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Abstract: A correspondence is a set of mappings that establishes a relation be-

tween the elements of two data structures (i.e. sets of points, strings, trees or 

graphs). If we consider several correspondences between the same two structures, 

one option to define a representative of them is through the generalised median 

correspondence. In general, the computation of the generalised median is an NP-

complete task. In this paper, we present two methods to calculate the generalised 

median correspondence of multiple correspondences. The first one obtains the op-

timal solution in cubic time, but it is restricted to the Hamming distance. The sec-

ond one obtains a sub-optimal solution through an iterative approach, but does not 

have any restrictions with respect to the used distance. We compare both pro-

posals in terms of the distance to the true generalised median and runtime. 

Keywords: Correspondence, Mappings, Hamming Distance Generalised Median, 

Linear Assignment Problem. 

1. Introduction 

In several pattern recognition applications, there is a need to define an element-to-

element relation between two objects. This process, commonly referred as “match-

ing”, has been applied on data structures such as sets of points [1], strings [2], trees 

[3] and most notably, graphs [4], [5], [6], [7], [8]. While this previous work demon-

strates that there has been a long standing effort to increase the quality of the methods 

that perform structural matching, it may also derive in scenarios where we encounter 

two or more parties which, having applied different matching algorithms, have pro-

duced several matching solutions. These solutions, onwards referred as “correspond-

ences”, may be the result of the several existing methodologies or different parameter-

isations of these methodologies, which generate each time a different set of mappings 

between the elements of an output data structure and the elements of an input data 

structure. 

Given a set of objects, their median is defined as the object that has the smallest 

sum of distances (SOD) [9], [10] to all objects in the set [11]. From this definition, we 

are able to identify the generalised median (GM) and the set median, which difference 

lies in the space where each median is searched for. In the first case there are no re-
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strictions for the search, while on the second case the exploration space is restricted to 

the elements in the set. 

Due to its robustness, the concept of GM has been implemented to deduce the rep-

resentative prototype of a set of data structures [12] and for clustering ensemble pur-

poses [13] on data structures such as strings [14], graphs [15] and data clusters [16]. 

For these data structures (and for correspondences as well), the GM computation turns 

out to be an NP-complete problem. This drawback has led to a variety of methods 

solely developed for the GM approximation, such as a genetic search method [11] or 

approximations through the weighted mean of a pair of strings [17], graphs [18] or 

data clusters [19]. Most recently, a method known as the Evolutionary method [20] 

has been presented, offering a good trade-off between accuracy and runtime. This 

makes the Evolutionary method one of the most viable options for the GM approxi-

mation on most domains. 

In this paper, we present two methodologies to obtain the GM of a set of corre-

spondences. The first one is based on a voting and minimisation process, and the sec-

ond one is based on the Evolutionary method adapted to the correspondence case. 

Notice that the calculation of a representative prototype of a set of correspondence has 

been studied before in what we called the “correspondence consensus 

frameworks” [21], [22], [23], [24], [25]. Nonetheless, there are some differences 

between approximating towards the GM and these consensus frameworks; the most 

important one being the function to be mini-mised. As commented before, the 

GM computation aims to minimise the SOD, whereas in the consensus 

framework, the function could also include the reduction of some other restrictions, 

such as the cost defined on the correspondences or the struc-tural information of the 

data structures mapped.  

The rest of the paper is structured as follows. In section 2, we introduce the basic 

definitions. In sections 3 and 4, we present both methods. In section 5, we compare 

them and evaluate the results in terms of the distance to the ground truth GM and the 

runtime. Finally, section 6 is reserved for conclusions and further work. 

2. Basic Definitions

Let us represent any kind of data structure as 𝐺 = (𝛴, 𝛾), where 𝑣𝑖 ∈ 𝛴 is an ele-

ment inside the structure (elements can be, for instance, characters for strings, or 

nodes and edges for trees and graphs), and 𝛾 is a function that maps each element to a 

set of attributes. To allow maximum flexibility in the matching process, these struc-

tures may have been extended with null elements (represented as Φ), which have a set 

of attributes that differentiate them from the rest of the elements. 

Given 𝐺 = (𝛴, 𝛾) and 𝐺′ = (𝛴′, 𝛾′) of the same order 𝑁 (naturally or due to the 

aforementioned null element extension), we define the set of all possible correspond-

ences 𝑇𝐺,𝐺′ such that each correspondence in this set maps elements of 𝐺 to elements

of 𝐺′, 𝑓: 𝛴 → 𝛴′ in a bijective manner. Onwards, we refer to 𝑇 instead of 𝑇𝐺,𝐺′. More-

over, consider a subset of correspondences 𝑆 ∈ 𝑇 between the same pair of structures 

that have been produced using different matching approaches. 

Let 𝑓1 and 𝑓2 denote two different correspondences within 𝑆. We can deduct how

dissimilar these two correspondences are through the Hamming distance (HD) func-

tion, which calculates the distance (number of different mappings) between 𝑓1 and

𝑓2. More formally, the HD is defined as:
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 𝐷𝑖𝑠𝑡𝐻𝐷(𝑓1 , 𝑓2) =  ∑ (1 − 𝜕(𝑣′𝑥  , 𝑣′𝑦))

𝑁

𝑖=1

 

 

(1) 

 

being 𝑥 and 𝑦 such that 𝑓1(𝑣𝑖) = 𝑣′𝑥 and 𝑓2(𝑣𝑖) = 𝑣′𝑦 , and ∂ being the well-known 

Kronecker Delta function. 

 

𝜕(𝑎, 𝑏) =  {
0  𝑖𝑓 𝑎 ≠ 𝑏

1 𝑖𝑓 𝑎 = 𝑏
 

 

(2) 

 

Given a set of 𝑀 input correspondences, the GM is the correspondence that has 

the smallest SOD to all objects in such set.  

 

𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛
∀𝑓∈𝑇

∑  𝐷𝑖𝑠𝑡𝐻𝐷(𝑓, 𝑓𝑖)

𝑀

𝑖=1

 

 

(3) 

 

If the minimisation to find 𝑓 is restricted to be within the elements of 𝑆, then the 

solution is called the set median. Conversely, a search of all elements within 𝑇 is 

known as the GM, which is considered a more attractive but more computationally 

demanding option. As noticed, the calculation of a median is closely related to the 

distance between the objects involved, and thus, the importance of defining the HD 

for the correspondence case. 

 

 
Figure 1. Example of three correspondences. 

3. Minimisation Method 

The first method presented in this paper is called Minimisation method. The name 

is related to the minimisation of the sum of the linear assignment problem (SLAP). To 

introduce it, consider the following example. Suppose that three separate entities have 

proposed correspondences as shown in figure 1, depicted as 𝑓1 (red lines), 𝑓2 (blue 

lines) and 𝑓3 (green lines). Notice that as commented in section 2, the input set has 

been extended with a null element (Φ) to make correspondences mutually bijective. 

We are able to represent these correspondences as correspondence matrices 𝐹1, 𝐹2 

and 𝐹3 as shown in figure 2. These matrices are defined as follows. 𝐹𝑘[𝑥, 𝑦] = 1 if 

𝑓𝑘(𝑣𝑥) = 𝑣′𝑦  and 𝐹𝑘[𝑥, 𝑦] = 0 otherwise. 
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Figure 2. Correspondences matrices 𝐹1, 𝐹2 and 𝐹3. 

 

Our method minimises the following expression: 

 

𝑓 = argmin
∀𝑓∈𝑇

{ ∑ [𝐻 ∘ 𝐹]{𝑥, 𝑦}

𝑁

𝑥,𝑦=1

} 

 

(4) 

 

where {𝑥, 𝑦} is a specific cell and 𝐻 is the following matrix: 
 

𝐻 = ∑ 𝟏 − 𝐹𝑘

𝑀

𝑘=1

 

 

(5) 

with 𝟏 being a matrix of all ones, 𝐹 being the correspondence matrix of 𝑓 ∈ 𝑇 (if 

𝑓(𝑣𝑥) = 𝑣′𝑦  then 𝐹{𝑥, 𝑦} = 1, otherwise 𝐹{𝑥, 𝑦} = 0) and ∘ being the Hadamard 

product. 

We deduct 𝑓 through equation 4 but we wish to minimise the SOD of all corre-

spondences to obtain the true 𝑓 (equation 3). Therefore, we have to demonstrate that 

the obtained correspondence 𝑓 in equation 3 is the same than the one in equation 4. 

For this reason, we have to demonstrate that equation 6 holds: 

 

∑  𝐷𝑖𝑠𝑡𝐻𝐷(𝑓 , 𝑓𝑘 )

𝑀

𝑘=1

= ∑ [[∑ 𝟏 − 𝐹𝑘

𝑀

𝑘=1

] ∘ 𝐹] {𝑥, 𝑦}

𝑁

𝑥,𝑦=1

 

 

(6) 

 

Applying the associative property of Hadamard product, the following expression 

is obtained: 

 

∑  𝐷𝑖𝑠𝑡𝐻𝐷(𝑓 , 𝑓𝑘  )

𝑀

𝑘=1

= ∑ ( ∑ [[𝟏 − 𝐹𝑘] ∘ 𝐹]{𝑥, 𝑦}

𝑁

𝑥,𝑦=1

)

𝑀

𝑘=1

 

 

(7) 

 

Then, if we demonstrate that each individual term holds the equality 

 𝐷𝑖𝑠𝑡𝐻𝐷(𝑓 , 𝑓𝑘  ) = ∑ [[𝟏 − 𝐹𝑘] ∘ 𝐹]𝑁
𝑥,𝑦=1 {𝑥, 𝑦}, then for sure equation 7 holds. As 

shown in its definition, the HD counts the number of mappings that are different be-

tween the two correspondences and similarly, expression ∑ [[𝟏 − 𝐹𝑘] ∘ 𝐹]𝑁
𝑥,𝑦=1 {𝑥, 𝑦} 
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does, since this last expression counts the number of times 𝐹{𝑥, 𝑦} = 1 and that sim-

ultaneously 𝐹𝑘{𝑥, 𝑦} = 0. 

Notice that by adding all correspondence matrices in equation 5, we create a struc-

ture similar to a voting matrix [25]. This method is based on minimising the linear 

assignment problem applied to this voting matrix using any solver such as the Hun-

garian method [27], the Munkres algorithm [28] or the Jonker-Volgenant solver [29] 

as shown in Algorithm 1: 

 

Algorithm 1: Minimisation 
Input: A set of correspondences 

Output: GM correspondence 𝑓 

 Compute matrix 𝐻 (equation 5) 

 𝑓 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑜𝑙𝑣𝑒𝑟 (𝐻) ([27], [28] or [29]) 

End Algorithm 

 

Since the three solvers have all been demonstrated to obtain an optimal value, it is 

possible to guarantee that this method obtains the exact GM, given that there is only 

first order information involved and no second order information is considered. That 

is, we do not take into account relations between the mapped elements inside their set. 

Figure 3 shows the GM correspondence obtained for this particular practical example. 

 

 
Figure 3. GM correspondence of the three correspondences in figure 1. 

4. Evolutionary Method 

The second option explored in this paper for the GM correspondence computation 

is the use of the meta algorithm presented in [20] called Evolutionary method. This 

proposal relies on the concept of the weighted mean of a pair of correspondences, 

which is defined as follows. Given 𝑓1, 𝑓2 and a distance 𝐷𝑖𝑠𝑡 between them (for 

instance 𝐷𝑖𝑠𝑡𝐻𝐷), the mean correspondence of 𝑓1 and 𝑓2 is a correspondence 𝑓̅ ∈ T 

such that: 

 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓)̅ = 𝐷𝑖𝑠𝑡(𝑓̅, 𝑓2) 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓2) = 𝐷𝑖𝑠𝑡(𝑓1, 𝑓)̅ + 𝐷𝑖𝑠𝑡(𝑓,̅ 𝑓2) 

 

(8) 

 

Additionally, the weighted mean correspondence 𝑓𝛼̅ ∈ T is defined as a corre-

spondence in 𝑇 that holds: 
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𝐷𝑖𝑠𝑡(𝑓1, 𝑓𝛼̅) = 𝛼 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓2) = 𝛼 + 𝐷𝑖𝑠𝑡(𝑓𝛼̅ , 𝑓2) 

where 𝛼 is a constant: 0 ≤ 𝛼 ≤ 𝐷𝑖𝑠𝑡(𝑓1, 𝑓2) 

 

 

(9) 

Clearly, 𝑓0̅ = 𝑓1 and 𝑓𝐷̅𝑖𝑠𝑡(𝑓1,𝑓2) = 𝑓2. Nevertheless, both the mean correspond-

ence and the weighted mean correspondence given a specific 𝛼 are usually not 

unique. The concept of the weighted mean has been previously defined for strings 

[17], graphs [18] and data clusters [19]. 

As proven in [11], the GM of some elements in any space can be estimated 

through an optimal partition of the pairs of these elements. This is because they 

demonstrated that by computing the weighted mean of such optimal pairs of elements, 

all of those weighted means tend to match in one element that can be considered a 

good estimation of the GM of the set. Since in some cases the GM can be far away 

from the deducted element, an iterative algorithm is proposed in [20] which tends to 

achieve the true GM. This algorithm, applied to the correspondence domain, consists 

on the steps shown in Algorithm 2: 

 

Algorithm 2: Evolutionary 

Input: A set of correspondences 

Output: GM correspondence 𝑓 

While convergence 

1. Deduct the optimal pairs of correspondences. 

2. Estimate some weighted means per each pair. 

3. Add the weighted means to the current set of correspondences. 

4. Select the optimal correspondences in the current set.  

End Algorithm 

 

We proceed to detail steps 1, 2 and 4 in the correspondence domain. Notice the 

third step is simply adding the obtained weighted mean correspondences to the cur-

rent set of correspondences. 

4.1 Optimal Pairs of Correspondences 

We generate the distance matrix given the whole correspondences, where any dis-

tance between these correspondences can be used. Then, the optimal pairs of elements 

are considered the ones that generate the minimum SOD between them [11]. Thus, we 

simply obtain the pairs of correspondences by applying a SLAP solver such as the 

Hungarian method [27], the Munkres algorithm [28] or the Jonker-Volgenant solver 

[29]. Note that we do not want one correspondence to be assigned as the optimal pair 

of itself and for this reason, instead of filling the diagonal of the distance matrix with 

zeros, we impose a high value. Nevertheless, if there is an odd number of correspond-

ences, for sure the solver returns a correspondence mapped to itself. In this case, this 

correspondence is stored until the third step. 

4.2 Weighted Means of Pairs of Correspondences 

The aim of the second step is to estimate 𝛺 equidistant weighted means per each 

pair of correspondences. Thus, we generate 𝑓α̅1
, …, 𝑓α̅Ω

 such that α𝑖 =
𝑖

Ω+1
 (equation 

9). The order of 𝛺 is usually set from 1 to 3. This is because, through the practical 
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validation, we have seen that restricting the process to calculate only the mean corre-

spondence (that is 𝛺 = 1) makes the process converge slower than when having for 

instance three equidistant weighted means, even though these are obtained in a sub-

optimal form. Moreover, experimentation has shown that if 𝛺 > 3, the computational 

cost is also increased without gaining in accuracy. 

The weighted mean search strategy we used is inspired by the “Moving Elements 

Uniformly” strategy presented in [19] for the domain of data clusters. In that case, 

they were able to generate multiple weighted mean data clusters from two initial ones. 

To do so, authors defined an initial weighted mean as one of the data clusters, and 

then they systematically swap elements that belong to two different clusters in the 

weighted data cluster in such a way that the weighted mean data clusters formed tends 

to move from one of the initial data clusters into the other one. 

Our proposal initially defines the weighted mean correspondence as one of the 

correspondences. Then, it simply swaps pairs of element-to-element mappings in the 

proposed weighted mean 𝑓𝛼̅. Note, every time a swap is performed, the value 

𝐷𝑖𝑠𝑡(𝑓1, 𝑓𝛼̅) is increased by two, but we cannot guarantee that 𝐷𝑖𝑠𝑡(𝑓2, 𝑓𝛼̅) is also 

decreased by two. For this reason, the strategy checks if the current correspondence is 

a true weighted mean (equation 9 holds). If it is the case, a weighted mean has been 

formed and the swapping process continues until finding all required weighted means. 

If it is not the case, the process is reset and repeated until finding weighted means. 

This method has its base on a theorem presented in [21], where it was shown that a 

weighted mean correspondence has to hold that 𝑓𝛼̅(𝑣𝑥) = 𝑓1(𝑣𝑥) or 𝑓𝛼̅(𝑣𝑥) = 𝑓2(𝑣𝑥) 

for all elements in the weighted mean correspondence. 

4.3 Selecting the Optimal Correspondences 

Once the current correspondences are put together with the new weighted mean 

correspondences to enlarge the set (step 3), the method could return to the first step of 

Algorithm 2 with this newly enlarged set without running the fourth step. Neverthe-

less, the computational cost and memory space needed in each iteration would expo-

nentially increase. For this reason, the aim of this fourth step is to discard the corre-

spondences that are believed not to be a good choice for the GM. To that aim, a dis-

tance matrix is computed between the whole correspondences. Then, the ones that 

have a larger SOD from themselves to the rest are discarded.  Note that this method-

ology is in line of the GM (equation 3). 

When the fourth step finishes, Algorithm 2 iterates again until one of three options 

happens: 1) The sum of the minimum SOD of the whole correspondence in the set is 

lower than a threshold. 2) A maximum number of iterations is achieved. 3) A mini-

mum difference on the total SOD between the previous iteration and the current one is 

achieved. Independently of the terminating option, Algorithm 2 returns the corre-

spondence in the set that has at the moment the minimum SOD to the set as the GM 

correspondence. Convergence is assured since the SOD, in each iteration, is equal or 

lower than the previous iteration. Moreover, in case the SOD is kept equal, Algorithm 

2 stops. 

5. Experimental Validation 

Two methods have been presented. The first one obtains the exact GM corre-

spondence, but is restricted to the use of the HD. The second one deducts an approxi-

mation of the GM correspondence, but is not restricted to any distance between corre-
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spondences. In this section, we show how close the suboptimal method is with respect 

to the optimal one, as well as the runtime of both methods. To have a fair comparison, 

we have used the HD in both cases. 

We performed three tests, all of them executed the same way but using corre-

spondences with 𝑁 = 5, 𝑁 = 10 and 𝑁 = 30 mapped elements in each case. Each 

test was prepared as follows. We randomly generated 100 sets of 𝑀 = 2,3 … ,50 cor-

respondences. For each set, both methods to find the GM correspondence are execut-

ed. In the Minimisation method, the Hungarian method [27] was used to solve the 

SLAP. 

Figure 4 shows the normalised difference on the SOD that the GM correspondenc-

es generated by the Evolutionary method obtained with respect to the ones from the 

Minimisation method (x-axis) in the first test (𝑁 = 5), second test (𝑁 = 10) and third 

test (𝑁 = 30) respectively. Each dot in the plot represents the average of the 100 exe-

cutions. For the Evolutionary method, we show results using the number of iterations 

𝐼𝑚𝑎𝑥 = 1 and 𝐼𝑚𝑎𝑥 = 2. Results for larger values of 𝐼𝑚𝑎𝑥  are not shown since they 

deliver exactly the same values that the ones of 𝐼𝑚𝑎𝑥 = 2. 

 

  

 
Figure 4. Average difference of SOD (HD) between the Evolutionary method and Minimisa-

tion method (𝑥-axis, optimal method) for  𝑁 = 5,  𝑁 = 10 and 𝑁 = 30. 

 

In the three cases for a set of two correspondences,  𝑀 = 2, the Evolutionary 

method obtains optimal GM correspondences since the method only has to deal with 

the mean calculation. Nonetheless as the number of correspondences 𝑀 increases, this 

overestimation has a peak maximum value, and then it decreases until lowering down 

again towards the optimal value of the GM correspondence. This leads us to think that 

the Evolutionary method has an optimal number of correspondences to be used, since 
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certain values of 𝑀 lead more overestimation than others. Finally, from these plots we 

conclude that the Evolutionary method, regardless of the 𝐼𝑚𝑎𝑥 value used, obtains 

values that are really close to the optimal ones. In fact, the worst case overestimates 

the SOD in 4.5% with respect to the optimal SOD. 

Figure 5 shows the runtime difference between the Evolutionary method and the 

Minimisation method (𝑥-axis) in seconds. In the case of the Evolutionary method, it is 

clear that the time spent in each iteration is constant. Comparing both methods, the 

minimisation one is clearly faster than the evolutionary one, although both have a 

polynomial computational cost with respect to the number of correspondences used to 

deduct the GM. Finally, comparing the three plots, we realise the number of elements 

𝑁 in the sets seems to have almost no influence on the runtime.  

 

  

 
Figure 5. Average difference of runtime (seconds) between the Evolutionary method and Min-

imisation method (𝑥-axis) for 𝑁 = 5, 𝑁 = 10 and 𝑁 = 30. 

6. Conclusions and Future Work 

We have presented two methods to deduct the GM correspondence. The first one, 

called Minimisation method, computes the exact GM in a reduced runtime, but it is 

bounded to the use of the HD. Since it is based on the solution of the SLAP, it is lim-

ited in scalability for the cases where correspondences have a large size. The second 

one, called Evolutionary method, obtains a fair approximation of the GM, and may be 

used with any type of distance between correspondences. This method has better 

scalability, given that although there is a SLAP solution required (step 1), it only 

takes into consideration the distance between correspondences, and not the corre-

spondences themselves as in the Minimisation method. Notice that the Evolutionary 
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method has been a viable solution for the approximation of the GM of strings and 

graphs [20], since these structures imply second order relations and therefore finding 

their exact GM has an exponential cost.  

In the concrete case that the aim is to find the GM of correspondences and the HD 

can be used, we have shown that this problem can be solved in cubic time (the com-

putational cost of the SLAP) using the Minimisation method. Nevertheless, we con-

sider this paper as a first step towards future research in which other distances be-

tween correspondences will be explored, and thus the Evolutionary method should not 

be discarded for future uses. 

We believe that other distances between correspondences which take into consid-

eration not only the element-to-element mapping, but also the structure and attributes 

of the related elements, could produce more interesting GM correspondences from the 

application point of view. For instance, in the situation that the correspondences relate 

attributed graphs, the mapping is defined as node-to-node. In this case, we could con-

sider the local structure of the nodes (its adjacent edges and their terminal nodes) to 

penalise the cost of the mapping. Then, the Minimisation method would not produce 

an exact GM and therefore, we would need to compare both algorithms, not only from 

the runtime point of view, but also in terms of accuracy to deduct the best approxima-

tion to the GM correspondence. 
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