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Abstract

Human Activity Recognition (HAR) is a core component of clinical decision

support systems that rely on activity monitoring for self-management of chronic

conditions such as Musculoskeletal Disorders. Deployment success of such ap-

plications in part depend on their ability to adapt to individual variations in

human movement and to facilitate a range of human activity classes. Research in

personalised HAR aims to learn models that are sensitive to the subtle nuances

in human movement whilst Open-ended HAR learns models that can recognise

activity classes out of the pre-defined set available at training. Current ap-

proaches to personalised HAR impose a data collection burden on the end user;

whilst Open-ended HAR algorithms are heavily reliant on intermediary-level

class descriptions. Instead of these “knowledge-intensive” HAR algorithms; in

this article, we propose a “knowledge-light” method. Specifically, we show how

by using a few seconds of raw sensor data, obtained through micro-interactions

with the end-user, we can effectively personalise HAR models and transfer

recognition functionality to new activities with zero re-training of the model

after deployment. We introduce a Personalised Open-ended HAR algorithm,

MNZ , a user context aware Matching Network architecture and evaluate on 3

HAR data sources. Performance results show up to 48.9% improvement with

personalisation and up to 18.3% improvement compared to the most common
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“knowledge-intensive” Open-ended HAR algorithms.

Keywords: Human Activity Recognition, Personalised HAR, Open-ended

HAR, Zero-Shot Learning, Matching Networks

1. Introduction

Physical activity monitoring with wearable sensors is a popular digital health

intervention strategy used in many health and well-being mobile applications.

However automated recognition of human activities in current fitness applica-

tions (e.g. Google Fit, Apple Health) remain restricted to a set of pre-defined5

activities modelled on a general population. Personal physical activity traits

such as activity preferences and patterns, gait or posture cannot be incorporated

in to these applications. In addition, when tracking new user-defined activities

these applications rely on self-reporting by user which often lead to unreliable

and inconsistent entries. Further, a study conducted in 2015 concluded that10

out of 58% of smart phone users in the US who downloaded healthcare fitness

applications on their mobile phones, 47% of them stopped using these apps due

to the high burden of data entry and loss of interest [1].

A Machine Learning model that performs Human Activity Recognition (HAR)

is the main computation module that underpins these activity monitoring appli-15

cations and they utilise available wearable sensor data to perform a classification

task to recognise activities in real time. These models are pre-trained on sensor

data gathered from a general population and remain restricted to a pre-defined

number of activity classes.

An important consideration for HAR is classifier training, where training20

examples can either be acquired from a general population (user-independent),

or from the target user of the system (user-dependent). Previous research has

shown that using user-dependent data results in superior performance [2, 3, 4, 5].

The relatively poor performance of user-independent models can be attributed

to variations in activity patterns, gait or posture between different individu-25

als [6]. However, training a classifier exclusively with user provided data is
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not practical in a real-world configuration as this places a significant burden

on the user to provide sufficient amounts of training data required to build a

personalised model. Minimising this data collection burden whilst maintaining

comparable performance is challenging and recent work in few-shot learning is30

directly relevant to addressing this challenge [7].

The ability to incorporate new activities elegantly into pre-trained mod-

els after deployment also remains an open challenge. Accordingly, researchers

have recognised the need for Open-ended HAR [8] with a view to creating ro-

bust HAR applications that can be personalised to an individual’s preferred set35

of activities. An important aim for Open-ended HAR is to extend HAR ca-

pacity for automated recognition to new activities with minimal calibration or

user input. Recently researchers have explored the area of Zero-Shot Learning

(ZSL) [9] where the model transfers its learning to unseen classes after deploy-

ment, utilising an intermediary level of class descriptions. In the domain of40

wearable sensor based HAR, these class descriptions are built manually through

expert domain knowledge (such as class-attribute mappings) [10, 11]. Visual

data (such as video) based HAR commonly follow unsupervised learning ap-

proaches where the class descriptions are learnt from a knowledge base such

as a text corpus [12, 13]. These approaches are “knowledge-intensive”– that45

is, they are highly reliant on the availability of intermediary semantic knowl-

edge that is acquired through a demanding knowledge acquisition task, which

is undesirable in real-world settings.

In this article, we introduce an approach to personalised Open-ended HAR

using Matching Networks (MN). MN is a neural network architecture that was50

introduced for the task of one-shot learning by [7]. The capability of this network

to learn from few examples is exploited here to minimise the demand on users

to provide training data for personalisation. Furthermore by extending the one-

shot method to a zero-shot method we are able to transfer the learnt matching

model to activity classes that were unseen during training. We refer to this55

as a “knowledge-light” Open-ended HAR approach, and conduct a comparative

study to establish its utility as a promising contender for real-world deployment.
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In essence, adopting MN for personalised and Open-ended HAR, would require

the user to provide only a small number of examples for each activity he/she

wants regardless of whether or not these activities were all part of the model60

training phase.

Accordingly we make the following three contributions:

• Introduce a “knowledge-light” personalisation algorithm MNP for HAR

that minimises the burden of data collection on the end-user.

• Introduce a “knowledge-light” ZSL algorithm MNZ for personalised Open-65

ended HAR that relies only on data obtained through micro-interactions

with the end-user.

• Provide a comprehensive evaluation of MNZ for a wide range of human

activities across three HAR application data sources.

The rest of the article is organised as follows: Section 2 discusses current70

research and challenges in the areas of Personalised HAR and Open-ended HAR.

Section 3 introduces our approach to personalisation and Open-ended HAR with

a use case scenario. Section 4 introduces Matching Networks and formulates our

approaches with MNP and MNZ architectures. We present our experiments

(Section 5) and our findings(Section 6) in subsequent sections; followed by the75

Discussion in Section 7 and planned future work and conclusions in Section 8.

2. Related Work

In this section we outline related literature in personalisation and Open-

ended Human Activity Recognition (HAR) with focus on data and knowledge

requirements.80

2.1. Personalised Human Activity Recognition

Personalising a HAR algorithm is desirable for physical activity monitor-

ing applications where personal nuances such as gait patterns and posture can
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be integrated in to recognition tasks. In literature there are two common ap-

proaches to personalising HAR: user-dependent modelling which utilises signifi-85

cant amounts of end-user data for model training and semi-supervised learning

which utilises a limited amount of end-user data to bootstrap a generic pre-

trained model.

We find that most conventional approaches typically adopt training with

user-dependant data. Early literature from [5, 3] and [2] report performance90

improvements of 39.3%, 9.7% and 19.0% respectively with classification algo-

rithms trained with user-dependent data over the same algorithms trained with

user-independent data. More recently, online Multi-task Learning (OMTL) ap-

proaches have reported further improvements in performance [14]. OMTL’s

treat each individual user as a task and all tasks are trained together as a95

multi-task classifier in order to influence each other. However with all these

approaches performance gains are offset by the demand for end-user data (e.g.

in order to cater for the increased number of tasks), resulting in limited appli-

cability for real-world personalised HAR deployment.

More recently, semi-supervised learning has been explored as an alternative100

to user-dependent personalised models where smaller sets of personal data are

used to re-train the model after deployment. Self-learning, co-learning and ac-

tive learning, are a few semi-supervised learning approaches that have been used

successfully to personalise HAR [6]. For instance an active learning framework

that employs heuristics, uses feedback from the user to bootstrap a personalised105

HAR model [15], achieved an 8.5% performance improvement compared to non-

personalised models. With this approach, a classification model is re-trained

in real-time when new data instances are encountered. This is computationally

intensive and the consumption of significant power makes them a less desir-

able solution for mobile platforms. In addition, performance gains were only110

observed when compared to weaker baselines with hardly any improvement ob-

served against stronger baselines [6].

In this paper we use Matching Networks (MN) [7] as an alternative to ad-

dress challenges related to user-dependant training and personalisation. MN
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was introduced by [7] for One-shot and Few-shot Learning in image recognition115

where MN out-performs the state-of-the-art. MN has also comparatively out-

performed k-NN, SVM and MLP algorithms in the HAR task [16] and here we

further enhance MN as a method of personalisation and for Open-ended HAR.

In particular new training and test strategies are introduced for MN to en-

able learning from few examples thereby eliminating the requirement for large120

data collections. Furthermore it is trained to generalise learning from a few

data instances from a given user to address the personalisation requirement.

Importantly end-user data can be conveniently integrated within the classifier

following deployment with zero re-training of the model.

2.2. Open-ended Human Activity Recognition125

Open-ended Human Activity Recognition (HAR) aims to develop models

that are able to recognise new activities encountered after deployment, and that

were not observed during training [8]. Existing methods reported in literature

fall under unsupervised and supervised approaches; where the former relies on

concept change detection algorithms to recognise new activities whilst the latter130

relies on semantic knowledge to describe unseen classes.

Unsupervised methods such as clustering, by nature do not rely on labelling

and are naturally suited for Open-ended applications. Incremental updates to

the clusters allow integration of new classes as instances are folded-in [17] even

after model deployment. However the absence of any supervision means that it135

is harder to recognise both long and short bursts of new activity classes with

similar levels of recognition performance. Each activity type requires differ-

ent sensitivity thresholds to be set depending on their expected activity cyclic

length or duration of observed activities. Consequently, recognition is focused

on one type at the expense of ignoring the rest. Here, we work with a spectrum140

of human activities: from short pose detection to; longer ambulatory activity

recognition (such as walking and running); through to activities of daily living.

We expect that having a mixed range of different activity types of this nature

is likely to require different sensitivity thresholds to be accommodated and will
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naturally benefit from some limited supervision.145

Recognising classes not seen during training as a supervised learning problem

is often referred to as Zero-shot Learning (ZSL). ZSL exploits semantic knowl-

edge of classes in both HAR [18, 10, 19, 12, 13] and computer vision [20, 21].

Acquisition of semantic knowledge is explored mainly in two methods; manually

produced by an expert or learnt via an unsupervised method using an expert150

knowledge base such as a text corpus.

An activity-attribute matrix is the most common intermediary semantic

knowledge space seen when achieving Open-ended HAR [10, 19] with wear-

able sensor data. An activity-attribute matrix is an intermediary semantic

knowledge-base used in achieving open-ended HAR [10, 19, 11]. Such a ma-155

trix provides domain expert knowledge in which a high-level activity class is

described by a sequence of intermediate-level activity attributes (hence interme-

diary semantic knowledge-base). With an activity-attribute matrix, the Open-

ended HAR functionality is facilitated by adding a new, mapping heuristic, each

time a new activity class is encountered. These algorithms use lower-level clas-160

sification models to predict attributes of the semantic knowledge space, then

aggregate those predictions in to a high-level class using similarity based algo-

rithms. For instance, in [19] a new unseen activity such as a chest-press exercise

can be added (at deployment) by describing it as a sequence of known action

primitives (such as Arms side, Arms curl and Arms forward). This approach was165

later improved to incorporate temporal aspects of attribute sequences [10]. More

recently researchers [11] applied Open-ended HAR for industrial pose recogni-

tion, where they introduced a similarity based ZSL algorithm. They used a deep

convolutional model to predict a set of lower level semantic features consisting

of intermediary human movement classes (or movement primitives). Thereafter170

pose recognition involved the mapping of aggregated predictions to individual

poses using a set of heuristics with no re-training after deployment. The key idea

is that models are learnt to predict the primitives and as long as new activities

can be described using a sequence of these learnt primitives then the open-ended

functionality of HAR is supported. Clearly the challenge with such a strategy175
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is to ensure that all potential action primitives are included and thereafter en-

suring a representation formalism is available to describe activities using these

primitives.

Unsupervised semantic knowledge acquisition is commonly used in video

based Open-ended HAR [12, 13]. The intermediary semantic knowledge space180

consists of text descriptions for all activity classes, that is learnt in an unsuper-

vised manner from a domain knowledge source. Both [12] and [13] learn the

semantic embedding space using a Google News dataset with over 100 billion

words. A lower level supervised learning component converts video data in to

text (similar to caption generation) and later a similarity based algorithm se-185

lects the activity class from the semantic space that best matches the generated

text. Again these algorithms are build on the assumption that the semantic

embedding space essentially includes all possible activity classes.

Although unsupervised approaches to Open-ended HAR is comparatively

less burdensome in knowledge acquisition (compared to the manual task), it is190

still challenging to adapt this approach to wearable sensor based HAR due to the

non-visual nature of sensor data. In addition, the performance of an unsuper-

vised approach depends on the completeness of the intermediary semantic space

and therefore provides no opportunity for personalisation. Evaluation of these

existing Open-ended HAR algorithms is challenging due to their “knowledge-195

intensive” nature. Different evaluation approaches that are being adopted by re-

searchers has resulted in non-reproducible and non-comparative studies [22, 23].

We argue that one of the main drawbacks of existing Open-ended HAR algo-

rithms is the dependency on an intermediary semantic knowledge space. Specif-

ically for wearable based Open-ended HAR, we recognise that the application of200

existing algorithms on new datasets (for comparative purposes) is limited due

to the unavailability of expert domain knowledge needed to derive the required

semantic knowledge space unless explicitly made available.

Our Open-ended HAR algorithm adopts the ZSL paradigm, but advocates

instead, a “knowledge-light” approach for integrating new class knowledge.205

More specifically, instead of integrating mapping heuristics; we acquire a limited
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amount of raw sensor data from the user (through micro-interactions). We re-

define the mapping task (low-level attributes and intermediary semantic space)

as a matching task between feature spaces, to have better generalisable feature

engineering from model training to deployment. Consequently our algorithm210

can also be conveniently evaluated with any HAR dataset with no burden of

acquiring semantic mapping knowledge.

We look at similarity based learning algorithms to implement personalised

Open-ended HAR in a “knowledge-light” manner. Similarity based learning

or Metric Learning was first explored with Siamese Neural Networks [24, 25]215

where the network learns from positive and negative instance pairs to itera-

tively refine an embedding function that learns a metric space. Later Triplet

Networks [26] and Matching Networks [7] incorporated multiple negative and

positive instances in to training examples which improved the training effi-

ciency and the diversity of the resulting feature embedding function. Multiple220

advancements were made to Matching Networks which introduced variations

such as Prototypical Networks [27] and MAML [28], but the fundamental con-

cept of similarity based matching remained constant. Accordingly in this work

we exploit Matching Networks and its capability to find similar instances in a

multi-class feature space to achieve a knowledge-light approach to Personalised225

Open-ended HAR.

3. Use case

In this section we will present a detailed use case of our solution to building

a personalised fitness application that recognise custom activities according to

user preference. This use case is illustrated in stages in Figure 3 where blue230

icons indicate personalisation of existing activities; green icons indicate intro-

ducing new activities to the model with personalisation; yellow icons indicates

an incoming query in real-time for classification.

Imagine a user who is physically active and a gym enthusiast, downloads

the Open-ended HAR application to her mobile phone. The user wants to per-235
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Figure 1: Performing Open-ended HAR utilising few calibration data obtained from micro-

interactions with the end-user

sonalise the application and to automatically recognise activities she performs

regularly but are not packaged in the generic design. She records a few seconds

of calibration data for each existing activity and new activities using sensors

available on the wearable device. Subsequently the application is personalised

and extended to recognise these new activities using calibration data (sensor240

data and corresponding activity labels) in the future.

Stage 1: At this stage the application is only able to recognise a set of five com-

mon activities (walking, running, sitting, standing and ascending stairs)

modelled on a general population.

Stage 2: She starts personalising the application by recording 30 seconds of245

herself performing each of the pre-packaged 5 activities that is already

supported by the application. With this personal data the application

incorporates personal user traits when recognising activities already mod-

elled by the application.

Stage 3: She realises that rope jumping is not one of the activities automat-250

ically recognised by the application. She performs 30 seconds of rope

jumping while wearing the wearable devices that are connected to the
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mobile application, and at the end, she labels the data as rope jumping.

Stage 4: Thereafter the application automatically recognises rope jumping in

addition to the five activities it originally recognised.255

Stage 5: After a while the user adds bicep curls to her daily routine of exercises

and wonders if the mobile application can keep track of her performance.

She performs 30 seconds of bicep curls while wearing the wearable devices

that are connected to the mobile application, and at the end, she labels

the data as bicep curls.260

Stage 6: Once again the application automatically recognises bicep curls in

addition to the six activities it was already recognising before.

Importantly the new data is minimal (i.e., knowledge-light) and is seamlessly

integrated without updating the reasoning model (i.e., no model re-training

after stage 1), which minimises the computational requirements and energy265

consumption of the mobile application.

4. Method

In this section we introduce and formalise our approach to personalised

Open-ended HAR as a knowledge-light ZSL method inspired by Matching Net-

works.270

4.1. Matching Networks

Matching Networks (MN) [7] can be viewed as an end-to-end neural im-

plementation of the otherwise static kNN algorithm. The network learns to

generate a disjoint feature space by iteratively matching a query instance to a

support set, which contains both positive and negative matches to the query275

instance. It is essentially “training to match” which is what sets it apart from

conventional supervised learning models. Further this training characteristic is

what makes addition of new examples possible with no re-training of the model.
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Figure 2: Classification with Matching Networks

Lets consider a dataset with a set of X activity instances belonging to a set

of L activity classes. The support set S is defined as in Equation 1. Cardinality280

of the support set is k × ntr, where k is the number of instances per class. ntr

is the number of classes in the support set and ntr ≤ |L|.

S = {(x, y)|x ∈ X , y ∈ L} (1)

Given an MN training set, {(q1, S1), (q2, S2), . . . , (qm, Sm)}, withm instances,

we can observe that each MN instance consists of a query, qi and an associated

support set, si, such that qi 6∈ Si. Here q is a pair (what we would normally285

refer to as a training instance in conventional supervised learning), (x, y), where

x is a raw feature vector and y its class label. The feature embedding function,

θ (a neural network model), transforms all support set instances and the query

instance into feature vectors (Equation 2).

θ(x) = x′ (2)

Similarity between all query instance and support set instance pairs are calcu-290

lated with an appropriate similarity metric. (For instance, Cosine Similarity is

shown in Equation 3)

sim(x′, x′i) =

∑
x′jx
′
i,j√

x′2j

√
x′2i,j

(3)
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Finally an attention mechanism in the form of similarity weighted majority vote

estimates the class distribution, ŷ. (Equation 4 and 5).

a(x′, x′i) =
esim(x′,x′

i)∑|s|
esim(x′,x′

i
)

(4)

295

ŷ =

|S|∑
a(x′, x′i)× y (5)

During training, the network iteratively updates weights of θ to maximise the

pair similarity between the query instance and support set instances that belong

to the same activity class. This is enforced by the loss function, categorical cross-

entropy, which quantifies the difference between the estimated and actual class

distributions (Equation 6).300

Loss =

ntr∑
j

yj log(ŷj) (6)

Essentially the concept of “learning to match” is facilitated by the attention

layer where attention is focused on pair-wise similarity computations; which in

turn influences the network’s back propagation and consequent weight updates.

This means that the embedding function that is learnt is optimised for matching

which is a proxy to class prediction.305

After deployment (Figure 2), the model predicts the label ŷ for a query

instance x̂ with respect to its support set Ŝ (Equation 7). In other words,

the network learns to retrieve the best match from the support set elements,

thereafter using them with weighted voting to predict the class.

ŷ = argmaxyP (y|x̂, Ŝ) (7)

4.2. Personalised Matching Networks for HAR310

In comparison to computer vision applications, HAR has an additional di-

mension to its data which is the user. We plan to incorporate this additional

knowledge in order to personalise the classification task. We update the MN

training and test methods to incorporate this additional dimension and as a
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Figure 3: Training Personalised Matching Networks

result build a personalised version of MN that is better suited for HAR. We re-315

design the training and test sets such that a (qi, Si) pair is always constructed

with data belonging to a single user. Accordingly the support set Si will contain

positive and negative instances from the same user to whom qi belongs to, and

in this way the model is trained to learn matching for personalisation. Note that

by having to focus on query and support sets from the same user the model is320

forced to focus on traits that are important for recognising activities given user

nuances. The resulting network will classify a particular user’s activities using

a small set of examples provided by the same user.

4.3. Matching Networks in an Open-ended Setting

In an Open-ended environment, after deployment, we expect a situation325

where the model can have access to a few example instances, X̂ , for a set of new

activity classes, L̂, that were not seen during training of the model. We can view

this as the user providing a small set of instances for calibration. Thereafter the

model is expected to recognise all activity classes in both L and L̂.

With the original MN definition [7], nte is restricted to ntr. In an Open-330

ended setting, this forces the network to select a subset of classes from both

training classes(L) and test classes(L̂). This has the undesirable property that
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the set of possible combinations, grows exponentially with increasing numbers

of new classes at deployment. As a result the support set may not include the

class (ŷ), which x̂ belongs to, resulting in poor performance.335
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original Matching Network (fixed support set length) at deployment; left - support set does

not contain the activity class query belongs to; right - support set contains the activity class

query belongs to

Figure 4 illustrates how the original MN fails with a fixed length support

when used for ZSL. Here the green coloured icon indicates the new activity class

introduced post-deployment. Now there are 6 possible ways (nCr = n!/r! ×

(n − r)!) to select the support set and Figure 4 shows two scenarios. It is

evident that the absence of the expected class in the support set results in an340

incorrect classification outcome. One way around this is to try out several class

combinations within the support set (potential for combinatorial explosion).

The alternative is to expand the support set size to include as many as the

expected number of classes that are available after deployment. We explore the

second option in the next section where the number of classes in the support345

set size is dynamic.

4.4. Open-ended Matching Networks

We introduce a condition on Equation 8, which facilitates inclusion of all

available classes in the support set, as new classes are introduced to the model

after deployment (Equation 9), where the cardinality of set Ŝ is now k × nte.350
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With this refinement we are able to use the originally trained network for Open-

ended HAR after deployment.

nte ≤ |L|+ |L̂| (8)

Ŝ = {(x, y)|x ∈ (X ∪ X̂ ), y ∈ (L ∪ L̂)} (9)
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Figure 5: Open-ended HAR with Open-ended Matching Networks at deployment; support set

length is variable to include all known activity classes as they are introduced by the user

Figure 5 illustrates the Open-ended Matching Networks architecture after

deployment. New activities (the green activity icons) are introduced to the355

model with a few calibration data from the user. Ideally for personalisation

purposes calibration data can be requested for each activity (if this is found to

be feasible given the operational context). Importantly, all classes (seen during

training and introduced after deployment) are represented in the support set

and the model θ does not use the additional calibration data to update itself,360

but instead uses them as ”descriptors” for new classes. As further classes are

introduced, the support set includes them all when matching the query instances

for classification.

5. Evaluation

Next we discuss our datasets, data pre-processing, model architectures and365

experiment methodologies.
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5.1. Datasets

We consider three HAR data sources to evaluate our methods; we have

selected these datasets as they collectively represent a wide range of human

activities.370

5.1.1. HDPoseDS Dataset

The human pose classification dataset HDPoseDS 1 is a sensor-rich dataset

published in 2018 by [11]. The dataset contains 22 activities (poses and seden-

tary activities) recorded with 10 participants, wearing 31 Inertial Measurement

Units (IMU) over the full body. The data was recorded at 60Hz where each375

IMU consists of a 3-axis accelerometer, gyroscope and magnetometer. This is

a sensor-rich dataset which can be challenging to replicate in real-world appli-

cations. Therefore we plan to evaluate our methods against more restricted

sensor configurations derived form this dataset. We remove sensors considering

their redundancy and intrusiveness in the real-world while maintaining the full380

body sensor coverage. Accordingly we create two versions; we first exclude all

14 sensors on the fingers, resulting dataset with 17 sensors is the first version.

We further eliminate 11 sensors to create the second version. We will use the

following notation to refer to the two datasets.

• HDPoseDS17: Dataset with 17 sensors after removing all 14 sensors385

placed on fingers.

• HDPoseDS6: Dataset with only 6 sensors: on right and left hands, right

and left feet, head and hip.

5.1.2. PAMAP2 Dataset

PAMAP2 2 is a Physical Activity Monitoring dataset which contains data390

from 3 IMUs located on wrist, chest and ankle. Data was recorded with 9

users approximately at 9Hz for 18 activity classes by following a pre-defined

1[11] –Public dataset available at http://projects.dfki.uni-kl.de/zsl/data/
2[29] –Public dataset available at http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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protocol. Activities include that are ambulatory, sedentary and activities of

daily living [29]. One user and 10 activities were filtered out of this dataset due

to insufficient data. The refined dataset contained 8 users and 8 activity classes.395

5.1.3. SelfBACK Dataset

SelfBACK dataset for HAR 3 was compiled with a tri-axial accelerometer

data streams for 9 ambulatory and sedentary activities. Each activity was per-

formed for approximately 3 minutes and data recorded at 100Hz sampling rate.

We consider following two versions of the dataset, one with two sensors and the400

other with one sensor.

• SelfBACKW,T - Data from 34 users where 2 accelerometers were mounted

on the right wrist and the right thigh.

• SelfBACKW - Data from 50 users where an accelerometer was mounted on

the right wrist.405

5.2. Pre-processing

Following pipeline was used to pre-process and form instances where an input

raw signal is progressively converted to a vector, x (a single sensor pre-processing

scenario is illustrated in Figure 6).

1. Use a sliding window with no overlap to segment the original raw sensor410

signal.

2. Extract 3-dimensional (x, y, z) raw accelerometer data from each sensor.

3. Apply Discrete Cosine Transformation (DCT) and extract most significant

features from each dimension.

4. Concatenate all DCT feature vectors from each dimension of all sensors415

to form the final feature vector.

Some differences to hyper parameter settings were needed (such as values

for sliding window size and DCT feature vector length) to accommodate the

3[30] –Public dataset available at https://github.com/rgu-selfback/Datasets
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Figure 6: Pre-processing steps for a single sensor stream

inherent differences between activity types in each dataset (based on prior work

in [16] and [30]). Refer to Table 1 for these details on each of our datasets.420

Table 1: Datasets and pre-processing

HDPoseDS PAMAP2 SelfBACK
Property

HDPoseDS17 HDPoseDS6 SelfBACKW,T SelfBACKW

Number of Sensors 17 6 3 2 1

Number of Activities (n) 22 22 8 9 9

Number of Users 10 10 8 34 50

Sampling Frequency 60Hz 60Hz 9Hz 100Hz 100Hz

Sliding Window (timestamps) 60 60 500 500 500

DCT feature length 30 30 60 60 60

Final feature length 4590 540 540 360 180

5.3. Matching Networks Architecture and hyper-parameters

A set of empirical experiments were conducted to determine the most ef-

fective hyper-parameters for the original MN architecture in the HAR domain.

We maintain these hyper-parameters constant across MN, MNP and MNZ in
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our comparative studies. Our choice of hyper-parameters is influenced by per-425

formance gains whilst maintaining moderate computational overhead.

Figure 7: Feature embedding function for MN

Firstly, θ in our model, consists of a single-hidden layer (1200 units) fully

connected neural network with Batch Normalisation (Figure 7). We use Keras 4

python libraries to implement our algorithms and a Batch Normalisation layer

to normalise output which also acts as a regulariser against over-fitting [31].430

The network is trained for 20 epochs with an “Adam” optimiser (learning rate

= 0.001) using categorical cross-entropy as the loss function. Cosine similarity

is used as the metric in the attention layer.

Secondly we explore the most effective k value for the MN architecture. We

perform an empirical study with eight distinct values ranging from 1 to 10 (on435

all five datasets). We observe a consistent improvement of performance with

higher k values, which also increases the computational overhead. We select

k=5 as it exhibit the best compromise between them. Full details of this study

is presented in Appendix A and is based on prior work in [16].

5.4. Evaluation Methodology440

We performed each experiment as a user hold-out experiment on the chosen

train and test split ratios of 2/3 and 1/3, repeated five times with a random

4https://keras.io
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selection of test users. We re-use the same evaluation methodology from [11]

and [21] to produce comparable results against the baseline algorithms. The

user hold-out test strategy also ensures the performance of the test user is445

not influenced by the users’ personal traits learnt during model training. We

report mean accuracy or mean F-measure with statistical significance testing for

experiments with an existing baseline using one-tailed t-test at 95% confidence

level.

We performed a set of experiments with different train and test split ratios450

with a view to understanding the MN over-fitting behaviour with limited train-

ing examples. We observe up-to 9.79% degradation of accuracy when train set

ratio was reduced from 2/3 to 1/3, which suggests that the model exhibits a

considerable over-fitting to training data even with the regularisation used in

the feature embedding function. Full details of these experiments are included455

in Appendix B.

5.5. Personalised Human Activity Recognition

Figure 8: User hold-out validation strategy for Personalised Matching Networks

We compare original (MN [7]) vs. our Personalised Matching Networks

(MNP ) architectures for HAR. The aim of this experiment is to observe the
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effect of personalisation for HAR with Matching Networks as illustrated in Sec-460

tion 3 stage 1 and 2.

Figure 8 shows how each of the randomly formed holds ensure no overlap

in users (i.e. users are shown in different colours and colours do not overlap

in train and test). Further all classes (e.g. walking, running) in training also

appear in testing. Once the training users are separated from the test users;465

we create instances per user for the personalised and non-personalised matching

network configurations as follows:

MN [7]: A training set contains 500×number of train users number of query

instances. This means for each user we have 500 instances where each

instance is created by randomly sampling a query instance and thereafter470

randomly sampling its paired disjoint support set (without replacement)

from the train user population. We ensure that all classes are represented

by k instances within each support set where k = 5. To form the test

instance we first sample the test support set from test user population

and use the rest of the test instances as query instances. Later we pair475

each test query instance with the test support set to create complete test

instances.

MNP The main difference when creating training instances for the person-

alised version is that when forming instances for the matching network,

we ensure that the 500 instances created for each train user is sampled480

by accessing data from that user alone. This means that both the query

and the paired support set are sampled from a subset of the training data

associated with the same user. As before we ensure that the query and

support set pairs are disjoint and we use k = 5. For creating test instances,

we first sample a test support set for each user, then pair it with its own485

query instances. This way we ensure the support set and a query instance

is dis-joint and each query, support set pair does belong to the same test

user.
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5.6. Personalised Open-ended Human Activity Recognition

With the open-ended HAR experiments we need to simulate the encountering490

unseen classes at test time. Accordingly we adopt the conventional setting

described in [22] where we train with a subset of classes (classes seen during

training) and we test with a mutually exclusive subset of classes (unseen classes).

Details of our evaluation strategy is illustrated in Figure 9.

Figure 9: User hold-out validation strategy for Personalised Open-ended Matching Networks

We enforce the influence of personalisation on Open-ended HAR by adapting495

the same process outlined in Section 5.5 to form train and test instances for each

of the open-ended matching network configurations but ensuring exclusivity of

classes as follows:

Instances for training set: A training set contains ntr number of classes

where ntr = |L|; and for each train user, 500 query instances are selected500

stratified across all training classes. Each query is paired with a disjoint
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support set sampled without replacement from the same user to create

the complete instance, where 5 instances per class are sampled (k = 5).

In total we create 500× number of train users amount of train data.

Instances for test set: For each test user, 5 instances (k=5) are sampled from505

each training class (seen), as well as each test class (unseen) to create the

test support set of size k×nte where nte = |L|+|L̂| and k = 5. The sampled

test support set simulates the provision of calibration data from test users

for unseen activity classes. Remaining test instances are considered as

query test instances and each is paired with the test support set to create510

complete test instances. Note that now the support set can contain both

new calibrated data as well as other data for previously existing activities.

5.6.1. Leave-one-class-out (L1CO) Experiments

We create n number of experiments for each dataset where n = |L|+|L̂| such

that each activity class will serve as the test class. Accordingly we create 22,515

22, 8, 9 and 9 experiments for datasets HDPoseDS17, HDPoseDS6, PAMAP2,

SelfBACKW,T and SelfBACKW respectively. We will refer to these experiments

as L1CO as illustrated in Figure 9. For instance we can see that the single

jogging activity appears only in the test set (L1CO) but is not included in the

5 train activities from the 2/3 of the train users. Essentially this setup ensures520

that both users as well as classes are disjoint between training and testing.

5.6.2. Leave-N-class-out (LNCO) Experiments

In a real-world deployment, an open-ended HAR algorithm should evolve

robustly as the user introduces new unseen classes. Here we want to explore

how performance might vary as increasing numbers of unseen activity classes are525

folded-in with, MNZ . Basically we evaluate MNZ by leaving out approximately

up-to one third of its total number of classes and treating them as unseen classes.

We refer to these as LNCO (Leave-N-Class-Out) experiments. See for instance

Figure 9 for examples of leaving out 2 (L2CO) and 3 (L3CO) classes.
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HDPoseDS17: We created 7 LNCO experiments with the HDPoseDS dataset530

where N = {1, 2, 3, 4, 5, 6, 7} (n = 22). For instance, experiment L6CO

will use data from 16 classes as train data and data from 6 classes as test

data. We repeated each experiment 20 times with a random set of test

classes each time.

PAMAP2, SelfBACKW,T , SelfBACKW : We created 3 LNCO experiments535

with each dataset where N = {1, 2, 3} (n = 8,9,9). For instance, experi-

ment L3CO for PAMAP2 will use data from 5 classes as train data and

data from 3 classes as test data. We repeated each experiment 10 times

with random set of test classes each time.

6. Results540

In this section we first study the impact of personalisation on HAR and

thereafter move onto Personalised Open-ended HAR results.

6.1. Personalised Human Activity Recognition

Table 2: Personalised Matching Networks Results

Accuracy (%)
Datasets

MN [7] MNP (Ours)
Difference

HDPoseDS17 76.781 98.365 +21.684

HDPoseDS6 42.917 91.856 +48.939

PAMAP2 87.148 86.900 -0.248

SelfBACKW,T 73.403 91.689 +18.286

SelfBACKW 63.196 85.633 +22.437

Table 2 summarises comparative results for non-personalised (MN [7]) vs.

personalised Matching Network (MNP ) experiments from Section 5.5. With the545

MNP architecture, we observe a significant performance improvement with four

of our datasets with accuracy improvements in the range of 18-48% (statistically

significant at 95% confidence level). This confirms that there is a clear advantage
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to using personalised support sets for HAR using matching networks. Looking

at performances on individual datasets, we observe that results on both the550

HDPoseDS datasets have been improved with as much as a 48% recorded with

one of them; followed by the SelfBACKW and SelfBACKW,T datasets. However

the expected improvements were not evident with the PAMAP2 dataset. This

might be explained by the different characteristics observed in each dataset, in

particular we have fewer users and fewer data instances in PAMAP2. Neverthe-555

less given the non-conclusive result obtained for personalisation with PAMAP2

(unlike with the other 4) we plan to study this dataset more closely in the

follow-on personalised Open-ended HAR sections; whereby results for both per-

sonalised and non-personalised versions of Open-ended HAR will be explored

with PAMAP2; whilst only personalised versions will be taken forward with the560

rest of the datasets.

6.2. Personalised Open-ended Human Activity Recognition

In this section we first look at L1CO results from HDPoseDS and compare

them against the two most commonly used Open-ended HAR algorithms as

baselines. In subsequent sections, we further validate our approach with two565

other datasets and finally we present LNCO results in detail.

6.2.1. L1CO on HDPoseDS

We first compare our method against two most commonly used “knowledge-

intensive” ZSL algorithms for open-ended pose classification with HDPoseDS

dataset. Our aim in this comparison is to explore whether by learning to match,570

as in MNZ , we can help reduce the burden on expert knowledge while achieving

comparable performance.

• DAP [21]: Direct Attribute Prediction, mostly commonly used ZSL al-

gorithm based on class-attribute matrix, introduced by [21].

• AI [11]: ZSL algorithm proposed by [11] that utilises a class-attribute575

matrix and attribute importance.
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Table 3: L1CO on HDPoseDS17 and HDPoseDS6

MNZ (Ours)

Test Class DAP [21] AI [11]
HDPoseDS17 HDPoseDS6

WaistTwistingR 0.364 0.293 1.000 1.000

StretchingForward 0.370 0.871 1.000 0.982

Sitting 0.407 0.744 1.000 0.896

WaistTwistingL 0.424 0.264 1.000 0.997

FoldingArm 0.477 0.439 1.000 0.990

Skiing 0.528 0.783 1.000 1.000

BaseballHitting 0.586 0.774 1.000 1.000

Boxing 0.655 0.749 1.000 0.997

StretchingCalfL 0.665 0.807 1.000 0.712

Standing 0.715 0.694 1.000 0.993

Thinking 0.824 0.823 1.000 1.000

Squatting 0.892 1.000 1.000 0.942

DeepBreathing 0.906 0.980 1.000 1.000

StretchingCalfR 0.957 0.890 0.985 0.911

PointingR 0.963 0.995 1.000 1.000

StretchingUp 0.991 1.000 1.000 0.970

HeelToBackR 0.993 0.973 1.000 1.000

PointingL 0.994 0.972 1.000 0.992

RaiseArmR 0.997 0.952 0.968 0.945

WaistBending 1.000 0.961 1.000 1.000

HeelToBackL 1.000 0.979 0.997 0.986

RaiseArmL 1.000 0.985 1.000 0.853

Mean 0.760 0.815 0.998 0.962

Table 3 presents L1CO evaluation results with HDPoseDS dataset in detail.

It is sorted by increasing performance of DAP [21]. We have used bold text to

indicate the best result achieved for each experiment. The baseline DAP [21]
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achieves performance that ranges from 0.364 to 1.000 with an average F-measure580

of 0.760; the baseline AI [11] achieves performance that ranges from 0.293 to

1.000 with an average of 0.815. Overall we can see that MNZ consistently out-

performs both DAP [21] and AI [11] in both sensor configurations (statistically

significant at 95% confidence level against both DAP [21] and AI [11]). With

the 17 sensor configuration, MNZ achieves a maximum F-measure of 1.0 with585

85% of the experiments; the minimum performance is as high as 0.968, and

the average F-measure is 0.998. With the more restricted 6 sensor configura-

tion, MNZ again achieves a maximum F-measure of 1.0, with the minimum

performance of 0.712, and an average F-measure of 0.962.

Considering the range of F-measures obtained across all experiments, it is590

evident that the performance of MNZ is highly reliable over all activity classes

compared to both baselines. Consistent results obtained for restricted sensor

configuration suggests that our algorithm performs well with minimised sensor

requirements. This is an important insight for when developing robust Open-

ended HAR algorithms that are user-friendly for real-world deployment. We595

continue this investigation further with three other datasets that are further

restricted in sensor requirements.

6.2.2. L1CO on PAMAP2, SelfBACKW,T and SelfBACKW

We have selected three datasets, PAMAP2, SelfBACKW,T and SelfBACKW

with 3, 2 and 1 sensors respectively, that are compiled for sedentary activities,600

ambulatory activities and activities of daily living. With this evaluation we

further investigate the robustness of our approach in circumstances that use

fewer sensors to determine a wide range of activities.

We will present standalone results for these datasets as there is no appro-

priate baseline in literature - existing ZSL algorithms such as DAP [21] or605

AI [11] demands for a domain knowledge acquisition task (in the form of a

class-attribute matrix) that is not available for these two data sources. With

the PAMAP2 dataset we will evaluate MNZ in both personalised and non-

personalised settings; in order to better understand the role of personalisation
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on this dataset given our non-conclusive results in the previous section.610

Table 4: L1CO on PAMAP2

Non-personalised

Test class
MNZ MNZ

Descending stairs 0.554 0.817

Sitting 0.638 0.824

Ascending stairs 0.406 0.843

Vacuum cleaning 0.898 0.875

Ironing 0.670 0.915

Standing 0.879 0.932

Lying 0.943 0.961

Walking 0.958 0.969

Mean 0.743 0.892

Table 4 presents L1CO evaluation results for PAMAP2 dataset; it is sorted

by increasing performance of MNZ . Unlike the results we obtained previously

for personalised vs. non-personalised HAR with PAMAP2 dataset, here we see

a far more conclusive outcome in favour of personalisation when faced with

Open-ended HAR tasks (with statistical significance at 95% confidence level).615

With non-personalised MNZ , the performance ranges from 0.406 to 0.958 where

the average f-measure is 0.743. With MNZ the performance ranges from 0.817

to 0.969 where the average F-measure is 0.892. We achieve consistently good

performance with MNZ across all experiments with minimum performance be-

ing over 0.810. These results suggest that there is a significant advantage in620

using personalisation for Open-ended HAR even with the PAMAP2 dataset. In

addition the consistency of results over different experiments are comparatively

stable when using a personalised approach.

It is worth noting that PAMAP2 results here compared to that of HDPoseDS

results in Table 3 are somewhat lower (i.e. PAMAP2 has a mean value of 0.892625

instead of 0.998 as with HDPoseDS17 or 0.962 with HDPoseDS6). This can be
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explained by noting the difference between the number of sensors used in each

of the datasets. For instance PAMAP2 uses just 3 sensors (located on the wrist,

chest and the ankle) whilst HDPoseDS use as much as 17 in one dataset and 6

in the other. Accordingly the overall lower mean performance with PAMAP2 is630

to be expected since with fewer number of sensors it is less likely to be better

able to capture all necessary movements to support HAR. However even with

half the number of sensors used in the HDPoseDS6 dataset, MNZ still achieves

0.892 F-measure with PAMAP2.

Table 5: L1CO on SelfBACKW,T and SelfBACKW

MNZ

Test class
SelfBACKW,T SelfBACKW

Walking downstairs 0.731 0.544

Walking fast 0.796 0.707

Walking moderate pace 0.857 0.719

Walking upstairs 0.916 0.703

Walking slow 0.946 0.830

Standing 0.958 0.927

Jogging 0.985 0.986

Sitting 0.990 0.973

Lying 0.994 0.938

Mean 0.908 0.814

In Table 5 we presents MNZ results for ZSL experiments with the SelfBACKW,T635

and SelfBACKW datasets. Firstly looking at the SelfBACKW,T results with

MNZ we note that it is in the range 0.731 to 0.994 with an average F-measure

of 0.908. We observe a fairly consistent performance across experiments but the

algorithm struggles with classes such as walking downstairs and walking fast.

This is reasonable given that there are five variations of walking as activity640

classes in this dataset, which draws us to the conclusion that similarity based

MNZ algorithm performs better with activities that are naturally significantly
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different. Similar to personalisation results we observe that even with 2 sensors

SelfBACKW,T outperforms PAMAP2 results, which suggests that not only the

number of sensors but their placement has a major impact on Open-ended HAR645

performance.

Unlike SelfBACKW,T with SelfBACKW we have data from just a single wrist

sensor, which arguably is the most user friendly sensor configuration for a wear-

able based Open-ended HAR application. With MNZ the results range from

0.544 to 0.986 where the average F-measure is 0.814. We observe that the650

consistency of performance across different experiments drop as the number of

sensors present are limited. Experiments where the test class is a variation of

walking such as walking downstairs or walking fast are again found to be fur-

ther challenging with a single sensor. Naturally a single sensor on the wrist can

capture only a limited form of the full body movement, which is likely to result655

in a more ambiguous sensor data stream. Accordingly we would expect that the

similarity-based attention mechanism used in MNZ to struggle to differentiate

between feature representations from different ambulatory activities.

6.2.3. LNCO Results

The aim of this evaluation is to further validate the robustness of our ap-660

proach and observe how our approach evolves when multiple unseen classes are

introduced to the application after deployment (as we saw on stage 5 and 6

on Section 3). We will report standalone results for these experiments as we

cannot find an appropriate baseline in literature due to the novelty of our ap-

proach and inherent challenges of reproducibility of existing knowledge-intensive665

Open-ended HAR algorithms.

Table 6 presents results we obtained for Leave-N-class-out experiments with

all four datasets. We have reused the mean L1CO results on column “L1CO”.

First row refers to results obtained with the HDPoseDS dataset with 17 sen-

sor configuration. We observe that MNZ maintain nearly 1.000 F-measure as670

we keep introducing up to 7 new classes after deployment. With PAMAP2,

SelfBACKW,T and SelfBACKW datasets we again observe that the F-measure
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Table 6: LNCO results

MNZ

Datasets
L1CO L2CO L3CO L4CO L5CO L6CO L7CO

HDPoseDS17 (n=22) 0.998 1.000 0.999 0.996 0.998 0.998 0.996

PAMAP2 (n=8) 0.892 0.898 0.874 N/A N/A N/A N/A

SelfBACKW,T (n=9) 0.908 0.928 0.937 N/A N/A N/A N/A

SelfBACKW (n=9) 0.813 0.844 0.862 N/A N/A N/A N/A

from L1CO is maintained even as we increase the number of new and unseen

classes that are introduced in Open-ended HAR (up to 3 new classes). We also

observe that there are miner random increments of performance as we intro-675

duce new unseen classes, this is due to the random selection of test classes in

the experiment design. Overall, we conclude that our algorithm, MNZ maintain

consistent performance as new classes are introduced to the application.

Considering all experiment results, we recognise the need for strategic place-

ment of multiple sensors to capture full body movement to preserve reliable680

performance and user-friendliness of the personalised Open-ended HAR appli-

cation. It is highly significant for Open-ended HAR, since at design time, we

are unable to anticipate the activity preferences of the end-user.

7. Discussion

It is evident that the similarity based “knowledge-light” methods for Person-685

alised Open-ended HAR is performing consistently superior to the state-of-the-

art knowledge-intensive methods. In this section we draw insights to explain the

reasons behind this performance improvement by discussing the limitations of

“knowledge-intensive” methods and then explore potential implications of our

method.690

7.1. Limitations of Knowledge-intensive Methods

As mentioned in Section 2, performance of knowledge-intensive methods,

depends on several aspects. For instance with the AI algorithm [11], firstly
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each sensor determines a lower level action of the user and secondly, these lower

level actions from different sensors are combined together to derive the pose on695

the basis of a set of rules. We believe that the completeness and the accuracy

of this rule set are important contributing factors. There are mainly two ap-

proaches to design these rules; firstly, designed manually with the knowledge of

an expert [11] or secondly learnt as mentioned in Section 2.

Completeness can only be achieved by ensuring every possible pose is covered700

by one or more rules prior to the deployment of the model. None of the rule

acquisition methods have the ability to induce new rules and cannot guarantee

that the lower level actions are sufficient to describe all possible future poses;

i.e. they do not have a granular intermediary feature space as do the MN

methods. The accuracy of the rule set is determined by the the ability to705

explain a pose using lower level actions predicted by different sensors. For

instance, how accurately can we describe the pose “Pointing with Right hand”

using sensors on elbow and hand [11]. Although knowledge-intensive methods

have been found to performs well on open-ended image recognition tasks, where

an image can be described with objects in the image, in contrast, we believe it is710

challenging with human activities, where we cannot reduce an activity to a set

of movements due to the complex nature of movements as well as the personal

variations in human movement.

In this paper we have proposed a different approach to open-ended HAR by

exploiting similarity knowledge. As discussed in Section 4 the MN model learns715

a feature space where data from different classes are distinctly separated. This

property is considerably preserved when new classes are introduced at the test

time (i.e. MNZ), and it still produces a feature space where the instances from

different classes are substantially separated.

7.2. Implications of Personalised Open-ended Matching Networks720

Our method relies on few instances of data for each activity provided by

the user eliminating the need for building a complete knowledge base (or rule

set) prior to model deployment. In this way it eliminates the need to represent
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an activity with multiple intermediary feature representations. We use few

examples of an activity obtained during test time to represent the activity that725

was not seen during training. We argue that obtaining a sample of recorded

sensor data is not an overhead in human activity recognition (As explored in

Section 3); thus obtaining a few calibration examples during test time is not

a limitation of our method. Therefore we believe that the methods introduced

in this paper have great potential in the area of Open-ended human activity730

recognition.

A clear advantage of Open-ended MN is that no additional training is re-

quired when new activity classes are introduced to the model. This is advanta-

geous to operate on edge devices that are limited in memory and computational

capacity. The evaluation on adding multiple unseen classes (in Section 6.2.3)735

demonstrated the scalabil ty of this algorithm. However we expect there to be

at least two potential scenarios where model re-training policies will be nec-

essary; firstly, when unseen classes are similar to one or more of the existing

set of classes; and secondly when changes in user circumstances (e.g. weight,

disabilities, gait) are likely to invalidate previously provided data. In the former740

situation the system will be required to re-learn the changed class boundaries

in order to differentiate the new from the previous classes by integrating few

instances of data from the new class. Whilst in the latter scenario, the user will

be required to re-train with new instances for all activity classes.

8. Conclusions745

This article has introduced a neural matching architecture that can sup-

port both Personalisation and Open-ended HAR. Results from our comparative

studies suggest that the proposed methods are able to address the challenge of

wearable devices being restricted to recognising from a fixed set of given activi-

ties (e.g. walking, running cycling) pre-modelled based on a general population.750

The fixed nature of these models can be attributed to the conventional training

strategy adopted for supervised Human Activity Recognition (HAR) algorithms
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i.e.activities and persons that are to be recognised must appear in the initial

training data. Existing personalisation algorithms impose a burden on individ-

ual users to produce excessive amounts of calibration data; existing Open-ended755

HAR algorithms depend on expert knowledge acquisition to recognise unseen

classes and are not well suited for mobile platforms.

The proposed Personalised Open-ended Matching Network (MNZ) is “knowledge-

light”, where we use a few seconds of raw calibration data obtained through

micro-interactions with the end-user to personalise and to introduced new ac-760

tivity classes after deployment. We first evaluate the effectiveness of person-

alisation by comparing our personalised algorithm with the original Matching

Networks architecture where the results suggests personalisation contributes to

major performance improvements. We further evaluate our algorithm for per-

sonalised Open-ended HAR; first against the two most common ZSL algorithms765

which by nature are knowledge-intensive, and our results confirm that the pro-

posed knowledge-light approach to Open-ended HAR outperforms both and is

consistently reliable over a wide range of activity classes, with zero knowledge en-

gineering cost. In addition our evaluation with multiple unseen classes resulted

in consistent performance confirming the robustness of MNZ . We observe that770

the number of sensors and their placement is a major contributing factor to the

performance of Open-ended HAR.

In future work, we plan to explore methods to minimise sensor requirements

after deployment through methods such as Translators proposed in [32]. This

will enable us to train the model in an unrestricted sensor-rich setting with775

high accuracy and deploy with fewer sensors with minimum compromise on

performance. Thereafter we plan to integrate this solution in to a wearable

based mobile application. Finally we encourage the research community to

improve “knowledge-light” approaches to personalised Open-ended HAR as it

eliminates multiple challenges with existing HAR algorithms and to produce780

more re-producible research in terms of both open access to algorithms and

data.
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Appendix A - Search for supportset size

Number of instances to be included per class in the support set, k, is a cru-900

cial hyper-parameter that affects the performance and efficiency of Matching

Networks. For comparative study purposes we wish to use a k value consis-

tently across all datasets. We considered 8 k values 1, 2, 3, 4, 5, 6, 8 and 10;

using repeated user hold-out validation, where 2/3 of the users are in training

data and the rest in test data. We repeat each hold-out experiment 5 times905

with a random selection of test users and calculate the mean accuracy as the

performance metric.

Table 7: Evaluation for different k values

Samples per class (k)
Datasets

1 2 3 4 5 6 8 10

HDPoseDS17 65.63 73.89 75.65 71.63 76.78 77.56 76.23 79.09

HDPoseDS6 35.10 38.09 41.82 43.82 44.96 41.03 47.54 42.20

PAMAP2 67.19 81.48 82.91 86.45 86.73 86.83 87.67 86.10

SelfBACKW,T 65.89 73.35 72.08 73.15 71.41 72.27 71.87 74.91

SelfBACKW 55.97 58.73 64.03 61.67 64.86 62.64 64.82 65.34

All five datasets show considerable performance improvements with increas-

ing k. Specifically, three datasets achieve best performance with k = 10 and

two datasets with k = 8. Increasing k, increases the support set size, which in910

turn increases the number of pair-wise similarity computations needed by the

attention layer of the MN architecture. For instance if k = 1 and ntr = 9 the

support set size is 9 and with equation 3 we need to calculate similarity for 9

pairs. If k = 10, and ntr = 9, the support set size is 90 and we need to cal-

culate similarity for 90 pairs. Similarity computation is expensive having time915

complexity that increases linearly with the number of instances in the support

sets and the dimensionality of each instance. To validate this observation, we

measured the mean time spent on similarity computations by maintaining the

output length of the feature embedding function (x′i) constant at 1200 (Please
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refer to Figure 7) across all experiments. The mean time taken for similarity920

calculation of one pair was recorded as 16.4567ms. Accordingly, when k = 1

and k = 10, we recorded mean times of 148.1ms and 1.481s respectively when

processing an instance by the MN model. Accordingly the choice of k is a trade-

off between model performance and model train/test efficiency. On the basis

of the results in 7 and computational overhead, our choice is k = 5 across all925

experiments.
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Appendix B - Matching Networks - Robustness to over-fitting

We conducted an experiment to observe the performance of MN when the

size of the training data set is gradually reduced. Here we are keen to explore the

ability of MN to generalise and its robustness to over-fitting. For this we choose930

three train/test split ratios where test set ratio is 1/3, 1/2 and 2/3 respectively.

We keep “samples per class” at 5 (k=5) and repeated each hold-out experiment

5 times with a random selection of test users and calculate the mean accuracy

as the performance metric.

Table 8: Test for over-fitting

Test set ratios
Datasets

1/3 1/2 2/3

HDPoseDS17 76.78 69.89 66.61

HDPoseDS6 42.92 38.48 36.05

PAMAP2 87.15 83.62 83.08

SelfBACKW,T 73.40 72.84 73.21

SelfBACKW 63.20 61.20 63.05

Table 8 presents the results. With three datasets the performance decline935

when the size of the test set is increased. Two datasets maintain the performance

across different split ratios. Declined performance is as expected as the model is

not exposed to adequate training instances to generalise itself to all possible test

scenarios. It is noteworthy that two datasets maintain their performances with

limited access to training data. Inherent nature of similarity based learning of940

MN and the batch normalisation used in the feature embedding function mainly

contributes toward regularisation of the model when training with limited data.

In summary as expected the best performance was recorded with 2/3 and 1/3

train/test split ratios and the test accuracy is either maintained or declined with

increasing test set sizes. Therefore we select the most common user hold-out945

train/test split ratios of 2/3 and 1/3 for the experiments in this article.
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