma-
lous [6]. Note that the threshold T" adjusts itself according to current state of
a network. This is a vertical analysis to detect one’s aberrant behaviour with
respect to her peers. In other words it compares each node’s activity changes
against to activity changes of her peer group. Hence it is called as peer analysis
in this paper. This analysis technique accounts for regular variations such as
diurnal, familiarity and ageing.

Looking at one’s aberrant behaviour within similar peer groups (e.g. same
user types, departments, job roles, etc.) gives better results in terms of false
alarms than setting a universal baseline [20, 21]. Hence first classifying similar
nodes into peer groups, based on behaviour related attributes/features, and then
applying the monitoring algorithm is recommended. Investigations for suitable
classification algorithms for this task is left as a future work.

(4)

3.3.2. Discord analysis

When a stealthy attack is progressing, malicious activities are occurring
according to an on-off pattern in time. As a result, lack of agreement or harmony
between points in the profile sequence of a given node can occur in a similar
or different on-off fashion. This type of anomalies are known as discords [22].
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In a stealthy attack environment, discords are random time context and peer
analysis technique itself is not sufficient to detect them if the progression rate
of malicious activities is far lower than the similar innocent activities. The
objective of discord analysis in this work is to detect sub-sequences within a
given sequence of profiles which is anomalous with respect to the rest of the
sequence. Problem formulation occurs in time-series data sets where data is
in the form of a long sequence and contains regions that are anomalous. The
underlying assumption is that the normal behaviour of the time-series follows
a defined random pattern, and a sub-sequence within the long sequence which
does not conform to this pattern is an anomaly. In general, the purpose of this
analysis is to detect one’s aberrant behaviour with respect to her own behaviour
regardless of her peers. Following method is proposed for discord analysis.

At the (t — 1)*" time point, using an Auto-regressive integrated moving
average model ARIM A(p,d,q) [23] which describes the auto-correlations in
the data, 95% Confidence Interval (CI) for the t*" profile score is predicted.
If the observed profile score at time ¢ lies outside of the predicted CI then
absolute deviation of the profile score from CI is calculated. This deviation is
used as a measure of non-conformity of a given profile score to the pattern of
its own sequence (group norms). These deviations average out over time to
calculate the anomaly score for a given node. Note that this anomaly score
is the average dissimilarity of profile scores with its own profile sequence of a
node. This dissimilarity occurs randomly from time to time due to the deliberate
intervention of the attacker. The length of the ARIMA model (i.e. n - number
of previous points to be used) is critical as containing anomalous regions in
input sequence makes difficult of creating robust model of normalcy. Note that
keeping the length of the ARIMA model less than the minimum of time gaps
between two consecutive attack activities will give better results. However since
the time gap between two consecutive attack activities is unknown in advance,
using a smaller observation window (i.e. slicing whole observation period into
many smaller parts as much as possible) to generate short time profiles would be
the better. A node does exhibit sudden changes in behaviour when compared to
its past behaviour is not necessarily suspicious as it could be a regular variation
of the node behaviour [20]. Proposed Discord analysis technique considers such
variations as completely legitimate as it monitoring for changes to the changing
pattern of node behaviour.

The key challenge for anomaly detection in network security domain is that
the huge volume of data, typically comes in a streaming fashion, thereby re-
quiring on-line analysis. It is essential to employ a data reduction method to
overcome large-scale data handling. Employing statistical sampling would be a
possible method. Despite the benefits, there is an inherent tension and debate
of using traffic sampling for security specific tasks. Obviously, signature based
detection methods can be seriously affected by sampling as selection of a subset
of signature elements would not be sufficient to recognise a predefined pattern
in a signature definition database. But in anomaly based detection, should all
traffic still need to be investigated? In the abstract view, an anomaly is a devi-
ation of a computed statistic from a norm of the normal statistics. If sampling
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changes the statistics of normal and anomalous traffic equally, it is reasonable
to hypothesise that detection would not be affected by the sampling rate. This
hypothesis is also investigated in this paper.

4. Employing sampling

Network data constitutes a potentially unlimited population continuously
growing up by the time. Using multi-stage sampling with stratification is usual
in large populations. This ensures that observations are picked from each of
strata, even though the probability of being selected items from some stratus
are very low when using simple random sampling (SRS). This feature is very
useful in a security specific view. Hence, given a smaller observation window w,
the traffic is sampled using the Stratification sampling technique with optimum
allocation method. This sampling technique has been designed to provide the
most precision for the least cost. If h is a traffic stratum, the best sample size
ny, for stratum h during a w is given by:

[Nhush}
Ven

=n. = —
e

where np-sample size for stratum h, n-total sample size, N;-population size
for stratum 4, s;-standard deviation of stratum 4, and ¢;-direct cost (in terms
of time, bandwidth, and computational resources) on the collection infrastruc-
ture to sample an individual element from stratum ¢. Note that the direct cost
should be in a common unit (CU) of measurement for the amount of computa-
tional cost spending on different parameters. The time, bandwidth, memory or
processor requirements that constitutes one common unit (1CU) varies based
on which requirement is being measured, and how each parameter is critical and
scarce to the network. Hence definition of such a unit (CU) would be subjec-
tive. For instance one can define: 1CU is memory equivalent of 128MB, 1CU is
bandwidth equivalent of 56 KBPS, 1CU is CPU-Time equivalent of 100 nsec etc.
International unit (IU) in pharmacology is a well-known example for a similar
approach for a common unit of measurement for the amount of a substance [24].
The main advantage of above sampling technique is producing the most repre-
sentative sample of a population to the least cost. Hence it is the ideal sampling
technique to employ with the problem as “cost” parameter can be minimised,
subject to the required precision, to obtain a light-weighted monitoring scheme.
The rule of thumb in stratification sampling that a population should not consist
of more than six strata can be changed even into hundreds given the millions of
observations in the population in this domain. Traffic classification is employed
to establish the strata. Using a basic classification technique (e.g. using L4/L3
access lists and Protocols) would be enough. Stratification ensures that each
traffic type is adequately represented. The SRS technique is used to select a
ny, size sample from a given stratum h for a w. Random sampling techniques
have a distinct advantage over other alternative methods for data reduction.
It allows retention of arbitrary details while other methods for data reduction

(5)

nh
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(e.g. filtering and aggregation) require the knowledge of the traffic features of
interest in advance.

Each element of the population having a non-zero probability of selection is
a preliminary condition for any random sampling techniques. Sampling traffic
from backbones or edge routers seriously violates this condition in terms of secu-
rity specific view, though it is sufficient for Traffic engineering and Accounting
tasks. Since it ignores consideration of traffic within same broadcast domains, it
ignores potential insider activities as well. Therefore in this work traffic is sam-
pled at each broadcast domain, but considering the incoming traffic only. All
outgoing traffic to any external network is considered as a separate broadcast
domain for the purpose of traffic sampling. Considering incoming traffic only
avoids selection of a given unit (packet or flow) twice for inclusion in a sample
at source and destination points.

5. Tracing the Source

A common problem with many analysis tools and techniques today is that
they are simply not designed for purposes of attribution[25]. Attribution of
cyber activity - “knowing who is attacking you” or “determining the identity
or location of an attacker or an attacker’s intermediary”- is naturally a vital
ingredient in any cyber security strategy [26, 27]. Although current approaches
are capable of alarming suspicious activities, most of them are not suitable
for this information age because when computers are under attack “who” and
“why” are frequently unknown [28, 29].

The localization process becomes evermore difficult when the attacker em-
ploys various proxy methods and zombie nodes (e.g. bots), Manipulation of
TCP/IP elements (e.g. IP Spoofing), using relay or random routing (e.g. Tor
networks) approaches can help an attacker protecting her location. Prolifera-
tion of weakly encrypted wireless networks could also help an attacker getting
anonymous locations. Tracing packets back to the source hop by hop is required
in identifying sources of anonymous activities. This section presents a method-
ological way to trace such activities to their approximate sources by extending
the above monitoring algorithm. The tracing algorithm has two functions: tree
formation and tree traversal. Tree formation builds an equivalent tree structure
for a given attack scenario. It enables tree traversal to move towards the at-
tacker’s physical source.

5.1. Tree formation:

If the topological information is available, Tree formation is performed as
follows. The victim node is the starting point. The Gateway node to victim is
considered as the root of the tree and all immediate visible nodes (either inter-
nal or external) to the root are considered as children of the root. If a given
child is a host node in the network then it becomes a leaf of the tree. If it is
a gateway then it becomes a parent node of the tree and all immediate visible
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is the Z-score of channel k£ at time t. where ¢; = ———, 0y =
1=1,2,3,...,n.

nodes to that node are attached as its children. This process is continued until
the entire topology is covered (see Figure 22).

input : Topological information together with victim’s location
output: Tree structure for the given attack scenario
Initialize the tree ¥ to have the root as the gateway of the victim;
List all nodes into the list 7;
/* attached each node to the tree*/;
tree-construction(d,7);
/¥ - Tree;
, w - A node*/;
foreach node w in 7 do
if num-of-hops-between(¥,w)==1 then
| insert w into ¥;
end
end
foreach ¢.child do
| tree-construction(v).child,r)
end
Algorithm 1: Tree formation for a given attack scenario.

5.2. Tree traversal:

Once the equivalent tree structure is built, channel profile score (zxt) should

be computed for each path of the tree at each step of the tree traversal algorithm
as shown in Equation 7. Let

Y. p(Hy/E)
t
— _ 6
Ckt . ( )
where ny, is the number of nodes behind k" channel. Then

Ckt — C
Rkt = % (7)

2o cit > (cie—er)?
= - 1T, and

To traverse a non-empty tree, perform the following operations recursively

at each node, starting from the root of the tree, until suspected node is found.

1. Visit the parent node

2. Compute channel scores for all children of the parent

3. Traverse the highest channel scored sub tree if that score is above the
threshold (if an attacker node is found backtrack to the parent)
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4. Traverse the next highest channel scored sub trees (only sub trees above
or around threshold and/or significantly deviated from rest of nodes of
same parent)

The algorithm continues working towards a built tree node by node, narrowing
down the attack source to one network and then to a node. At this point it
is possible to run more standard trace back methods by contacting the entity
which controls that network if it is beyond the analyst’s control.

input : A Tree constructed for anonymous stealthy attack scenario

output: A node where attacker is located

proposed-traverse(1));

while not found do

visit node w;

if node w is a leaf then

‘ return;

else
profile all children of node;
proposed-traverse(node.top_scored_child);
proposed-traverse(node.next_scored_child);

end

end

Algorithm 2: Tree traversal for a given tree.

6. Experiments

A series of experiments were conducted simulating stealthy suspicious ac-
tivities in simulated networks to evaluate the proposed approach in this paper.
Simulating such activities on a real network certainly gives more realistic condi-
tions than in a simulated network. However practical constraints of the project
keep away using a real world network for this purpose. Network simulator
NS3 [30] is used to build a network topology (see Figure 1) consisting of a
server farm and number of subnets of varying size. Table 2 presents a summary
of specifications of event generation in simulated experiments.

A Poisson arrival model with inter-arrival time gap between two consecutive
events as an exponential was assumed for events generation. Each simulation is
run for a reasonable period of time to ensure that enough traffic is generated.
Attackers are located at nodes in subnets. Suspicious and benign traffic were
generated within and between subnets to simulate both attack and legitimate
activities. Four types of suspicious activities (rate denoted by A,, a =1,2,3,4. in
Table 2) was simulated. A stealthy attack is defined as a predefined sequence of
such suspicious events executing an on-off manner. During the off period attack
node acts as a healthy node. Note that “Noise” in table 2 represents the Suspi-
cious events generated by healthy nodes, but at different rates A\,,n =1,2,3,4.
It was ensured to maintain A\, € A, £3v/\, and \,, (< 0.1) sufficiently smaller for
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Figure 1: A screen-shot of a network topology used for experiments.

all experiments to characterise stealthy suspicious activities which aim at stay-
ing beneath the threshold of detection and hiding behind the background noise.
The idea to use the above relationship for generating attacker activities was to
keep them within the normality range of innocent activities (i.e. background
noise). /A, is the standard deviation of rates of suspicious events generated by
normal nodes.

Though it did not produce all signature elements needed to characterise real
attacks, representation of suspicious events by a subset of such characteristics
(parameters) was sufficient to this work as its focus on temporal and spatial
aspects of events arrivals. Note that traffic classification is sufficient to the pro-
posed sampling method in this work, and does not require attack classifications.

Node Event Model Parameters Duration (s) Repetitions
Attack | Lesitimate | Py 1=1,2.310. 1 60641 960—2592000 or above,
Suspicious | $ A, a=1,2,3,4.
— R - scores are updated at Between 1-100
Healthy Legitimate I~ piy 1=1,2,3,...,10. every minutes (w=60s)
* | Noise Ap, n=1,2.3.4.

Table 2: A summary of specifications of event generation

Basic payload information, i.e. L4/L3 access lists and Protocols such as
http, ftp, udp and arp, was used for traffic classification. Traffic which cannot
identify using basic payload information was pooled into a common stratum.
A simple R [31] script was written to sample packets as described above. ¢;
in Equation 5 is set to a constant value as there is no significant difference of
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the cost between different type of traffics (stratum) for inclusion in a sample in
simulations. Visible source of an event is always considered as the true source
for experiments in this work. Prior probabilities and Likelihoods are assigned
as described below.

p(Hy) = 3 =05 (8)

Equation 8 suggests there is a 50% chance for a given node to be a stealthy
attacker. However, this is not the case in many situations. In networks, one
node may have a higher prior belief of being suspicion than another. Since prior
probabilities are based on previous experiences, p(H;) can be judged based on
information gathered from contextual analysis. However if there is no basis to
distinguish between nodes or groups of nodes, equally likely (i.e. same probabil-
ity of occurring) can be assumed. For the experiment presented in this paper,
first followed the equally likely assumption, and prior probabilities were assigned
as in equation 8. Then the posterior probability of a given node at time ¢t — 1 is
used as the prior of the same node at time ¢ when time is progressing. This lets
prior probabilities to adjust itself dynamically according to suspicious evidence
observed over time.

plej/Hi) = k; 9)

Equation 9 expresses the likelihood of producing event e; by a subverted
node. For the purpose of demonstration different, but arbitrary, values (<1)
were assigned for k to distinguish different type of events (e;) produced for the
simulation. Likelihoods for real world implementation can be estimated as fol-
lows. If e; is an event resulting from a certain type of known attack (e.g. a
UDP scan or LAND? attack), then k can be assigned to one. However, k cannot
always be one, as described in Section 2, as there are some suspicious events
(e.g. an alert of multiple login failures) that can be part of an attack signature
as well as originate from normal network activities. The question is how to es-
timate p(e;/Hy), i.e. the true positives, if e; becomes such an observation. One
possible solution would be to use existing IDS evaluation datasets to estimate
true positives. Estimating likelihoods for real world implementation is feasible,
and [32] is a good example for that which provides a detailed description of the
likelihood estimation in insider detection.

According to [13], in some cases, the historical rate of occurrences of certain
attacks is known and can be used to estimate the likelihood that certain events
derive from such attacks or it may be sufficient to quantify these frequencies by
an expert in a similar way to estimating risk likelihoods to an accuracy of an
order of magnitude. Note that [13]’s claim is completely theoretical as it follows

2A Denial of Service (DoS) attack which sets the source and destination information of a
TCP segment to be the same. A vulnerable machine will crash or freeze due to the packet
being repeatedly processed by the TCP stack.
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Figure 2: Z- Score graphs are sensitive to node behaviour.

the Subjectivist® interpretation of probability theory [33]. According to [14], the
biggest challenge is the absence of large publicly available data sets for research
and comparisons, but within an organization it is entirely possible to empirically
analyse day-to-day traffic and build statistical models of normal behaviour.

7. Results

In this section, experimental results are presented. Graphical forms (e.g.
Z-Score graphs) are using to present information. Visualisation helps to quickly
recognise patterns in data.

7.1. Peer Analysis Outcomes

To investigate whether proposed Z-score graphs reflect the behaviour of
nodes, three attacker nodes were located in a 50 size subnet. All others were
innocent. Two out of three attackers stopped their attack activities at 200 and
300 time points respectively. Figure 2 presents the outcome, where A1, A2 and
A3 are attacker nodes while Min and Maz are the minimum and maximum
Z-scores of normal nodes. T is the Grubbs’ critical value (threshold). If an
attacker node changed its behaviour, the corresponding z-score graph (see A2
and A3 in Figure 2) responses to that behaviour by changing its direction.

Peer analysis technique was tested against 24 test cases varying the subnet
size between 25 and 250 and the number of attackers between 0 and 7. Peer
analysis technique was capable of detecting stealthy attackers in all cases. Only

3There are three fundamental interpretations of probability: Frequentest, Propensity and
Subjectivist. In Subjectivist, probability of an event is subjective to personal measure of the
belief in that event is occurring.
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Figure 3: Z-Scores of node profiles for test case 16.

one case where four stealthy attackers were located in a hundred size subnet
is presented in Figure 3. In Figure 3, nodes corresponding to Al, A2, A3 and
A4 denote attackers. Min and Mazx denote the minimum and the maximum
Z-scores of normal nodes at each time point. Aberrant node profiles A1, A2, A3
and A4 in Figure 3 always corresponded to the four stealthy attackers located
in the subnet. They are above or near the threshold (T"), and most importantly,
there is a clear visual separation between the set of normal nodes and anomalous
nodes. Hence it is possible to recognise stealthy suspicious activities using the
proposed method.

Behaviour of the proposed approach in best and worst cases is also investi-
gated. There were no attacks in best cases while all nodes were subverted in
worst cases. Similar graphs, as shown in Figure 4, were obtained for both cases.
Almost all the nodes are nearly below the threshold (7"), and none of nodes can
be seen separated from the majority. In a situation where monitoring system
depends only on peer analysis technique and has seen similar graphs as in worst
(or best) cases, it is safe to assume that all nodes are subverted (instead of as-
suming free of attackers) and doing further investigations on one or two nodes to
verify. If investigated nodes are attackers, it is reasonable to consider all nodes
are attackers or vice versa. However, note that Discord analysis technique is
capable of detecting attackers in worst case too.

7.2. Discord Analysis Outcomes

Discord analysis technique was tested against number of test cases used for
peer analysis, in addition to testing it against a special test case defined as
follows. In a stealthy attack environment, discords are random time context
and peer analysis technique itself would not be capable to detect them if the
progression rates of malicious activities are far lower than the rates of similar
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Figure 4: Z-Scores of node profiles for test case 7.

innocent activities. Therefore a small subnet consisting of five nodes including
one attacker was set-up in a subnet. The attacker’s activity rate was decreased
until observing a node score graph like in Figure 5 where peer analysis technique
itself failed to detect the attacker. In Figure 5, the attacker which is denoted
by the red dotted line always keeps a very low profile score than all innocent
nodes denoted by other lines (see magnified version in Figure 6). As it is seen
in Figures 5 and 6, the attacker hides behind the normal nodes, and since the
attacker’s profile score is far lower than all normal nodes it is not detected by
the peer analysis technique. The randomness of event generation can also be
seen from Figure 6.

Discord analysis is capable of detecting the attacker very well in this case.
First using an ARIMA (p, d, q) model 95% CI is predicted for each node in the
network (see Figures 7 and 8 which are created for the attacker node and a
normal node respectively). Then at each time point, anomaly score for all five
nodes were calculated and converted them to Z-scores and plotted against the
time line as in Figure 9. Twenty five previous points was used as the length of
the ARIMA model in this case. In Figure 9, the node corresponded to A denotes
the attacker. Min and Max denote the minimum and the maximum Z-scores
of anomaly scores of normal nodes at each time point. 7" is the Grubbs’ critical
value (threshold) for a single outlier. As it is obvious in Figure 9 attacker node
is distinguished from innocent nodes.

7.8. Network parameters

This section investigates how different network parameters: traffic volume,
subnet size and number of attackers affect on monitoring of stealthy activities.
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Figure 6: Magnified version of Figure 5 - the red dotted line denotes the attacker, all other
lines denote innocent nodes.
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Figure 9: Z-Scores of anomaly scores for Discord analysis.

7.83.1. Traffic volume

A simple measure called detection potential is defined to explain how far
an attacker node is deviated from the threshold. It helps to compare between
different network conditions. The detection potential d is defined as:

d=2z-T (10)

on the basis of the higher the detection potential the better for the detection.

An attacker was located in a 51 size subnet and generated suspicious events.
The same experiment was repeated six times by keeping all parameters un-
changed, except attacker’s traffic volume. If the attacker’s traffic volume is
V at the first time, then at each repetition the attacker’s traffic volume was
incremented by one time as 2V, 3V, ...,7V. For each experimental run the de-
tection potential (deviation of node scores from the norm) was calculated, and
standardised values of the detection potentials are plotted as in Figure 10. As
shown in Figure 11, the detection potential is proportional to the traffic vol-
ume. The higher the traffic volume produced by an attacker is the better for
her detection using the monitoring algorithm.

7.8.2. Subnet size

An attacker was located in a 500 size subnet and the same experiment was
repeated six times by keeping all other parameters, except the subnet size,
unchanged. Subnet size was changed to 400, 300, 200, 100, 50 and 25 at each
experimental run, and Figure 12 and 13 were obtained. As shown in Figure 12,
attackers have a less chance to hide behind innocent events when the subnet size
decreases. The detection potential is negative exponential to the subnet size,
and going beyond 100 size subnet would not make any real sense in terms of
detection (see Figure 13). The smaller the subnet size is the better for detection.
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Figure 14: Z-Score graphs for same size subnets with different number of attackers (250 size
subnet, two attackers).

7.8.8. Number of attackers

The same experiment was repeated many times by keeping all conditions
unchanged, except the number of attackers. The outcomes of only two test cases,
two and seven attackers, are presented in Figures 14 and 15. The attacker’s node
score is dependent on the number of attackers on her own subnet (compare
attackers’ Z-scores between both graphs).

7.4. Sampling results

A series of experiments have been conducted by changing the sampling rate
r, hence n in Equation 5. Figures 16 and 17 present the outcomes of the pro-
posed approach when r = 20% and r = 10% of the whole traffic N respectively.
Min and Maz represent the minimum and the maximum profile scores of normal
nodes in the subnet where attacker node A is located. T represents the Grubbs’
critical value (threshold) for attackers’ subnet. As it is obvious from Figure 16,
proposed algorithm together with chosen sampling technique is capable of de-
tecting stealthy activity using a 20% size traffic sample. It is also possible using
even a 10% size sample, but after a considerable time lag.

Figure 18 compares the detection potential against the sampling rate r. It
is obvious that a point of diminishing returns is existed in Figure 18. When
r is larger enough to produce a reasonable level of accuracy, making it further
large would be a simply waste of resources of monitoring infrastructure? This
answers the question “in anomaly based detection, should all traffic still need
to be investigated?”

7.4.1. Network Design
A sampling process has two types of errors: sampling and non-sampling.
Sampling error occurs because of the chance, and it is impossible to avoid but
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Figure 15: Z-Score graphs for same size subnets with different number of attackers (250 size
subnet, seven attackers).
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Figure 16: Running the detection algorithm over 20% size sample.

can be minimised by defining unbiased estimators with small variances. Non-
sampling errors can be eliminated, and occurred due to many reasons: inability
to access information, errors made in data processing, etc [34]. This section
examines what impact would varying network size and subnet structure have
on Non-sampling error. An attacker is located in a 224 size network and 7 is es-
timated in each case as described below. Each simulation was repeated over 100
times. Goodness-of-fit test [35] is applied to statistically test the independence
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Figure 18: Detection potential vs sampling rate.

(or homogeneity) of proportion 7 over sampling rates, number of subnets and
subnet sizes. If any dependency is found it is depicted in a graph (see Figures 19
and 20).

Proportion of anomaly packets ¢ is considered as the parameter of interest
for this analysis and hence sample proportion 7 is defined as 7 = (a/n); where
a is the number of suspicious packets in a given sample size n. Note that
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Sampling | 5% 10% 20% 40% 80% Whole
rate(r) trace

T 0.00038 | 0.00034 | 0.00036 | 0.00035 | 0.00036 | 0.00036
P.Value 0.0970 0.0929 0.0952 0.0971 0.9770 N/A

Table 3: Proportion over sampling rates.

proportion of illegitimate to legitimate traffic, i.e. a : (n — a), is a dominating
factor for likelihood of false alarms in an IDS [36]. Though the distribution
of ¢ is binomial, in a network scenario, this can be approximated by a normal
distribution given a overwhelm number of packets to deal with (it satisfies the

#(1—#)
n ?

conditions of n.7t > 15 and n.(1—#) > 15). Hence, ¢ ~ Normal | 7,

where 7 is the observed proportion from samples. This can be used to draw
inference about the unknown population proportion ¢.

Sampling rate (r) Traffic samples at 5%, 10%, 20%, 40%, and 80% rates of
the whole trace were drawn and 7 was calculated. The null hypothesis Hy is the
assertion that the sample proportion 7 conforms to the whole traffic proportion
¢. The alternative hypothesis H; is the opposite of Hy.

HQ 2 Vr Ty = (ZS (11)

Hi:3rm #¢ (12)

7rs and p-values of testing Hy vs H; are given in Table 3 where p-values are
greater than the significance level o = 0.01 for all cases. Therefore there is no
enough evidence to reject the null hypothesis Hy. Hence it can be concluded
that sample proportion 7 conforms to the whole traffic proportion ¢. In other
words 7 can be used to draw inference about ¢, and chosen sampling technique
is capable of producing representative samples to the population.

Number of subnets (b) An attacker is located in a 224 size network and
same experiment was repeated for four more times by doubling the number
of subnets each time (in other words each subnet was divided into two in its
immediate repetition) but keeping all other conditions unchanged. The null
hypothesis Hy is the assertion that the proportion 7 is not affected by the
number of subnets b, where b=1, 2, 4, 8, 16. The alternative hypothesis H; is
the opposite of Hy. If k is a constant:

Hy:Vbm =k (13)

Hy:3bm #k (14)

s and p-values of testing Hy vs H; are given in Table 4. Since p-values
are less than the significance level @« = 0.01 for some cases it is possible to
conclude that there is no enough evidence to accept the null hypothesis Hy,
which means that proportion is affected by the number of subnets. Figure 19
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Number of | 0 2 4 8 16
Subnets(b)

T 3.58E-04 | 2.86E-04 | 1.12E-04 | 8.52E-05 | 1.97E-05
P.Value N/A 2.65E-01 | 6.03E-06 | 3.94E-07 | 1.04E-11

Table 4: Proportion over Number of Subnets.
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Figure 19: Proportion vs Number of subnets at each sampling rate.

presents the relationship between number of subnets b and proportion 7 at each
sampling rate. When b is increasing 7 is decreasing (deviates from the actual
value) regardless of sampling rates.

Subnet size (n) An attacker was located in a 5 nodes size subnet in the
network, and 7 was calculated at each sampling rate. The same experiment
was repeated by adding more nodes to produce different subnet sizes: 10, 20,
40, and 80 without changing other parameters. The null hypothesis Hy is the
assertion that the proportion 7 is not affected by the subnet size n, where n=5,
10, 20, 40, 80. The alternative hypothesis H; is the opposite of Hy. If k is a
constant:

Hy:Vnm, =k (15)

Hy:39nm, #k (16)

7s and p-values of testing Hy vs H; are given in Table 5. Since p-values are
less than the significance level o = 0.01 for some cases there is no enough evi-
dence to accept the null hypothesis Hy, which means that proportion is affected
by the subnet size. Figure 20 presents the relationship between subnet size n
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Size(n)
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Table 5: Proportion over Subnet sizes.
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Figure 20: Proportion vs Subnet size at each sampling rate.

and proportion 7, where n is increasing 7 is decreasing in overall (deviates from
the actual value), regardless of sampling.

7.5. Source Anonymity

Using the topology in Figure 21, attack events were generated with anony-
mous source addresses in order to simulate two cases: single and multiple at-
tackers. In the single attacker case, an attacker is located at a node in subnet
S6 and in multiple attackers case, three attackers are located one in each in
three different subnets S3, S5 and S6. Figure 22 presents the equivalent tree
structure produced by Algorithm 1 for above scenario. The root denotes the
victim node while g;; and h;; denote a gateway or a host node at level ¢ in Fig-
ure 22. j is a node number. Dashed rectangles represent a collection of leaves
corresponded to hosts in each subnet. Once the tree is obtained, Algorithm 2
is run to locate the attackers as shown in Figure 23 for single attacker, and
Figure 24 for multiple attackers.

Figure 23 presents the steps of tracing process from the root of the derived
tree. In Step 1, Min and Max represent the minimum and maximum Z-scores
of all immediate visible nodes (11 in total, except g1,) to the root at each time
point. Since that graph suggests moving towards gi,, Step 2 graph is created
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Figure 21: Network topology used for source anonymity experiment.

at node ¢1,, and so on. Finally search is narrowing down to the subnet S6.
Step 4 graph is created at S6’s gateway node gs,, where A denotes the Z-
scores corresponded to the true attacker located in that subnet. Min and Max
represent the minimum and maximum Z-scores of all other nodes in subnet S6.
T denotes the threshold which is not defined when number of data points in a
set is less than three. In that case the highest scored path is chosen to move
towards (see Step 2) in finding attacker or directions to her location.

A similar manner should be followed in interpreting graphs in Figure 24
obtained for multiple attackers. In that case, once an attacker is found tracing
algorithm should be back tracked to its immediate parent node and should
proceed with next highest Z-scored sub tree to find other suspicious nodes. After
Steps 3 and 6, algorithm back tracks to the root node. Table 6 summarises travel
sequences for tracing single and multiple attackers.
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Scenario Travel sequence (until all attackers are found)

Single attacker root, g1y, 925, 93,

Multiple attackers root, gi,, g24, T00t, 1,5, 925, §3,,500t, g1,, G2,

Table 6: Traversal sequences for tracing attackers.

8. Related Work

8.1. Monitoring stealthiness

A scalable solution for insider detection using Bayesian analysis is presented
in [13]. Authors maintain incremental profile scores for each node in the system
and distinguish suspicious nodes from normal nodes by setting a predefined base-
line. If a cumulative score of a particular node is deviated from the predefined
control, an anomaly is declared and that node is identified as an insider who
warrant further investigation. The major drawback of this approach is setting
a predefined control as the baseline. Setting predefined controls is very chal-
lenging in network security monitoring. In a network, normal behaviour keeps
evolving and a current notion of normal behaviour might not be sufficiently
representative in the future. Threshold needs to evolve according to the context
and current state of the network. [37] integrates user’s technological traits (sys-
tem call alerts, intrusion detection system alerts, honey pot, systems logs, etc)
with data obtained from psychometric tests (predisposition, stress level, etc) for
insider detection. User profiles are used to identify the users (human actors)
who warrant further investigation. [37, 38]. [39] is similar to [37]. It provides
a research framework for testing hypothesises for insider threats by integrat-
ing employee data with traditional cyber security audit data. This approach is
based on pattern recognition and model-based reasoning. Reasoner is the pat-
tern recognition component which analyses the large amount of noisy data to
distinguish variations from norms. Data is processed using a dynamic Bayesian
network which calculates belief levels assigned to indicators and assessed the
current indicators with the combination of previously assessed indicators to de-
termine the likelihood of behaviours that represent threats. Probabilities are
assigned for the Reasoner through expert knowledge. Simulation method is used
to evaluate the proposed approach realising the difficulty to find real cases in
this domain. When addressing non human threats it finds difficulties due to the
psychological profiling components. Hence it is highly organisational dependent,
and expertise knowledge is needed to fine-tune the model in order to fit with
new environments. However the idea proposed in all above works to incorporate
wider range of information into the monitoring process is very interesting. This
idea increasingly becomes popular among security community [14].

A co-variance matrix based approach for detecting network anomalies is
proposed in [40]. It uses the correlation between groups of network traffic sam-
ples. [41] is an approach which uses connection based windows to detect low
profile attacks with a confidence measure. Multiple neural network classifiers to
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detect stealthy probes is used in [42]. Evidence accumulation as a means of de-
tecting stealthy activities is proposed in [43]. A graph-based anomaly detection
(GBAD) systems is presented in [44] to discover anomalous instances of struc-
tural patterns in data that represent entities, relationships and actions. GBAD
is applied to datasets that represent the flow of information between entities, as
well as the actions that take place on the information. Authors claim GBAD can
apply to tackle several security concerns including identifying violation of sys-
tem security policies and differentiating suspected nasty behaviour from normal
behaviour. Authors acknowledged the need of reducing the time spent for main
computational bottleneck. Hence these approaches are not efficient in terms
of computational cost (specially for event correlation) for monitoring stealthy
activities lasting in several months. Numbers of anomalous instances are far
fewer than the number of normal instances is a main constraint for correlation
based anomaly detection approaches [6, 45] to succeed in monitoring for stealthy
attacks. Accumulating evidence according to a systematic way would help to
overcome this issue.

Information visualisation has been proposed in many scholarly works [46, 47,
36, 48, 49] as a method for anomaly detection . Researches in this line often claim
“having to go through huge amount of text data (packet traces, log files, etc) to
gain insight into networks is a common but a tedious and an untimely task as
terabytes of information in each day is usual in a moderate sized network” [48].
Therefore they propose to visualise packet flows in the network assuming that
it will help network professionals to have an accurate mental model of what
is normal on their own network and hence to recognise abnormal traffic. For
example, [46] claims that “the human perceptual and cognitive system comprises
an incredibly flexible pattern recognition system which can recognise existing
patterns and discover new patterns, and hence recognising novel patterns in
their environment which may either represent threats or opportunities”. In
principle all above works acknowledge that visualisation (by means of graphs or
animation) is useful in identifying anomalies patterns. But our position, though
visualisation can be motivated on this as visual cognition is highly parallel
and pre-attentive than the text or speech, it does little on stealthy activities
monitoring. Just presenting raw data in graphical form would not be sufficient.
Visualising a traffic flow of a large network for a very long time will end up with
a very complicated web of traffic flows. It would be very difficult to compare this
with analyst’s mental model of the netflow already made in mind. Therefore
some kind of data reduction and simplification (information fusion) is needed
before visualising security measures. Essentially these approaches are not either
systematic or accounted for the “motivation” uncertainty behind an event.

The work presented in [50] is one of the most recent work similar using
Bayesian for stealthy activities monitoring, but in a different domain detect-
ing lone wolf terrorists. [21] combines traditional notion of Motive, Means, and
Opportunity with behavioural analysis techniques to place each individual on a
sliding scale of insider risk. User behaviour is compared with her own baseline
and as well as the behaviours of members in their own peer groups using the
Euclidean distance. A method for detecting insiders with unusual changes in be-
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haviour by combining anomaly indicators from multiple sources of information
is provided in [20]. Authors build a global model and find outliers by comparing
each user’s activity changes to activity changes of his peer group. [51] defines a
Bayesian network model that incorporates psychological variables that indicate
degree of interest in a potential malicious insider. A complex Bayesian network
for capturing conditional dependencies between different attributes can be found
in [52]. Using Bayesian technique and its variants for intrusion detection can be
found in [53]. The relevance of information fusion for network security monitor-
ing is widely discussed [6, 54]. A comparison of performance between Bayesian
technique, Counting approach, Linear Regression and Artificial Neural Network
in insider detection includes [32] which concludes that Bayesian technique is
better than the other methods. Also [13] demonstrates that Bayesian approach
is superior to the counting algorithm. All above approaches, except [13, 43],
require storage of large volumes of event data for analysis. Systems that try
to model the behaviour of individuals or protocols are forced to retain large
amounts of data which limits their Scalability. Monitoring algorithm proposed
in this work is different from [13, 43] by hypothesis, analysis technique and
decision criteria.

8.2. Data reduction

With reference to the Sampling, objectives of network monitoring can be
classified as Traffic engineering, Accounting and Security specific where accuracy
requirements in each objectives are quite different. Using sampling for Traffic
engineering and Accounting is widely studied [55], and already been employed
by commercially available tools [56]. However those studies are not relevant to
this work as our objective is a security specific. A successful sampling technique
in Engineering and Accounting would not be essentially an efficient method in
Security. Therefore only security related sampling works will be reviewed in this
section. [57] samples malicious packets with higher rates to improve the quality
of anomaly detection. High malicious sampling rates are achieved by deploy-
ing in-line anomaly detection system which encodes a binary score (malicious
or benign) to sampled packets. Packets marked as malicious are sampled with
a higher probability. Obviously this approach involves additional processing
and storage overheads. [58] evaluates quantitatively how sampling decreases the
detection of anomalous traffic. Authors use the packet volume as the parame-
ter of interest for this analysis. That work concludes that detecting anomalies
with low sampling rates is entirely possible by changing the measurement gran-
ularity, and uses relationship between the mean and the variance of aggregated
flows to derive optimal granularity. Proposed analysis method in this work was
impressed by this idea. [59] investigates the performance of various methods of
sampling in network traffic characterisation. They use several statistics that can
be used to compare two distributions for similarities, and to compare sample
traces with their parent population. [60] evaluates the effect of the traffic mix
on anomaly visibility using traces collected at four different border routers and
using prior knowledge of two different worm types. Effects of traffic sampling
on privacy and utility metrics can be found in [61]. But none of above focuses
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on stealthy activities. Note that methods proposed for typical rapid attacks
cannot be used to monitor for stealthy activities due to several constraints in-
cluding the limitations of computational resources [12, 13, 62, 63]. To the best
of authors knowledge, the work presented in this paper is the first attempt to
use sampling technique for stealthy activity monitoring in computer networks.

Based on the sampling frame, existing sampling proposals can be classified
into two groups: packet-based and flow-based. Packet-based techniques [57, 58,
59, 60, 64, 65] consider network packets while flow-based techniques [66, 64, 67]
consider network flows as elements for sampling. Packet sampling is easy to
implement as it does not involve any processing before selection of samples.
But in the case of flow sampling, monitored traffic is processed into flows first
and then apply sampling technique on whole set of flows for drawing a sample.
This requires to use more memory and CPU power of network devices. The
most widely deployed sampling method in the literature is packet sampling. It
is computationally efficient, requiring minimal state and counters [60]. [68] is
a study of combination of packet and flow sampling. A comparison of packet
vs flow sampling can be found in [66]. According to [66, 67] flow sampling is
more accurate than packet sampling. However it should be noted that this not
necessarily means that flow sampling is always better than packet sampling.
However, suitability of a sampling method depends on the input parameters to
the detection algorithm and monitoring objectives. For example, if inputs to the
detection algorithm is flows, obviously flow sampling should be performed well
in that scenario than sampling on any other element. [64, 65] are examples to
justify that suitability of a sampling frame depends on the detection algorithm.
Former investigates how packet sampling impacts on three specific port scan
detection methods and the same work has been extended in later to investigate
the impact of other methods. Event based and Timer based are the two possible
mechanisms to trigger the selection of a sampling unit for inclusion in a sample.
Event based approaches collect one elements out of N elements using the chosen
sampling method. Naive 1 in NV sampling strategy by Cisco NetFlow [56] is a well
known example for that method. It samples one packet after every N packets.
Event based approaches consume more CPU and memory of network devices as
it involves some processing (counting). In a timer based approach, one packet is
sampled during N time units. Though this approach is effective in terms of CPU
and memory consumption, since it depends on the system timer, choosing larger
Ns returns higher sampling errors due to the non-time-homogeneous nature of
packets arrivals to the network.

8.3. Tracing

Tracing back is one of the most difficult problems in network security, and
a lot of research being conducted in this area [69, 70]. But deterministic packet
marking and out of band approaches are not relevant to this work as proposed
approach in this work is a probabilistic approach. [71] controls the flooding tests
network links between routers to approximate the source. To log packets at key
routers and then to use data mining techniques in determining the path which
packets traversed through the network is proposed in [72, 73]. The upside of
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this approach is traceability of an attack long after it has completed. As it is
obvious, a downside is that not scalable. [74] propose to mark within the router
to reduce the size of packet log and to provide confidentiality using a hash-based
logging method. [75] suggest probabilistically marking packets as they traverse
through routers. Authors propose router marking the packet with either the
routers IP address or the edges of the path that the packet traversed to reach the
router. With router based approaches, the router is charged with maintaining
information regarding packets that pass through it. However above approaches
are focused on DDoS attacks while this paper interests on events related to slow
stealthy attacks.

9. Conclusion

Analysts find difficulties to weed through the noise of routine security events
and determine which threats warrant further investigations. The profiling tech-
nique presented in this paper addresses this issue acting as early warning system.
It acknowledges the motivation uncertainty to reduce the possible false alarms
which prevent distraction from actual malicious activities. Proposed approach
maintains long-term estimates computed on sampled data that individuals or
nodes are attackers rather than retaining event data for post-facto analysis.
These estimates can be used as triggers of threats which enable authorities to
respond to protect systems and deter attackers, for example, by physical, proce-
dural and technical controls such as reduction in permissions and privileges and
other incident response activities. Proposed method (section 3) significantly
reduces the data amounts to handle and maintain. It maintains only a num-
ber of digits equal to the number of nodes in the network to provide a unified
view of the state of the network. One advantage of this monitoring strategy
is combining multiple indicators not in an ad-hoc but rather in a data-driven
manner. Sampling technique utilised in this work draws representative samples.
However required level of sampling rate depends on several factors: detection
algorithm, parameter of interest, sampling method, level of precision required,
duration of monitoring, rate of attack events etc. Further research is needed to
identify limitations of sampling in security of cyber physical security systems.
With regards to the attribution, finding the correct origin of the activities is
very important in cyber systems to locate the right person responsible with a
view of persuading them not to do that again. In a situation there are mul-
tiple suspected sites to investigate prioritisation centres of attention would be
a problematic. Proposed tracing algorithm would help on that, but not solved
the attribution problem completely. Investigating more advanced anonymity
monitoring technique (e.g. [76]) with the tracing algorithm will be interesting
to develop it as more attribution oriented. This is left as future work.
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