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Abstract:  The present problem is concerned with the flow of micropolar/Eringen fluid 

sandwiched between two Newtonian fluid layers through the horizontal porous channel. The 

flow in both the regions is steady, incompressible and the fluids are immiscible. The flow is 

driven by a constant pressure gradient and a magnetic field of uniform strength is being 

applied in the direction perpendicular to the flow. The flow of electrically conducting fluids, 

in the three regions, is governed by the Brinkman equation with the assumption that the 

effective viscosity of each fluid is the same as the viscosity of the fluid. No-slip conditions 

at the end of the plates, continuity of velocity, continuity of shearing stress and constant 

rotational velocity at the interface have been used as the boundary conditions to get the 

solution of the problem considered. The numerical values of the solution obtained are used 

to analyse the effect of various transport parameters, such as permeability of porous region, 

magnetic number, viscosity ratio etc. on the velocity profile and micro rotational velocity 

profile graphically. Also, the variations in the flow rate and the wall shear stress, with 

respect to the governing parameters, are presented in tabular form. 
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Nomenclature 

 k            - dimensional permeability of the porous medium 

p              -dimensional pressure 

x y        - coordinates along the channel 

iu              -velocity in the x-direction 

iv              -velocity in the y-direction 

1  &        -viscosity of the Newtonian fluid and micropolar fluid respectively 

1  &       -electrical conductivity of the Newtonian fluid and micropolar fluid respectively 

K                 -material parameter 

                   -vortex viscosity 

                   - spin gradient viscosity 

m                  -viscosity ratio 

               - conductivity ratio 

i                - subscripts for region –I, region- II and region- III respectively. 

 

 

 

 

 

 

 

 

 



1. Introduction 

In the present era, various research studies on fluid mechanics have solved many real-life 

problems including industrial, engineering, environmental etc., and more importantly, in the 

medical field. The study of bio-fluid mechanics emerges with significant applications in 

cardiovascular diseases. Due to the advance scope of the hydrodynamics, several problems 

related to magneto hydrodynamic (MHD) flows, transport in porous media, multiphase 

flows, channel flows etc., have been solved by a number of researchers with numerous 

applications. Recently, Yadav [1] has discussed the flow problem through the non- 

homogeneous porous medium and also evaluated the drag force on the porous membrane. 

Oftentimes, it is observed in real-life that two or more immiscible fluid flows occur, such as 

flow of several immiscible oils through the bed of rocks or soils, flow in the rivers with 

several industrial fluids, blood flow in the arteries, releasing of dissolved gases from the 

crude oils into the reservoir rock etc. Few such works with various real-life applications were 

done by [2-4]. The presence of second fluid in different phase adds a number of 

complexities, due to interaction of transport phenomena of two different fluids and due to 

interfacial condition of two phases. Besides this, the flow of two immiscible fluids, either 

Newtonian-Newtonian or Newtonian-non Newtonian, has several important engineering and 

medical applications. One such type of problem is going to be discussed in this article. 

It was found that Navier-Stokes equation is inadequate to describe the motion of the fluids 

exhibiting micro inertia, angular momentum, couple or non-symmetric stress. The classical 

laws of hydrodynamics fail to analyse the asymmetric deformation occurring in such types of 

fluids, such as liquid crystals, animal blood, biological fluids, muddy fluids, fluid with 

additives etc. The theory of  micropolar fluids composing of rigid particles rotating in the 

viscous medium, was presented by Eringen [5, 6]. Due to orientation of the particles in the 

medium, the micropolar fluids undergo both translational and rotational motion, which 

results in six degree of freedom. Many research studies have been carried out on micropolar 

fluids explaining various practical applications, for example, micropolar fluids can be used as 

lubricants as they have less friction coefficient than the Newtonian fluids [7, 8]. Many have 

discussed the flow of micropolar fluids compared to the flows of colloidal suspensions, liquid 

crystals,  analysis with  human and animals blood [9–12] and many more. Ariman et al. [12,  



13] gave a review on the micro-continuum approach and presented the applications of the 

fluids with the effects of micro-structures. Lukaszewicz [14] and Eringen [15] carried out a 

remarkable work by giving theories and applications of micropolar fluids. 

Many investigations have been carried out on the flow characteristics of blood through the 

arteries. It was experimentally proved by some of  the works that under different flow 

conditions, blood behaves sometimes as a Newtonian fluid [16–18] and sometimes as a non-

Newtonian fluid [19, 20]. These works have also showed that fluid (plasma) in the peripheral 

layer is Newtonian and in core layer (blood) is non-Newtonian. Fluid flow problems through 

porous channels have been studied by many researchers due to their use in the cardiovascular 

system. Ariman et al. [21] presented the micro-continuum approach of blood flow through 

rigid circular cylinders, by considering blood as a micropolar fluid. The conclusion made 

from the analytical solution obtained by Ariman et al. [21] was experimentally proved by 

Bugliarello and Sevilla [19] stating that micropolar fluid model is the best model for 

explaining the motion of microstructures in the blood flow. Due to clinical and physiological 

importance of micropolar fluids in the medical field, many problems have been solved with 

the assumption that blood behaves like a micropolar fluid. A two-fluid model of blood flow 

through the elastic cylindrical stenosed artery was considered by Ikbal et al. [22]. They 

considered Eringen’s micropolar fluid flow in the core region and Newtonian fluid flow in 

the peripheral region. It was concluded that the resistance to flow and the shearing stress 

experienced by the walls of the arteries are higher in the case of two-phase model of blood, 

as compared to the single-phase Newtonian model. Chamkha et al. [23] investigated the 

problem of unsteady fully developed flow of two Newtonian immiscible fluids passing 

through a horizontal channel having permeable walls. The governing equations for the flow 

in both the regions have been solved using two-term harmonic and non-harmonic functions. 

Bakhtiyarov and Siginer [24] used opto mechanical method and experimentally proved the 

lubrication of non-Newtonian fluid by a Newtonian fluid, of two immiscible fluids flowing 

through a horizontal tube. They also discussed the importance of the results obtained in the 

transport of crude oil containing high wax, and in the designing of lubricated pipelines. 

Umavathi et al. [25] analytically solved the problem of flow through horizontal channel with 

the sandwiching of couple-stress fluid between two Newtonian fluids. They discussed the 

effects of various flow parameters and concluded that the couple-stress parameter promotes 



the flow. The problem of unsteady flow and heat transfer of the fluid through the horizontal 

channel comprising of porous medium between two Newtonian fluids has been solved by 

Umavathi et al. [26]. They discussed the influence of porous parameter, the frequency 

parameter etc. on the velocity and temperature profiles. Malashetty et al. [27] studied the 

effect of magnetic field and heat on the flow of two- immiscible fluids in the vertical 

channel. The non-linear governing equations are solved by regular perturbation method. 

Kumar et al. [28] discussed and solved the problem of flow of micropolar fluid and 

Newtonian fluid in the vertical channel under non-isothermal conditions. 

The issues get severe on introducing the magnetic field to the flows, for example, MHD 

generators, pumps, nuclear reactors, filtration, and use in geothermal problems etc. The 

applications of magnetic field to the flow of immiscible fluids originate from reducing the 

flows in many medical and industrial purposes. Lohrasbi and Sahai [29] investigated two-

phase MHD flow and heat transfer in a horizontal channel. Malashetty and Leela [30] 

analysed the  effect of Hartmann number on the flow of two-phase fluids passing through a 

horizontal channel. Malashetty and Umavathi [31] solved the problem of two-phase fluid 

flow and heat transfer under the effect of magnetic field, through the inclined channel. 

Chamkha [32] assumed the flow of two electrically conducting Newtonian fluids through 

porous and non-porous channels simultaneously. 

Being motivated by above discussions and applications of immiscible MHD flows, here we 

have discussed the flow of micropolar fluid sandwiched between two Newtonian fluid 

regions. The fluids pass through the channel filled with porous medium having rigid walls 

and under the influence of magnetic field. 

2.  Problem Statement and Governing Equations 

The mathematical model considered in the present work consists of a horizontal channel 

formed by two parallel plates extended infinitely in the x and z directions. The channel is 

filled with the porous medium of constant permeability. The flow of micropolar fluid in 

between the flow of Newtonian fluids is allowed to pass through the channel in such a way 

that the fluid interfaces are at equal width ‘h’ as shown in Fig. 1. 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

The steady, laminar, fully-developed and one-dimensional flow of fluids through the 

horizontal porous channel takes place in the presence of a transversal magnetic field. The 

flow in the channel is driven by a constant pressure gradient p
x




. Let 1u , 2u  and 3u  be the 

flow velocities of fluids in the three regions along x direction. The Newtonian viscous fluids 

of same viscosity 1  flow with different velocity 1u  and 3u  in the region-I and region-III 

respectively. The flow of micropolar fluid with velocity 2u  takes place in region-II. The 

magnetic field of uniform strength oB  is applied perpendicular to the direction of the flow. 

Here, we also assume that the effective viscosity of the fluid is equal to the viscosity of the 

fluid. 

Under the above discussed assumptions, the governing equations for the fluid flow through 

the horizontal porous channel are as follows: 
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Fig.  1.  Mathematical model of the problem 
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Here 1 and   are the electrical conductivity of the Newtonian and micropolar fluids 

respectively.  ,  and   are the viscosity, vortex viscosity and spin-gradient viscosity of the 

micropolar fluid respectively, and   is the z-component of the micro rotational velocity of 

the micropolar fluid. The mathematical form for the spin-gradient viscosity   is 

2
j

    
 

where j  is the micro inertia density. 

3. Solution of the Problem 

The solution of the problem considered in the present study, is discussed in detailed in the 

following sections. 

3.1 Non-Dimensional form of Governing Equations 

Equations (1) - (4) are transformed into dimensionless form by using the following non- 

dimensional variables: 
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Here U  is the characteristic velocity and h  is the characteristic length. The micro-inertia 

density j is given by 2j h . 

Using equation (5), the dimensionless equations (dropping asterisk) for equations (1) - (4) 

can be written as: 
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 where 1n
k

 , 1

1
oM B h 


  is the Hartmann number for the region-I and region-II, 

K 


  is known as material parameter for the micropolar fluid and 1
mM M


 ,  1m 

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is viscosity ratio and 1



 
is conductivity ratio. 

3.2 Evaluation of flow velocity in all the three regions 

The solution for the flow velocity in the three regions can be obtained by direct method. 

Therefore, the velocities of the fluids for the respective regions are given as: 
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3.3 Evaluation of flow rate in the porous channel  

The non- dimensional volumetric flow rate of the fluid through the horizontal porous region 

is evaluated as: 

0 1 2

3 2 1
1 0 1

    Q u dy u dy u dy .                                                                                              (14) 



Using the values from (10), (11) and (13) in equation (14), we can get the flow rate as: 
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3.4 Evaluation of the wall shear stress 

Here, an attempt has been made to calculate the skin friction on the top and bottom of the 

channel in order to analyse the effects of different fluid parameters.  

The wall shear stresses on top and bottom of the horizontal porous channel i.e. T  and B  

respectively, in dimensionless form are given by the following: 

1

2
T

y

d u
d y




     
 and        3

1
B

y

d u
d y




     
                                                                                

(16) 

Using equations (10), (13) and (16), we get the values of skin frictions involving arbitrary 

constants: 
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The arbitrary constants 1C , 2C , 3C , 4C , 5C , 6C , 7C  and 8C  have been evaluated using the 

boundary and interface conditions. 

4. Boundary and Interface conditions 

In order to get the solution of the concerned problem i.e. to obtain the values of eight 

arbitrary constants, we need mathematically consistent boundary and interface conditions. 

Since all the four equations are second order differential equations, therefore, eight 

conditions are needed to solve the problem. The non-dimensional forms of the boundary and 

interface conditions are described below. 

 



4.1 No-Slip boundary conditions 

The observations, based on the experiments on the fluid flow through the solid surface, 

indicate that the fluid in motion stops completely at a solid boundary and is considered to 

have zero velocity. The direct contact of the fluid particles with solid surface results in 

sticking of fluid to the boundary and hence, there is no slip at the solid surface. This is known 

as no-slip condition. 

The first two boundary conditions are derived from the fact that there is no flow at the rigid 

boundaries of the porous horizontal channel i.e.: 

1 0u   and 3 0u   at 2y   and 1y   respectively.                                                             (19) 

4.2 Interface conditions 

The continuity of velocity, continuity of stresses and constant cell rotational velocity at the 

interfaces are used as the interface conditions for solving the problem i.e.: 
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Using aforementioned boundary and interface conditions in equations (10) - (13), we get the 

system of linear algebraic equations involving the arbitrary constants. The system of linear 

equations obtained are as follows: 
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By the use of MATHEMATICA 10.3, we were able to evaluate the values of constants. 

5. Results and Discussions 

A detailed discussion on the results obtained is presented in the following sections. 

5.1 Effect of different transport properties on the flow velocity 

Critical analyses of the effect of different transport properties, such as material parameter, 

viscosity ratio, magnetic field, conductivity ratio and permeability, on the flow velocity are 

have been presented in this section. 

5.1.1 Effect of material parameter 

Figs. 2-3 show the effects of material parameter on the flow velocity of the fluids in the three 

respective porous regions when, permeability 1.1k , viscosity ratio 1m , pressure 

gradient 0.7P  magnetic number 1.1M and conductivity ratio 1  . It has been observed 

that as the value of material parameter of micropolar fluid increases, the flow velocity in 

region-II decreases (Fig. 3). For higher values of material parameter K, the feature of graph 

changes from parabolic to straight. However, increase in material parameter value doesn’t 

affect the flow of Newtonian fluids in regions I and III. This is because material parameter is 

a property of micropolar fluid only, which usually describes the micro rotational property of 

the fluid. In fig.2, as the value of material parameter K increases from 0.01 to 2, the flow of 

micropolar fluid in region II decreases slowly, and for K > 2 the variation seems to be the 

same i.e. the variation in velocity (micropolar fluid) can only be observed for 0 2K  . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 represents the variation of micropolar fluid velocity with material parameter, when 

only the micropolar fluid is allowed to flow through the porous horizontal channel. It has 

been noticed that the material parameter affects the flow velocity even when it is higher than 

2. As the value increases from K = 7 onwards, the curves tend to be straight lines. 

 

 

 

Fig. 2 Variation of velocity with material parameter K 

 

Fig. 3 Variation of micropolar fluid velocity with the material parameter 



5.1.2 Effect of viscosity ratio 

Fig. 4 depicts the effects of viscosity ratio on the flow velocity when 1.1k , 2K , 

0.7P , 1.1M , 1  .  It can be observed that the increasing values of viscosity ratio 

promote the flows of the fluids in all the three regions of the horizontal porous channel. 

When 0.1m , the flow in regions I and III is more than the flow of micropolar fluid in 

region-II, while when 3m , the flow in region-II is more than the flow of Newtonian 

viscous fluids in regions I and III. 

 

 

 

 

 

 

 

 

5.1.3 Effect of magnetic field 

Fig. 5 depicts the effects of the strength of magnetic field on the flow velocity when 1.1k , 

2K , 0.7P , 1m , 1  . It is observed that the flow velocity in the porous channel 

decreases as the strength of magnetic field i.e. the value of Hartmann number increases. This 

is due to increasing resistive force (Lorentz force) associated with the applied magnetic field. 

Hence, reducing the strength of applied magnetic field can increase the blood flow in the 

porous arteries, while increasing the values of Hartmann number can slow the flow through 

the porous region. 

 

 

 

Fig. 4 Variation of flow velocity with the viscosity ratio    



 

 

 

 

 

 

 

 

 

5.1.4 Effect of conductivity ratio 

Fig. 6 shows the effect of conductivity ratio on the flow velocity when 1.1k , 2K , 

0.7P , 1m , 1M . It can be noticed that increasing the conductivity ratio increases the 

flow in all the three regions of the porous channel. When electrical conductivity of the 

micropolar fluid is less than that of the Newtonian fluid, the flows in regions I and III are 

more than in region-II. 

 

 

 

 

 

 

     

 

 

 
Fig. 5 Variation of flow velocity with the Hartmann Number    
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Fig. 6 Variation of flow velocity with the conductivity ratio  



   5.1.5 Effect of permeability 

The effects of permeability of the porous medium on the flow velocity of the fluids, in their 

respective regions, are shown in Fig. 7 when 1  , 2K , 0.7P , 1m , 1M .  

 

 

  

 

 

 

 

 

 

The permeability of the porous media is defined as the capability of porous media to pass or 

transport the fluids through it. It can be clearly seen from fig.7 that as the permeaility of the 

porous region in the horizontal channel increases, it results in the increase of fluid flow in all 

the three regions. As the permeability increases to higher values, the flow also increases to 

the same extent. 

5.2 Effect of different transport properties on the micro rotational velocity 

A detailed analysis of the effect of different transport properties on the micro rotational 

velocity has been presented in this section. 

5.2.1 Effect of material parameter 

The effect of material parameter on the micro rotational velocity of the micropolar fluid in 

region-II is shown in Fig. 8 when 1  , 0.1k , 7.0P , 1m , 1.5M . It is clear from 

fig. 8 that above 0.5y  the micro rotation velocity increases with material parameter, and 

below 0.5y , it decreases with increase in the value of the material parameter. 
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Fig. 7   Variation of flow velocity with the permeability  



 

 

 

 

 

 

 

 

5.2.2 Effect of viscosity ratio 

The effect of viscosity ratio on the micro rotational velocity of the micropolar fluid in 

region-II is illustrated in Fig. 9 when 1  , 1K , 7.0P , 0.1k , 1.5M . It can be 

noticed that when 1m , the micro rotational velocity increases with increase in viscosity 

ratio for 0.5 > y, however, above 0.5y , it decreases. 

 

 

 

 

 

 

 

 

 

5.2.3 Effect of Hartmann number 

The effect of applied magnetic field on the micro rotational velocity of the micropolar fluid 

in region-II is analyzed in Fig. 10 when 1  , 1K , 0.7P , 1m , 1.1k . It can be 

seen that above 0.5y , as the strength of magnetic field increases, the micro rotational 

 

 Fig. 9  Variation of micro rotational velocity with viscosity 
ratio 

 
Fig. 8 Variation of micro rotational velocity with the material parameter 



velocity decreases rapidly, but it never reached zero. Below 0.5y , the micro rotational 

velocity increases with increase in Hartmann number. 

 

  

 

 

 

 

 

 

5.2.4 Effect of conductivity ratio 

The effects of conductivity ratio on the micro rotational velocity of the micropolar fluid in 

region-II is analyzed in Fig. 11 when 1.5M , 1K , 7.0P , 1m , 0.1k . 

 

 

 

 

 

 

 

The variations of micro rotational velocity with conductivity ratio below and above 0.5y  

can be observed in fig.11. Below 0.5y , it has been observed that for lower value of 

conductivity ratio, the micro rotational velocity is higher. And, above 0.5y , the micro 

rotational velocity attains minimum value for lower values of conductivity ratio. 

 
Fig. 10 Variation of micro rotational velocity with Hartmann number 

Fig. 11 Variation of micro rotational velocity with conductivity ratio 



5.3 Effect of different transport properties on the volumetric flow rate and wall shear 

stress 

The effect of various flow parameters like magnetic number ( 0 8M  ), 

permeability (0 8)k  ), viscosity ratio ( 0 8m  ), material parameter ( 0 3K  ) and 

conductivity ratio ( 0 4  ) with pressure difference ( 0.7P ) on the flow rate and 

shear stress at the top and bottom of the channel has been critically analyzed in this section. 

The results obtained have been presented in tabular form here (Table 1).  

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

      The variations in the flow rate with different governing parameters also validate the 

graphical results of the flow velocity. It can be evaluated from table 1 that flow rate in the 

horizontal porous channel, in the presence of transversal magnetic field, increases with 

increase in the permeability of the porous medium, viscosity ratio and conductivity ratio.   

  Parameters Values Q Tτ  Bτ  

 

 Magnetic Number  

1 0.5831 -0.4828 0.4828 
3 0.1670 -0.2214 0.2214 
5 0.0704 -0.1373 0.1373 
7 0.0381 -0.0990 0.0990 

 

  Permeability              

0.3 0.3296 -0.3356 0.3356 
1 0.5665 -0.4848 0.4848 
5 0.7559 -0.5956 0.5956 
7 0.7745 -0.6065 0.6065 

 

  Viscosity ratio  

0.1 0.2827 -0.3692 0.3692 
1 0.5831 -0.4828 0.4828 
3 0.6589 -0.5046 0.5046 
7 0.6840 -0.5058 0.5058 

 

Material Parameter  

0.01 0.5858 -0.4810 0.4810 
0.08 0.5855 -0.4812 0.4812 

1 0.5838 -0.4828 0.4828 
2 0.5831 -0.4835 0.4835 

 

Conductivity Ratio 

0.3 0.4286 -0.4289 0.4289 
1 0.5831 -0.4828 0.4828 

2.3 0.6462 -0.5048 0.5048 
4 0.6707 -0.5133 0.5133 



The shear stress acting on the top and bottom of the porous channel increases (in magnitude) 

with increase in the values of permeability, viscosity ratio, material parameter and 

conductivity ratio. However, the wall shear stress on the both wall of the porous horizontal 

channel decreases with increase in the strength of the applied magnetic field. 

6. Conclusions 

The problem of flow of micropolar fluid sandwiched between two Newtonian fluids through 
a horizontal porous channel, under the effect of transverse magnetic field, has been solved 
analytically. Analytical expressions for the flow velocity, micro rotational velocity of the 
micropolar fluid, flow rate and wall shear stress have been obtained using appropriate 
boundary and interface conditions. It has been found out that the viscosity ratio, conductivity 
ratio and the permeability of the porous media promotes the flows’ velocities in the porous 
channel whereas, the material parameter of the micropolar fluid, and the Hartmann number, 
suppresses the flows. The tabulated variations observed in the wall shear stress have also 
been analyzed, and it has been found out that the stress applied by the flows on the upper 
and lower layer of the porous channel can be reduced by applying the magnetic field in the 
transverse direction of the flow. 
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