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Highlights 

 

 Several graph extractors and graph matching algorithms return different correspondences. 

 A method to deduce a consensus correspondence given several graph correspondences. 

 A learning method to deduce the quality of each involved graph extractor and graph matching 

algorithm. 

 The learnt quality is considered as the weight in the consensus algorithm. 

 Sub-optimal solution. Cubic computational cost with respect to the number of nodes. 
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AB ST R ACT  

In structural pattern recognition, it is usual to compare a pair of objects through the generation of a correspondence between the elements of 

each of their local parts. To do so, one of the most natural ways to represent these objects is through attributed graphs. Several existing graph 

extraction methods could be implemented and thus, numerous graphs, which may not only differ in their nodes and edge structure but also in 

their attribute domains, could be created from the same object. Afterwards, a matching process is implemented to generate the correspondence 

between two attributed graphs, and depending on the selected graph matching method, a unique correspondence is generated from a given pair 

of attributed graphs. The combination of these factors leads to the possibility of a large quantity of correspondences between the two original 

objects. This paper presents a method that tackles this problem by considering multiple correspondences to conform a single one called a 

consensus correspondence, eliminating both the incongruences introduced by the graph extraction and the graph matching processes. 

Additionally, through the application of an online learning algorithm, it is possible to deduce some weights that influence on the generation of 

the consensus correspondence. This means that the algorithm automatically learns the quality of both the attribute domain and the 

correspondence for every initial correspondence proposal to be considered in the consensus, and defines a set of weights based on this quality. 

It is shown that the method automatically tends to assign larger values to high quality initial proposals, and therefore is capable to deduce better 

consensus correspondences. 

 

Keywords:  Attributed graphs, graph matching, consensus correspondence, online learning 

2015 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Structural pattern recognition has the aim of representing, 

identifying and classifying objects such as images, handwritten 

characters, biometric data, networks or proteins [1], among many 

others. These objects are transformed into structures which are 

constituted of properly interconnected parts. There are numerous 

forms in which these data representations can be stored, such as 

strings, trees or data clusters. Remarkably, the most recurrent 

form of data representation used nowadays is attributed graphs. 

Given two or more attributed graphs, the identification or the 

classification process is typically performed by establishing a 

one-to-one relation function between the parts of the two graphs. 

This process, most commonly known as graph matching, has 

been widely studied during the last 4 decades and compiled in 

surveys such as [2], [3] and [4].  

To build the attributed graphs in the first place, a graph 

extraction process is applied to the pair of objects to be matched. 

That is, selecting the most representative features of the objects 

as the nodes of the graph, and assigning them a set of labels 

called attributes. In the concrete case of images, this is done by 

using a Feature Extractor (FE) [5] to select the nodes, and then 

applying an edge construction method to such set of nodes. 

Afterwards, a correspondence between two graphs can be 

deduced by mapping the nodes and/or edges through a graph 

matching algorithm. Due to the wide availability of FEs (i.e. 

SURF [6] or SIFT [7]), edge construction methods (i.e. Delaunay 

or  -nearest neighbours) and graph matching algorithms (i.e. 

Graduated Assignment [8], Bipartite (BP) graph matching [9], 

Fast BP (FBP) [10], or Squared FBP (SFBP) [11]), multiple 

combinations of graphs and correspondences between them could 

be generated from a single pair of objects. Therefore, the aim of 

this paper is to present a method in which a consensus 

correspondence can be generated give multiple graph matching 

solutions. 

The most basic form to introduce this problem is through an 

image matching scenario for the case that two different FEs and 

edge construction methods are used to extract the salient points 

from the images, and then two graph matching algorithms are 

applied. Using the first FE, both objects are represented through 

attributed graphs    and     (red circles in the left hand side of 

Figure 1.a). A similar operation with the second FE leads to the 

creation of graphs    and     (blue squares in the right hand side 

of Figure 1.a). It is clearly noticeable that there are some features 

that have been selected equally by both FEs, and thus the 

intersection between red circles and blue squares is not null. 

Figure 1.b shows the two correspondences    and    that have 

been generated between both pairs of graphs. Notice that the two 

proposals present discrepancies not only on the features of each 

graph, but also in the node-to-node mappings. Moreover, a new 

node called null node (represented with the   symbol) has been 

introduced to assure that correspondence    is bijective. Finally, 

Figure 1.c shows a possible consensus correspondence     , 

where      and       represent the union of nodes of    and   , 

and the union of nodes of     and     respectively. Edges are not 

set in these final sets since the discrepancies between the edges of 

the initial graphs would lead to edge inconsistencies. 

Furthermore, notice that the aim of our proposed consensus 

solution is not to produce a union graph (methods such as 

function-described graph [12], second-order random graph [13] 

or median graph [14], [15] achieve this), but rather to define a 

consensus correspondence between the union of nodes of both 

sets of graphs.  

In general, the input of the consensus method consists on   

bijective correspondences,          ,…,         ,…, 

         , with the output being the consensus 

correspondence                         . It is important to 

comment that the method requires that nodes within either sets of 

graphs              or                 are indexed in 

such manner that nodes on different graphs, but with the same 

index, represent the same local part of the object. For instance, in 

Figure 1.a, the node of    (red circle) located on the subject’s 

knee must have the same index as the node on    (blue square) 

located on the same section. 

                                                                                 

 
a)  

                                                                            

 
b) 

                                                             

 
c) 

Fig. 1.  An example of obtaining a consensus correspondence given two 

initial proposals. 

An immediate problem that arises when intending to solve 

this problem is that a large number of possible consensus 

correspondences can be deduced. To solve this issue, one of the 

most well-known and practical options to reduce the complexity 

of a combinatorial calculation is through optimisation strategies. 

The concept of optimisation is related to the selection of the 

“best” configuration or set of parameters to achieve a certain 

goal. Functions involved in an optimisation problem can be either 

conformed by continuous or discrete values, often called 
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combinatorial scenarios. These scenarios have been largely 

studied and applied for matching problems, particularly in the 

case of the Hungarian algorithm [16] and the Jonker-Volgenant 

solver [17]. Both of these methods convert a combinatorial 

problem into a Linear Assignment Problem (LAP). In fact, the 

BP graph matching [9], one of the aforementioned algorithms to 

obtain a correspondence between attributed graphs based on the 

Graph Edit Distance (GED) [18], [19], [20], [21], could also be 

used for the solution of the LAP. This algorithm computes a cost 

matrix, and then obtains the correspondence by applying a linear 

solver such as [16] or [17]. Therefore, the consensus method 

proposed in this paper can be considered a generalisation of the 

BP graph matching algorithm [9], but instead of having a pair of 

graphs as the inputs, our method deals with multiple pairs of 

attributed graphs and their node-to-node correspondences. 

Recently, some collaborative methods have been proposed in 

which, given a set of classifiers, they return the most promising 

class [22]. These methods learn some weights that gauge the 

importance of both the classifiers and the samples through 

several techniques, such as voting [23] or hierarchical methods 

[24]. Nevertheless, these methods cannot be directly adapted to 

our problem, since their output is a class index, whereas our 

required output must be a consensus correspondence. 

In recent years, we have developed a series of approaches to 

solve similar correspondence-based consensus scenarios. In [25] 

and [26], we presented a method that computes the consensus 

correspondence given only two pairs of sets of salient points and 

two correspondences between them. Later, in [27] and [28], we 

generalised this method for multiple pairs of sets of salient points 

and the correspondences between them. In [29], we redefined the 

method presented in [25] and [26] so that instead of sets of 

salient points, it considers a pair of attributed graphs and two 

correspondences between them. As a logical next step, in this 

paper, we propose to expand the reach of the method presented in 

[29], and thus, the input is composed of multiple pairs of graphs 

and the correspondences between them. In addition, we improve 

the consensus methodology through an algorithm presented in 

[30] that learns a set of weights that gauge the quality of both the 

attributed graphs and the correspondences between them. 

Furthermore, in the experimental section we aim to show that 

properly tuning these weights is crucial to obtain an improved 

consensus. 

The paper is structured as follows. In Section 2, we briefly 

define the concepts of attributed graphs, GED and BP graph 

matching. In Section 3, we explain the methodology to obtain the 

consensus correspondence given several pairs of attributed 

graphs and their correspondences. Section 4 complements this 

explanation by revealing how the weights are learnt. Section 5 

shows the experimental evaluation and finally, Section 6 

concludes the paper. 

2. Attributed Graphs, Graph Edit Distance and Bipartite 
Graph Matching 

Let    (  
    

    
    

 ),…,   (  
    

    
    

 ),…, 

   (  
    

    
    

 ) be attributed graphs representing a first 

object, and     (   
     

     
     

 ),…,    
(   

     
     

     
 ),…,     (   

     
     

     
 )  be attributed 

graphs representing a second object. To allow maximum 

flexibility in the matching process, all of these graphs have been 

extended with null nodes for all of them to be of order  . Then, 

  
     

               represents the set of nodes and 

  
  {    

 |         } represents the set of edges. Also, 

functions   
    

    
  and   

    
    

  assign attribute values in 

any domain to nodes and edges respectively. Note that attributes 

on nodes and edges can have different values, that is, it may 

happen that   
    

  and   
    

 . Nevertheless, all of these 

domains have the same value   defined, which represents the 

attribute of the null nodes used for the extension. Similar 

properties are preserved for the graphs representing the second 

object. As commented before, nodes are indexed in such manner 

that the nodes on different graphs, but with the same index, 

represent the same local part of the object. If a node does not 

exist in the original object, then it is inserted with the null 

attribute  . 

GED [18], [19], [20], [21] is the most well-known and used 

distance function between attributed graphs. It is defined as the 

minimum amount of required distortion to transform one graph 

into another. To this end, a number of distortion or edit 

operations consisting of deletion, insertion, and substitution of 

nodes and edges are defined. These edit cost functions are 

introduced to quantitatively evaluate the edit operations. The 

basic idea is to assign a penalty cost to each edit operation 

according to the amount of distortion that it introduces in the 

transformation. Deletion (insertion) operations are transformed 

into assignations of a non-null node (null node) to a null node 

(non-null node). Substitutions simply indicate node-to-node 

assignations.  

Given two attributed graphs    and    , and a correspondence 

   between them, the graph edit cost, represented by the 

expression         (         ), is the cost of the edit 

operations that the correspondence imposes. It is based on adding 

the following constants and functions:  

     is a function that represents the cost of substituting node  

   
 of    by node   (  

 ) of    .  

     is a function that represents the cost of substituting edge 

    
  of    by edge   (    

 ) of    .  

 Constant    is the cost of deleting node   
  of   (mapping it 

to a null node) or inserting node    
  of     (being mapped 

from a null node).  

 Constant    is the cost of assigning edge     
  of    to a null 

edge of    , or assigning edge   
   
 

 of     to a null edge of 

  .  

For the cases in which two null nodes or two null edges are 

mapped, this cost is  . Then, the GED is defined as the minimum 

cost under any possible bijective correspondence  : 

 

   (      )     
    

         (         )   (1) 

 

We define the optimal correspondence    as the one that 

obtains the minimum         .  

One of the most used algorithms to compute error-tolerant 

graph matching through the application of the GED is the BP 

graph matching algorithm [9]. It is composed of three main steps. 

First, a cost matrix is defined. Second, a linear solver such as the 

Hungarian method [16] or the Jonker-Volgenant solver [17] is 

applied to this matrix to obtain the optimal correspondence   . 

Finally, a suboptimal GED value is obtained from the edit cost of 

the resulting correspondence, that is         (         ). 

Figure 2 shows the cost matrix defined for the BP algorithm. 

The first quadrant (top-left) denotes the combination of 

substituting costs      and their local sub-structures. The diagonal 

of the second quadrant (top-right) denotes the whole costs      of 
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deleting nodes   
  and its local sub-structures. Likewise, the 

diagonal of the third quadrant (bottom-left) denotes the whole 

costs      of inserting nodes    
  and their local sub-structures. 

Finally, the fourth quadrant (bottom-right) is filled with zero 

values, since the substitution between null nodes has a zero cost. 

To establish the costs used on the BP matrix, it is usual to 

consider the attributes of the local sub-structure of each node. 

Currently, the most used local sub-structures are Node, Degree 

and Star (also called Clique) [31], [32]. 

 

 
Fig. 2. Cost matrix of the BP algorithm. 

3. Consensus of Multiple Correspondences between Graphs 

Given a set of output graphs              and a set of 

input graphs                , together with a set of bijective 

correspondences              between them, it is intended to 

deduce a final consensus correspondence  . It is assumed that 

  
     

  and   
     

 ; however, it may happen that   
    

 
, 

   
     

 
,    

     
 
 or   

    
 
. Moreover, it is assumed that 

there is some level of intersection between the nodes of graphs 

within the same set, although this is not strictly necessary. This 

intersection is defined through the indices of the nodes in both 

sets of graphs, since as commented previously, two nodes with 

the same index value represent the same local part of an object. 

In addition, all graphs are extended with null nodes to have the 

same order  . The output of the consensus method is a 

correspondence           , where    is composed of the nodes 

that belong to sets   
 ,…,   

 ,…,   
  that have different indices. 

Coherent definitions hold for    . 

It is proposed that the consensus correspondence   holds two 

restrictions. On the one hand, the edit costs obtained by   for all 

pairs of graphs has to be the lowest possible, that is 

 

            
   

∑        (        )

 

   

  (2) 

 

This term is used since by definition of the GED, the lower the 

edit cost, the better the correspondence. On the other hand, it is 

necessary to take into consideration the contribution of 

             to a certain extent. Therefore, the consensus 

correspondence must somehow resemble the original 

correspondences as much as possible. For this to occur, the 

Hamming distances between the consensus correspondence and 

the original correspondences have to be minimised, 

 

   
   

∑  (    )

 

   

  (3) 

 

In the final expression, both Equation 2 and Equation 3 are 

weighted and added, thus resulting in 

 

   
   

∑     (    )             (        ) 

 

   

 (4) 

 

Equation 4 can be seen as a classical combinatorial 

optimisation solution, composed of a loss function and a 

regularisation term [33]. In this case, the loss function is 

represented by Equation 2, since this expression aims at 

minimising the cost of the consensus correspondence to the most. 

Conversely, the regularisation term is represented by the 

Equation 3, which has the aim of finding a correspondence 

resembling the original ones. Notice that it would not be adequate 

to use methods based on the gradient descent, such as the Nelder-

Mean [34], to minimise Equation 4, given that a simple swap of 

any node-to-node mappings on the consensus correspondence 

could cause an abrupt change on both the Hamming distance and 

the edit cost, since both terms are non-continuous. Moreover, if 

methods such as simulated annealing or genetics are considered, 

then the condition of the consensus correspondence to be 

bijective is not guaranteed.  Therefore, we propose a 

generalisation of the BP algorithm to solve this equation. The 

main difference between the original BP algorithm and the 

consensus method proposed in this paper resides in the definition 

of the cost matrix on the first step. For the consensus method, 

both the cost of the attributed graphs and the cost of the 

correspondences are used as the inputs to generate the final 

matrix. 

The general structure of the matrix used on the consensus 

method is also composed of four quadrants, as shown in Figure 3. 

The top-left quadrant is reserved for the mappings between nodes 

in graphs    and    . The top-right quadrant represents the 

mapping deletions. Conversely, the bottom-left quadrant 

represents mapping insertions. Finally, the bottom-right quadrant 

is reserved for mappings between null nodes and thus, is filled 

with zero values, in the same way as the original BP cost matrix.  

 
Fig. 3. Distribution of rows and columns in the matrix used on the consensus 

method.  

It is possible to distinguish four different types of cells in this 

matrix: 1) Type  . Represents the case where both nodes are non-

null nodes. 2) Type  . Represents the case where the node in the 

output graph is a non-null node, and the node in the input graph 

is a null node. 3) Type  . Represents the opposite of the previous 

case. 4) Type  . Represents the case where both nodes are null.  
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In the BP algorithm cost matrix (Figure 2), every cell on the 

top-left quadrant would be of type  . In contrast the new cost 

matrix (Figure 3) presents type   and type   cells in this same 

quadrant, which is derived from the fact that nodes have been 

added to the graphs for all correspondences to be mutually 

bijective and for all graphs to be of order  . This aspect is 

illustrated on the example presented in Figure 1.b, where the 

mapping towards the node   of the red graph represents 

information contained in a type   cell of the top-left quadrant. 

Independently, both the type   cells in the top-right quadrant and 

the type   cells in the bottom-left quadrant are a derivation of the 

BP algorithm, and allow new nodes to be inserted or deleted. 

Since the consensus method considers two constraints given 

several           pairs of graphs and correspondences 

between them, the final matrix to be minimised is composed by 

the addition of    correspondence matrices plus    cost 

matrices, gauged by weights    and    respectively. As a result, 

the final matrix   is built as follows,  

 

  ∑            

 

   

  (5) 

 

Figure 4 shows an example of the structure of a    

correspondence matrix. We set   [   ]    if   (  )      and 

  [   ]    otherwise. This results in only the   type cell of the 

first quadrant being filled with either zeros or ones according to 

the information provided by the correspondence. The second and 

third quadrants are filled with zero values, since they represent 

the possibility of deleting or inserting new nodes; which is not 

the case for the information provided by a correspondence   . 

Notice that correspondence matrix    is put together with a 

negative sign when calculating matrix   in Equation 5. This is 

done since the minimisation of   requires that existing mappings 

  (  )      are represented in the correspondence matrix    

with lower values.  

 
Fig. 4. Correspondence matrix   . 

Figure 5 shows the structure of a cost matrix   . The type   

cells from Figure 3 are filled with the node substitution cost     
 . 

The type   and type   cells are filled with insertion and deletion 

costs     
  and     

  respectively. Finally, type   cells which 

represent mappings between null nodes are not filled, since 

mappings of this nature would have a cost of  . Since costs with 

lower values are preferred for the minimisation of  , the cost 

matrix    is used with a positive sign in Equation 5. 

The final consensus correspondence between nodes is the one 

that achieves the minimum LAP solution applied to matrix   

(Equation 5), using any solver such as the Hungarian method [16] 

or the Jonker-Volgenant solver [17]. Algorithm 1 shows the steps 

followed to compute the consensus correspondence.  

 
Fig. 5. Cost matrix   .  

The computational cost of the whole parameter calculation is 

 (    ), and the computational cost of the linear solver is 

 (  ). In the next section, we explain how function 

                learns parameters    and   . 

Algorithm 1.                  

Input:

                                                
Output:   

for       

      for all      

             [   ]             (  
 )     

   

             [   ]              .       
      end for 
                      (      )      
(     )                              [  ]          
end for 
   ∑              

     
               ( )    

End algorithm            

4. Online Learning the Quality 

In this section, we describe how to learn the weighting 

parameters   (            ) and   (            ). 

These weights represent respectively the level of confidence that 

the consensus method should have on the combination of the 

graph matching methods (represented by correspondence 

matrices             ) and the graph extraction methods 

(represented by cost matrices             ) used to compute 

each of the          correspondences. It is assumed that if a 

certain    correspondence matrix or its respective    cost matrix 

are properly defined, then the values of their respective 

parameters    or    have to be high. That is, either    represents 

a correct correspondence, or the distance between features     
  

really reflects the dissimilarity between   
  and    

  and their local 

sub-structures. Notice that the learning algorithm is defined in an 

online form, meaning that it does not force the user to impose the 

values simultaneously and thus, it is suitable for applications [35] 

where the data is not available at the same time. As a result, each 

of the     elements of    and    are updated separately. 
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To learn the weights, it is necessary to define a learning set 

composed of multiple registers           , where    is the 

number of available registers for each   proposal. Each of these 

registers is a quartet with structure {  
     

    
   ̌ 

 }, where   
  

and    
  are attributed graphs,   

  is a sub-optimal correspondence 

between them, and  ̌ 
  is an optimal ground truth correspondence 

between these graphs. 

Both sets of weights are computed as follows. First, weights 

   gauge the quality of the correspondence. These are calculated 

as a similarity function between the correspondence   
  and the 

ground truth correspondence  ̌ 
 . The similarity is calculated as 

the inverse of the Hamming distance. Note the obtained value 

does not depend on the graphs   
  and    

 , but only on the 

correspondences. Secondly, weights    gauge the quality of the 

features. This step considers the      
  cost between elements, and 

also the ground truth  ̌ 
 . Note that in this case, the sub-optimal 

correspondence   
  is not used. We consider as the genuine cells 

in     
  the ones such that  ̌ 

 (  
 )     

 , and as the impostor cells 

the remaining ones,  ̌ 
 (  

 )     
 . With this information, two 

histograms         
  and          

  are constructed. As more 

distant the two histograms are, the better these features are 

represented on the ground truth correspondence. Therefore,    is 

defined as the distance between these two histograms, and this 

distance is computed through the Earth movers’ distance [36] 

between histograms. We decided to use this distance instead of 

the typical Mahalanobis distance between probability density 

functions, because in the first samples, the approximation error 

was very high. 

Function 1 computes weights    and    for a certain number 

of        ,    registers of the     proposal contained on the 

learning set, represented as             [  ] . For instance, if 

every register of the learning set is used, then      . Notice 

each time this function is computed, parameters     
     , 

        
  and          

  are updated.     
  is the cumulative 

number of registers that have been used to compute the weights 

so far, while    is the cumulative value of the similarity (while 

computing this value, a 1 is added in the denominator to avoid 

the infinite case), and          
  and          

  are the cumulative 

histograms. Before the function is called for the first time, 

parameters for all   are initialised as follows:       , 

       ,     
   ,     ,         

    and          
   .  

Function 1.                 

Input:             [  ]                  
           

     

Output:           
          

           
     

    
      

     

for        

        
                     (  

     
 ) 

              
          

                  (  
 ) 

              
           

                   (  
 ) 

         
 

               (  
 
  ̌ 

 
)  

 

      end for 

   
  

    
 

 

   
                   (        

           
 )

    
 

 

End function            

5. Experimental Validation 

The following section is organised in three subsections. First, 

in Section 5.1 we describe the database used for experimentation. 

Then, in Section 5.2 we present the results of the consensus 

framework for the case when no learning is applied. Finally, 

Section 5.3 show the results and comparison of applying the 

consensus framework considering the learning weights function. 

5.1. Database Used 

We used the “Tarragona Exteriors” database [37], defined 

through five public image sequences called “BOAT”, 

“EAST_PARK”, “EAST_SOUTH”, “RESIDENCE” and 

“ENSIMAG” [38]. These datasets are composed of sequences of 

11 images taken from the same object, but from different 

positions and using a different zoom. Together with the images, 

the homography estimations that convert the first image of the set 

into the other ones are provided. From each of the images, the 50 

most reliable salient points were extracted using 5 FEs: FAST 

[39], HARRIS [40], MINEIGEN [41], SURF [6] and SIFT [7]. 

From these five sets of salient points, we built five attributed 

graphs of each image, where the nodes represent the position of 

the salient points, and the edges are conformed using the 

Delaunay triangulation method. Attributes on nodes are the 

attribute vectors provided by each FE, and edges are unattributed. 

Between the first image of the sequence and the other ten 

images (10 image pairings), we generated correspondences using 

the five different attributed graphs in combination with four 

different matching approaches: 1) MATCH: the native Matlab 

matching function [42] called MatchFeatures. 2) BP-NODE: 

SFBP with the Node local structure (no edges). 3) BP-DEGREE: 

SFBP with the Degree local structure (a central node and its 

adjacent edges). 4) BP-CLIQUE: FBP [10] with the Clique 

structure (a central node, the adjacent edges and their connected 

nodes). The MaxRatio parameter of the MatchFeatures function 

was set to 1 to find as many mappings as possible, and the non-

bijective correspondences were removed afterwards, since this 

function often maps output nodes more than once. Moreover, 

parameters    and    of the SFBP algorithm were set to 50 for 

both sub-structures, and to 250 in FBP algorithm for the 

CLIQUE sub-structure. The substitution cost on nodes     is the 

normalised Euclidean distance between the attribute vectors, and 

the substitution cost on edges is      , due to edges being 

unattributed. The ground truth correspondences were computed 

with the homographies provided on the original image databases. 

As a result, the “Tarragona Exteriors” database is composed 

of 20 datasets. Each dataset is the combination of the 5 image 

sequences   4 graph matching methods. Each dataset is 

composed of 50 registers with structure {           ̌ }. Due to 

the 5 FEs,      . FAST is represented by    , HARRIS: 

   , MINEIGEN:    , SURF:     and SIFT:    . 

Furthermore, there are 10 different registers {           ̌ } per 

each  . 

Table 1 shows the average number of correct mappings 

obtained by the correspondences contained in the 20 initial 

datasets, with the last column showing the average values. In 14 

of the cases, the combinations that obtains the highest number of 

correct mappings are the ones where the SURF FE is used. In the 

case of MATCH, this observation is always true, since the 

matchFeatures function is specifically designed to be used with 

this FE. Observing the average results, correspondences 

generated through the BP-CLIQUE graph matching algorithm 

obtain better results. This is because by using the clique local 
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sub-structure, more structural information is captured and thus, 

the graph matching algorithm performs better. 

5.2. Consensus of two correspondences without learning 

Table 2 shows the average number of correct mappings 

obtained with the consensus method presented in [29], where 

only two proposals are used at the same time, that is    . Each 

column is labelled as     , where   and   are the two registers 

used, differentiated by their respective FE. Weights have not 

been learned and are set to    . Considering the information 

provided by Table 1, we realise that combinations using SURF 

lead to the best results. For instance, for all datasets where the 

matchFeatures function has been used, combinations where the 

SURF FE appears (    ,     ,      and     ) obtain also the best 

results. Moreover, in 4 out of the 5 sequences, the BP-CLIQUE 

shows the highest improvement. Comparing these two tables, we 

conclude that in all experiments, the combination of two FEs 

increases the individual number of inlier mappings found. 

Therefore, it is shown that the consensus method generates 

consensus correspondences which increase in quality even when 

no learning has been applied. 

5.3. Multiple consensus plus learning weights 

Before validating the results of the consensus method, we 

present the progression of learning parameters    and   . To do 

so, we only consider the first four quartets of each dataset and   

as the learning set: {  
     

    
   ̌ 

 }   {  
     

    
   ̌ 

 }. 
Therefore, the online algorithm is able to iterate 4 times per each 

  and dataset. Figure 6 and Figure 7 show the evolution of    

and    for           ,   learning iterations. Iteration 

     means that no learning has taken place, therefore the 

weight values have been imposed as        and       . The 

values in these plots correspond to the average of the 20 datasets 

according to each FE. We have considered only 4 iterations since 

we have observed that after this point, plots tend to stabilise. 

 
Fig. 6. Evolution of    for different    learning iterations. (●)  = FAST, 

( )  =HARRIS, (∆)  =MINEIGEN, ( )  =SURF, ( )  =SIFT. 

 
Fig. 7. Evolution of    for different    learning iterations. (●)  = FAST, 

( )  =HARRIS, (∆)  =MINEIGEN, ( )  =SURF, ( )  =SIFT. 

There is a clear correlation between weights reported in 

Figure 6 and Figure 7 and the number of correct inliers reported 

for the original proposals in Table 1. For all datasets, it is shown 

that SURF is the FE that obtains the best results. Consequently, 

the learning algorithm automatically tends to assign higher values 

for weights    and   , which are the ones related to SURF. If 

more learning iterations are considered, then the tendency of 

these lines is dependent of the information at hand. Therefore, the 

convergence of this algorithm cannot be demonstrated. 

Table 3 shows the average number of correct mappings found 

on the consensus correspondence of all proposals for a same pair 

of images. The first two columns show the average number of 

correct mappings extracted directly from Table 1 and Table 2 

respectively. The last column shows the number of correct 

mappings detected by the consensus method with the 

implementation of the online algorithm using      learning 

iterations. Notice that for all cases, the final consensus method is 

able to increase the average accuracy with respect to the original 

results. Moreover, it is still noticeable that the BP-CLIQUE 

registers deliver the best results. 

6. Conclusions 

Most structural pattern recognition methods are based on first 

creating a representation of the objects, usually through attributed 

graphs, and then finding a correspondence between them using 

graph matching algorithms. Clearly, there are several solutions in 

the literature to either perform the graph extraction process or the 

graph matching process. Instead of only relying on one 

combination, in this paper we propose a method that globally 

considers multiple correspondences regardless of the path 

followed to obtain them. Since it is assumed the noise randomly 

affects the data in a non-repetitive way, the experimental 

validation shows the consensus method tends to obtain a better 

correspondence than the individual ones. Moreover, we 

implement a learning algorithm that automatically learns the 

weights that represent the quality of both the attributes of the 

graphs and the correspondences themselves. These weights are 

used to gauge the inputs that deliver the consensus 

correspondence. The experimental validation shows that properly 

learning these weights is crucial to achieve a large number of 

correct inlier mappings. 

The BP graph matching algorithm has a cubic-worst 

computational complexity with respect to the number of nodes 

due to the LAP solver. Since our consensus method is a 

generalisation of the BP graph matching algorithm, it also has the 

same complexity. The only difference between our method and 

the classical one is the generation of the final matrix to be 

evaluated by the LAP solver. In the BP graph matching 

algorithm, this matrix is computed in square cost with respect to 

the number of nodes. In our method, we need to compute as 

many matrices as the number of different proposed 

correspondences. Therefore, the computational complexity of this 

step is the complexity in BP multiplied by the number of 

proposed correspondences. 

As future work, we are interested in testing our consensus 

method using more databases, graph extraction methods and 

matching algorithms. In addition, it is desired to test with 

correspondences generated from other pairs of data structures, 

such as strings or data clusters.  
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Table 1. Average number of correct mappings on the 20 datasets (in bold the highest values). 

Dataset Name FAST HARRIS MINEIGEN SURF SIFT Average 

1 BOAT_BP-CLIQUE 62 82 50 47 8 49.8 

2 BOAT_BP-DEGREE 55 58 48 38 5 40.8 

3 BOAT_BP-NODE 55 62 39 32 8 39.2 

4 BOAT_MATCH 9 7 8 65 1 18 

5 EASTPARK_BP-CLIQUE 16 22 22 55 18 26.6 

6 EASTPARK_BP-DEGREE 24 31 27 21 14 23.4 

7 EASTPARK_BP-NODE 15 14 22 29 18 19.6 

8 EASTPARK_MATCH 3 1 1 66 1 14.4 

9 EASTSOUTH_BP-CLIQUE 8 5 7 16 6 8.4 

10 EASTSOUTH_BP-DEGREE 9 5 3 24 9 10 

11 EASTSOUTH_BP-NODE 6 6 7 14 6 7.8 

12 EASTSOUTH_MATCH 1 1 1 32 5 8 

13 RESIDENCE_BP-CLIQUE 22 13 20 96 6 31.4 

14 RESIDENCE_BP-DEGREE 22 14 17 15 6 14.8 

15 RESIDENCE_BP-NODE 10 16 15 13 5 11.8 

16 RESIDENCE_MATCH 1 1 1 106 1 22 

17 ENSIMAG_BP-CLIQUE 3 4 2 42 3 10.8 

18 ENSIMAG_BP-DEGREE 3 3 3 34 2 9 

19 ENSIMAG_BP-NODE 3 4 2 29 3 8.2 

20 ENSIMAG_MATCH 1 1 1 53 1 11.4 

Table 2.  Average number of correct mappings obtained by the consensus method using 2 input correspondences and without learning weights, for the 

20 datasets. 

Dataset Name                                                   Average 

1 BOAT_BP-CLIQUE 84 78 104 70 96 116 89 128 57 80 90.2 

2 BOAT_BP-DEGREE 74 72 82 60 68 109 61 111 52 42 73.1 

3 BOAT_BP-NODE 70 65 84 63 56 89 70 62 42 37 63.8 

4 BOAT_MATCH 10 10 48 9 9 50 9 46 9 66 26.6 

5 EASTPARK_BP-CLIQUE 35 27 84 36 22 94 43 83 41 85 55 

6 EASTPARK_BP-DEGREE 29 27 31 27 33 42 42 35 40 32 33.8 

7 EASTPARK_BP-NODE 11 23 43 35 18 38 32 46 37 46 32.9 

8 EASTPARK_MATCH 2 1 38 4 2 47 1 44 2 67 20.8 

9 EASTSOUTH_BP-CLIQUE 8 19 20 12 16 27 11 27 10 30 18 

10 EASTSOUTH_BP-DEGREE 11 7 34 18 3 29 14 25 12 30 18.3 

11 EASTSOUTH_BP-NODE 9 2 18 10 4 17 10 19 12 18 11.9 

12 EASTSOUTH_MATCH 1 1 22 1 1 20 1 22 1 32 10.2 

13 RESIDENCE_BP-CLIQUE 32 24 124 27 25 129 26 122 23 100 63.2 

14 RESIDENCE_BP-DEGREE 16 19 36 26 12 26 20 29 21 21 22.6 

15 RESIDENCE_BP-NODE 10 15 24 15 12 24 16 24 19 17 17.6 

16 RESIDENCE_MATCH 1 1 59 1 2 51 1 39 1 106 26.2 

17 ENSIMAG_BP-CLIQUE 4 3 47 4 5 44 6 43 5 52 21.3 

18 ENSIMAG_BP-DEGREE 4 5 34 3 1 37 5 35 3 35 16.2 

19 ENSIMAG_BP-NODE 2 3 30 5 3 37 6 31 5 36 15.8 

20 ENSIMAG_MATCH 1 1 42 1 1 38 1 36 1 53 17.5 

Table 3. Average number of correct mappings for the individual extractors, the consensus method with 2 correspondences (without learning) and the 

consensus method using all correspondences and learning weights.  

Dataset Name C1 C2 C3 

1 BOAT_BP-CLIQUE 49.8 90.2 234 

2 BOAT_BP-DEGREE 40.8 73.1 222 

3 BOAT_BP-NODE 39.2 63.8 192 

4 BOAT_MATCH 18 26.6 99 

5 EASTPARK_BP-CLIQUE 26.6 55 137 

6 EASTPARK_BP-DEGREE 23.4 33.8 117 

7 EASTPARK_BP-NODE 19.6 32.9 112 

8 EASTPARK_ MATCH 14.4 20.8 63 

9 EASTSOUTH_BP-CLIQUE 8.4 18 32 

10 EASTSOUTH_BP-DEGREE 10 18.3 31 

11 EASTSOUTH_BP-NODE 7.8 11.9 21 
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12 EASTSOUTH_ MATCH 8 10.2 19 

13 RESIDENCE_BP-CLIQUE 31.4 63.2 147 

14 RESIDENCE_BP-DEGREE 14.8 22.6 122 

15 RESIDENCE_BP-NODE 11.8 17.6 107 

16 RESIDENCE_ MATCH 22 26.2 78 

17 ENSIMAG_BP-CLIQUE 10.8 21.3 59 

18 ENSIMAG_BP-DEGREE 9 16.2 43 

19 ENSIMAG_BP-NODE 8.2 15.8 27 

20 ENSIMAG_ MATCH 11.4 17.5 24 
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