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Abstract 

The cationic peptide, salmon calcitonin (sCT) was complexed with the cationic amphiphilic 

polyelectrolyte, poly(allyl)amine, grafted with palmitoyl and quaternary ammonium moieties at 

pH 5.0 and 7.4 to yield particulates (sCT-QPa). The complexes were approximately 200nm in 

diameter, had zeta potentials ranging from +20 to +50mV, and had narrow polydispersity indices 

(PDIs).  Differential scanning calorimeter revealed the presence of an interaction between sCT 

and QPa in the complexes. Electron microscopy confirmed the zeta-size data and revealed a 

vesicular bilayer structure with an aqueous core. Tyrosine- and Nile red fluorescence indicated 

that the complexes retained gross physical stability for up to 7 days, but that the pH 5.0 

complexes were more stable.  The complexes were more resistant to peptidases, serum and liver 

homogenates compared to free sCT.  In vitro bioactivity was measured by cAMP production in 

T47D cells and the complexes had EC50 values in the nM range. While free sCT was unable to 

generate cAMP following storage for 7 days, the complexes retained approximately 33% 

activity.  When the complexes were injected intravenously to rats, free and complexed sCT (pH 

5.0 and 7.4) but not QPa reduced serum calcium over 120 min.  Free and complexed-sCT but not 

QPa also reduced serum calcium over 240 min following intra-jejunal administration.     In 

conclusion, sCT-QPa nanocomplexes have been synthesised that are stable, bioactive and 

resistant to a range of peptidases.  These enhanced features suggest that they may have the 

potential for improved efficacy when formulated for injected and oral delivery.     

 

Key words: 

Salmon calcitonin, poly(allyl)amine, amphiphilic polymers, oral peptide delivery, peptidase 

inhibition. 
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1. Introduction 

 Since complexation of bovine serum albumen (BSA) with a synthetic polyelectrolyte was 

first described [1], such complexes have been used widely in the food and biotechnology 

industry.  Examples include stabilisation of enzymes for biosensors [2], and for developing 

protein separation methods [3]. Use of polyelectrolytes for non-injected peptide and protein 

delivery resulted in formulation of positively-charged chitosan nanocomplexes or hydrogels with 

insulin [4, 5], BSA [6], and catalase [7]. The principle mechanism of the non-covalent 

association is based on electrostatic interaction between positively-charged polymers and 

negatively-charged proteins to yield a polyelectrolyte complex. Most peptides and proteins 

however, typically exhibit amphiphilic character due to the presence of multiple hydrophobic 

and hydrophilic amino acid residues in the primary sequence. Amphiphilic polymers may have 

unique potential in peptide delivery due to their ability to interact with such peptides via both 

electrostatic and hydrophobic association. However, to our knowledge only a few groups have 

studied them for delivery of therapeutic peptides including insulin [8] and salmon calcitonin 

(sCT) [9].  

Our previous work demonstrated the use of novel comb-shaped amphiphilic 

polyelectrolytes based on polyallylamine (PAA) designed for oral delivery of insulin [10-12]. 

PAA protected insulin from in vitro gastrointestinal enzymatic degradation by pepsin, and 

trypsin to an extent [12], due to the nature of the hydrophobic pendant group and the presence of 

quaternary ammonium moieties [10]. Among the amphiphilic polyelectrolytes examined, the 

most promising analogue was PAA grafted with a combination of palmitoyl (4.2% mole) and 

quaternary ammonium moieties (QPa, 73% mole). Proteins and peptides can be anionic or 
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cationic at physiological pH, depending on their isoelectric point (PI) and the pH of the 

compartment solution. Therefore, it is important to assess the ability of amphiphilic 

polyelectrolytes to deliver both cationic and anionic peptides. To date, most research has 

focussed on complexation between polymers and peptides of opposite charge. There are reports 

which suggest that polyelectrolyte complexation can indeed be formed with the same overall 

charge due to the presence of localized patches of opposite charge on the peptide surface [13], or 

due to hydrophobic interactions or hydrogen bonding between polymer and peptide [14].  

The question for this current study was therefore whether PAA could be complexed with 

a cationic peptide while retaining physicochemical properties that are compatible with 

maintenance of bioactivity.  sCT is a 32-residue calcium-regulating peptide hormone produced 

by parafollicular cells of the thyroid gland, which is used clinically as an adjunct anti-resorptive 

treatment for post-menopausal osteoporosis and also as a second line treatment for Paget disease 

[15]. Recent data suggests that sCT also has potential as a disease-modifying anabolic agent 

acting on osteoarthritic cartilage to promote collagen and preteoglycan synthesis [16]. Marketed 

sCT for osteoporosis is available as a nasal spray or as subcutaneous/intramuscular injections. 

An oral product would have patient acceptability advantages over both nasal sCT and oral 

bisphosphonates, the former prone to occasional local mild irritation due to the presence of 

permeation enhancers [17], while the latter elicits a range of intestinal side-effects in a cohort of 

patients [18].    Anionic sodium tripolyphosphate was recently complexed to sCT to form an 

ionic complex via electrostatic attraction and it had some oral efficacy in rats [19].  Here, 

complexation between the cationic QPa and cationic sCT was achieved in pH 5.0 and pH 7.4 

buffers and the resulting nanocomplexes yielded positive outcomes from the standpoint of 
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physicochemical properties, resistance to enzymatic degradation, in vitro sCT bioactivity as well 

as in vivo hypocalcaemic efficacy in rats.  
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2. Materials and Methods 

 
2.1. Materials 

Poly(allylamine hydrochloride) (PAA) (Mw = 15 kDa), palmitic acid-N-

hydroxysuccinimide ester (98%), sodium acetate, tris(hydroxymethyl) aminomethane (Tris) 

(≥99%) and Nile Red were all purchased from Sigma–Aldrich, UK. All solvents (HPLC grade) 

and glacial acetic acid were purchased from Fisher Scientific Chemicals, UK. sCT was 

purchased from PolyPeptide Laboratories (Denmark). The Parameter™ cAMP (EIA) kit was 

purchased from R&D systems, UK. Tissue culture reagents were obtained from BioSciences, 

Ireland. All other chemicals were of reagent grade. T47D cells were purchased from LGC 

Standards, UK. 

 

2.2. Synthesis of QPa 

In accordance with [10], PAA was reacted with palmitic acid-N-hydroxysuccinimide 

ester, based on molar feeds of 1:0.025 (PAA monomer: palmitoyl group) to obtain PAA grafted 

with palmitoyl-pendant groups (Pa). Quaternisation (Q) was carried out by reacting Pa with over 

a 1000 molar excess of methyl iodide to obtain quaternary ammonium compounds, QPa (Fig. 1). 

The novel amphiphilic polymers were characterised by elemental analysis and 1H NMR and the 

results confirmed 4.2% mole palmitoylation and the palmotoyl graft [10, 11]. 

 

2.3. Preparation of sCT-QPa nanocomplexes 

Complex preparation of sCT with QPa was carried out similar to our previous method 

using insulin [11]. Two buffers, Tris (pH 7.4) and acetate buffer (pH 5.0) were used to separately 

prepare sCT-QPa complexes. Tris buffer was made up of 0.1 M Tris: 0.01 M HCl (87:13 % 
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(v/v)), and the acetate buffer was composed of sodium acetate (0.871 gL−1) and glacial acetic 

acid (0.216 gL−1). Solutions (4 mgmL−1) were prepared by sonicating the polymer in either 

buffer using a Soniprep 150® sonicator (MSE Ltd., UK) for 5 min at the maximum amplitude.  

sCT stock solutions (2 mgmL−1) were prepared also in both buffers using gentle magnetic 

stirring. Equal volumes (2 mL each) of QPa and sCT solutions were added together and the sCT-

QPa complexes were formed spontaneously after mixing. The solutions were then left at room 

temperature for 120 min and the pH values were re-checked before characterisation as described 

in Section 2.4 and 2.5.  
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Fig. 1. Chemical structure of quaternary ammonium palmitoyl polyallylamine (QPa).   
 

2.4. Characterization of polymer, sCT complexes 

2.4.1. Differential scanning calorimetry (DSC) 
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QPa, sCT and QPa-sCT complexes (2:1 mgmL−1) were freeze dried in a VirTis adVantage freeze 

drier (Biopharma Process Systems, UK) in both Tris and acetate buffers. Samples (1-2 mg) were 

then heated from 0oC to 300oC at 20oCmin-1 in a Q100 differential scanning calorimeter (TA 

instruments, UK), precalibrated with indium. The above experiment was repeated using sCT as 

received from the supplier. 

2.4.2. UV Absorbance  

The turbidity of QPa, sCT and sCT-QPa complexes were tested at day 0, 1 and 7 after 

preparation by taking absorbance readings at 350 nm using a Biomate 5 UV spectrophotometer 

(Thermo Spectronic, England) with a 1 cm quartz cuvette. Absorbance values were determined 

after blanking the spectrophotometer with the buffer used to prepare sCT/QPa samples. The 

samples were maintained at room temperature in the dark over the 7 days. 

 
2.4.3. Intrinsic tyrosine fluorescence 

The fluorescence of the tyrosine residues within sCT was measured using a LS 55 

luminescence spectrometer (Perkin Elmer, USA) according to [20]. The changes of the emission 

spectra of the intrinsic tyrosine residues within the sCT give an indication of the physical 

stability of sCT. Emission spectra were recorded using the supplied software over an emission 

wavelength range of 290 to 400 nm after excitation at 274 nm using slit widths of 3 nm. An 

average of three scans was taken for each sample. Intensity values at peak emission wavelength 

were noted at days 0, 1 and 7 after the formation of sCT-QPa complexes and compared to free 

sCT. 

 

2.4.4. Nile red fluorescence 
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Since intrinsic tyrosine fluorescence measurement may be less sensitive in detecting sCT 

aggregation compared to extrinsic fluorescence, extrinsic Nile red fluorescence was also used to 

determine sCT stability.  QPa, sCT and sCT-QPa complexes were spiked with a 0.10 mM 

solution of Nile Red in ethanol (40 µL in 4 mL, n=3) [20]. Controls consisting of each buffer 

(4mL) were also spiked with Nile red. All samples were left in the dark at room temperature for 

the duration of the study.  The emission intensities of the Nile red-spiked samples and nile red 

alone in each buffer were recorded between wavelengths of 600-700nm following initial 

excitation at 575 nm at a slit width of 7.5 nm. Peak intensities were measured using a LS 55 

luminescence spectrometer (Perkin Elmer, USA) at days 0, 1 and 7 after sample preparation with 

an average of three scans of each sample. 

2.4.5. Particle size analysis: photon correlation spectroscopy (PCS) 

Hydrodynamic diameters and polydispersity indices (PDI) of polymer, sCT and sCT-QPa 

complexes in both buffers were determined using photon correlation spectroscopy (PCS) 

(Zetasizer Nano-ZS, Malvern Instruments, UK) at 25 °C. Analysis was carried out at days 0, 1 

and 7 after preparation. 

 

2.4.6. Zeta potentials 

The zeta potential of QPa, sCT and sCT-QPa complexes were analysed using PCS (Zetasizer 

Nano-ZS, Malvern Instruments, UK) at days 0 and 7 after preparation. Prior to measurement, -50mV 

standards (Malvern Instruments, UK) were analysed; the data obtained agreed with that stated by the 

manufacturer. 
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2.4.7 Transmission electron microscopy (TEM) 

Formvar/carbon-coated 200 mesh copper grids were glow-discharged and freshly-

prepared complex solutions were dried to form a thin layer onto the hydrophilic support film. 1% 

aqueous methylamine vanadate (Nanovan®; Nanoprobes, Stony Brook, NY, USA) stain was 

applied and the mixture air-dried. The negatively-stained complexes were imaged with a LEO 

912 energy filtering transmission electron microscope, at 80 or 100 kV.  

 

2.5. In vitro and in vivo characterisation of sCT-QPa  complexes 

2.5.1. In vitro bioactivity: Intracellular cAMP elevation by sCT and complexes in T47D cells 

cAMP-secreting activities of sCT and complexes were assessed using a T47D (human 

breast cancer cells) in vitro bioassay [21]. Human breast cancer cells (T47D) cells over-expresses 

calcitonin receptors and resulting in intracellular cAMP release upon activation by sCT. T47D 

cells were maintained in RPMI-1640 culture medium (Gibco) containing 1% penicillin–

streptomycin (Gibco), 10% fetal bovine serum (Gibco) and insulin (0.2 IU/ml). The cells were 

plated at an initial density of 1.0 × 105 cells/well and incubated in a 95% air: 5% CO2 

atmosphere at 37 °C for 24 hours. Media was replaced with serum-free media and incubated for 

a further 24 hours. After washing with Hank's balanced salt solution (HBSS) (Sigma), cells were 

pre-incubated with the serum free media, supplemented with 0.2 mM 3-isobutyl-1-methyl-

xanthine (IBMX) at 37 °C for 120 min. The cells were then incubated with different 

concentrations of freshly prepared (day 0) sCT and sCT-QPa (pH 5.0 and 7.4) complexes at 37 

°C for 15 min. After removing the supernatants, intracellular cAMP was extracted from the cells 

by lysis and measured by ELISA (R&D Systems, UK). Concentration-response curves were also 
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carried out on samples from the same stocks after 7 days (day 7).  The concentrations of sCT in 

the complexes were directly comparable with free sCT.  

2.5.2. Intestinal enzyme metabolism 

sCT-QP complexes were incubated with intestinal enzymes in transport buffer according 

to our previous description [22]: TPCK (N-p-tosyl-Lphenylalanine chloromethyl ketone)-treated 

trypsin (0.5 μM), TLCK (1- chloro-3-tosylamido-7-amino-2-heptanone)-treated chymotrypsin 

(0.1 μM) and elastase (0.48 μM). The concentrations of enzymes used were similar to those 

present in the gastrointestinal tract.  Enzymes and substrates were incubated separately at 37 °C 

for 15 min, followed by co-incubation for 0, 15, 30, 45, 60 and 90 min. Samples were analysed 

for the capacity to induce cAMP production in T47D cells. Rate constants and half lives for 

formulations were calculated by assuming first order kinetics. 

 

2.5.3 Hypocalcaemia of sCT-QPa formulations in rats: intravenous and intra-jejunal 

administration 

Fasted male Wistar rats (300-350g) were initially anesthetised using intra-peritoneal (i.p.) 

injection of ketamine (75 mg/kg) and xylazine (10 mg/kg). Anaesthesia was maintained with 

isoflurane gas at the rate of 1.5 L/min mixed with O2 (1 L/min) through a gas mask.  

Rats were randomly divided into groups and were injected via the tail vein with 40 µg/kg (200 

IU/mL/kg) sCT from each formulation: sCT, QPa, sCT-QPa, each prepared at both pH 5.0 and 

7.4. Serum samples were obtained directly from the heart at time 0 and then at 15, 30, 60 and 

120 min after i.v. injection. Intra-jejunal (i.j.) administration was also carried out in separate 

studies based on previous methods [23].  The proximal jejunum from anaesthetised rats were 

exposed after a midline laparotomy. 15 cm of jejunum was isolated by tighten the extremities up 
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with silk, taking care to avoid damage to blood vessels. Solutions containing 0.1mg/ml sCT (500 

IU/ml) at the volume of 1ml/300g of bodyweight were instilled into the surgically exposed 

jejunal segments. The i.j. study had same design as for intravenous (i.v.) study, except that 

samples were withdrawn up to 240 min.  Serum samples were analysed for calcium using a 

Randox Laboratory clinical chemistry colorimetric analyzer at a wavelength of 612 nm [22].  

Animal experimental procedures adhered to the Principles of the Laboratory Animal Care, were 

performed in compliance with the Irish Department of Health and Children animal licence 

number, B100/4193, and were approved by the UCD Animal Research Ethics Sub-Committee.  

 

2.6. Statistical analysis 

R Statistical Language was used to perform non-linear regression, t-tests, Tukey-HSD 

post hoc ANOVA comparison and to construct confidence intervals. P < 0.05 was designated as 

the level of significance. 
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3. Results 

3.1 Characterisation of sCT-QPa complexes 

3.1.1. DSC 

From the acetate samples, complexation led to a change in the DSC profile compared to 

free sCT and QPa alone. Free sCT had two endotherms, a broad endotherm at 70°C and another 

sharp endotherm at 130°C while QPa had endotherms at 90 and 240°C (Fig 2A). Upon 

complexation, the endotherms observed for free sCT had disappeared and a broad thermogram 

occurring at 120°C was observed. This result is consistent with our findings with the QPa-insulin 

complexes and other polyelectrolyte complexes [11,19]. The physical-chemical interaction 

between sCT and QPa had resulted in the disappearance of free sCT endotherms and the shift of 

QPa endotherm to a higher temperature.  

In regards the Tris samples, the picture is more complex. QPa and the complex thermal 

profiles seemed to be very similar in acetate buffer, but not so in Tris. There was a large 

endotherm at 150oC in the QPa Tris buffer sample that was not present in the acetate buffer 

sample, which may be due to the Tris itself having recrystallised on freeze drying (Fig 2B).  The 

absence of this large peak in the thermal profile of QPa freeze-dried in water confirmed this 

hypothesis (data not shown). Complexation of QPa with sCT resulted in the disappearance of 

this peak and the small endotherms in the free sCT samples between 100-150oC, suggesting the 

presence of an interaction between QPa and sCT.  However, the multiple endotherms in the sCT 

and QPa samples between 225-250oC were still present in the complex sample. This suggests 

possible degradation of QPa and/or denaturation of sCT in the complex at a high temperature. 

In Fig 2C, sCT as received from the commercial supplier had a different thermal profile 

compared to the free sCT freeze-dried in acetate or Tris buffer. The differences observed may 
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suggest that there is an interaction between sCT and the buffer. This may explain the lack of 

stability in Tris compared to acetate buffer, which was shown in our result (section 3.1.2 and 

3.1.3) as well as others [20]. 
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Figure 2. DSC profile of (A) Freeze dried QPa, sCT and QPa:sCT complex (2:1mgmL−1) in acetate 
buffer. (B) Freeze dried QPa, sCT and QPa:sCT complex (2:1mgmL−1) in Tris buffer. (C)  freeze-dried 
sCT in acetate/ Tris buffer or as received.  

 

3.1.2. PCS, zeta potential and UV spectroscopy 

Samples were analysed for their hydrodynamic size, PDI, zeta potential and UV 

absorbance at day 0 and / or day 1 and at day 7 after preparation (Table 1). Samples were 

deemed stable at a gross level if absorbance readings remained below an O.D. value of 0.0-0.035 

[20]. sCT samples were stable at day 0, but by day 7 absorbance values had risen above 0.035 in 

both buffers. This was particularly marked for samples at pH 7.4 (A=0.269) compared to pH 5 

(A=0.044) suggesting that sCT was less stable at pH 7.4. The absorbance values for QPa alone 

were always above 0.035 as they were not completely clear. This meant that complex samples 

were also above 0.035. Again, however, samples appeared more stable at pH 5 than pH 7.4, 
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given the smaller changes in absorbance at day 7; absorbance increased from 0.054 to 0.071 and 

from 0.053 to 0.253 at pH 5 and 7.4, respectively (Table 1). The precipitation observed for both 

sCT and the complex at pH 7.4 at day 7 would suggest that the complex became unstable at this 

pH, although precipitation from the complex appeared to be less than from free sCT.  It would 

have been expected that if the sCT and QPa were not interacting with each other, two distinct 

size populations would be present in the complex samples which would be indicated by higher 

size and PDI values and multiple peaks in the size distribution graph. However, all complex 

samples over 7 days had diameter and PDI values of less than 230 nm and 0.3 respectively 

(Table 1). In addition, one single peak was obtained in the size distribution graphs (Fig 2A, B), 

suggesting that complexation between sCT and QPa led to formation of compact nano-

aggregates with relatively narrow size distribution at either pH. This suggests the absence of free 

sCT in the complexes, consistent with previous SEC-HPLC data from insulin-QPa complexes 

[11, 12]. Diameters and PDI values for sCT-QPa complexes were comparable to those of QPa, 

but differed markedly from those of sCT. Free sCT had a substantially higher hydrodynamic size 

ranging from 458nm to 2µm with a PDI of 1, indicating the presence of particulates of a wide 

diameter range.  

 

Table 1. Size, zeta potential and absorbance of sCT, sCT-QPa in pH 5.0 or Tris buffers  
 

 Day Hydrodynamic 

diameter (nm) 

 PDI Zeta Potential 

(mV) 

Absorbance 

(350 nm) 

     pH 5.0 

sCT 

       

       0 

 

      458 (141) 

 

0.527 (0.093) 

 

39.1 (2.54) 

 

0.000 

 7 2471 (934) 1.000 (0.000) 20.8 (2.70) 0.044 
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QPa  0 226 (2) 0.201 (0.015) 52.5 (0.92) 0.060 

  7 169 (4) 0.262 (0.003) 52.7 (1.17) 0.086 

sCT-QPa  0 226 (7) 0.232 (0.029) 56.6 (0.88) 0.054 

  1 227 (4) 0.228 (0.039) n/a 0.059 

 7 226 (5) 0.209 (0.031) 52.1 (1.09) 0.071 

    pH 7.4      

sCT  0 1827 (1279) 0.763 (0.191) 17.9 (0.78) 0.004 

 7 1339 (190) 0.802 (0.148) 4.5 (0.26) 0.269 

QPa  0 204 (2) 0.227 (0.008) 44.0 (2.07) 0.045 

   7 128 (3) 0.177 (0.008) 40.7 (3.66) 0.066 

sCT-QPa         0 197 (4) 0.206 (0.019) 44.7 (0.71) 0.053 

 1 194 (4) 0.203 (0.014) n/a 0.056 

 7 225(18) 0.293 (0.044) 49.6 (2.00) 0.253 

N= 3 ± SD for each parameter 

All samples had positive zeta potentials ranging from +21 mV to +50 mV, apart from 

free sCT at pH 7.4 at day 7 (Table 1). However, zeta potential values for sCT-QPa complexes 

were much higher than those of free sCT, but were similar to those of QPa alone. The zeta 

potential graphs of complexes in both pH 5 and pH7.4 buffers showed a single peak appearing at 

+57 mV and + 45mV respectively (Fig 3C, D), and these values were relatively constant after 7 

days (Table 1). 
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Fig. 3. Size distribution complexes at day 0 at pH 5.0 (A), and pH 7.4 (B). Zeta potential 
distribution of complexes at day 0 at pH 5.0 (C), and pH 7.4 (D) (triplicate samples).  
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less than 6 % of their peak intensity between days 1 and 7 [24]. There was little change in 

λemission and peak intensities for most of the samples over the period (Table 2). Both the sCT-QPa 

(pH 5.0) complexes and sCT alone (pH 5.0) remained stable and peak intensities only altered by 

0

10

20

30

0.1 1 10 100 1000 10000

In
te

n
s
it
y
 (

%
)

Size (d.nm)

   

A 
B 

C D 



19 
 

2.6 % and 1.8 %, respectively. However the intensity of the sCT-QPa complexes (pH 5.0) fell by 

6.5 % and the sCT (pH 7.4) fell by 46.6 % at day 7. This would suggest that sCT is more stable 

at pH 5 than pH 7.4 and that complexation has a stabilizing effect on sCT at pH 5.0. QPa 

samples had negligible emission changes (data not shown). 

3.1.3 Nile red fluorescence 

sCT samples spiked with Nile red were considered stable if they had emission λmax values 

> 630 nm [20]. Small changes in intensity were considered to be due to fluctuations in 

temperature and binding of Nile red to sample containers. Nile red has an emission maximum of 

645 nm and the fall in maximum to 620-631 nm is a blue shift [20]. In contrast to tyrosine 

fluorescence, all Nile red spiked samples underwent shifts in emission λmax (Table 3). Free sCT 

samples displayed very little fluorescence (Table 3) as did Nile red alone in both buffers (data 

not shown). QPa itself also underwent a blue shift in the λmax, while sCT-QPa complexes (pH 5.0 

and 7.4) also exhibited blue shifts (Table 3). Given the shift in emission λmax of the complexes to 

below 630 nm it would appear that they were less stable than sCT alone. However this greater 

shift may be due to the combined effect of QPa and sCT interaction with Nile red. Therefore 

shifts in λmax may not be reliable indictors of stability with PEC samples. 

 

Table 2. Tyrosine fluorescence measurements of sCT and QPa, sCT complexes in pH 5.0 and 
pH 7.4 buffers (triplicate samples). 
 

            pH 5.0 Day Emission λmax,(nm) 

Intensity at 

maximum 

sCT  0 307 503 

 1 305 513 
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 7 305 504 

sCT-QPa 0 306 486 

 1 306 516 

 7 306 503 

 

pH 7.4 Day Emission λmax,(nm) 

Intensity at 

maximum 

sCT 0 303 443 

 1 304 434 

 7 306 232 

sCT-QPa 0 305 478 

 1 304 513 

 7 305 480 

 
 
Table 3. Fluorescence of Nile red (1 µM)-spiked sCT, QPa and sCT-QPa QPa complexes and in 
pH 5.0 and pH 7.4 buffers. 
 

pH 5.0  Day Emission λmax, (nm)  Intensity at maximum 

sCT 0 630 2 

 1 637 1.5 

 7 637 1.8 

QPa 0 631 232 

 1 632 203 

 7 632 144 

sCT-QPa 0 626 172 
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 1 626 165 

 7 626 164 

 

pH7.4 Day Emission λmax,  nm Intensity at maximum 

sCT 0 640 3.3 

 1 637 1.9 

 7 641 3.7 

QPa 0 626 196 

 1 628 171 

 7 627 172 

Complex 0 620 181 

 1 620 173 

 7 620 175 

3.1.4. TEM 

sCT did not form any discernable structures in either buffer when analysed using TEM 

(data not shown). The diameters of the sCT-QPa complexes at the two different pH values were 

approximately 120nm and the morphology of both complexes was similar; both appeared to be 

vesicular structures with aqueous cores (Fig. 4). The thickness of the vesicle was around 22nm, 

thicker than the typically reported bilayer membrane thickness of 11nm [24], indicating the 

membrane might consist of more than one bilayer. 
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Fig. 4. Negatively-stained TEM images of freshly-prepared sCT-QPa complexes (2:1 mg mL−1) 
in pH 5 buffer (A) or pH 7.4 buffer (B). Scale bar = 200 nm.  
 

3.2. Intracellular cAMP induced by sCT and sCT-QPa on T47D cells  

Intracellular cAMP activities in T47D cells were monitored to determine the bioactivity 

of sCT in freshly prepared complexes. Samples increased the intracellular cAMP in a 

concentration-dependent manner (Fig. 5A). Complexes in both buffers as well as free sCT were 

bioactive and maximal efficacy was achieved by each of the three groups. The EC50 values were 

(nM):  free sCT (0.73 ± 0.1), sCT-QPa, pH 7.4 (3.3 ± 0.1) and sCT-QPa at pH 5.0 (7.9 ± 0.1). 

Although the EC50 values suggested that the presence of QPa in the complexes at pH 7.4 and pH 

5.0 caused reductions in respective potency compared to free sCT, these nM values were still 

very acceptable. The sCT bioactivity of the freshly prepared samples at day 0 and at day 7 

following storage at room temperature in the dark was also determined (Fig 5B). Irrespective of 

the buffers used, free sCT was completely degraded at day 7, but there was still significant 

bioactivity in the complexes stored for 7 days. 
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Fig. 5.  A.  Concentration-response curves for sCT and sCT-QPa stimulation of cAMP 
production in T47D cells. sCT (○), sCT-QPa, pH 7.4 (□), sCT-QPa, pH 5.0 (▲). B. cAMP 
production by sCT and sCT-QPa complexes at pH 7.4 and pH5.0 on Day 0 and Day 7 on T47D 
cells. The concentration of sCT was 10µM in each preparation. (N=3 in each case).     
 
 
3.3. Intestinal enzyme metabolism 

Freshly prepared free sCT and sCT-containing complexes were incubated with three 

intestinal enzymes and the intracellular cAMP activities in T47D cells were determined. Free 
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sCT was rapidly degraded by chymotrypsin, elastase and trypsin. There was only 3% activity 

remaining in the free sCT when exposed to all three enzymes combined at 30 min (Fig 6). At 

both pH values, the sCT in the complexes was significantly protected from degradation by the 

enzymes.   
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Figure 6: Degradation profiles of sCT, sCT-QPa (pH 5.0) and sCT-QPa (pH 7.4) when 
incubated with three intestinal enzymes. Samples were applied onto T47D cells and cyclic AMP 
measured. sCT (○), sCT-QPa, pH 7.4 (    ), sCT-QPa, pH 5.0 (+). Curve fitting was based on first 
order kinetics (N=3 in each case).  
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Fig. 7 Comparison of degradation rates of sCT, sCT-QPa (pH 5.0) and sCT-QPa (pH 7.4) in the 
presence of serine proteases, as determined by cyclic AMP measurements in T47D cells. 

 

63.0 ± 0.1%, 57.0 ± 0.1% and 41.9 ± 0.02% bioactivity remained following sCT-QPa exposure 

to chymotrypsin, elastase and trypsin respectively for 90 min, pooled data at both pH values.  

QPa presence in both formulations reduced the degradation rate of sCT by 5-fold when all three 

enzymes were combined compared to free sCT (Fig 7) (p <0.005).  

 

3.4. Hypocalcaemia induced by sCT-QPa complexes in rats 

The biological effects of sCT-QPa complexes at pH 5.0 and pH 7.4 were evaluated by 

induction of hypocalcaemic response in rats following i.v. and i.j. administration. At sCT 

k [1/min] 

All 3 enzymes: sCT 

All 3 enzymes: sCT-QPa (pH 5.0) 

All 3 enzymes: sCT-QPa (pH 7.4) 

Chymotrypsin: sCT 
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Elastase: sCT-QPa (pH 7.4) 

Trypsin: sCT 

Trypsin: sCT-QPa (pH 5.0) 
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0.02 0.04 0.06 0.08 
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equivalent doses following i.v. administration, the total percentage calcium decrease induced by 

sCT (pH 5.0) and sCT-QPa (pH 5.0) were similar, 23.1 ± 2.3% and 22.9 ± 3.8% at 120 min 

respectively (Fig. 8A). sCT (pH 7.4) and sCT-QPa (pH 7.4) induced decreases of  30.0 ± 2%  

and  29.3 ± 1.7% respectively over the same period. There were no differences between any of 

the sCT preparations.  QPa (pH 5.0 and 7.4) was without effect over the period following i.v. 

administration.  A very similar set of data was obtained following i.j. administration (Fig. 8B).  

The sCT-QPa complexes were bioactive in vivo with no loss of activity compared to free sCT. 

Intestinally instilled complexes retained the capacity to cross the epithelium.   

 

 

Fig.8. A. Plasma calcium levels in rat serum after i.v. administration of QPa, pH 5.0 (Δ), QPa, 
pH 7.4 (♦),  sCT, pH 5.0 (●), sCT, pH 7.4 (x), sCT-QPa, pH 5.0 (□), and sCT-QPa, pH 7.4 (▼).  
Mean ± SEM (n = 3).  B.i.j administration: groups and symbols as in A. (N = 3-4).   
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4. Discussion 

There are four commercially available formulations of sCT; the recommended dose for 

the daily nasal spray to treat post-menopausal osteoporosis is 200 I.U, while 100 I. U. are 

administered every other day for injections. sCT is normally formulated in acidic media 

consisting of acetate, hydrochloric acid or citric acid buffers, as sCT is more stable in acid pH 

than at pH 7.4 [25]. Since the isoelectric point of sCT is 10.2, it will be positively-charged at 

acidic and physiological pH values [26]. We looked at the ability of the cationic amphiphilic 

polyelectrolyte (QPa) to complex with sCT at pH 5.0 and 7.4 and assessed the impact of the 

polymer on sCT’s physical stability, resistance in vitro enzymatic degradation and in vitro and in 

vivo bioactivity. We did not expect complexation to occur easily in view of the likely potential 

for electrostatic repulsion. 

Polyamines are effective non-cytotoxic permeation enhancers across intestinal epithelia 

and they can open epithelial tight junctions in vitro [27].  For example, spermine formulated in 

polyacrylic acid polyelectrolyte complexes improved the oral absorption of sCT in rats following 

intra-duodenal administration [28]. It is possible that QPa may also act as an epithelial 

permeation enhancer and this may be of benefit in addition to peptidase inhibition.  Initial studies 

suggest that it also reversibly opens tight junctions in Caco-2 monolayers (unpublished data). 

We have previously illustrated the potential use of amphiphilic polyamines based on PAA for 

oral insulin delivery [11, 12]. The attachment of palmitoyl chains and the addition of quaternary 

ammonium moieties resulted in an 11-fold reduction in cytotoxicity of QPa compared to its 

parent molecule (PAA),  Although sCT is positively charged, complexation was still achieved 

with QPa in the current study, resulting in a narrow particle size distribution with a 

hydrodynamic diameter  of approximately 200nm. Unlike other polyelectrolyte complexes, 
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which require centrifugation to obtain the nano-complexes, freshly prepared sCT-QPa complexes 

were clear in appearance, confirmed by the low absorbance UV reading and the absence of 

pellets after centrifugation. The differences observed between the DSC thermal profiles of free 

sCT and complexes in both pHs suggesting the presence of physical-chemical interaction 

between sCT and QPa, which correlated well with other polyelectrolyte-protein complexes 

[11,19]. The assessment of the physical stability of the complex was based on data from the 

combination of size and zeta potential measurements, turbidity, as well as intrinsic and extrinsic 

fluorescence.  Overall, QPa complexation had a positive effect on the physical stability of sCT. 

Unstable formulations would have resulted in an increase in particle size, turbidity and peptide 

aggregation. While free sCT was more physically stable for longer periods at pH 5.0 than pH 7.4 

according to the tyrosine fluorescence study, the in vitro bioassay suggested little difference at 

the level of function where both very equally efficacious at Day 0 and inefficacious at Day 7. 

Although sCT-QPa (pH 7.4) complexes showed some signs of instability at 7 days, the changes 

detected by these studies were considerably less than the deterioration in free sCT (pH 7.4) over 

the same period.   

Nile red can detect hydrophobic micro-domains in aqueous solutions formed by 

amphiphilic polymers [29]. The blue shift in the maximum emission wavelength observed with 

QPa correlates with the results with alkylated poly(L-lysine) citramide [29]. Thus, it partitions 

from the aqueous environment into the hydrophobic domains formed by the palmitoyl grafts on 

QPa. Importantly, a similar blue shift was also observed in free sCT (pH 5. 0), indicating the 

presence of hydrophobic domains on the peptide. Finally, when sCT was complexed with QPa, 

the further reduction in the maximum emission wavelength suggests that likely changes in the 

conformation of the complex exposed additional hydrophobic surfaces for dye binding. From 
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TEM images, it would appear that the polymer and sCT interact and alter the conformation of 

both. QPa normally forms discrete, dense nanoparticles, either alone or when complexed with 

insulin [10-12]. When complexed with sCT however, there was an unusual alteration in the 

conformation, resulting in a bilayered vesicular structure. In sum, sCT seems to undergo 

unfolding in the presence of QPa, which results in exposure of hydrophobic domains. Assuming 

that these domains intercalate between the palmitoyl chains of QPa, such interactions may lead 

to increased backbone flexibility and the subsequent production of liposome-like bilayer vesicles 

[30, 31].  

Amphiphilic polyelectrolytes for peptide and protein delivery have not been widely 

studied to date. Unlike complexation between proteins and polyelectrolytes based on electrostatic 

interaction, association of proteins with amphiphilic polyelectrolytes in water can be affected by 

non-covalent hydrophobic Van der Waals associations and hydrogen bonds. Even though QPa 

and sCT are both positively charged, complexation still took place.  Pockets of anionic charges 

on the surface of sCT may interact with QPa, as shown for other peptide-polymer complexes 

[32].  Still, sCT-QPa PEC had consistent and narrowly distributed zeta potentials similar to QPa 

alone, inferring that the predominant interaction was indeed due to hydrophobic associations or 

hydrogen bonds.   Others have successfully used co-polymers consisting of a hydrophobic 

polystyrene backbone grafted with poly-N-isopropylacrylamide (PNIPAAm) and 

polyvinylamine (PVAm) for sCT delivery [9]. The presence of non-ionic PNIPAAm and cationic 

PVAm in the nanocomplexes resulted in increased oral biovailability, which may have been due 

to hydrogen bonding between sCT and macro-monomer chains.  Similarly, formation of 

complexes composed of serum albumin and negatively-charged polyacrylates modified with 

alkyl chains has been achieved [33]. The complexation was dependent in part on the number of 
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alkyl chains, implying that hydrophobic association is indeed an especially important parameter 

in the complexation process when amphiphilic polyelectrolytes and the protein have the same 

overall surface charge.  

Use of conventional delivery systems including poly(D,L lactide-co-glycolide) 

microparticles might lead to reduction of sCT bioactivity and even induce immunogenicity due 

to chemical modifications such as acylation and also pH changes in the particulates [34]. 

Therefore, it is important to assess the bioactivity of sCT in the QPa complexes. There is 

excellent correlation between the in vitro bioassay and HPLC analysis for sCT and polymeric 

derivatives [22] and hence in this study, we relied on determination of the bioactivity of sCT on 

T47D cells, since HPLC does not detect loss of function. At both pH values, the sCT-QPa 

complexes had the same excellent efficacy and just a slight loss in potency compared to free 

sCT. sCT adopts a random coil structure, but has a relatively undeveloped secondary structure 

and no tertiary conformation [35], but despite likely changes in secondary conformation in the 

nanocomplex, it is still able to maintain its in vitro biological activity.  The sCT bioactivities 

were also evaluated on the day 7 formulations, which were kept in the dark at room temperature. 

Free sCT was completely degraded by day 7, while both complexes maintained significantly 

higher bioactivity than free sCT at both pH 5.0 and pH 7.4. In aqueous solutions sCT normally 

undergoes rapid degradation including disulphide breakage and subsequent trisulphide bond 

formation, as well as dimerization via covalent bond and backbone hydrolysis [36].  

Complexation of sCT with QPa reduced the degradation process and at least 40% of the activity 

was retained after 7 days. Although the physical stability studies indicated that day 7 complexes 

at pH 7.4 were less stable than those at pH 5.0, it was somewhat surprising to find that both 

complexes retained similar in vitro sCT bioactivity. The secondary structure of sCT is based on 
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an α-helix and β-sheet [37]. Their presence in sCT may in part promote fibril formation and 

aggregation in aqueous solutions, ultimately leading to physical instability [34, 36], although this 

is thought to not to occur nearly as readily with sCT as for human CT. Despite this possibility, 

the sCT in the complex formed in either pH buffer was still able to interact with calcitonin 

receptors to elicit the biological response.  

Proteins and peptides undergo extensive enzymatic degradation in the intestine, serum 

and liver . Complexation between sCT and QPa has resulted in significant protection of sCT 

from the major endopeptidases at concentrations present in the small intestine. When sCT was 

conjugated to either linear PEG or to a novel comb-shaped Poly(PEG)methacrylate polymer, 

almost identical protection was noted as in the current study [22]. Most likely, the complexed 

QPa shielded the sCT and this steric hindrance mechanism (similar to the umbrella-like effect 

postulated for poly(PEG)methacrylate)  protected sCT from peptidase attack. It would not be 

correct however, to assume that generalizations can be made in respect of polymer protection, 

since complexation between QPa and insulin resulted in increased peptide degradation by 

chymotrypsin compared to that seen with free insulin [12]. This demonstrates that whether 

amphiphilic polyelectrolytes can protect proteins against enzymatic degradation is largely 

dependent on the protein, its surface charge and its secondary and tertiary structure. Insulin is a 

globular protein with a tertiary conformation and complexation resulted in the unfolding of the 

protein exposing the chymotrypsin target sites. It is possible that absence of tertiary 

conformation in sCT resulted in minimal unfolding, and therefore the shielding effect of QPa 

resulted in protection against peptidases. In vivo biological efficacy of sCT-QPa complexes were 

assessed in rats and irrespective of the type of buffers used, both formulations had similar 

hypocalcaemic effects compared to free sCT, consistent with our in vitro bioactivity assays. 
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Intra-jejunal administration revealed that the complexes retained bioactivity, although we did not 

ascertain whether they remain intact during epithelial transport.  This is likely however, since the 

complexes protected sCT in a range of peptidase containing buffers over significant time periods.  

Future work will further investigate the potential of these complexes by administering these 

complexes by single pass rat intestinal perfusion and ultimately by oral gavage of coated solid-

dose formulations. 

 

5. Conclusions 

Despite similar overall surface charges, sCT-QPa nano-complexes were spontaneously 

produced by mixing two aqueous solutions at room temperature without the need for surfactant 

stabilizers, organic solvents or sonication. Unlike complexation between protein and 

polyelectrolyte of oppositely charges relying primarily on electrostatic interaction, it is likely that 

the predominant interaction of QPa, sCT was due to hydrophobic associations of palmitoyl 

chains grafted onto PAA. The complexation resulted in the production of nano-complexes in the 

region of 200nm which were able to maintain stability physical and biological stability compared 

to free sCT in either pH 5.0 or 7.4 buffers. The ability of QPa to protect sCT against intestinal 

enzymatic degradation and to achieve similar in vivo hypocalcaemic responses as for free sCT 

following i.j. administration warrant further investigation to determine its potential as an oral 

peptide delivery system. 
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