
CORTÉS-GALLARDO, E., MORENO-GARCIA, C.F., ZHU, A., CHÍPULI-SILVA, D., GONZÁLEZ-GONZÁLEZ, J.A., MORALES-
ORTIZ, D., FERNÁNDEZ, S., URRIZA, B., VALVERDE-LÓPEZ, J., MARÍN, A., PÉREZ, H., IZQUIERDO-REYES, J. and

BUSTAMANTE-BELLO, R. 2019. A comparison of feature extractors for panorama stitching in an autonomous care
architecture. In Proceedings of 2019 International conference on mechatronics, electronics and automotive

engineering (ICMEAE 2019), 26-29 November 2019, Cuernavaca, Mexico. Piscataway: IEEE [online], page 50-55.
Available from: https://doi.org/10.1109/ICMEAE.2019.00017

A comparison of feature extractors for panorama
stitching in an autonomous car architecture.

CORTÉS-GALLARDO, E., MORENO-GARCIA, C.F., ZHU, A., CHÍPULI-SILVA,
D., GONZÁLEZ-GONZÁLEZ, J.A., MORALES-ORTIZ, D., FERNÁNDEZ, S.,
URRIZA, B., VALVERDE-LÓPEZ, J., MARÍN, A., PÉREZ, H., IZQUIERDO-

REYES, J. and BUSTAMANTE-BELLO, R.

2019

This document was downloaded from
https://openair.rgu.ac.uk

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

https://doi.org/10.1109/ICMEAE.2019.00017

1

A Comparison of Feature Extractors for Panorama

Stitching in an Autonomous Car Architecture
Edgar Cortés-Gallardo1, Carlos Francisco Moreno-Garcia2, Alfredo Zhu1, Daniela Chípuli-Silva1, José A.

Gonzalez-González1, Domenico Morales-Ortiz1, Sebastián Fernández1, Bernardo Urriza1, Juan Valverde-López1,

Arath Marín1, Hugo Pérez1, Javier Izquierdo-Reyes1,3, Rogelio Bustamante-Bello1,4

A01336292@itesm.mx, c.moreno-garcia@rgu.ac.uk, {A01651980, A01652237, A01652551, A00820324,

A01652293, A01336299, A01656127, A01651107, A01337226}@itesm.mx, {jizquierdo.reyes, rbustama}@tec.mx
1Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, México

2The Robert Gordon University, Aberdeen, United Kingdom
3Massachusetts Institute of Technology, Massachusetts, United States

4Centro de Investigación en Microsistemas y Biodiseño, Tecnológico de Monterrey, México

Abstract— Panorama stitching consists on frames being merged

to create a 360° view. This technique is proposed for its

implementation in autonomous vehicles instead of the use of an

external 360-degree camera, mostly due to its reduced cost and

improved aerodynamics. This strategy requires a fast and robust

set of features to be extracted from the images obtained by the

cameras located around the inside of the car, in order to effectively

compute the panoramic view in real time and avoid hazards on the

road. This paper compares and creates discussion of three feature

extraction methods (i.e. SIFT, BRISK and SURF) for image

feature extraction, in order to decide which one is more suitable

for a panorama stitching application in an autonomous car

architecture. Experimental validation shows that SURF exhibits

an improved performance under a variety of image

transformations, and thus appears to be the most suitable of these

three methods, given its accuracy when comparing features

between both images, while maintaining a low time consumption.

Furthermore, a comparison of the results obtained with respect to

similar work allows us to increase the reliability of our

methodology and the reach of our conclusions.

Keywords — Panorama Stitching, Image Blending, Feature

Extraction, Autonomous Vehicles, SIFT, BRISK, SURF.

I. INTRODUCTION

Blind spots are a very common downside in everyday drivers’

routines. The most common example is the rear-view mirrors,

which are used to keep watch on cars coming from behind.

These offer a certain visual perspective, nonetheless they do not

reflect all the objects that are behind the car. The human eye

gives a peripheral field of around 135- to 200-degrees, but a

regular camera has a field of view of only 35- to 50-degrees.

Due to this lack of sight, some accidents may happen on the

road. Regarding this safety issue, autonomous cars that are

being developed for driving assistance see the outside of the car

using strategically located cameras. Therefore, panoramic

image stitching works by taking several pictures from an

ordinary camera and blending them together to produce a single

image with a much larger line of vision [1].

However, the blind spot problem persists, as a single camera

cannot perceive the 360-degree perspective of the car by itself.

Although there are existing 360-degree cameras on the market,

these are too expensive, and given that they must be situated

outside the vehicle’s body, they become prone to theft [2].

Moreover, these cameras are aerodynamically inefficient since

air currents causing drag in the vehicle tend to affect in larger

scales the development of vehicles speed [3]. This is given by

 𝐹𝑑 =
1

2
𝐶𝑑𝜌𝐴𝑉2 (1)

which states that the drag force 𝐹𝑑 is equal to half of the drag

coefficient 𝐶𝑑, which depends on the object’s geometry; in this

case, the vehicle itself. This value, multiplied by the fluid

density 𝜌, the colliding area 𝐴 (i.e. the area of the vehicle

perpendicular to air trajectory) and the object's velocity relative

to air direction squared 𝑉2 imply that the drag force

experienced by an object will be proportional to the speed it has

relative to air direction. Therefore, adding an external camera

makes the vehicle cover a wider area, which will affect the drag

force as stated previously.

To address the paradigm of coordinating the vision from

more than one visual input, some authors have proposed

different approaches that create a joint view based on multiple

cameras. Cortés et al. [4] proposed a semi-automatic pose

estimation method for a fleet of robots with stereoscopic

cameras by means of an interface which allows a human expert

to correct and impose mappings between two images. This

method allows the robots to align and follow a common route

without requiring a GPS or landmark application. Moreover,

Manzo et al. [5] presented an interactive pose calibration

method for a set of cameras used in video surveillance. The

scheme of the human assisted interface consists of a set of

cameras with salient points and feature extractors, followed by

a matching estimator assisted by the user, a structure for motion

and finally a cooperative pose estimation model capable of

producing homographies.

Although these techniques are suitable for alignment and

surveillance purposes, an implementation for a real time

autonomous vehicle case would require an approach not relying

on human assistance. One of the simplest, yet most viable

solutions for the problem at hand is panorama stitching, where

frames are taken from each of the cameras located around the

inside of the car, creating a panoramic video stream of a 360-

degree sight. This method has proven to be effective in some

scenarios such as the automatization of panoramic image

stitching and detection of multiple panoramas in a single image

stream array [6]. Another application involving automotive

development would be panoramic image stitching of rear

mailto:A01337226%7d@itesm.mx

2

cameras instead of rear mirrors in cars also known as rear-

stitched view panorama [7], as well as the aforementioned 360-

degree panorama stitching approach to avoid both blind spots

and a 360-degree camera [8]. To perform panorama stitching, it

is fundamental to select an image feature extraction method

which is robust in terms of accuracy and time of computation.

From the literature [9], we have observed that SIFT, BRISK and

SURF are the most commonly used for similar tasks, and thus

will be discussed in this paper.

This paper is organized as follows. Section 2 presents the

potential methods for feature extraction in order to choose the

method that is best suited for real time panorama image

stitching. Section 3 analyzes the methodology used for the

method discrimination. It is clear to state that the methodology

involves both: theoretical explanation of the method’s

implementations and practical code application for actual real

time comparison between methods and algorithms. Moreover,

Section 4 presents the results obtained and shows a comparison

with the state of the art. Finally, Section 5 is reserved for the

conclusions as well as the intended future developments.

II. FEATURE EXTRACTION

This section introduces the three methodologies selected to

perform image feature extraction for panorama stitching in a set

of cameras located outside the autonomous vehicle body: SIFT,

SURF and BRISK.

2.a SIFT

SIFT (Scale Invariant Feature Transform) is a method that

determines salient points. Proposed by Lowe et al. [10], it has

four computational steps for extracting keypoints: scale-space

peak selection, keypoint localization, orientation assignment

and defining keypoint descriptors. For each image, it builds an

image pyramid by generating progressively blurred out images,

and it subtracts neighbor images to get the Difference of

Gaussian (DOG) pyramid. Then, it detects the extreme for DOG

pyramid. The number of keypoints was reduced to help in

increasing efficiency and robustness of the technique.

Keypoints are rejected if they had a low contrast or if they were

located on an edge. The following step is orientation

assignment, which uses an orientation histogram to statistic the

gradient orientation by sampling the center neighborhood of the

key points. The last step consists on obtaining the keypoint

descriptors [11]. In other words, it uses the scale and local

orientation by maximizing the difference of Gaussian in scale

and space. With this information, it computes a gradient

orientation histogram for each cell with eight orientations to

obtain the dimensional descriptor. Then, it normalizes the

descriptor to obtain an invariant to intensity change. This

process is done for all keypoints.

2 b. BRISK

BRISK (Binary Robust Invariant Scalable Keypoints) is a

method that solves the problem of classical computer vision

detection, which matches image key points without sufficient

prior knowledge in the field and camera position. It was

proposed by Leutenegger et al. [12], it detects the corners and

then it filters them with the FAST (Feature from Accelerated

Segment Test) approach [13]. BRISK identifies the

characteristic direction of the features to achieve rotation

invariance. The descriptor is constructed as a binary string and

the features are invariant to scale, limited affine changes and

rotation.

BRISK is an algorithm for feature point detection and

description with scale invariance and rotation invariance. The

principle of it is to extract the stable extreme points of sub-pixel

precision in the scale space pyramid constructed. It can find

random point pairs neighboring the local image by using the

gray scale relationship and obtaining the binary feature

descriptor of each keypoint. The difference between it with

others is that BRISK does not require high storage memory and

it is faster, but it implies reducing the robustness [14].

2 c. SURF

SURF (Speeded Up Robust Features) is an algorithm developed

for local, similarity invariant representation and comparison

[15]. It approximates Gaussian smoothing with box filters; this

technique allows the image filtering to be faster if the whole

image is used. SURF is composed of three main steps. First,

keypoints are selected at distinctive locations in the image, such

as corners, blobs, and T-junctions. Next, the neighborhood of

every keypoint is represented by a feature vector. This

descriptor has to be distinctive. At the same time, it should be

robust to noise, detection errors, and geometric and photometric

deformations. Finally, the descriptor vectors are matched

among the different images [11].
SURF uses the Hessian matrix as a blob detector to find the

keypoints; thus, the determinant of this matrix is used to

measure the local change with the neighborhood points and the

ones with the maximal value are chosen and are interpolated in

scale and image space. In order to obtain the rotational

invariance, it finds the orientation of the point using the sum of

Haar wavelet responses. Finally, it compares the descriptor

obtaining the match [15]. It’s important to mention that square

shaped filter is used as an approximation.

If the integral image is processed, then the square shaped

filters provide the best result [16]. The integral image describes

the sum of pixels to the left and above a specified pixel and

represents the average values of pixels over a certain region.

This is important because the values of the integral image are

used to compute the Hessian matrix, as they are much faster for

doing the convolution needed to obtain𝐿𝑥𝑥(𝑋, 𝜎). An integral

image can be computer for any point 𝑥, 𝑦 as follows:

 𝑆(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑖, 𝑗)𝑦
𝑗=0

𝑥
𝑖=0 (2)

As mentioned before, the SURF detector is based on the

determinant of the Hessian matrix. Let point 𝑋 = (𝑥, 𝑦) in an

image 𝐼, the Hessian matrix 𝐻(𝑋, 𝜎) at scale 𝜎 in 𝑋 can be

calculated as in matrix:

 𝐻(𝑋, 𝜎) = [
𝐿𝑥𝑥(𝑋, 𝜎) 𝐿𝑥𝑦(𝑋, 𝜎)

𝐿𝑥𝑦(𝑋, 𝜎) 𝐿𝑦𝑦(𝑋, 𝜎)
] (3)

3

where, 𝐿𝑥𝑥(𝑋, 𝜎) is the convolution of the Gaussian second

order derivative
𝜕2

𝜕𝑥2 𝑔(𝜎) with the image 𝐼 in the point 𝑋, and

similarly for 𝐿𝑥𝑦(𝑋, 𝜎) and 𝐿𝑦𝑦(𝑋, 𝜎).

The implementation specifications are the following: Code

was executed in an ASUS Zephyrus computer, with i7 8th Gen

Intel core, 40GB RAM memory and the NVIDIA Geforce RTX

2080 GPU running C++ compiled in Ubuntu 18.04 operative

system. OpenCV library was used for image processing tasks.

III. METHODOLOGY

3.a. Selection of Feature Extractors

The application of the three methods is code based, which

means that in order to obtain, compare and analyze results, the

implementation of the algorithms in actual code would be

required. On this regard, SIFT was analyzed only from a

literature review perspective due to the following reason. Given

that our main goal is to execute these feature extraction methods

in a video stream, the panorama stitching algorithm needs to be

fast, and with a precise image processing transform. SIFT is

precise, but lacks velocity due to its high computational

demand, therefore at this point it is discarded from further

analysis in this paper. By contrast, there is no mention in

literature regarding a high computational cost of BRISK, scale,

rotation and affine invariant, using scale pyramids maxima and

corners for feature extraction, which is a very good

approximation. Furthermore, SURF is regarded in literature to

be superior in terms of execution time and illumination

invariance, having a low computational cost in balance with fair

precision, by means of Gaussian pyramids and Hessian matrices

applied for acquiring speed. For comparison with more recently

presented feature extractors in literature, it is worth mentioning

that methods such as ORB, which is the fast and rotation

invariant version of the Binary Robust Independent Elementary

Features (BRIEF) algorithm [17], is rotation and scale invariant

with improved execution time, but its performance is poorer in

the presence of noise compared to the selected feature

extractors [18].

3.b. Panorama Stitching based on SURF

In comparison to SIFT, as mentioned in literature, SURF is used

as the feature descriptor and for matching purposes. A basic

second order Hessian matrix approximation is used for feature

point detection. The time needed to generate the output is 40

seconds [19].

1. In the construction of scale image pyramid in SURF

algorithm, the scale space is divided into octaves, and there are

4 scale levels in each octave.

2. Each octave represents a series of filter response maps

obtained by convolving the same input image with a filter of

increasing size.

3. The minimum scale difference between subsequent scales

depends on the length of the positive or negative lobes of the

partial second order derivative in the direction of derivation.

4. A non-maximum suppression is done using a neighborhood

of 3 × 3 × 3 to get the steady feature points and the scale of

values.

3.c. Panorama Stitching based on BRISK

BRISK detects corners using the Adaptive Generic Accelerated

Segment Test (AGAST) algorithm and filters the results

through the FAST Corner Score. The following steps are

carried out:

1. Corners are used to detect and search for maxima in every

reduction of the scale space pyramid method.

2. In construction, BRISK descriptors identify the characteristic

direction of each feature vector.

3. This way, feature invariance can be achieved and therefore

make processes for rotations.

4. A binary string is constructed for brightness tests and achieve

illumination invariance.

3.d. Implementation and Results

As shown in Figure 1 and Figure 2, for BRISK and SURF

implementations, both appear to have a precise point allocation

for image feature extraction. BRISK allocates a higher number

of points in comparison to SURF, however this is not enough

evidence of allocation precision. When stitching up both

images, it can be seen in Figure 3 and Figure 4 that both

algorithms have an adequate image reconstruction when

blending them together. Literature [20] supports the fact that

both methods seem to have similar accuracy for keypoint

detection and descriptors, thus, feature extraction efficiency is

not the main issue for this problem’s solution. The main issue

for discussion then becomes the speed of the algorithm.

Figure 1. SURF Implementation.

Figure 2. BRISK Implementation

4

Figure 3. SURF Stitching

Figure 4. BRISK Stitching.

When comparing time of execution of both algorithms at the

time of allocating the points from the feature extraction

methods and blending both images together for panorama

stitching and reconstruction, SURF’s time is two times faster

than BRISK’s. More specifically, BRISK takes an average of

0.4849 seconds to reconstruct the final product of the image

processing stitching. As for SURF, it takes an average of

0.2174, making it far more efficient for the needs of our system.

Some authors have confirmed similar results when

comparing runtime needed for recognizing matches using the

mentioned methods. For instance, Juan et. al [1] reported that

SURF presented a much faster runtime in the process of

detection and matching when compared to SIFT and PCA SIFT

(which consists of normalizing the gradient patch instead of

using an orientation histogram). Meanwhile, SIFT proved to be

more efficient in matching keypoints, due to the differences in

lighting within the image they used. In other work by the same

authors [21], SURF proved to be several orders of magnitude

faster. Also, Karami et al. [22] performed similar comparisons

using SIFT, SURF, BRIEF and ORB. Since BRIEF consists of

a less complex SIFT variation and ORB creates a rotation

matrix for the image using a BRIEF descriptor, SIFT once again

proved to be the slowest method, while SURF proved to take

the same average time as ORB for identifying images with

varying light intensity. However, ORB had the lowest matching

rate among them all. In special scenarios where there is no

rotation invariance and different orientations, ORB performed

better, but overall SURF provided the best balance between

speed and accuracy.

For the resolution of this problem, it appears that SURF is

the fastest approach, but not fast enough due to the fact that it

is computed inside a CPU. Therefore, we propose to accelerate

the process by means of parallelization by running the code

using a GPU architecture. Parallelization is implemented using

CUDA 10.0 toolkit for CUDA. C/C++ application is needed,

using OpenCV parallelized libraries for accelerating the SURF

computation and gain even more speed without having a

downgrade in feature extraction efficiency [23]. Experiments

showed that this implementation did accelerate the process; in

fact, it halved the execution time, taking only 0.1412 seconds

to deliver the same output shown in Figure 3.

IV. RESULTS

 Figure 5 shows that SURF blends both images in half the time

compared to BRISK. This is the main reason for parallelizing

SURF with CUDA instead of BRISK. Moreover, Figure 6

shows that BRISK and SURF have an abnormal step in iteration

129. This happens because BRISK and SURF are running

inside the CPU architecture. This is also due to the thermal

throttling technique, which is in charge of regulating the

thermal environment of the microprocessor by reducing the

speed of the device and entering a ventilation state. Since the

CPU is in charge of all processes inside the machine, its

integrity is essential [24]. In contrast, CUDA SURF runs inside

the GPU architecture, which is not overseen by the CPU.

Because of this, there's no step when developing the CUDA

SURF through an extended number of iterations. Moreover, in

Figure 7 it is validated that CUDA SURF has the least standard

deviation compared to the other methods, implying that it will

have more constant display than BRISK and CPU performed

SURF. BRISK counts with a 0.01033 standard deviation, as for

SURF being very similar with a 0.01812 ratio. SURF CUDA

on the other hand, as a 0.00363 standard deviation value,

putting it on top of the other methods. The minimum processing

time period for BRISK was of 0.46680 seconds, SURF had a

0.16789 seconds and SURF CUDA was of 0.13582 seconds.

And the maxima for stitching time values for BRISK, SURF

and SURF CUDA was: 0.52822, 0.27845 and 0.16074 seconds

respectively. This analysis was made from a 442 data samples

in all three methods. As it can be seen, SURF CUDA was the

fastest method implemented of all three. Since processing

requires CPU and GPU cores, time taken for stitching up

images is not always the same, and SURF CUDA is not only

the fastest method, but also the one that has a much less

variance ratio between iterations, by far. All these statements

can be referenced in Table 1. SURF CUDA can be used not only

for panorama stitching, but its development in literature and

practice suggests that it can be used as one of the key feature

extractors with a very promising roll for real time applications.

TABLE I

Statistical Data of BRISK, SURF and CUDA SURF

5

Figure 5. BRISK, SURF and CUDA SURF runtime

comparison in seconds.

Figure 6. BRISK, SURF and CUDA SURF development

runtime in seconds.

Figure 7. BRISK, SURF and CUDA SURF percentile box plot.

V. CONCLUSIONS

Image mosaicking/stitching is an active research area in the

fields of computer vision and computer graphics. To these aims,

there is a handful of different algorithms for feature detection

and extraction. The choice of the feature detector/extractor

depends on the problem at hand, however we can get some

intuitions of which algorithm could have a higher affinity with

any given scenario. In this work, we have tested a number of

feature extraction algorithms for its use in panorama stitching

for autonomous vehicles.

As shown in the experimental validation, the runtime

comparison between three different methods allows us to

conclude that SURF is the most time efficient between the

feature extraction methods proposed by literature. Moreover, it

is shown that parallelization using CUDA proved to be an

essential requirement for keeping processing time to its

minimum. This is not only due to the speed-up that comes

inherently from parallelizing, but also given the thermal

throttling that occurs to the CPU when not parallelizing, which

slows down the process.

However, it is worth noting that these methods are not the

only ones available for these purposes. Image stitching

techniques are constantly evolving, and new alternatives are

continuously being created. As computer's processing power

continues to grow, so does the importance and application

possibilities in computer vision.

It is important to have accurate timing measurements,

particularly for this kind of application in which the reaction

time of an autonomous automobile sometimes needs to take a

fraction of a second to prevent accidents in which a human

being could be hurt. Having a small processing timing isn't just

an efficiency parameter, but a safety requirement as well.

The comparison of these different imaging stitching

techniques allows to generate more documentation about their

efficiency and provides project developers the means to

improve their designs and promote the advancement of

computer vision technology. Moreover, we must keep in mind

that panorama stitching is not the only goal of this feature

extraction methods; so further research and implementations

need to be explored in pursuit of more innovative solutions for

everyday requirements.

ACKNOWLEDGMENT

Authors thank to Centro de Investigación en Microsistemas

y Biodiseño (cimb.com.mx) at Tecnológico de Monterrey

Campus Ciudad de México for all the support in the research

process.

REFERENCES

[1] Juan, L. Gwun, O., “SURF applied in panorama image

stitching,” International Conference on Image Processing

Theory, Tools and Applications (IPTA), pp. 495-499,

2010.

[2] Cheng, K.W.E., “Recent development on electric

vehicles,” International Conference on Power Electronics

Systems and Applications (PESA) pp. 1-5, 2009.

[3] De Lima Bernardo, B., Moraes, F., Rosas, A. “Drag Force

Experienced by a Body Moving through a Rarefied Gas,”

Chinese Journal of Physics, vol. 51, no. 2, pp. 189-199

2013.

[4] Cortés, X., Serratosa, F., Moreno-García, C. F., “Semi-

automatic pose estimation of a fleet of robots with

embedded stereoscopic cameras,” in Emerging

Technologies and Factory Automation (ETFA), pp. 1-6,

2016.

6

[5] Manzo, G., Serratosa, F., Vento, M., “Interactive pose

calibration of a set of cameras for video surveillance,”

Emerging Technologies and Factory Automation (ETFA),

pp. 1-4, 2016.

[6] Brown, M., Lowe, D. G., “Automatic panoramic image

stitching using invariant features,” International Journal of

Computer Vision, vol. 74, no. 1, pp. 59-73.

[7] Janice, P., Vikram, A., Villareal, J., Weaver, L., Do-

Kyoung, K., “Rear-Stitched View Panorama: A low-power

embedded implementation for smart rear-view mirrors on

vehicles,” Computer Vision and Pattern Recognition

Workshops (CVPRW), 2017.

[8] Shah, A. A., Mustafa, G., Ali, Z., Anees, T., “Video

stitching with localized 360 model for intelligent car

parking monitoring and assistance system,” International

Journal of Computer Science and Network Security

(IJCSNS), vol. 19, no. 5, pp. 43-47, 2019.

[9] Tareen, S. A. K., Saleem, Z., “A comparative analysis of

SIFT, SURF, KAZE, AKAZE, ORB, and BRISK,”.

International Conference on Computing, Mathematics and

Engineering Technologies (iCoMET), pp. 1-10, 2018.

[10] Lowe, D. G., “Distinctive image features from scale

invariant keypoints,” International Journal of Computer

Vision, vol. 60, pp. 91–110, 2004.

[11] Adel, E. & Elmogy, M. & El-Bakry, H., “Image Stitching

based on Feature Extraction Techniques: A Survey,”

International Journal of Computer Applications, vol. 99,

pp. 1-8, 2014.

[12] Leutenegger, S., Chli, M., Siegwart, R., “BRISK: binary

robust invariant scalable keypoints,” International

Conference on Computer Vision (ICCV), pp. 2548-2555,

2011.

[13] Rosten, E., Porter, R., Drummond, T., “Faster and better:

A machine learning approach to corner detection,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 32, no. 1, pp. 105–119, 2010

[14] Liu, Y., Zhang, H., Guo, H., Xiong, N. N., “A FAST-

BRISK feature detector with depth information,” Sensors,

vol. 18, no. 11, 3908, 2018.

[15] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., “SURF:

speeded up robust features,” Computer Vision and Image

Understanding, vol. 110, no. 3, pp. 346-359, 2008.

[16] Uk, I., “A detailed analysis on feature extraction

techniques of panoramic image stitching algorithm,”

International Journal of Engineering and Applied

Computer Science, vol. 2, pp. 147-153, 2017.

[17] Calonder, M., Lepetit, V., Strecha, C., Fua, P., “BRIEF:

binary robust independent elementary features,” European

Conference on Computer Vision (ECCV), pp. 778-792,

2010.

[18] Khan, N.Y., McCane, B., Wyvill, G., “SIFT and SURF

performance evaluation against various image

deformations on benchmark dataset,” IEEE International

Conference on Digital Image Computing Techniques and

Applications (DICTA), pp. 501-506, 2011.

[19] Arya Mary, K. J., Priya, S., “Panoramic image stitching

based on feature extraction and correlation,” National

Conference on Future Technologies in Power, Control and

Communication Systems (NFTPCOS-17), pp. 32-39,

2017.

[20] Schaeffer, C., “A Comparison of Keypoint Descriptors in

the Context of Pedestrian Detection: FREAK vs. SURF vs.

BRISK,” Stanford University, CS Department.

[21] Juan, L. Gwun, O., “A comparison of SIFT, PCA-SIFT and

SURF,” International Journal of Image Processing, vol. 3,

no. 4, pp. 143-152, 2009.

[22] Karami, E., Prasad, S., Shehata, M., “Image matching

using SIFT, SURF, BRIEF and ORB: performance

comparison for distorted images,” Newfoundland

Electrical and Computer Engineering Conference, 2017.

[23] Daga, B., Bhute, A., Ghatol, A., “Implementation of

Parallel Image Processing Using NVIDIA GPU

Framework,” Advances in Computing, Communication

and Control. (ICAC3), Communications in Computer and

Information Science, vol. 125, 2011.

[24] Sulaiman, D. R., “Microprocessors thermal challenges for

portable and embedded systems using thermal throttling

technique,” Procedia Computer Science, vol. 3, pp. 1023-

1032, 2011.

https://ieeexplore.ieee.org/author/37086374082

	coversheet_journal_conference_paper
	CORTÉS-GALLARDO 2019 A comparison
	coversheet_journal_conference_paper.pdf
	submittedversion_ICMEAE2019.pdf

