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Abstract

Oil & Gas facilities are extremely huge and have complex industrial structures
that are documented using thousands of printed sheets. During the last years, it
has been a tendency to migrate these paper sheets towards a digital environment,
with the final end of regenerating the original computer-aided design (CAD)
projects which are useful to visualise and analyse these facilities through diverse
computer applications. Usually, this was done manually by re-sketching each
page using CAD applications. Nevertheless, some applications have appeared
which generate the CAD document automatically given the paper sheets. In this
last case, the final document is always verified by an engineer due to the need of
being a zero-error process. Since the need of an engineer is absolutely accepted,
we present a new method to reduce the required engineer working time. This
is done by highlighting the digitised components in the CAD document that
the automatic method could have incorrectly identified. Thus, the engineer is
required only to look at these components. The experimental section shows our
method achieves a reduction of approximately 40% of the human effort keeping
a zero-error process.

Keywords: Piping and Instrumentation Diagram (P&ID), automatic valida-
tion, digitisation, contextualisation, human validation.

1 Introduction

Piping and Instrumentation Diagrams (P&IDs) are commonly used for repre-
senting the structure and functionality of Oil & Gas facilities such as oil rigs
and plants. Currently, these complex engineering drawings are generated by
means of computer-aided design (CAD) tools but in the past, they were manu-
ally drawn on paper or by means of tools which are incompatible with modern
software. Since these facilities are huge and composed of thousands of electric,
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Figure 1: An example of a piece of a P&ID.

electronic or mechanical components connected by a vast network of pipelines,
printed handbooks composed of thousands of pages are required to depict them.
Figure 1 shows a portion of one of these sheets and illustrates the complexity
of a P&ID.

In the last years, there has been an increased effort to join forces between the
research community and industrial partners 1 to collaborate in the development
of methods for the migration of printed engineering drawings towards a dig-
ital environment. This has been tested in the past by numerous authors for
different types of printed assets, such as mechanical drawings [32], electrical
drawings [34], telephone manholes [1], sensor-equipment diagrams [20], P&IDs
[15],[30],[22],[24],[25],[17], and even on maps [7] and musical scores [6].

Given that this process is extremely complex due to the quality of the scanned
papers and the amount and variability of the involved electric, electronic and
mechanic components, the possibility of symbol miss-identification during the
digitisation or that some properties have not been correctly associated to certain
components becomes high [2], [11]. Thus, it is expected that this process is not
perfect and therefore, most systems enable human interaction to validate the
symbol identification, connection and property association. Therefore, the final
CAD document is always verified by an engineer due to the need of being a zero-

1https://cfmgcomputing.blogspot.com/2018/06/rgu-and-dnv-gl-join-forces-to-create.

html
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Figure 2: The process of deducing the CAD document, in which a human is
involved to validate the data.

error process. Figure 2 shows a general flow diagram of the classical approach
to extract a CAD document given a sheet of P&ID. The automatic module is
composed of two steps: digitisation and contextualisation of the P&ID.

This paper proposes a method, summarised in Figure 3, to reduce the amount
of effort the engineer needs to do to validate the CAD model keeping the zero-
error aim. The main idea is that the engineer does not need to look at the whole
diagram but only at the highlighted components, which are the ones that have
a chance of having incorrectly identified by the automatic method.

The experiments have been carried out with industrial data and the method
could be put into practise in other industrial cases. Nevertheless, to achieve
the maximum performance, the training stage would have to be applied in each
case.

The paper is structured as follows. Section 2 presents the current state of the art
methodology used to transform P&IDs into digital assets. Section 3 examines
the necessary concepts and presents the methodology aimed at aiding on the
human validation of the digitised asset. Section 4 presents the experiments
carried out to validate the proposed model. Finally, Section 5 is reserved for
conclusions and future work.

2 Generating a CAD model given a P&ID

Generating a CAD model given a printed sheet of a P&ID is a migration process
that implies two main steps: digitisation and contextualisation. In the first one,
the main shapes of the P&ID are detected and localised. Basically, there are
three types of figures in these drawings: symbols representing equipment and
instrumentation, lines providing the connectivity between equipment and text
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Figure 3: Our model for automatic detection of possible incorrectly identified
components and final human validation.

describing the characteristics of equipment and connectors. Figure 1 shows a
piece of a P&ID that contains these elements.

As mentioned in Section 1, numerous systems have been proposed in the lit-
erature for the digitisation of P&IDs. Most of these systems rely in heuristic-
based computer vision methods to recognise the shapes [16], [30], [2], [22], [17],
although most recent literature has preferred the use of deep learning based
technologies to localise and extract the figures from the engineering drawing
[13], [24]. Regardless of the approach, the outcome of a digitisation system is
usually a list of components along with some characteristics (such as tag id,
thickness or location within the drawing or the facility) and a list of pipelines
(i.e. connectors between components). Notice that in the case of P&IDs, it
may be the case that pipelines also have some associated properties, such as
material, thickness, composition, etc. These properties are usually indicated by
text which lies adjacent to the line or that is connected to the pipeline through
a lead line.

Although most of the times digitisation is done as a standalone process where
shapes are recognised either by heuristic or deep learning based methodolo-
gies, some previous work has been benefited from understanding a priori the
standards used to produce these drawings to obtain all shapes with improved
accuracy. For instance, Moreno-Garcia [22] presented a comparative study of
text/graphics separation algorithms [31] applied on P&IDs, where parametrical
symbols (i.e. the ones described with circles and lines) were found first by means
of state-of the art methods such as Hough circles and transform [3]. Based on
the previous knowledge, the text within the shapes is located and characterised
easily. Thus, some text characters can be detected along with their properties
(i.e. width, height, pixel density, stroke, amongst others). This allows an easier
detection of the remaining text throughout the drawing.

Once the P&ID has been digitised, a netlist which contains the position of each
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element within the drawing is produced. Nonetheless, a netlist is not directly
usable for an expert, as it only contains the count of the shapes found, and
it does not reflect the topology of the schema. Some online tools have been
presented to do quick visualisations of the extracted netlists, such as NetVis or
Netlist2CAD2, however none of these tools offer a true connectivity comprehen-
sion of the extracted information. Still, these come handy for a quick human
inspection of the extracted data and to manipulate/correct some shapes.

In the second step to generate the CAD model, the shapes in the netlist are
contextualised. Contextualisation means making sense out of the digitised data.
Thus, the CAD model topology describes the connectivity and the relation
between the components. The output can be a standardised file [16], [2] or
a graph [25]. These files are naturally imported by CAD applications. For a
more in-depth analysis of the challenges of digitising and contextualising these
drawings, the reader is referred to the reviews presented in [23], [21].

Regarding actual contextualisation, the use of graph-based or tree-based struc-
tures to represent and store P&IDs has become widespread in recent years [15,
24, 25, 17], however no attempts have been done at analysing the topology of the
diagram or exploiting the topological information contained on the key drawings
(i.e. the sheet containing the legend of each symbol and the most common con-
figurations, an example can be found in3) to improve or automatically correct
the digitisation of P&IDs.

The methods presented until now perform the digitisation and contextualisation
in a sequence of two steps. Thus, the topology of the P&ID is deduced from
the digitisation but the identity of the components is never reviewed given the
deduced topology of the P&ID. Our method reviews the identity of the compo-
nents by comparing the deduced topology to the most probable one. Then, it
presents to the human the ones that differ from the initial option. Being the
most probable identity is deduced through a machine learning process.

3 Automatic P&ID validation

The difference between the classical models (Figure 2) and our model (Figure
3) is the incorporation of the Automatic Validation module. The aim of this
module is to deduce the identity of the components in the Automatic CAD and
highlight the components that must be reviewed by an human expert, reducing
in this way, the number of components that should be reviewed when any CAD
document is generated by the Automatic Digitisation module. In Figure 4, we
show a scheme of this proposal. In the next two sections, we detail the two main
modules of this scheme: the Graph representation and Data embedding module
and the Machine learning module.

2http://cfmgcomputing.blogspot.com/p/software-demos.html
3https://www.edrawsoft.com/pid-legend.php
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Figure 4: Automatic P&ID validation module incorporated in Figure 3.

3.1 Graph representation and data embedding

The automatic validation method that we present is based on defining P&IDs as
attributed graphs. Attributed graphs have been of crucial importance in pattern
recognition throughout more than four decades, [4, 26, 27], since they have been
used to model several kinds of problems. Interesting reviews of techniques and
applications are [8, 33, 18, 12]. If elements in pattern recognition are modelled
through attributed graphs, error-tolerant graph-matching algorithms are needed
that aim to compute a mapping between nodes of two attributed graphs that
minimises some kind of objective function [29, 28].

In our graph, nodes represent components and edges represent pipelines that
connect these components. Moreover, nodes have only one attribute, which
is the component identity (valve, compressor,...) and edges are unattributed
and undirected. In an attributed graph, a star is defined as a local structure
composed of a node, its connected edges and also the nodes that these edges
connect. Note these other nodes are usually called neighbour nodes of the central
node. Our goal is to deduce the identity of each component (node in the graph)
given its set of pipelines connected to it and their components that connect
these pipelines (edges connected to it and neighbour nodes). For this reason we
use the star, since by definition, this sub-structure contains this information.

Graphs have some limitations when they are applied to machine learning due to
their intrinsic relational representation. This is because some trivial mathemat-
ical operations used in the traditional numeric machine learning representations
have not an equivalence in the graph domain. Given an arbitrary set of graphs, a
possible way to address this problem is to define an embedding function from the
graph domain to a vector space [14]. Broadly speaking, an embedding function
converts an attributed graph into a vector. However, defining such embedding
function is extremely challenging, when the constraints on time efficiency and
preserving the underlying structural information is concerned.

Explicit graph embedding is based on defining a function that, given a graph,
generates a point in an Euclidean space. These embedding functions are divided
into four classes: 1) Graph probing [19] that measures the frequency of spe-
cific substructures. 2) Spectral graph theory [5], which analyses the structural
properties of graphs in terms of eigenvectors and eigenvalues. 3) Dissimilarity
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Figure 5: An example of embedding a Valve check star into a vector.

measurements [10], in which the function depends on its distance to a selected
set of graphs. 4) Geometric deep learning [9], in which the embedding uses deep
neural networks.

Since we want to use classical machine learning techniques to deduce component
identities, we embed stars into vectors based on a graph probing method [19].
We selected this method since the structural and semantic information contained
in a star is limited and the computational cost of embedding a star is only
linear with respect to the number of outgoing edges per node. Thus, each star
is embedded in a Euclidean space Rn+2, where n is the number of different
component identities. The embedding of the ith node in the graph (or the ith

component in the P&ID) is defined as a vector Ei = (ci, di, f
1
i , ..., f

n
i ) where

ci is the identity of the central node of the star; di is the number of edges in
the star (or the number of connected pipelines to the central component); and
fp
i is the number of external nodes of the star that have the p identity, with
p = 1, ..., n (or the number of components that have the p identity and that are
connected by a pipeline to the ith component). A sample of a star embedding
is presented in Figure 5. The output of this module is the embedded model
composed of all embedded stars in the graph representation of the CAD model.

3.2 Machine learning and verification

The Machine learning and verification module performs the following tasks:
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- First, each component in the P&ID represented by an embedded vector is
introduced into the machine learning algorithm that returns the predicted com-
ponent identity.

- Second, the identities of the components returned by the machine learning
algorithm are contrasted with identities obtained from the digitised and contex-
tualized netlist of the Automatic CAD. Note these components have not been
verified by the engineer. Thus, this task discerns whether the deduced identities
by our machine learning algorithm are the same or they are different from the
CAD model.

- Third, it detects the components of the Automatic CAD whose identities are
different from the identities obtained by the machine learning algorithm. These
detected components are highlighted to be validated by the human expert.

The learning set is composed of a CAD model, validated by a human expert,
which has been embedded using our graph representation and data embedding
module (Section 3.1). This CAD model must include a representative number
of components per identity in order to assure the proper learning of the data.
Usually, the larger the learning set is, the better the prediction given by the
machine learning algorithm.

3.3 Theoretical analysis of the validation method

The simplest metric to evaluate the quality of an identification method is by
the percentage of correctly identified elements (called True Prediction) and the
percentage of incorrectly identified elements (called False Prediction). To do so,
it is necessary to have a prior knowledge of what is the correct identity of a set
of elements. This information is usually called the ground truth set. Thus, it is
assumed that any method correctly identifies an element if the predicted identity
is exactly the same as the ground truth and makes an incorrect identification if
the predicted identity is different from the ground truth.

In our case, the ground truth set is given by a human expert, who has thoroughly
checked the paper P&ID. Nevertheless, what makes our method stand out is
that we not only have the predicted identity (represented in Highlighted CAD)
and the ground-truth identity, but also the component identity deduced by
the Automatic Digitisation and Contextualisation module (represented in the
Automatic CAD). Figure 3 best illustrated the process that generates these
three CAD documents.

Table 1 shows the different cases that appears in our method. The true pre-
dictions and false predictions generated by our machine learning algorithm are
split in two scenarios (the two columns in the table) considering whether the
prediction of our method is the same as or different from the prediction of the
Automatic CAD. This is because, in the first case, the human is not asked to

8



validate the components’ identity but in the second column one does. In that
case, components are highlighted in the Highlighted CAD document.

From this model, we obtain the following four cases:

• Case A: Both methods make a correct prediction. The human would not
have to validate the components’ identity and does not validate it.

• Case B: Both methods fail and deduce the same incorrect identity. The
human would have to validate the components’ identity but does not val-
idate it.

• Case C: Our method makes a correct identity prediction but the Auto-
matic method does not properly predict it. There is no need of validation,
although the human does it. In this case, the fact that the automatic
method fails at predicting the identity makes the human effort to increase.
Nevertheless, we cannot influence on the number of elements in C since it
depends on the Automatic CAD, which is the input data of our machine
learning algorithm.

• Case D: Our method fails at predicting the identity and it is different from
the Automatic method. Validation is required to correct the prediction,
and the human executes this action.

Considering the special feature of our method, which deals with three different
types of data, we propose two metrics to validate our method instead of the
classical True Prediction or False Prediction. These are:

• Human effort: The percentage of components that the human has to
validate since the automatic method and our method deduce different
identities. It is composed of the sum of cells C and D. Clearly, we
wish this metric to be the lowest as possible to reduce the economical
and temporal impact of checking the incorrectly identified elements by
the automatic method, although we cannot influence on C as commented
above.

• Validation error: The percentage of components that the human does
not validate and would have to be validated. This value is shown in cell
B. If we want the method to be error free, this value has to be strictly
zero.

Highlighted CAD
= Automatic CAD 6= Automatic CAD

True Prediction A C
False Prediction B D

↓ ↓
Human does not validate Human does validate

Table 1: True and false predictions obtained by our method.
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Sheet 1 Sheet 2 Sheet 3 Sheet 4 Total
Number of components 125 107 177 115 524

Number of identities 22 10 24 18 38

Table 2: Number of components and identities in the four sheets that compose
the learning set.

Identity Number of repetitions
Valve Ball 108
Reducer 77

Continuity Label 68
Flange Joint 41
Arrowhead 35
DB&BPV 23
DB&BBV 19

Table 3: Most common identities of components in the ground truth set.

4 Experiments and discussions

The experiments have been carried out with industrial data. A batch of P&IDs
was obtained from an existing collaboration with an industrial partner by means
of a project funded by Scottish Innovation Centres. Nevertheless, all data have
been anonymised to fulfil the company requirements.

4.1 Experimental setup

The experimental validation was carried out as follows. First, we used four
P&ID sheets from the same standard. Figure 1 shows a piece of one of these
sheets. From each sheet, we used the Automatic CAD, in which components and
pipelines have been automatically deduced by the digitisation and contextuali-
sation process defined in [23], and also the Validated CAD, in which a specialist
on these type of sheets has checked and corrected the resulting model. (see
Figure 3). The test set is composed of the four Automatic CAD models and the
learning set is composed of the four Validated CAD models. Table 2 shows the
number of components and different component identities in each P&ID sheet
in the learning set. The total number of components and identities appear in
the last column. Note that not all the component identities appear in the four
sheets.

Table 3 shows the seventh most common component identities with their number
of repetitions that appear in the four sheets of the learning set.

The Graph representation & Data embedding module (Figure 4 and Section
3.1) returns a vector of 40 elements. The first two positions in the vector are
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the component identity and the number of pipelines connected to the compo-
nent. The other 38 positions are the number of appearances of the 38 possible
identities (last column in Table 2).

The machine learning module (Figure 4 and Section 3.2) has been implemented
by a neural network composed of three layers (input, hidden and output layer).
The number of neurons in the input, hidden and output layers are 40, 39 and
38, respectively. It is a feed-forward network, with sigmoid hidden and soft-
max output neurons. The neural network architecture and training process has
been carried out through the ”Neural Network Matlab tool”. We have selected
the scaled conjugate gradient back propagation algorithm to train the neural
network.

The aim of this paper is not to deeply analyse the applicability of several ma-
chine learning methods but to present a method to reduce the human effort for
validating the CAD model. For this reason, we have selected the well known
neural network architecture and an easy to be used tool, which has been proven
to return good enough classification results in several applications.

4.2 Experimental results

Table 4 shows the true and false predictions per each sheet in the test set.
Considering the sum of the metrics of the four sheets, we observe, there are 199
components that do not need to be validated by the human expert because both
predictions are equal and both are correct. There are six cases in which both
predictions do not match, and our method is correct but the automatic method
does not. On the other hand, there are 319 cases in which the two predictions
are different and our method predicts an incorrect identity. In these cases, some
of them have been correctly predicted by the automatic method, but others do
not. The human expert has to check the correct identity of 6+319 components.
We observe that there are not cases in which both methods deduced the same
incorrect identity and, consequently, all errors are detected and we achieve the
aim of zero-error process.

Table 5 shows the two metrics presented in Section 3: Human effort and Vali-
dation error. It turns out that, thanks to our method, in the worst of the cases
(Sheet 4), the human expert needs to check the 69.57% of the components and
in the best case (Sheet 2), just the 38.32%. The average human effort is the
60.66% of the effort without applying our method, this means that there is a
human effort reduction of the 39.34%, which is the main aim of our method.
Also, it is important to note that in all the sheets, the zero-error process is
achieved because all the incorrectly identified components have been detected
(Validation error = 0).

We realise that there is a human effort reduction keeping an error-free process
and therefore, our aim has been achieved. Nevertheless, there is a gap to improve
these results. We believe the reduction of the human effort could be achieved
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Highlighted CAD
= Automatic CAD 6= Automatic CAD

Sheet 1
True Prediction 42 2
False Prediction 0 81

Sheet 2
True Prediction 66 1
False Prediction 0 40

Sheet 3
True Prediction 56 3
False Prediction 0 118

Sheet 4
True Prediction 35 0
False Prediction 0 80

Total
True Prediction 199 6
False Prediction 0 319

Table 4: Evaluation of the proposed method.

Sheet Human effort Validation error
1 66.40 % 0 %
2 38.32 % 0 %
3 68.36 % 0 %
4 69.57 % 0 %

Average 60.66 % 0 %

Table 5: Human effort and Validation error of the four sheets and their average.

by increasing the size of the learning set. The learning set is composed of 524
components, which have 38 different identities (Table 2). Note there are 108
V alveBall components (Table 3), which is one fifth of the learning set. More-
over, there are 31 component identities only represented by 153 components.
This means we have a tiny and highly unbalanced learning set that hinders
learning the data.

5 Conclusions and future work

In this paper, we present a method to reduce the human effort while validating
CAD documents that have been automatically generated from a class of complex
engineering drawings called P&IDs. The experimental validation shows that we
achieve an average reduction of approximately the 40% of the human effort,
while keeping an error-free process.

Our method is based on detecting the identity of the components through learn-
ing their topology. To do so, we have represented the P&IDs by attributed
graphs and we have embedded the local structure of components into vectors.
Given each vector, a neural network has been used to predict the identity of
the component represented by this vector. Only the ones that our predicted
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identity is different from the automatically deduced identity are presented to
the human expert.

As a future work, we want to analyse the impact of different configurations of
the neural network or to analyse if a deep neural network could be used. In this
last case, we need to drastically increase the size of the learning set. Moreover,
we also want to move our system from the laboratory to the industry, thus being
in use in the digitisation process of P&ID sheets. This method could be applied
to other kind of industries in which the relational information between the
components is available on the P&IDs. We believe our method could drastically
reduce the human effort and therefore the economical and temporal cost of this
essential task.
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