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Abstract 5 

The importance of stereochemistry on the behaviour and effects of chiral pharmaceutical and illicit 6 

drugs in amended agricultural soils has been over looked to date. Therefore, this study was aimed at 7 

investigating the enantiospecific behaviour of a chemically diverse range of chiral drugs including 8 

naproxen, ibuprofen, salbutamol, bisoprolol, metoprolol, propranolol, acebutolol, atenolol, 9 

chlorpheniramine, amphetamine, fluoxetine and citalopram in soil microcosms. Considerable changes 10 

of the enantiomeric composition of ibuprofen, naproxen, atenolol, acebutolol and amphetamine were 11 

observed within 56 d. This is significant as enantiomer enrichment can favour the pharmacologically 12 

active (e.g., S(-)-atenolol) or less/non-active forms of the drug (e.g., R(-)-amphetamine). Single 13 

enantiomer microcosms showed enantiospecific degradation was responsible for enantiomer 14 

enrichment of atenolol and amphetamine. However, naproxen and ibuprofen enantiomers were subject 15 

to chiral inversion whereby one enantiomer converts to its antipode. Interestingly, chiral inversion was 16 

bidirectional and this is the first time it is reported in soil. Therefore, introduction of the less active 17 

enantiomer to soil through irrigation with reclaimed wastewater or biosolids as fertiliser can result in 18 

the formation of its active enantiomer, or vice versa. This phenomenon needs considered in risk 19 

assessment frameworks to avoid underestimating the risk posed by chiral drugs in amended soils.     20 

Capsule 21 

Changes to the enantiomeric composition of chiral drugs in soil due to enantiospecific degradation (e.g., 22 

atenolol and amphetamine) or chiral inversion (e.g., ibuprofen and naproxen) could result in the 23 

underestimation of environmental risk.      24 

Keywords: pharmaceutical; soil; microcosm; enantiomer; inversion  25 
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1. Introduction 26 

Human pharmaceutical and illicit drugs are emerging contaminants as their fate and effects in the 27 

environment are not fully understood (Petrie et al., 2015; Noguera-Oviedo and Aga, 2016). It is well 28 

established that drugs are incompletely removed during wastewater treatment and are found in both 29 

treated wastewater and sludge (or biosolids) (McClellan and Halden, 2010; Gardner et al., 2012). Most 30 

research has focussed on the fate and impact of drugs in the aquatic environment (Hughes et al., 2013; 31 

Petrie et al., 2015). However, irrigation of farmland with treated wastewater and application of biosolids 32 

as fertiliser are growing practices that introduce drugs to the terrestrial environment. Pharmaceutical 33 

drugs have been shown to exert toxicity to exposed organisms such as Eisenia fetida, which are essential 34 

for soil function (Pino et al., 2015). Additionally, bioaccumulation is possible, posing a risk to 35 

organisms in higher trophic levels (Kinney et al., 2008). Drugs are also taken up by plants from soils, 36 

including those grown for human consumption (Malchi et al., 2014; Wu et al., 2014).  37 

Understanding the behaviour of drugs in amended soils is essential for the development of accurate 38 

environmental risk assessment (ERA). Degradation studies have found half-lives (t1/2) can range from 39 

a few days (e.g., diclofenac) to >200 days (e.g., carbamazepine) (Monteiro and Boxall, 2009; Xu et al., 40 

2009; Lin and Gan, 2011; Grossberger et al., 2014), demonstrating the diverse behaviour of drugs in 41 

the environment. An important consideration for assessing both the degradation and toxicity of drugs 42 

in the environment is their stereochemistry (Kasprzyk-Hordern, 2010). More than 50 % of 43 

pharmaceutical drugs on the market are chiral and exist as two or more enantiomers (Sanganyado et al., 44 

2017). Chiral drugs are usually marketed as racemic mixtures (equimolar concentration of enantiomers), 45 

or as single enantiomer preparations. However, chiral drugs are often subject to enantiospecific 46 

degradation and toxicity in the environment (Stanley et al., 2006; Stanley et al., 2007; Bagnall et al., 47 

2013; Evans et al., 2017; Petrie et al., 2018). Failing to consider the enantioselectivity of drugs in soils 48 

can result in the overestimation or underestimation of risk posed. Current ERA approaches do not 49 

require analysis at the enantiomeric level. Consequently, there is a paucity of data on the enantiospecific 50 

behaviour of drugs in soil. 51 
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Several studies have investigated the degradation of chiral drugs in soil (Monteiro and Boxall, 2009; 52 

Xu et al., 2009; Carr et al., 2011; Lin and Gan, 2011; Grossberger et al., 2014). However, most do not 53 

consider the role of stereochemistry on drug degradation. Furthermore, they do not report the 54 

enantiomeric composition of chiral drugs used in spiking studies (Xu et al., 2009; Lin and Gan, 2011; 55 

Grossberger et al., 2014). This is significant considering some analytical standards are available as 56 

racemates or in enantiomerically pure forms such as the anti-inflammatory drugs ibuprofen and 57 

naproxen. Considering enantiomers of the same drug can behave differently in soil, conclusions drawn 58 

from such studies could be misrepresentative. Preliminary studies undertaken at the enantiomeric level 59 

found considerable changes to the enantiomeric distribution of the stimulant amphetamine and the beta-60 

blocker atenolol in soil microcosms (Petrie et al., 2018). For example, an initial amphetamine 61 

enantiomeric fraction (EF) of 0.5 (racemic) changed to 0.1 after 3 d incubation. The enrichment of R(-62 

)-amphetamine was postulated as being the result of the comparatively faster degradation of S(+)-63 

amphetamine (Petrie et al., 2018). Nevertheless, there is limited information on drugs that transform 64 

enantioselectively, or the processes responsible for these transformations. Both enantioselective 65 

degradation and/or chiral inversion can take place under environmental conditions (Sanganyado et al., 66 

2017). Chiral inversion is the conversion of one enantiomer into its antipode without any other structural 67 

changes (Hutt and Caldwell, 1983). This process is significant as a non-toxic enantiomer in the 68 

environment has potential to convert into the toxic form.  69 

An important factor to consider in the behaviour of chiral drugs in soil is temperature. Previous drug 70 

degradation studies have utilised soil temperatures in the range 18-25 ˚C (Monteiro and Boxall, 2009; 71 

Xu et al., 2009; Carr et al., 2011; Lin and Gan, 2011; Grossberger et al., 2014; Petrie et al., 2018). In 72 

temperate climates such as the United Kingdom (UK), average monthly soil temperatures generally 73 

vary from 4 ˚C in winter to 18 ˚C in summer (Busby, 2015), depending on location. Soil temperature 74 

had a significant impact on degradation of the herbicide florasulam (Krieger et al., 2000). Florasulam 75 

t1/2 was found to be 8.5 d at 20 ˚C and 85 d at 5 ˚C in a clay loam soil. Thus, soil temperature is likely 76 

to play a considerable role in the degradation of pharmaceuticals, and their enantiomeric composition.     77 
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Due to the lack of research undertaken on the enantioselectivity of chiral drugs in soil, the objectives of 78 

this study were to: (i) investigate the enantiospecific behaviour of a diverse range of chiral drugs in soil, 79 

(ii) establish the influence of temperate summer (18 oC) and winter (4 oC) soil temperatures on chiral 80 

drug degradation and (iii) determine the processes responsible for enantioselective drug transformation 81 

(i.e., selective enantiomer degradation or chiral inversion). To achieve this, the fate of a chemically 82 

diverse selection of chiral drugs with one chiral centre (naproxen, ibuprofen, salbutamol, bisoprolol, 83 

metoprolol, propranolol, acebutolol, atenolol, chlorpheniramine, amphetamine, fluoxetine and 84 

citalopram - Table S1) was investigated in soil microcosms. Data from this work will improve our 85 

understanding and prediction of the risks associated with chiral pharmaceutical drugs in amended soils.   86 
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2. Materials and methods 87 

2.1. Materials 88 

Methanol, ammonium acetate, acetic acid and ammonium formate were HPLC grade and obtained from 89 

Sigma Aldrich. The reference materials R/S(±)-naproxen, R(-)-naproxen, S(+)-naproxen, R/S(±)-90 

ibuprofen, R(-)-ibuprofen, S(+)-ibuprofen, R/S(±)-salbutamol, R/S(±)-bisoprolol, R/S(±)-metoprolol, 91 

R/S(±)-amphetamine, S(+)-amphetamine, R(-)-amphetamine, R/S(±)-propranolol, R/S(±)-acebutolol, 92 

R/S(±)-fluoxetine, R/S(±)-atenolol, R(+)-atenolol, S(-)-atenolol R/S(±)-chlorpheniramine, and R/S(±)-93 

citalopram were purchased from Sigma Aldrich (Gillingham, UK) and Toronto Research Chemicals 94 

(Toronto, Canada). The corresponding deuterated surrogates were also purchased as racemates: R/S(±)-95 

naproxen-d3, R/S(±)-ibuprofen-d3, R/S(±)-salbutamol-d3, R/S(±)-bisoprolol-d5, R/S(±)-metoprolol-d7, 96 

R/S(±)-amphetamine-d11, R/S(±)-propranolol-d7, R/S(±)-acebutolol-d5, R/S(±)-fluoxetine-d6, R/S(±)-97 

atenolol-d7, R/S(±)-chlorpheniramine-d6, and R/S(±)-citalopram-d6. All chemicals were purchased as 98 

methanolic solutions of 0.1 mg mL-1 or 1 mg mL-1, or as powder. Powders were prepared at an 99 

appropriate concentration in methanol. All solutions were stored in the dark at -20°C. Oasis HLB 100 

cartridges (3cc 60mg) were purchased from Waters (Manchester, UK). 101 

2.2. Soil microcosms 102 

Microcosm studies were performed to investigate drug degradation in soil under biotic and abiotic 103 

conditions. Soil (~5 kg) was collected from an arable farm in North-East Scotland during February 2019 104 

(Table S2).  The field where soil was collected had not been treated with biosolids or animal manure 105 

for the past five years. Consequently, no background levels of any of the studied drugs were found. 106 

Sample collection consisted of pooling randomly collected 10 g grab samples from a 20,000 m2 area. 107 

Sub-samples were collected at least 10 m from the field boundary and from the top 10 cm surface layer 108 

of the soil. Soil was transferred to the laboratory immediately and sieved to less than 2 mm. To achieve 109 

abiotic conditions, 500 g of the sieved soil was autoclaved three times. Sodium azide was then added 110 

to soil at a concentration of 200 µg g-1 as described by Grossberger et al (2014). 111 

Sacrificial microcosms were utilised in this study and prepared in a laminar flow cabinet. For both biotic 112 

and abiotic microcosms, 5 g of the corresponding soil was added to 50 mL sterile polypropylene tubes. 113 
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24 tubes were prepared for each treatment condition enabling eight different sampling times (triplicate 114 

extractions). Soils were left for 12 h at the treatment temperature prior to spiking with drugs. Tubes 115 

were spiked with racemic drugs at concentrations of either 100 ng g-1 (high spike) or 10 ng g-1 (low 116 

spike). All spiked and measured concentrations are reported as wet weight (e.g., ng g-1 wet weight). 117 

Both racemic naproxen and ibuprofen were spiked at 10,000 ng g-1 (high) and 1,000 ng g-1 (low) to 118 

reflect their higher concentration in biosolids and the environment (Radjenović et al., 2009; Albero et 119 

al., 2014; Petrie et al., 2015). Spiking was achieved using 500 µL of an aqueous working solution (<2 120 

% methanol) of all drugs at their appropriate concentration. Biotic microcosms were incubated at both 121 

18 °C and 4 °C for both high and low spike levels. Abiotic microcosms (high and low spike level) were 122 

incubated at 18 °C. To ensure abiotic microcosms remained sterile throughout the study, aqueous soil 123 

extracts were inoculated on Petri dishes containing 1.5 % agar medium. All microcosms were kept in 124 

the dark throughout the study. For biotic microcosms, their weight was adjusted with water every few 125 

days to maintain their field moisture content of 26 %. Triplicate samples were collected at times 0, 1, 126 

3, 7, 14, 28, 42 and 56 days ready for analysis by accelerated solvent extraction-solid phase extraction-127 

liquid chromatography-tandem mass spectrometry (ASE-SPE-LC-MS/MS).  128 

Further biotic microcosms were prepared using single enantiomers to help understand enantioselective 129 

transformation processes. These were prepared using the same soil, albeit following storage at 4 °C for 130 

60 d (moisture content was adjusted to field conditions prior to initiating the microcosms). Microcosms 131 

were spiked at the high level (5,000 ng g-1 in the case of naproxen and ibuprofen or 50 ng g-1 for 132 

amphetamine and atenolol, respectively for individual enantiomers) with either S(+)-naproxen, S(+)-133 

ibuprofen, S(+)-amphetamine and R(+)-atenolol, or R(-)-naproxen, R(-)-ibuprofen, R(-)-amphetamine 134 

and S(-)-atenolol. The same methodology as described for the racemic microcosms was followed. A 135 

summary of all microcosms prepared was outlined (Figure S1). 136 

2.3. Soil extraction 137 

Soil samples (5 g) were spiked with a methanolic mixture of all racemic deuterated surrogates to achieve 138 

a concentration of 100 ng g-1 (10,000 ng g-1 in the case of R/S(±)-naproxen-d3 and R/S(±)-ibuprofen-d3). 139 

Samples were mixed with Ottawa sand and packed into 10 mL stainless steel ASE cells. Two 2-4 μm 140 
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Dionex glass fibre filters were fitted to each end of the cell. The extraction of prepared soil samples was 141 

performed using a Dionex ASE-350 system (California, USA). The final method used an extraction 142 

solvent of 20:80 water:methanol and an extraction temperature of 80 °C as described in Petrie et al. 143 

(2018). Briefly, two extractions cycles were performed for each sample with the following settings: pre-144 

heat for 5 min, heating for 5 min, solvent flush volume of 60% and nitrogen purge time of 150 s. The 145 

extraction pressure was 1500 psi. 146 

Solvent extracts obtained from the ASE (~22 mL) were diluted to 250 mL using HPLC water. Oasis 147 

HLB cartridges were conditioned with 2 mL methanol followed by 2 mL water under gravity. Samples 148 

were then loaded at 5 mL min-1 using a vacuum manifold and dried under vacuum. Analytes were eluted 149 

under gravity using a 4 mL aliquot of methanol. Extracts were dried at 40 ˚C under nitrogen and 150 

reconstituted in 0.5 mL methanol for LC-MS/MS analysis.  151 

2.4. Enantioselective liquid chromatography-tandem mass spectrometry 152 

Chromatography was performed using an Agilent 1260 Infinity Series HPLC. Two methods were 153 

utilised for the separation of a full suite of analytes. For the separation of naproxen and ibuprofen a 154 

CHIRAL ART Amylose-SA column (250 × 4.6 mm; 5 μm) (YMC, Kyoto, Japan) maintained at 25°C 155 

was used. The mobile phase consisted of 30:70 water:methanol containing 10 mM ammonium formate 156 

adjusted to pH 3.5 using formic acid. The flow rate was 0.8 mL min-1 with an injection volume of 20 157 

µL. The run time was 20 min. All remaining drugs were separated using a Chirobiotic V2 column (250 158 

× 2.1 mm; 5 μm) (Supelco, Sigma Aldrich) maintained at 15 ˚C (Ramage et al., 2019). The mobile 159 

phase was methanol containing 1 mM ammonium acetate and 0.01% acetic acid at a flow rate of 0.17 160 

mL min-1.  The injection volume was 40 µL and the total chromatographic run time was 80 min. The 161 

HPLC was coupled to an Agilent 6420 MS/MS triple quadrupole by electro-spray ionisation (ESI) in 162 

positive ionization mode. Selective ion monitoring transitions were utilised for naproxen and ibuprofen. 163 

All remaining drugs were analysed by multiple reaction monitoring. All monitored transitions can be 164 

found in Table S3. Example chromatograms can be found in Figure S2. Method quantitation limits were 165 

in the range 18-134 ng g-1 for naproxen and ibuprofen, and ≤1.3 ng g-1 for all remaining drugs (Table 166 

S4).  167 

2.5. Data analysis  168 
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Enantiomeric fraction (EF) of each drug was calculated according to eq 1: 169 

𝐸𝐸𝐸𝐸 = 𝐸𝐸(+)
[𝐸𝐸(+)+𝐸𝐸(−)]         (1) 170 

E(+) and E(-) is the concentration of the + and – enantiomers, respectively. Where the enantiomer 171 

elution order is unknown the EF was calculated using eq 2: 172 

 𝐸𝐸𝐸𝐸 = 𝐸𝐸1
[𝐸𝐸1+𝐸𝐸2]          (2) 173 

Here, E1 is the first eluting enantiomer and E2 is the second eluting enantiomer. The EF can vary from 174 

0 to 1 and an EF of 0.5 denotes an equimolar or racemic mixture of enantiomers. 175 

Drug degradation was fitted to the first-order exponential decay model using eq 3: 176 

𝐶𝐶𝑡𝑡 = 𝐶𝐶0 𝑥𝑥 𝑒𝑒−𝑘𝑘𝑡𝑡           (3) 177 

Here, Ct is the drug concentration at time t (d) and C0 is the drug concentration at the start of the study, 178 

and k is the degradation rate constant (1/d). Furthermore, drug half-life (t1/2) was calculated according 179 

to eq 4: 180 

𝑡𝑡1/2 = ln(2)
𝑘𝑘

           (4) 181 

  182 
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3. Results and discussion 183 

3.1. Enantiospecific behaviour of a diverse range of chiral drugs in soil 184 

The enantiomeric composition of chiral drugs was monitored in biotic and abiotic soil microcosms 185 

spiked with racemic drug standards. All drugs were investigated simultaneously. These results are 186 

grouped and presented according to therapeutic drug group.         187 

3.1.1. Anti-inflammatories 188 

The anti-inflammatory drugs naproxen and ibuprofen are among the most well studied drugs in soils 189 

albeit not at the enantiomeric level (Monteiro and Boxall, 2009; Xu et al., 2009; Carr et al., 2011; Lin 190 

and Gan, 2011; Grossberger et al., 2014). In soil microcosms R/S(±)-naproxen degraded under biotic 191 

conditions at 18 ̊ C (Figure 1). In the high spike microcosm (10,000 ng g-1), the starting EF of 0.52±0.01 192 

was increased to 0.67±0.01 after 56 d incubation representing an enrichment of S(+)-naproxen. 193 

Enantiomer t1/2 values were 9.7±0.3 and 11.8±0.4 d for S(+)-naproxen and R(-)-naproxen, respectively 194 

(p-value <0.05) (Table 1). Interestingly, enantiomer degradation was greater at the low spike level 195 

(1,000 ng g-1) with t1/2 values of 6.9±0.8 and 7.8±0.5 d for S(+)-naproxen and R(-)-naproxen. For the 196 

low spike level, a maximum EF of 0.66±0.04 was observed (Figure 1). Significantly different t1/2 values 197 

were observed between high and low spike microcosms (p-values <0.05) and is in agreement with 198 

Grossberger et al (2014). This observation was apparent for most studied drugs (Table 1). However, the 199 

first-order decay model is concentration independent (Alexander, 1999), suggesting the need for a 200 

pseudo second-order model (Grossberger et al., 2014). Nevertheless, for comparison between 201 

enantiomers of the same drug and published data, the first-order decay model was applied. Literature 202 

t1/2 values range from 3 d to 69 d under a range of different experimental conditions (Monteiro and 203 

Boxall, 2009; Xu et al., 2009; Lin and Gan, 2011; Grossberger et al., 2014). 204 

R/S(±)-ibuprofen degraded rapidly in biotic microcosms at 18 ˚C with enantiomer t1/2 values of 1.0-2.3 205 

d (Figure S4). Although previous studies do not report ibuprofen at the enantiomeric level, whole drug 206 

studies report t1/2 values ranging from <1 d to 15 d (Monteiro and Boxall, 2009; Xu et al., 2009; Lin and 207 

Gan, 2011; Grossberger et al., 2014). An enrichment of R(-)-ibuprofen was observed resulting in EF 208 
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values reaching 0.38-0.39 after 3 d incubation. This is in agreement with Hashim et al (2011) who report 209 

racemic ibuprofen becoming enriched with R(-)-ibuprofen during wastewater treatment.          210 

Abiotic microcosms were prepared to confirm drug degradation in soil is biologically driven. Sterile 211 

conditions were confirmed by the absence of any colony forming units in inoculated agar medium 212 

(Figure S3). In abiotic microcosms, no significant degradation of naproxen or ibuprofen, or changes to 213 

their EF were observed during the 56 d incubation time at either concentration level (Figure 1, Figure 214 

S4), confirming their enantioselective transformation is a result of biological processes. Indeed, no 215 

degradation or changes to the enantiomeric composition of any studied drug were found in abiotic 216 

conditions. The absence of any drug degradation in abiotic soils is in agreement with previous studies 217 

(Lin and Gan, 2011; Grossberger et al., 2014).   218 

In soil incubated at 4 ˚C naproxen enantiomer degradation was reduced significantly, and by 6.2 to 9.2 219 

times at the high spike level (p-value <0.05). To demonstrate, the S(+)-naproxen t1/2 of 11.8±0.4 d at 18 220 

˚C was increased to 109±12.1 d at 4 ̊ C (Table 1). Here, enantiomeric changes were still observed within 221 

the 56 d incubation time. The starting EF of 0.48±0.01 increased to 0.55-0.56 from 28 d onwards (Figure 222 

1). At the low spike level, 4.4 to 8.2 times reduced degradation was found (p-value <0.05). The greatest 223 

EF was observed after 56 d where the EF was 0.70±0.03 (Figure 1). Soil incubation temperatures of 4 224 

˚C saw ibuprofen t1/2 values increase by up to 2.7 times (Table 1). However, no change to R(-)-ibuprofen 225 

t1/2 was noted in the low spike microcosms. A minimum EF of 0.43±0.06 was found here after 3 d. EFs 226 

of 0.38-0.39 were observed in the high spike microcosms, albeit at days 7 and 14 (Figure S4). Although 227 

temperature had a significant effect on naproxen and ibuprofen degradation, less impact was found at 228 

the lower concentration level. Previous soil microcosm studies report reduced nitrification kinetics 229 

(Tourna et al., 2008) and respiration rates (measured through CO2 production) (Andrews et al., 2010) 230 

in soils incubated at temperatures ≤10 ˚C.              231 

3.1.2. Anti-histamine 232 

Chlorpheniramine is an over the counter antihistamine previously prioritised as a drug for further study 233 

in the environment (Boxall, 2004). Research has found it to be incompletely removed during wastewater 234 
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treatment (Roberts et al., 2016), yet there is still a paucity of information on its environmental fate. 235 

Chlorpheniramine is moderately hydrophobic (log KOW 3.67) suggesting it is likely to partition into 236 

wastewater sludge. In soil microcosms no notable degradation (>20 %) of R/S(±)-chlorpheniramine, or 237 

changes to its enantiomeric composition were observed in any of the biotic microcosms (Figure S5). 238 

Previous studies prepared under similar conditions using the same drug concentration (albeit with 239 

different soil) showed >50 % degradation over 56 d (Petrie et al., 2018). This difference in degradation 240 

is attributed to differences in microbial community of the collected soils. However, further work is 241 

required to confirm this assumption.    242 

3.1.3. Beta-blockers and beta-agonist 243 

Beta-blockers showed a range of behaviour in soil microcosms. R/S(±)-bisoprolol, R/S(±)-metoprolol 244 

and R/S(±)-propranolol all degraded without enantioselective transformation (Figure S6-8). Enantiomer 245 

t1/2 values at 18 ˚C for the high spike level (100 ng g-1) were 19-20 d, 61-64 d and 91-106 d, respectively 246 

(Table 1). R/S(±)-propranolol behaviour is similar to that observed previously (Petrie et al., 2018). No 247 

previous data exists on the enantiospecific behaviour of bisoprolol and metoprolol in soil. However, 248 

metoprolol has shown enantioselective degradation in river waters (Evans et al., 2017).  249 

R/S(±)-atenolol was found to degrade rapidly with enantiomer t1/2 values in the range 3.6-8.0 d at 18 ˚C 250 

and 6.0-15.6 d at 4 ˚C (Table 1). An enrichment of S(-)-atenolol was observed with EFs reaching a 251 

minimum of 0.36±0.10 after 7 d in the low spike microcosm (10 ng g-1) at 18 ̊ C (Figure S9). This agrees 252 

with previous work in agricultural soil (Petrie et al., 2018), with the same enrichment pathway also 253 

found in wastewater (Nikolai et al., 2006; Kasprzyk-Hordern and Baker, 2012; Evans et al., 2017). 254 

Enrichment of S(-)-atenolol is significant as this enantiomer has greater potency and is found to be about 255 

four times more toxic than R(+)-atenolol to the environmental toxicity indicator species Tetrahymena 256 

thermophila (de Andrés et al., 2009). 257 

The enantiospecific behaviour of R/S(±)-acebutolol has not been investigated in the receiving 258 

environment despite it being found in wastewater and surface waters (Daneshvar et al., 2010; Gabet-259 

Giraud et al., 2014) as well as having a propensity to adsorb to wastewater sludge and sediments (Ramil 260 
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et al., 2010; Sanganyado et al., 2016). In soil, acebutolol-E1 was found to degrade at a comparatively 261 

faster rate than acebutolol-E2 (Figure 2). Acebutolol-E1 t1/2 values were 36.9±3.9 d and 33.4±3.2 d for 262 

the high and low spike levels at 18 ˚C (t1/2 values could not be calculated for acebutolol-E2) (Table 1). 263 

Minimum EFs were 0.35±0.01 (high spike) and 0.32±0.01 (low spike) after 56 d demonstrating the 264 

considerable changes in enantiomeric composition of acebutolol found (Figure 2). Based on the work 265 

by Sanganyado et al (2016) using a similar chromatographic column and mobile phase conditions where 266 

the order of enantiomer elution is known, it is likely the more persistent enantiomer in soil was R(+)-267 

acebutolol. This may be significant in the environment as R(+)-acebutolol is the active enantiomer and 268 

possesses the beta-blocking activity (Piquette‐Miller et al., 1991). Interestingly, at 4 ˚C there was no 269 

degradation of either enantiomer and the drug remained unchanged over 56 d (Figure 2). 270 

In contrast, the beta-agonist R/S(±)-salbutamol degraded rapidly with enantiomer t1/2 values of ≤1.2 d 271 

under all biotic conditions, irrespective of temperature (Table 1). A small increase in EF was observed 272 

during degradation with an enrichment of salbutamol-E1 (Figure S10). Rapid degradation has been 273 

observed previously in soil with complete degradation observed within 14 d (Petrie et al., 2018).  274 

3.1.4. Anti-depressants 275 

Anti-depressants including citalopram and fluoxetine have been determined in biosolids and amended 276 

soils previously (Walters et al., 2010; Lajeunesse et al., 2012; Evans et al., 2015). In soil microcosms 277 

both R/S(±)-citalopram and R/S(±)-fluoxetine did not show any considerable degradation over 56 d 278 

under biotic conditions (Figure S11 and S12), including any changes to their enantiomeric composition. 279 

The persistence of fluoxetine in soils has been previously observed (Monteiro and Boxall, 2009; Walters 280 

et al., 2010; Petrie et al., 2018). Walters et al (2010) reported no degradation of fluoxetine in soil over 281 

1,000 d. 282 

3.1.5. Stimulant 283 

The stimulant amphetamine degraded rapidly and enantioselectively in biotic microcosms (Figure S13). 284 

Enrichment with R(-)-amphetamine was considerable with EFs <0.2 after 3 d. This observation is 285 

consistent with previous studies demonstrating greater persistence of R(-)-amphetamine in the 286 
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environment (Bagnall et al., 2013; Evans et al., 2017), including soil (Petrie et al., 2018). This may be 287 

significant as S(+)-amphetamine has twice the stimulant activity of R(-)-amphetamine (Kasprzyk-288 

Hordern, 2010). However, enantiospecific toxicity towards environmental organisms is yet to be 289 

established. Nevertheless, complete enantiomer degradation was observed within 28 d at 18 ˚C and 290 

within 42 d at 4 ˚C (Figure S13). 291 

 292 

3.2. Transformation processes responsible for enantiospecific drug changes 293 

Individual enantiomer microcosms were prepared to identify the processes responsible for 294 

enantiospecific transformations (Figure S1). The drugs studied were naproxen, ibuprofen, atenolol and 295 

amphetamine as they were subject to the greatest enantiomeric changes in racemic microcosms 296 

(acebutolol could not be obtained as individual enantiomers at the time of the study).  297 

At 18 ˚C the loss of R(-)-naproxen coincided with the formation of S(+)-naproxen through chiral 298 

inversion (Figure 3). The EF changed from an initial value of 0.00 to 0.54±0.02 after 28 d. On the other 299 

hand, the loss of S(+)-naproxen from its respective microcosm resulted in the formation of R(-)-300 

naproxen. In this case an initial EF of 1.00 changed to 0.78±0.01 after 28 d (Figure 3). However, as 301 

both inversion and degradation are taking place, it remains unknown which process (or both) is 302 

responsible for the overall changes in enantiomeric composition observed in racemic microcosms 303 

previously. Nevertheless, this is the first-time chiral inversion of a drug has been reported in soil, and 304 

that it can proceed in both directions. Chiral inversion of S(+)-naproxen to R(-)-naproxen has been 305 

observed previously during wastewater treatment (Hashim et al., 2011; Suzuki et al., 2014). 306 

Furthermore, Nguyen et al (2017) reported bidirectional inversion of anti-inflammatories (naproxen, 307 

ibuprofen and ketoprofen) by an enzymatic membrane bioreactor. The results of the single enantiomer 308 

microcosms agree with those of the racemic microcosm whereby an enrichment of S(+)-naproxen was 309 

found (Figure 1). Incubation of soil at 4 ˚C resulted in little or no inversion of naproxen enantiomers 310 

(Figure 3).  311 
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Ibuprofen enantiomers were also inverted in soil microcosms (Figure S14). Enrichment was preferential 312 

towards R(-)-ibuprofen (pharmacologically inactive enantiomer) resulting in those EFs <0.5 found in 313 

racemic microcosms previously (Figure S4). For example, incubation at 4 ˚C resulted in EF changes 314 

from 0.00 to 0.28±0.02 in the R(-)-ibuprofen spiked microcosm and from 1.00 to 0.48±0.03 in the S(+)-315 

ibuprofen spiked microcosm over 56 d (Figure S14). In vivo mammalian studies have reported 316 

unidirectional conversion of R(-)-ibuprofen to S(+)-ibuprofen (Hao et al., 2005). Similarly, fungi such 317 

as Verticillium lecanii have been found to preferentially convert R(-)-ibuprofen to S(+)-ibuprofen by 318 

an enzymatic process related to mammalian studies (Thomason et al., 1998). However, evidence 319 

reporting the inversion of S(+)-ibuprofen to R(-)-ibuprofen by Nocardia bacteria exists (Mitsukura et 320 

al., 2002), as well as in lake water microcosms (Buser et al., 1999) and during wastewater treatment 321 

(Nguyen et al., 2017). The mechanism of chiral inversion remains poorly understood, particularly in 322 

the environment, but it is believed several enzymes play a role (Kato et al., 2003; Kato et al., 2004; 323 

Khan et al., 2014). It is thought that S-enantiomers form an activated coenzyme A derivative followed 324 

by epimerization to the R-enantiomer and hydrolysis of the R-acyl-coenzyme (Khan et al., 2014). 325 

Essentially, following an enzyme mediated deprotonation from the stereogenic centre an intermediate 326 

compound with a c=c double bond is formed. A subsequent (re)protonation can then take place either 327 

side of the c=c resulting in the formation of the antipode.    328 

Degradation of atenolol enantiomers showed enantioselective degradation with t1/2 values of 5.0±0.4 329 

and 3.4±0.1 d for S(-)-atenolol and R(+)-atenolol at 18 ˚C, respectively (p-value <0.05) (Figure S15). 330 

No evidence of chiral inversion (or changes to EF) was observed. The comparatively faster degradation 331 

of R(+)-atenolol confirms the enrichment of S(-)-atenolol (EF <0.5) observed in racemic microcosms 332 

previously (Figure S9). However, the degradation rates were significantly different between the single 333 

enantiomer and racemic microcosms. Greatest differences were observed for soils incubated at 4 ˚C. 334 

For example, in racemic microcosms the t1/2 value of S(-)-atenolol was 15.6±0.6 d and in single 335 

enantiomer microcosms it was 35.5±3.7 d (p-value <0.05). Although the same soil was used in both 336 

studies, soil was stored for 60 d at 4 ˚C prior to initiation of the single enantiomer microcosms. While 337 

this satisfies accepted guidelines (OECD, 2002), the differences in post-sampling storage is likely to 338 
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account for this. Stenberg et al (1998) reported effects on microbial biomass and activities in soils under 339 

cold storage. Nevertheless, the transformation processes identified and changes to EF observed 340 

correspond to those enantiospecific changes found in racemic microcosms. 341 

Amphetamine enantiomers also showed enantioselective degradation without evidence of inversion 342 

(Figure S16). The t1/2 values were 1.0±0.2 d for S(+)-amphetamine and 2.3±0.0 d for R(-)-amphetamine 343 

(p-value <0.05). To the best of our knowledge this is the first study to confirm the enantioselective 344 

degradation of amphetamine and atenolol in the environment (over other enantioselective processes 345 

such as chiral inversion) using single enantiomer microcosms. 346 

 347 

3.3. Future perspective on the environmental risk assessment of chiral drugs in soil 348 

Irrigation of agricultural land with reclaimed wastewater and recycling of biosolids as fertiliser are 349 

growing practices. Current environmental risk assessment guidelines for pharmaceuticals drugs in soils 350 

do not require enantiospecific toxicity or fate assessments for chiral compounds (European Medicines 351 

Agency, 2018). The main reasons for this are (i) there is a lack of information on the enantiomeric 352 

composition of drugs in biosolids and irrigation water, as well as their fate in amended soils, and (ii) 353 

there are no studies on the enantiospecific toxicity of chiral drugs to terrestrial organisms. Nevertheless, 354 

the limited data available for biosolids demonstrating non-racemic composition of drugs being applied 355 

to land (Evans et al., 2015), and the extent of enantiomer enrichment in amended soils observed in our 356 

study demonstrate studies on enantiospecific toxicity are now needed. Establishing the extent of 357 

enantiospecific toxicity towards terrestrial organisms will be a driver for further enantioselective studies 358 

of drugs in amended soils.  359 

Care is needed if the analysis of biosolids or irrigation water is used to estimate soil enantiomer 360 

concentrations for risk assessment purposes (an approach taken for other trace pollutants (Stasinakis et 361 

al., 2008; Petrie et al., 2019). The inversion of pharmacologically less active enantiomers to more active 362 

enantiomers in soil or vice versa (e.g., naproxen and ibuprofen - Figure 3, Figure S14) could result in 363 

the underestimation or overestimation of risk, respectively (assuming pharmacological activity in 364 
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humans is reflected in environmental toxicity studies). Nevertheless, further fate studies are needed on 365 

chiral drugs in amended soils that were out with the scope of this study (different soils, exposure 366 

conditions etc) to ensure robust data for risk assessments is obtained. Such investigations need to study 367 

the microbial community of studied soils to improve our understanding of chiral drug degradation. It is 368 

recommended that laboratory fate studies utilise freshly collected soils to avoid any storage induced 369 

effects to the soil microbial community. Risk assessments must also account for soil temperature in fate 370 

assessments as it had a considerable impact on chiral drug transformation. For example, application of 371 

biosolids as fertiliser in temperate climates is typically done in preparation for spring or winter crop 372 

sowing where soil temperatures are notably different.  373 

 374 

4. Conclusions 375 

This study is the first to evaluate the enantiospecific behaviour of a diverse range of chiral drugs in soil. 376 

It found that five of the 12 studied drugs were subject to enantioselective transformation. Both 377 

enantioselective degradation (amphetamine and atenolol) and chiral inversion (naproxen and ibuprofen) 378 

were identified as transformation processes. Significantly, chiral inversion was found to be 379 

bidirectional. Thus, the introduction of the inactive enantiomer to soil can lead to the formation of the 380 

active antipode, or vice versa. This observation needs considered in future environmental risk 381 

assessments to avoid overestimating or underestimating the associated risks of irrigating agricultural 382 

land with reclaimed wastewater, or applying biosolids as fertiliser. However, further studies are now 383 

needed on the enantiospecific toxicity of chiral drugs in the terrestrial environment.     384 
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Figure 1. Relative concentration of R(-)-naproxen and S(+)-naproxen and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-naproxen 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure 2. Relative concentration of acebutolol-E1 and acebutolol-E2 and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-acebutolol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure 3. Concentration of R(-)-naproxen and S(+)-naproxen and the corresponding enantiomeric 
fraction in soil microcosms spiked with individual naproxen enantiomers 

Key: BH18-, biotic high spike level of (-)-enantiomer 18 ˚C microcosm; BH18+, biotic high spike 
level of (+)-enantiomer 18 ˚C microcosm; BH4-, biotic high spike level of (-)-enantiomer 4 ˚C 

microcosm; BH4+, biotic high spike level of (+)-enantiomer 4 ˚C microcosm   
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Table 1. Degradation rate constants and half-lives of drug enantiomers spiked in racemic microcosms 
Drug class Enantiomer Microcosm k (d-1) r2 t1/2 (d) 
Anti-inflammatory R(-)-naproxen BH18 0.071±0.002 0.987 9.7±0.3 
  BL18 0.101±0.011 0.890 6.9±0.8 
  BH4 0.011±0.001 0.779 60.6±4.0 
  BL4 0.024±0.007 0.780 30.5±9.2 
 S(+)-naproxen BH18 0.059±0.002 0.991 11.8±0.4 
  BL18 0.089±0.006 0.947 7.8±0.5 
  BH4 0.006±0.001 0.619 109±12.1 
  BL4 0.012±0.004 0.638 63.8±22.0 
 R(-)-ibuprofen BH18 0.320±0.050 0.989 2.2±0.4 
  BL18 0.592±0.268 0.852 1.4±0.9 
  BH4 0.116±0.011 0.964 6.0±0.6 
  BL4 0.533±0.141 0.971 1.4±0.4 
 S(+)-ibuprofen BH18 0.302±0.041 0.993 2.3±0.3 
  BL18 0.790±0.319 0.904 1.0±0.4 
  BH4 0.123±0.005 0.993 5.6±0.2 
  BL4 0.407±0.075 0.978 1.7±0.4 
Anti-histamine S(+)-

chlorpheniramine 
BH18a - - - 

  BL18a - - - 
  BH4a - - - 
  BL4a - - - 
 R(-)-chlorpheniramine BH18a - - - 
  BL18a - - - 
  BH4a - - - 
  BL4a - - - 
Beta-blocker Bisoprolol E1 BH18 0.034±0.002 0.969 20.4±1.1 
  BL18 0.093±0.006 0.948 7.5±0.5 
  BH4a - - - 
  BL4a - - - 
 Bisoprolol E2 BH18 0.036±0.002 0.969 19.4±1.0 
  BL18 0.083±0.005 0.968 8.4±0.5 
  BH4a - - - 
  BL4a - - - 
 Metoprolol E1 BH18 0.011±0.001 0.846 63.7±8.1 
  BL18 0.014±0.003 0.786 49.7±9.9 
  BH4a - - - 
  BL4a - - - 
 Metoprolol E2 BH18 0.012±0.002 0.848 60.6±7.9 
  BL18 0.014±0.002 0.857 50.3±6.8 
  BH4a - - - 
  BL4a - - - 
 S(-)-propranolol BH18 0.007±0.001 0.596 106±18.1 
  BL18b - - - 
  BH4b - - - 
  BL4b - - - 
 R(+)-propranolol BH18 0.008±0.001 0.619 91.4±11.9 
  BL18b - - - 
  BH4 0.006±0.002 0.600 129±31.4 
  BL4b - - - 
 Acebutolol E1 BH18 0.019±0.002 0.919 36.9±3.9 
  BL18 0.021±0.002 0.817 33.4±3.2 
  BH4a - - - 
  BL4a - - - 
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 Acebutolol E2 BH18b - - - 
  BL18b - - - 
  BH4a - - - 
  BL4a - - - 
 S(-)-atenolol BH18 0.159±0.011 0.982 4.4±0.3 
  BL18 0.133±0.110 0.753 8.0±5.5 
  BH4 0.045±0.002 0.946 15.6±0.6 
  BL4 0.094±0.057 0.859 9.0±4.1 
 R(+)-atenolol BH18 0.195±0.012 0.980 3.6±0.2 
  BL18 0.195±0.172 0.662 7.4±7.6 
  BH4 0.051±0.001 0.935 13.6±0.1 
  BL4 0.138±0.074 0.941 6.0±2.6 
Beta-agonist Salbutamol E1 BH18 1.44±0.123 0.961 0.5±0.0 
  BL18c - - - 
  BH4 0.641±0.221 0.881 1.2±0.3 
  BL4c - - - 
 Salbutamol E2 BH18 1.57±0.199 0.972 0.4±0.1 
  BL18c - - - 
  BH4 0.684±0.220 0.896 1.1±0.3 
  BL4c - - - 
Anti-depressant S(+)-fluoxetine BH18a - - - 
  BL18a - - - 
  BH4a - - - 
  BL4a - - - 
 R(-)-fluoxetine BH18a - - - 
  BL18a - - - 
  BH4a - - - 
  BL4a - - - 
 S(+)-citalopram BH18b - - - 
  BL18b - - - 
  BH4b - - - 
  BL4b - - - 
 R(-)-citalopram BH18b - - - 
  BL18b - - - 
  BH4b - - - 
  BL4b - - - 
Stimulant S(+)-amphetamine BH18c - - - 
  BL18c - - - 
  BH4 0.378±0.091 0.849 1.9±0.4 
  BL4c - - - 
 R(-)-amphetamine BH18 0.244±0.014 0.879 2.8±0.2 
  BL18c - - - 
  BH4 0.125±0.008 0.937 5.6±0.4 
  BL4 0.399±0.092 0.988 1.8±0.5 

adegradation was <20 % over 56 d; br2 <0.5 therefore k not reported cinsufficient data points to report k 
Key: k, degradation rate constant; t1/2, half-life; BH18, biotic high spike level 18 ˚C; BL18, biotic low 
spike level 18 ˚C;  BH4, biotic high spike level 4 ˚C; BL4, biotic low spike level 4 ˚C 
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performance data.  
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Figure S1. Experimental set-up and incubation conditions for soil microcosms  
Key: a10,000 ng g-1 for naproxen and ibuprofen b1,000 ng g-1 for naproxen and ibuprofen c5,000 ng g-1 

for naproxen and ibuprofen 
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L = low spike level of racemate (10 ng g-1)b

H1 = high spike level of selected (+)-enantiomers (50 ng g-1)c

H2 = high spike level of selected (-)-enantiomers (50 ng g-1)c
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Figure S2. MRM chromatograms of chiral drugs spiked in soil at 100 ng g-1 (10,000 ng g-1 for 
ibuprofen and naproxen).  
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Figure S3. Comparison of 56 d biotic (left) and abiotic microcosm soil (right) inoculated Petri dishes 
incubated at 25 ˚C for 72 h. 
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Figure S4. Relative concentration of R(-)-ibuprofen and S(+)-ibuprofen and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-ibuprofen 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S5. Relative concentration of S(+)-chlorpheniramine and S(-)-chlorpheniramine and the 
corresponding enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-chlorpheniramine 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S6. Relative concentration of bisoprolol E1 and bisoprolol E2 and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-bisoprolol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S7. Relative concentration of metoprolol E1 and metoprolol E2 and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-metoprolol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S8. Relative concentration of S(-)-propranolol R(+)-propranolol and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-propranolol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S9. Relative concentration of S(-)-atenolol and R(+)-atenolol and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-atenolol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S10. Relative concentration of salbutamol E1 and salbutamol E2 and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-salbutamol 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S11. Relative concentration of S(+)-fluoxetine and R(-)-fluoxetine and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-fluoxetine 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S12. Relative concentration of R(-)-citalopram and S(+)-citalopram and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-citalopram 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S13. Relative concentration of S(+)-amphetamine R(-)-amphetamine and the corresponding 
enantiomeric fraction in soil microcosms spiked with racemic R/S(±)-amphetamine 

Key: BH18, biotic high spike level 18 ˚C microcosm; BL18, biotic low spike level 18 ˚C microcosm; 
BH4, biotic high spike level 4 ˚C microcosm; BL4 biotic low spike level 4 ˚C microcosm; AH18, 

abiotic high spike level 18 ˚C microcosm; AL18, abiotic low spike level 18 ˚C microcosm. 
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Figure S14. Concentration of R(-)-ibuprofen and S(+)-ibuprofen and the corresponding enantiomeric 
fraction in soil microcosms spiked with individual ibuprofen enantiomers 

Key: BH18-, biotic high spike level of (-)-enantiomer 18 ˚C microcosm; BH18+, biotic high spike 
level of (+)-enantiomer 18 ˚C microcosm; BH4-, biotic high spike level of (-)-enantiomer 4 ˚C 

microcosm; BH4+, biotic high spike level of (+)-enantiomer 4 ˚C microcosm   
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Figure S15. Concentration of S(-)-atenolol and R(+)-atenolol and the corresponding enantiomeric 
fraction in soil microcosms spiked with individual atenolol enantiomers 

Key: BH18-, biotic high spike level of (-)-enantiomer 18 ˚C microcosm; BH18+, biotic high spike 
level of (+)-enantiomer 18 ˚C microcosm; BH4-, biotic high spike level of (-)-enantiomer 4 ˚C 

microcosm; BH4+, biotic high spike level of (+)-enantiomer 4 ˚C microcosm   
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Figure S16. Concentration of S(+)-amphetamine and R(-)-amphetamine and the corresponding 
enantiomeric fraction in soil microcosms spiked with individual amphetamine enantiomers 

Key: BH18-, biotic high spike level of (-)-enantiomer 18 ˚C microcosm; BH18+, biotic high spike 
level of (+)-enantiomer 18 ˚C microcosm; BH4-, biotic high spike level of (-)-enantiomer 4 ˚C 

microcosm; BH4+, biotic high spike level of (+)-enantiomer 4 ˚C microcosm   
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Table S1. Chemical properties of studied chiral drugs (US EPA, 2015) 

Drug Chemical structure 
Molecular weight  

(g mol-1) 

Water solubility  

(mg L-1) 
Log KOW pKa 

Naproxen 
 

230.26 15.9 3.18 4.15 

Ibuprofen 

 

206.28 21.0 3.97 4.91 

Chlorpheniramine 

 

274.79 5.5E3 3.67 9.47 (basic) 

Salbutamol 

 

239.31 1.4E4 0.40 
10.12 (acidic) 

9.40 (basic) 

Bisoprolol 

 

325.44 2.2E3 1.87 
14.09 (acidic) 

9.27 (basic) 

Metoprolol  
 

267.36 >1.0E4 1.88 
14.09 (acidic) 

9.67 (basic) 

Propranolol 
 

259.35 228.0 2.60 
13.84 (acidic) 

9.50 (basic) 



S19 
 

Acebutolol 
 

336.40 259.0 1.71 
13.91 (acidic) 

9.57 (basic) 

Atenolol 
 

266.34 685.2 -0.03 
13.88 (acidic) 

9.43 (basic) 

Fluoxetine 

 

309.33 60.3 4.65 10.05 (basic) 

Citalopram 

 

324.40 31.1 3.76 9.78 

Amphetamine  135.21 2.8E4 1.76 9.94 (basic) 
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Table S2. Properties of collected soil 
Soil property Result 
pH 6.6±0.1 
Moisture content (%) 26.3±0.6 
Specific surface area (m2/kg) 667 
Cation exchange capacity (meq/100g) 17.5 
d10 (µm) 3.68 
d50 (µm) 35.6 
d90 (µm) 277 
Loss on ignition @ 450°C (%) 6.2±0.2 
Loss on ignition @ 900°C (%) 8.4±0.1 
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Table S3. Mass spectrometry information for studied drugs 

Drug Precursor (m/z) Fragmentor (V) Product 1 (m/z) Collision energy (eV) Product 2 (m/z) Collision energy (eV) 
R/S(±)-naproxen 231.1 90 - - - - 
R/S(±)-ibuprofen 224.2 50 - - - - 

R/S(±)-chlorpheniramine 274.9 90 229.9 10 166.8 40 
R/S(±)-salbutamol 239.9 90 165.9 10 147.9 10 
R/S(±)-bisoprolol 326.2 120 116.0 10 74.1 30 
R/S(±)-metoprolol 268.1 110 191.1 10 116.0 12 
R/S(±)-propranolol 259.9 110 182.9 10 115.9 10 
R/S(±)-acebutolol 337.2 90 319.3 10 116.1 20 
R/S(±)-atenolol 266.9 100 189.9 20 145.0 30 

R/S(±)-fluoxetine 309.8 90 147.7 2 44.0 10 
R/S(±)-citalopram 325.0 130 262.0 20 108.9 30 

R/S(±)-amphetamine 135.8 70 90.9 20 65.0 40 
R/S(±)-naproxen-d3 234.1 90 - - - - 
R/S(±)-ibuprofen-d3 227.2 50 - - - - 

R/S(±)-chlorpheniramine-d6 281.0 100 229.9 10 - - 
R/S(±)-salbutamol-d3 243.0 90 150.9 10 - - 
R/S(±)-bisoprolol-d5 331.2 120 121.0 10 - - 
R/S(±)-metoprolol-d7 275.2 110 123.0 15 - - 
R/S(±)-propranolol-d7 267.0 110 115.9 20 - - 
R/S(±)-acebutolol-d5 342.2 90 121.0 20 - - 
R/S(±)-atenolol-d7 274.1 100 145.0 30 - - 

R/S(±)-fluoxetine-d6 316.0 90 44.1 10 - - 
R/S(±)-citalopram-d6 331.0 130 109.0 30 - - 

R/S(±)-amphetamine-d11 147.0 70 98.0 20 - - 
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Table S4. Method performance data for studied drugs 
Enantiomer Linear range (µg mL-1) Method trueness (%) MQL (ng g-1) 
R(-)-naproxen 0-100 89±8 17.9 
S(+)-naproxen 0-100 92±11 20.4 
R(-)-ibuprofen 0-100 100±6 98.0 
S(+)-ibuprofen 0-100 103±7 134 
S(+)-chlorpheniramine 0-1 86±9 0.07 
R(-)-chlorpheniramine 0-1 77±1 0.07 
Salbutamol E1 0-1 94±6 0.26 
Salbutamol E2 0-1 98±5 0.30 
Bisoprolol E1 0-1 102±1 0.12 
Bisoprolol E2 0-1 104±2 0.12 
Metoprolol E1 0-1 102±1 0.71 
Metoprolol E2 0-1 104±2 0.74 
S(-)-propranolol 0-1 101±5 0.08 
R(+)-propranolol 0-1 102±6 0.07 
Acebutolol E1 0-1 90±4 0.10 
Acebutolol E2 0-1 85±2 0.11 
S(-)-atenolol 0-1 92±3 0.81 
R(+)-atenolol 0-1 98±6 0.69 
S(+)-fluoxetine 0-1 72±3 0.10 
R(-)-fluoxetine 0-1 72±4 0.07 
S(+)-citalopram 0-1 101±6 1.31 
R(-)-citalopram 0-1 104±9 1.21 
S(+)-amphetamine 0-1 113±2 0.17 
R(-)-amphetamine 0-1 110±2 0.15 

Key: MQL, method quantitation limit 
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