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ABSTRACT

We describe two enhancements that significantly improve the rapid
convergence behavior of DECMO2 - a previously proposed ro-
bust coevolutionary algorithm that integrates three different multi-
objective space exploration paradigms: differential evolution, two-
tier Pareto-based selection for survival and decomposition-based
evolutionary guidance. The first enhancement is a refined active
search adaptation mechanism that relies on run-time sub-population
performance indicators to estimate the convergence stage and dy-
namically adjust and steer certain parts of the coevolutionary pro-
cess in order to improve its overall efficiency. The second enhance-
ment consists in a directional intensification operator that is applied
in the early part of the run during the decomposition-based search
phases. This operator creates new random local linear individuals
based on the recent historically successful solution candidates of
a given directional decomposition vector. As the two efficiency-
related enhancements are complementary, our results show that the
resulting coevolutionary algorithm is a highly competitive improve-
ment of the baseline strategy when considering a comprehensive
test set aggregated from 25 (standard) benchmark multi-objective
optimization problems.
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1 INTRODUCTION

Generally, a multi-objective optimization problem (MOOP) can be
defined as:

minimize F(x) = (fi(x), ... ,fm(x))T, (1)

where the decision (variable) space is multi-dimensional (i.e., x €
D™ c R™)and F : D" — R contains m single-objective functions
that need to be minimized simultaneously. If m > 4, one is usually
said to deal with a many-objective optimization problem [11], so for
the type of problems we focus on in the present work, 2 < m < 3.
The likely conflicting nature of the m individual objectives means
that, apart from the inherent optimization-related difficulties (non-
linear and/or multimodal and/or non-differentiable functions to
be optimized), an important challenge related to MOOPs is that
their solution comes in the form of a Pareto-optimal set (PS). The
PS reunites all the individual solution candidates x* € D" with
the property that there is no single element in D" that is better
than x™* with regard to all the considered objectives. Since for many
MOOPs the PS is unknown or contains an infinity of elements,
multi-objective solvers aim to discover high-quality Pareto non-
dominated sets (PNs) that contain a limited number of solution
candidates but are able to provide a near-perfect PS approximation.

During the past two decades, in light of their intrinsic ability to
produce entire PNs after a single run, multi-objective optimization
algorithms (MOEAs) have emerged as one of the most successful
methods for solving MOOPs [1]. Although numerous valuable con-
tributions have been made over the years, three main evolutionary
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computation paradigms stand out when considering their overall
success, applicability and community acceptance:

(1) guiding the evolutionary process through a highly elitist
selection for survival mechanism [5, 31] based on a primary
Pareto non-dominance metric and a secondary criteria re-
lated to the distribution of individual solutions in objective
space (i.e., a niching strategy), as originally suggested in
(8,9];

(2) integrating differential evolution (DE) strategies to further
improve the performance of established evolutionary models
[13, 28];

(3) decomposing the original MOOP in a sufficiently large num-
ber of well-spaced single-objective sub-problems (defined
using classical objective aggregation techniques [17]) that
are to be optimized simultaneously by the evolutionary pro-
cess [27].

1.1 Motivation and approach

Our main motivation for the present research stems from the fact
that (like all optimization methods) even state-of-the-art MOEAs
are still bound by the "No Free Lunch Theorems for Optimization"
(NFL) [25], which means that (at least) a parameter turning stage
would be required in order for a given MOEA to deliver the best
possible optimization performance an a given MOOP. Furthermore,
even though the best performing MOEAs are quite robust, when-
ever restricting oneself to the usage of literature recommended
parameterization settings, heterogeneous convergence behaviors
can easily be observed on well studied benchmark MOOPs.

The NFL implications are particularly problematic for the ever
increasing number of MOEA practitioners because many of them:

(1) are not experts in multi-objective evolutionary computa-
tion methods and they apply MOEA solvers using fixed (i.e.,
recommended) parameterizations;
tackle complicated industrial problems where even state-of-
the-art surrogate-based modeling techniques [19] are not
fully applicable when wishing to reduce the reliance on in-
tensive simulations [18] and thus the total number of opti-
mization runs and of individuals that can be evaluated during
these runs is rather limited;

(3) often adopt a form of interactive usage of MOEA-based op-
timization where (for computationally-intensive problems)
the solver is stopped as soon as it has discovered a sufficiently
good/interesting PN [21].
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Given some of the insights in [26], there have been surprisingly
few attempts to alleviate the aforementioned practical and the-
oretical concerns via coevolutionary strategies. The approaches
described in [2], [24] and [32] represent some of the exceptions and
the DECMO?2 algorithm [32] is of particular interest since it is based
on the simple idea of integrating all the three major multi-objective
evolutionary paradigms inside a coevolutionary process that aims
to deliver robustness: i.e., generally effective run-time convergence
over a wide range of MOOPs when using a fixed parameterization.
In the present work, we describe two complementary enhance-
ments that further improve the convergence speed of DECMO2
without impacting its robustness.
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2 COEVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION

Algorithm 1 contains the high-level algorithmic description of
DECMO2++, the new enhanced multi-objective coevolutionary
optimization strategy we propose.

The algorithmic description of the original DECMO2 coevolu-
tionary strategy can also be inferred easily from Algorithm 1 by
simply ignoring lines 8 to 16 and 30 to 43 as they correspond to the
two novel enhancements described in Sections 2.2 and 2.3.

2.1 Baseline strategy

The main feature of the original DECMO2 coevolutionary strategy
is that it effectively integrates three different multi-objective opti-
mization search space exploration paradigms that have proven their
individual strengths on multiple (and often complementary) types
of MOOPs. Each individual evolutionary paradigm incorporated in
DECMO?2 operates on a separate set of individuals and there is a
fitness sharing stage at the end of each generation.

Let us mark with P the first coevolved sub-population. Its mem-
bers are generated via the SPEA2 [31] evolutionary model that is
based on the environmental selection (notation E,;(Set, count)) op-
erator — a selection for survival mechanism that filters (i.e., returns
count elite individuals from) an input Set of individuals based on
Pareto dominance as a primary metric and a crowding distance in
objective space as a secondary metric. Apart from Eg,;, this evolu-
tionary paradigm also makes use of the simulated binary crossover
(SBX) [4] and polynomial mutation (PM) [3] genetic operators that
were popularized by NSGA-II [5]. In Algorithm 1 line 44, the func-
tion EVOGENSPEA2(S, count) implements the SPEA2 evolutionary
model to evolve count offspring from a parent set S and then applies
the E,,; operator to select a total of |S| solution candidates (from
the combined set that reunites all parents and offspring) that will
form the parent set of the next generation.

It is noteworthy that DECMO2 also uses E,; as an active part
of its fitness sharing stage and as such, a slightly modified version
of the operator is needed in order to filter objective-wise duplicates
from the returned set of elite individuals. Without this modification,
repeated applications of the operator would lead to premature
convergence on several test problems.

The second coevolved sub-population (marked by Q) implements
an evolutionary model that resembles the ones initially proposed
by the GDE3 [13] and DEMO [20] multi-objective solvers. The
main idea is to exploit the very good performance displayed by the
differential evolution paradigm [22] on continuous optimization
problems with real-valued objective functions. This is achieved by
replacing the SBX and PM operators with the DE/rand/1/bin strategy
while preserving the Pareto-based selection for survival mechanism
(i.e., Egeg) during the evolutionary cycle. In Algorithm 1, the func-
tion EVOGENDE implements the above described evolutionary
model to generate and select future members of sub-population Q.

The third MOO paradigm incorporated in DECMO2 comes in
the form of an archive (marked by A) that is maintained according
to a decomposition-based principle similar to the one proposed
in MOGLS [12] and popularized by the highly successful solver
MOEA/D [27]. Even though at certain times a limited number
of new individuals are evolved directly from the archive using



Two Enhancements for Improving a Robust Multi-Objective Coevolutionary Algorithm

Algorithm 1 The new DECMO2++ coevolutionary model

1: function DECMO2++(problem, agjze, stopCriterion)

2 (Psizesqsize>bsize) < COMPUTESIZES(dsize)

3 (A, P, Q) « INITIALIZE(problem, asize, Psize, dsize)

4 #F 99, ¢4 —1 A stage < “early” A testGen < true
5: Pb> Q> < (bsize/2) N @p,Gwins < 0

6 while —stopCriterion do

7 if testGen and stage # “late” then

8 if F < #< and ¢¥ < ¢4 then

9 Pp — 0 A qp,ap — (bsize/2)

10: end if

11: if 9 < ¢F and ¢Q < ¢4 then

12: qp — 0 A pp,ap — (bsize/2)
13: end if

14: if 2 < ¢F and ¢4 < ¢ then

15: ap < 0 A pp,qp < (bsize/2)
16: end if

17: if F > $< and ¢¥ > ¢4 then

18: Pb < bsize N qp,ap — 0

19: end if

20: if $Q > ¢F and ¢Q > ¢4 then

21: qp < bsize N pp,ap <0

22: end if

23: if 4 > ¢F and ¢4 > ¢ then

24: ap «— bsize A Pbsqp < 0

25: end if

26: else

27 Pb-qp < O A ap < bsize

28: end if

29: testGen < —testGen

30: if stage = early” and ¢* < 0.5 and ¢9 < 0.5 then
31: bsize < (bsize/2) N stage < “middle”
32: DsizesGsize < Psize + (bsize/2)

33: end if

34: if stage = "middle” then

35: if ¢F + ¢ < ¢ then

36: Awins < Qwins + 1

37: if ayins = 5 then

38: stage < late”

39: end if

40: else

41: Awins < 0

42: end if

43: end if

44: (P,¢") «— EVOGENSPEA2(P, psize + pp)
45: (Q.¢9) «— EVOGENDE(Q, gsize +qp)
46: ¢4 — EvODIRARCHIVEIND(A, ap,, stage)
47: E «— Ego)(PUQU A, bgize)

48: P Egei(PUE, psize))

49: Q & Eso1(QUE, gsize)

50: end while

51: return Eg,;(PU QU A, asize)
52 end function

a DE/rand/1/bin strategy (i.e., the EVODIRARCHIVEIND function
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from Algorithm 1), A has a mainly passive purpose (hence our pref-
erence not to also refer to it as a sub-population) as its role is to
preserve an accurate well-spread approximation of the PS. Spacing
inside A is maintained with the help of a weighted Tschebyscheff
distance measure, one of the well-known classical approaches [17]
of tackling multi-objective optimization. As such, the archive is
organized as a list of ordered pairs (A%, x’) where a total of | A| objec-
tive weight vectors are uniformly spread (and kept fixed throughout
the optimization) and, during the run, x! denotes the individual that
can best minimize the objective space A'-weighted Tschebyscheff
distance w.r.t. the current estimate of the optimal reference point.

The last important key feature of DECMO?2 is an active run-
time search adaptation mechanism that is designed to pivot to-
wards the evolutionary paradigm that was more successful during
the previous generation. This is done by rewarding (at each even-
numbered generation) the part of the algorithm that implements
the successful paradigm and allowing it generate an extra num-
ber of bgjze = 11—0 - dsize bonus individuals. In order to determine
the run-time comparative effectiveness of the three evolutionary
paradigms, DECMO2 proposes a basic self-diagnostics process that
uses as main indicators the archive insertion ratios achieved by the
coevolved sub-populations (at each odd-numbered generation). In
in Algorithm 1, these ratios are marked with ¢¥, ¢Q and ¢4 and
they show the percentage of the offspring created inside the P and
Q sub-populations or directly from the archive A that were also
fit enough to warrant an archive insertion - i.e., that were able to
bring an improvement to the current decomposition-based PN ap-
proximation. The original reward-schema proposed by DECMO2 is
illustrated in Algorithm 1 on lines 17 to 25 where py, g3, ap denote
the number of bonus individuals allocated to each paradigm in the
next generation.

Apart from generating the ag;ze = |A| uniformly spread weight
vectors (each containing the number of objectives specified by the
given problem), the INITIALIZE(problem, asjze, Psize, qsize) func-
tion (Algorithm 1, line 3) generates random uniformly distributed
individuals and splits them into equally sized initial sub-populations

size_bsize
such that psize = |P| = gsize = 10| = aT

2.2 Improved run-time search adaptation

The first enhancement of the original DECMO2 coevolutionary
model comes in the form of an improved run-time search adaptation
strategy that better exploits the comparative performance of the
contained evolutionary paradigms. This search adaptation strategy
is built on top of a more refined self-diagnostics process that also
attempts to distinguish during the optimization run the current
stage of convergence: “early” , “middle”, or "late”.

In contrast to the original DECMO2 search adaptation strategy,
the improved version allows for a split of the bg;;. (generational)
bonus evaluations that are to be awarded to the best performing
evolutionary paradigm. As such, lines 8 to 16 of Algorithm 1 were
added to complement the original strategy (lines 17 to 25) and
enable it to deal with the case when one evolutionary paradigm
underperforms but the other two paradigms achieve equal insertion
ratios. This more refined split of the performance reward enables
the integration of a larger number of bonus individuals at the start
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of the optimization. Thus, the function COMPUTESIZES(dsjz¢) on
line 2 of Algorithm 1 uses the formulae:

be: — Gsize
Ssize - 5
_ Gsize=bsize

)
Psize = Qsize =

One empirical observation that was integrated in the improved
search adaptation strategy is that the comparative performance of
the three insertion ratios can also be used to distinguish between
different stages of convergence. Thus, the first time the insertion ra-
tios of both sub-populations fall below 0.5 (i.e., more than half of the
generated offspring are not archive-wise competitive), the coevolu-
tionary process is estimated to have entered the "middle” stage of
convergence (lines 30 to 33 of Algorithm 1). During this stage, the
number of bonus individuals is halved as both sub-populations are
estimated to under-perform.

It is important to notice that, similarly to the original DECMO2
strategy, bsize also denotes the number of elite individuals (selected
via the E,,; operator) that are responsible for fitness sharing at
the end of each generation (lines 47 to 49 of Algorithm 1). By
dynamically reducing bs;z. during the run, we are also influencing
the fitness sharing process by passing fewer elite members between
the sub-populations when the algorithm reaches a stage where
highly dominating individuals are increasingly harder to find. By
doing this, we aim to reduce external selection-pressure on the
sub-populations and allow them to better exploit their internal
evolutionary model.

If during the the middle stage of convergence there is a consis-
tent trend (e.g., five consecutive generations) in which generating
individuals directly from the decomposition-based archive is con-
siderably more successful (i.e., ¢¥ + ¢Q < ¢4), we consider that
the optimization run entering a “late” stage of convergence (lines
34 to 43 of Algorithm 1). From this moment, until the end of the
run, at every generation, the bonus individuals will only be used
to generate new individuals directly from the directional archive
(lines 27 and 46 of Algorithm 1).

2.3 Directional intensification operator

Given a weight vector AL 1 < i < |A| used by the directional archive
A, the directional intensification operator we propose creates a new
individual by applying a rather simple local linear recombination
strategy on the last two historically successful solution candidates
for A,

More formally, if {(1’,y) € A and x was the individual that y
replaced when the latter was inserted in A, using the directional
intensification operator we obtain a new individual z for which:

,Vi<i<n (3)

yi + F2 - (y; —x;) if U’ <CR2
zZj = .
"y if UP=CR2

where, UL, ..., U™ are independent random variable uniformly dis-
tributed in [0, 1] and CR2 € [0, 1] and F2 > 0 are control parameters.
It is easy to remark that the proposed operator has strong simi-
larities to a differential evolution approach (i.e., rand/1/bin) but its
overall design aims at local intensification centered on the given
weight vector A, For example, when using the setting CR2 = 0.5,
one half of the decision variables encoded in z will match exactly
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those encoded in y (the current best option for A?) while the other
half of the variables in z will try to “speculate” the difference be-
tween y and x (the previous best option for 1) by enlarging local
variable-wise differences by a factor of F2. In order to reduce the
danger of overshooting (and then reflecting against) variable-wise
lower and upper limits, we recommend the setting F2 = 0.5.
Using a set of limited but systematic benchmark tests, we have
determined that applying this directional intensification opera-
tor generally brings the most benefits in the early stages of the
optimization runs when the the individuals able to deliver consec-
utive directional-wise improvements are more heterogeneous. As
such, in Algorithm 1 line 46, EVODIRARCHIVEIND(A, ay, stage)
exclusively uses the above described operator to generate a; new
individuals directly from the archive A — each for a different ran-
domly selected weight vector — when stage = “early”. Alteratively,
the original DECMO?2 de/rand/1/bin strategy is used inside EvoD1-
RARCHIVEIND whenever the algorithm is at a different stage of
the run or if the weight vector randomly selected for improvement
contains less than 2 historically successful solution candidates.

3 PERFORMANCE EVALUATION

In order to empirically support our claim that the two proposed
enhancements increase the convergence speed of DECMO2 we:

(1) performed experiments on a comprehensive test set aggre-
gated from 25 benchmark MOOPs:
e DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ6 and DTLZ7 from
the problem set proposed in [6];
e KSW10 - Kursawe’s function with 10 variables and 2 ob-
jectives [14];
e all nine problems from the LZ09 problem set [15];
e WFG1, WFG2, WGF3, WFG4, WFG7, WFG8 and WFG9
from the problem set proposed in [10];
e ZDT3 and ZDT6 from the problem set described in [30];
(2) made 100 independent repeats for each MOOP-MOEA com-
bination and only report over averaged results;
(3) applied statistical significance testing when analyzing the
differences between results
(4) have used the run-time hypervolume-based racing method-
ology that was introduced in [32] alongside DECMO?2 in
order to illustrate application-wise MOEA robustness and to
easily highlight the differences in the comparative run-time
performance of the tested MOEAs over an entire benchmark
problem set

3.1 Racing methodology for comparing
run-time MOEA performance / robustness

The main idea of the racing-based methodology proposed in [32]
is to continuously measure a given unary PN quality indicator
throughout the entire optimization runs on a given MOOP and, at
pre-defined (equally-spaced) comparison stages, to award ranks to
competing MOEAs based on their individual performance indica-
tor achievement and a predefined ranking schema. For example,
when wishing to compare between ng algorithms, according to a
basic (natural) ranking schema, at any given comparison stage, the
worst performer will receive the rank ng, and the best performing
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algorithm will receive the rank of 1. Since MOEAs are highly sto-
chastic processes, at each stage, the comparisons must take into
consideration the average value of the performance indicator over
multiple runs. In order to assess the comparative performance on
an entire benchmark set, one simply needs to average (MOEA-wise
and stage-wise) the ranks achieved for each individual MOOP from
the benchmark.

The unary PN quality indicator that is recommended in [32] is
the (normalized) hypervolume metric [29] (notation Indpy) as it is
the only unary indicator for which there is theoretical proof of
a monotonic convergence behavior [7], and the hypervolume is
easier to compute than the generational distance or the inverse
generational distance [23] for problems with unknown PSs.

One of the main advantages of the Indy-based racing method-
ology is that (when using different ranking schemata) it can help
to easily highlight some contrasts in the run-time convergence
behavior (across the entire benchmark problem set) and thus it
complements the information provided by a basic averaging of
Indp performance across the benchmark set. This is especially
true when plotting the average ranks in order to obtain so called
run-time hypervolume-ranked performance curves (HRPCs).

For our numerical experiments, apart from the basic ranking
schema, keeping in line with [32], at each comparison stage, we
make two-by-two MOEA comparisons in increasing order of per-
formance in which we:

o employ a pessimistic ranking schema that only awards a better
rank when the difference between the average hypervolume-
measured performance of two MOEAs is larger than a pre-
defined threshold th - e.g., th = 0.01 would require a 1%
difference between average hypervolume values at a given
stage of comparison in order to award different ranks for
that stage;

o employ a statistical ranking schema that only awards different
ranks when the stage-wise differences between the average
performance of two MOEAs is statistically significant when
using a one-sided Mann-Whitney-Wilcoxon test [16] with a
considered significance level of 0.025;

o adopt a bonus / penalty system that (a) awards the excep-
tional rank of 0 to recompense a MOEA that is estimated to
have fully converged on a problem (i.e., Indg > 0.99) and
(b) awards a penalty rank of ng + 1 when a MOEA has not
been able to discover a remotely relevant PS approximation
(i.e., Indg < 0.01).

Independent of the MOOP to be solved, we fixed to 50,000 the
total number of fitness evaluations (n f e) that each MOEA is allowed
to perform during an optimization run. We considered 51 ranking
stages: one after each 1000 fitness evaluations and one extra (i.e.,
ranking stage no. 0) after the first generation.

3.2 Tested algorithms and parameterization

We have chosen to compare the performance of the new DECMO2++
coevolutionary model with:
e DECMO?2 - the baseline that we aim to improve over;
e MOEA/D-DE with Dynamic Resource Allocation [28] - a
highly efficient solver based on decomposition that is known
to deliver state-of-the-art solutions for many MOOPs;
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e SPEA2 and GDES3 - the two Pareto dominance based MOEAs
that originally proposed the search paradigms incorporated
by the coevolved subpopulations of DECMO2++;

o NSGA-II [5] - historically, the best known and most success-
ful MOEA (based on number of citations).

All the tested algorithms were parameterized using their litera-
ture recommended settings. For SPEA2 and NSGA-II we used an
archive and population size of 200, 0.9 for the crossover probabil-
ity and 20 for the crossover distribution index of SBX, 1/n for the
mutation probability and 20 for the mutation distribution index of
PM. For GDE3, we used a population size of 200 and the settings
CR = 0.3 and F = 0.5 for the DE/rand/1/bin evolutionary strategy.

In the case of MOEA/D-DE we used an archive with N = 300
weight vectors for bi-objective MOOPs and N = 595 weight vectors
for MOOPs with three objectives. The neighbourhood size was
fixedto T = 0.1 - N and the neighborhood recombination factor §
was set to 0.9. The DE/rand/1/bin strategy was parameterized with
the settings CR = 1.0 and F = 0.5 and the PM operator used the
SPEA2 / NSGA-II standard parameterization.

In case of both DECMO2 and DECMO2++ we used an archive
size of 200, the above described SPEA2 / NSGA-II standard pa-
rameterization for sub-population P and CR = 0.2 and F = 0.5
for the DE/rand/1/bin strategy used to evolve sub-population Q.
When evolving individuals directly from A, we used the setting
CR = 1.0 and F = 0.5 if the DE/rand/1/bin strategy was employed
and CR2 = 0.5 and F2 = 0.5 if the individual was produced using
the newly introduced directional intensification operator.

4 RESULTS AND INTERPRETATION

The average Indg-measured performance over the 25 benchmark
MOOPs is presented in Figure 1 and it indicates that:

e the two coevolutionary approaches do exhibit a compara-
tive rapid convergence behavior (with a small advantage
for DECMO++) that does not seem to hinder their ability to
reach competitive results at the end of the experiment;

e MOEA/D-DE DRA has a rather average performance in the
early phases of the optimization run but catches up with the
coevolutionary approaches towards the end;

o the four best performing MOEAs when nfe > 20,000 inte-
grate differential evolution operators.

These benchmark-wide performance-related insights are con-
firmed by the HRPCs from Figure 2 that were obtained when com-
paring the 6 tested MOEAs using the run-time Indg-measured
performance and different ranking schemata. Furthermore, the two
pessimistic HRPCs indicate that the observed difference in perfor-
mance between DECMO2++ and DECMO?2 is somewhat consider-
able (i.e., statistically significant and observable even for th = 0.05)
in the early phases of the optimization runs (i.e., nfe < 10, 000) but
negligible afterwards.

HRPCs offer the clearest and most relevant insights when ana-
lyzing the run-time performance of only two competing algorithms
(as adding other algorithms in the mix can affect / bias a ranking
that relies on successive two-by-two comparisons). Thus, Figure 3
focuses on a direct comparison between DECMO2++ and MOEA/D-
DE DRA. The similar performance of the two algorithm towards the
end of the optimization runs when using the basic and statistical
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ranking schemata is in slight contrast with average Indg values
from Figure 1 and with the results indicated by the pessimistic
rankings in Figure 3. This indicates that over the entire benchmark
dataset, when nfe > 40, 000:

e there is a roughly equal number of problems on which one
MOEA dominates the other;

e on a few of the test problems where DECMO2++ performs
better, the differences in average Indp achievement are slightly
larger than on the problems where MOEA/D-DE DRA ranks
significantly better.

The HRPC plots from Figure 4 focus on the direct comparison
between DECMO2++ and DECMO?2 and support the claim that the
two enhancements described in Sections 2.2 and 2.3 are able to
visibly improve the convergence speed in the early stages of the
optimization runs without impacting the robustness of the baseline
coevolutionary strategy.

5 CONCLUSIONS AND FUTURE WORK

In this paper we described how to generally enhance the rapid
convergence behavior of DECMO2 - a robust multi-objective co-
evolutionary algorithm - by redesigning its active search adaptation
mechanism in order to facilitate the run-time estimation of the con-
vergence stage and the subsequent application of a new genetic
operator that, by design, aims to better exploit the directional-
decomposition paradigm by intensifying local search in the early
phases of the optimization run.

Since the performance of DECMO2++ is virtually identical to that
of the baseline strategy during the middle and late stages of the run,
future plans focus on redesigning the entire coevolutionary model
such that, after existing the early stage of convergence, the solver
will award a much more active role to the decomposition-based
paradigm as this strategy seems to have a competitive advantage
towards the end of the runs (or whenever the number of available
fitness evaluations is high enough).
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Figure 2: HRPCs obtained when comparing DECMO2++ with five other MOEAs across the 25 benchmark MOOPs.
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Figure 4: HRPCs obtained when comparing DECMO2++ with DECMO2 across the 25 benchmark MOOPs.
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