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Abstract. Smart Homes o↵er the opportunity to perform continuous,
long-term behavioural and vitals monitoring of residents, which may be
employed to aid diagnosis and management of chronic conditions with-
out placing additional strain on health services. A profile of the resident’s
behaviour can be produced from sensor data, and then compared over
time. Activity Recognition is a primary challenge for profile generation,
however many of the approaches adopted fail to take full advantage of the
inherent temporal dependencies that exist in the activities taking place.
Long Short Term Memory (LSTM) is a form of recurrent neural net-
work that uses previously learned examples to inform classification deci-
sions. In this paper we present a variety of approaches to human activity
recognition using LSTMs and consider the temporal dependencies that
exist in binary ambient sensor data in order to produce case-based rep-
resentations. These LSTM approaches are compared to the performance
of a selection of baseline classification algorithms on several real world
datasets. In general, it was found that accuracy in LSTMs improved as
additional temporal information was presented to the classifier.
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1 Introduction

Smart Home technology is becoming increasingly popular but the focus to date
has largely been on security and automation. However, there is real potential to
employ smart home technology for health monitoring and management. Research
has shown that there is a strong relationship between activities and behaviours
that a person can undertake in their day-to-day lives and their future health
and predicted lifespan [1]. The opportunity is to capture information on Smart
Home residents by using sensors in smart homes to monitor a residents activities,
e.g. room transitions, and behaviours, e.g. food preparation. A key advantage is
that data is collected in the persons natural environment rather than in a more
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artificial laboratory setting. Daily or weekly profiles of a resident’s activities and
behaviours can be captured over time, allowing trends in the data to be identi-
fied as a resident’s profile changes; and a comparison of profiles to benchmark
examples that indicate potential health concerns.

Sequences are important in activity recognition. An issue in making use of
sequential sensor activation data is to develop e↵ective approaches for harness-
ing temporal dependencies. The aim of this work is to identify and investigate
the importance of di↵erent types of temporal relationships and propose specific
representations and algorithms that can take advantage of these relationships.

A key focus of this work is on how to e↵ectively take advantage of di↵erent
forms of temporal relationships within the case representation. Several alter-
native approaches to classifying activities from low level, raw data inputs are
investigated, with e↵ective solutions identified which leverage temporal relation-
ships. The key contributions of this work are:

– developing a novel temporal dependency-aware ML approach for activity
recognition from event sequence sensor data;

– presenting a practical, flexible solution for building case-based representa-
tions for Human Activity Recognition.

The remainder of this paper is organised as follows. In Section 2 we review
existing research on the use of Smart Homes for health monitoring. In Section 3
we consider methods for identifying activities from sensor data and in Section 4
we introduce six datasets that we use to evaluate alternative feature representa-
tions and learning algorithms on our activity recognition task. Finally, we draw
our conclusions in Section 5.

2 Related Work

There has been a recent focus on deep learning in Human Activity Recognition.
A key challenge for ML approaches is the acquisition of labelled data; it is
expensive to manually annotate sensor data with activity labels, and variations
in the labelling decisions of ambiguous sensor sequences may a↵ect the overall
quality of the dataset [2]. Smart home data presents its own challenges, as the
data is often in the form an irregular sequence of events rather than a time
sequence more typically of polled sensors with wearables. Only a few public
datasets for activity recognition from Smart Home sensor data have been made
available by MIT, CASAS and Van Kasteren [3–5].

As a form of Recurrent Neural Network (RNN), LSTMs o↵er the potential to
capture the temporal relations encoded in the sequence of features and samples
provided to the classifier [6]. In this paper the performance of a range of LSTM
designs are investigated with various temporally-aware representations of sensor
activation sequences.

The presence and importance of sequential events in the data from Smart
Homes gives rise to opportunities to improve activity recognition by capturing
the sequences as part of the representation. This may be explicitly by employing a



feature engineering approach, however, manually chosen features using heuristic
processes may be overshadowed by modern deep learning research [6]. Ordóñez
found that identifying the temporal dependencies that exist within human activ-
ity expressions was key to improving the performance of a HAR classifier. The
experiments performed in their work made use of wearable sensor data, though
similar relationships with no derived heuristics may exist between binary sen-
sor activations [3]. In Bourobou’s [7] work, HAR classification was performed
on a simulated binary sensor dataset factoring in the temporal relation between
subsequent, previous and overlapping activities. These temporal relations were
identified separately and used to simulate data produced in real home environ-
ments. The relationships between temporally relevant activities were analysed
using the calculated “importance degree” of each activity. While this approach
yielded noteworthy results, additional research is still necessary to assess the e�-
cacy of alternative approaches to manually engineering the influence of temporal
dependence.

3 Identifying Activities from Sensor Data

Activities of Daily Living (ADLs) are regular behaviours which a person per-
forms in day to day life. This can include getting out of bed, making a meal
or grooming oneself. The specificity of an ADL can vary, with the classification
of more complex ADLs (e.g. chopping vegetables) usually requiring additional
sensor data. There is a trade-o↵ between the number and cost of the sensor
network and the specificity of ADLs that can be identified. On a wider scale,
Human Activity Recognition (HAR) refers to the general task of identifying a
person’s activity expression from data, whereas ADLs usually refer to regular
behaviours in a context around the home. HAR are typically discerned on a
micro scale, such as standing up, sitting down or running; while ADLs refer to
a more general form of activity. However, similar approaches can be applied to
exploit patterns exhibited in data for both HAR and ADL classification.

The activity recognition task is typically broken down into two separate
parts: windowing and ADL classification. Windowing involves separating the
continuous sequence of sensor activations into smaller sequences likely to contain
a single ADL expressions, while ADL classification is the process of assigning
activity labels to each windowed sequences of sensor activations. We currently
employ a rule-based approach for windowing and classification. As a first step
the plan is to keep the windowing approach but change to a more flexible ML
approach for classifying.

3.1 Rule-based Windowing

A popular approach to split data into windows is to use a sliding window [8].
This has been shown to be e↵ective in real sensor datasets, however there is the
potential for windows to overlap and not correctly represent realistic activity be-
haviours. Our approach to the windowing of long sequences of sensor activations



stems from the event-state system used in FITsense, which tracks the resident’s
movements and activity through the home. This is an additional filter layer
between binary sensor activations and the classification task. Location labels as-
sociated with event-states can be used to split sequences of sensor activations as
the resident transitions from one room to another. Due to the event-state system
requiring states to depend on previous locations and behaviour, this rule-based
classifier e↵ectively makes use of the implicit temporal dependency in ADLs that
occur sequentially. While this provides the benefit of reducing window overlap,
the specificity of ADLs which can be captured is reduced.

3.2 ML

ML is now the standard approach employed for HAR. Advances in deep learning,
recurrent and convolutional neural networks have directed the field for classifi-
cation of complex sensor data, such as accelerometers and gyroscopes [9]. How-
ever, more basic sensor configurations, such as the binary sensor networks seen
in smart home environments, have been well-served by Naive Bayes, Decision
Trees and other established classification algorithms [3, 7].

While traditionally established ML methods can perform well in ADL classifi-
cation tasks, they do not make use of the implicit temporal dependencies found in
sensor data. The temporal relationships which exist in sensor data have relevance
in ADL classification, as they o↵er an opportunity to extract additional useful
knowledge from sensor activation data. Recurrent Neural Networking methods,
specifically Long Short Term Memory (LSTMs), can make use of the temporal
knowledge encoded in the sequences of sensor activations and ADLs which occur
in training data.

In our data, we have identified 3 main types of temporal dependencies that
are likely to be useful for activity classification:

– the order and sequence of sensor activations;
– the time of day at which events occur; and
– the order and sequence in which the ADLs take place.

We propose using a hybrid method to improve the temporal awareness of
an ML-based ADL classifier. First, we plan to enrich sequential sensor data
representations by adding relative timestamps between subsequent activations
to representations for training data. Then by using LSTMs to learn intrabatch
relationships between instances of ADLs.

4 Experiments

The aim of these experiments is to evaluate the performance of baseline clas-
sifiers on binary sensor datasets and compare their performance with LSTM
implementations using implicit and explicit temporal knowledge. A selection of
popular classifiers were used to establish the baseline performance of traditional



classifiers on this problem. These classifiers do not make use of the implicit
temporal knowledge provided through the sequences in the data.

LSTMs can use previous learned examples to inform their decisions. We hy-
pothesise that the performance of an ADL classifier can be improved by forming
long term knowledge based on existing temporal dependencies. LSTMs were
selected due to their demonstrated strength in time-series classification [10]. Ad-
ditionally, LSTMs can make use of both the implicit and explicit temporal infor-
mation in our data representations. Four LSTM configurations were compared
to evaluate the performance impact of implicit and explicit temporal knowledge
in ADL classification.

Iterations on our LSTM models were used to identify how performance could
be improved by adding additional temporal information, both implicit and ex-
plicit. Implicit knowledge refers to the sequential information encoded in the
order of sensor sequences in training data. The previous learned examples can
influence the learning and prediction of future sequences in a traditional (or
unidirectional) LSTM. Stateful LSTMs can make use of this additional implicit
knowledge. Stateful LSTMs retain the hidden states of neurons between batches
during training, allowing intrabatch dependencies to be inferred. In activity
recognition data this allows the sequence of ADLs, as opposed to the sequence of
sensor activations, to be encoded as additional knowledge. This may potentially
be negatively a↵ected by dataset gathering methods, such as non-contiguous col-
lection. Significance in this model is placed on the order of ADLs; the resultant
class of the classification task. Stateful LSTM implementations are marked in
results with “S”.

Explicit temporal knowledge in this context refers to the extension of the
feature set to include a temporal data representation. The temporal data en-
coded in this feature could potentially represent the total length of a sensor
sequence, the time of day at which it occurred, etc. For instance, by splitting
the day into quadrants, a coarse timestamp identifying the quadrant of the day
at which a sensor activation occurred could be an explicit representation. In ini-
tial experimentation, this specific feature was found to have little impact on the
performance of our LSTM classifiers. Similar manually engineered features have
had varying impact across multiple sensor sequence representations. In order
to encourage the discovery of temporal dependencies, we implemented cumu-
lative and relative timestamps into the representation. Manually engineering a
feature relies on observations and assumptions of temporal importance in times-
tamp data, whereas fine timestamps allow for the algorithmic identification of
key dependencies. Relative timestamps were determined to have the largest im-
pact on the performance of our LSTM classifiers, with “E” marking experiments
performed using representations containing explicit relative timestamps.

4.1 Labelled Datasets

These experiments make use of four publicly available datasets, alongside two
datasets from the FITsense project. The datasets used in these experiments
document instances of ADLs and their accompanying binary sensor activations



which have been captured using a variety of windowing methods. Details of the
six datasets are shown in Table 1.

Table 1. Overview of the datasets used.

Dataset Classes Attributes Instances

adlnormal 5 39 120

kasteren 7 14 242

tapia1 22 76 295

tapia2 24 70 208

fitsense1 7 13 744

fitsense2 7 13 990

CASAS3 (adlnormal) This dataset contains the fewest classes, with 5 total
activities observed by 39 independent sensors. While there is a small number
of instances at 120, the activities tracked in the dataset are diverse enough to
present little challenge for most baseline classification methods. As only 5 ADLs
are tracked, large timegaps between activities can exist which may impact the
performance of stateful LSTMs.

Van Kasteren4 (kasteren) The kasteren dataset follows a structure most
similar to that of fitsense1/2, with similar tracked activities and sensors. The
ADLs expressed in this dataset have relevance to health monitoring and add a
layer of complexity which may present a challenge in classification. Prepare Breakfast
and Prepare Dinner are observably similar as activation sequences, however the
time at which they are performed is important.

MIT5 (tapia1/2) The most complex of the datasets used in these experiments
due to the large number of sensors and classes. Several ADLs could be considered
beyond the scope of capability for the sensor network (e.g. Going out shopping
vs Going out for entertainment), however the additional complexity presents a
useful challenge for classification.

FITsense/FitHomes6 (fitsense1/2) These datasets contain the largest num-
ber of instances while using the least sensors of the datasets used in these exper-
iments. The tracked activities were selected for health monitoring applications
such as “sleeping”, “grooming”, and “foodprep”.

3
http://casas.wsu.edu/datasets/adlnormal.zip

4
https://sites.google.com/site/tim0306/kasterenDataset.zip

5
http://courses.media.mit.edu/2004fall/mas622j/04.projects/home/thesis_

data_txt.zip

6
https://www.rgu.ac.uk/fitsense



4.2 Experimental Design

WEKA was used to run a set of baseline classifiers on the datasets. Each dataset
was converted from its original format to a zero-padded sequence of discrete
values representing binary sensor activations in the ARFF format. Baseline al-
gorithms were selected to evaluate the performance of a representative variety
of classification techniques. LibSVM, J48, Bayes and k-NN were selected due to
their established significance in the field. Each of these classifiers were run with
default configurations as supplied by WEKA.

Temporally aware LSTM implementations were configured using Keras, using
the Tensorflow backend and run on a system using an Nvidia GTX 1080 GPU.
The LSTMs are trained using the “categorical crossentropy” loss function and
“adam” optimizer. Di↵erent batch size, units and epochs values were used for
each dataset due to variation in sequence length, sensor makeup and activity
composition. The batch sizes used ranged from 120-590, units ranged from 64-
256, and the epochs to which each experiment was run ranged from 30-250.
Stateful LSTMs were implemented using the “stateful” option in Keras while
otherwise utilising the same configuration.

Baseline algorithms implemented in WEKA were run using 10-fold cross val-
idation across the whole dataset. Metasequences of sensor activations can be
broken up as the implicit temporal dependency between samples is not consid-
ered. Keras implementations were run using Leave One Out cross validation,
with each dataset being split by day. This ensures folds contains contiguous se-
quences ensuring realistic meta-sequences are represented, with each fold starting
and ending with “sleeping” ADLs. Each session of training was also repeated 3
times with fixed seeds to ensure repeatability.

4.3 Results

Table 2. Classification results (macro f1 scores).

Dataset SVM J48 Bayes k-NN LSTM SLSTM ELSTM ESLSTM

adlnormal 0.898 0.934 0.983 0.910 0.932 0.951 0.975 0.918

kasteren 0.901 0.891 0.871 0.892 0.874 0.831 0.867 0.856

tapia1 0.162 0.303 0.246 0.248 0.212 0.202 0.331 0.287

tapia2 0.129 0.314 0.070 0.219 0.133 0.240 0.359 0.256

fitsense1 0.281 0.613 0.600 0.667 0.853 0.833 0.740 0.864

fitsense2 0.464 0.620 0.530 0.560 0.676 0.728 0.586 0.752



The results for the baseline classifiers in shown in Table 2. Each algorithm
delivers the higest result on at least one dataset, however the overall winner is
narrowly J48. This is due to its performance on more complex datasets such as
tapia1/2 and fitsense2. Bayes and LibSVM demonstrate impressive performance
on the adlnormal and kasteren datasets respectively. Performance of the baseline
classifiers on the tapia datasets is relatively poor in comparison to the strong
performance on others. Performance on the fitsense datasets is relatively good
in comparison to tapia, however it still falls short of that seen on adlnormal and
kasteren.

The LSTMs display a more balanced performance across all datasets. Slightly
poorer performance can be observed between the top performing baseline classi-
fiers and ELSTM implementations on adlnormal and kasteren datasets. On the
more complex tapia datasets, improved performance over J48 can be observed
in the ELSTM implementations. This improved performance on more complex
datasets can also be seen in fitsense datasets, with ESLSTM being the clear win-
ner over baseline classifiers. The overall winner in the LSTM implementations is
ELSTM, with most results showing a leaning towards implementations utilising
additional temporal knowledge.

4.4 Discussion

Of the baseline classifiers, J48 shows the most balanced performance across all
datasets. Decision trees display strong performance in general activity recogni-
tion tasks. A potential future area of interest may be to investigate the methods
by which temporal knowledge could be e↵ectively represented in the training of
decision trees for ADL classification.

The baseline classifiers did not have access to any temporal relationships,
however on the simpler datasets (adlnormal and kasteren) they all achieved im-
pressive results that outperformed LSTMs with some algorithms. This suggests
that for simple classification tasks temporal relationship information is not re-
quired. However, on more complex tasks, including the FITsense data, the base-
line algorithms’ performance was poor highlighting the need to harness temporal
relationships.

All LSTM implementations displayed more balanced performance than the
baseline classifiers, with variants making use of additional temporal informa-
tion giving better performance on the more complex classification tasks. State-
ful LSTMs performed better than temporally unaware LSTMs across several
datasets, however they did not win on any overall. While our temporally un-
aware LSTM narrowly won on the simpler kasteren dataset, ELSTM gave the
best overall performance on the 4 publicly available datasets. This highlights the
importance of capturing specific event timings as part of the representation for
more complex tasks.

The key motivation for this work is to achieve good performance on FITsense
data. On fitsense 1/2, ESLSTM was a clear winner, highlighting the importance
of the activity sequences for this data. This is beacause the FITsense datasets



are di↵erent to the others in that they are a formed from a continuous time-
stream and have contiguous windows. The inclusion of null or “none” ADL
states ensures the complete sequence of activities is retained. As a result, the
implicit meta-sequences of ADLs which occur in the data can be e↵ectively used
as an additional source of temporal knowledge.

In conclusion, the inclusion of relative time-stamps as explicit temporal in-
formation improved performance in most scenarios. This approach to temporal
knowledge representation appears to have been successful in encouraging the
discovery of temporal relations. The combination of implicit and explicit tempo-
ral representation performs best on the fitsense datasets, which are completely
contiguous.

5 Conclusion

A key focus of the work is to develop case-based representations from simple sen-
sor network inputs that can e↵ectively capture temporal relationships in order
to support improved ADL classifications. Specifically, we have presented LSTM
solutions for providing additional implicit and explicit temporal knowledge to
an ADL classifier, and compared their performance to established baseline al-
gorithms. The proposed methods were evaluated on publicly available datasets,
alongside our own FITsense datasets labelled using a hyrbid of rule-based win-
dowing and manual sequence annotation.

The 3 key insights found in this work are:

– Additional temporal information has a positive impact on the performance
of ADL classifiers, evidenced by ESLSTMs demonstrating the highest per-
formance of any classifier used in our experiments.

– The method by which data is collected has a strong impact on the perfor-
mance of ADL classifiers. Temporally aware classifiers perform best on con-
tiguous datasets which capture uninterrupted sequences of activities, such
as fitsense1/2.

– Allowing ADL classifiers to infer temporal dependencies results in better
performance rather than manually engineering temporal features based on
assumptions.

Future work could potentially investigate the production of lower level rep-
resentations for deep learning to make use of additional unidentified temporal
dependencies, and using other deep learning classifiers such as Convolutional
Neural Networks.
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