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Abstract. Knowledge of permeability, a measure of the ability of rocks
to allow fluids to flow through them, is essential for building accurate
models of oil and gas reservoirs. Permeability is best measured in the
laboratory using special core analysis (SCAL), but this is expensive and
time-consuming. This is the first major work on predicting permeabil-
ity in the in the UK Continental Shelf (UKCS) based only on routine
core analysis (RCA) data and a machine-learning approach. We present a
comparative analysis of the various machine learning algorithms and val-
idate the results, using permeability measured on 273 core samples from
104 wells. Results suggest that machine learning can predict permeabil-
ity with relatively high accuracy. This opens new research directions in
particular in the oil and gas sector.

Keywords: Machine Learning · Support Vector Regression · Core Anal-
ysis · Permeability prediction.

1 Introduction

A range of different data is generated during the life-cycle of oil and gas fields,
from exploration to abandonment. This data include regional geology, seismic
reports, sedimentological models, drilling data, fluid and rock properties [16].
Geologists, reservoir engineers and other scientists combine this data and use
their expertise to construct models of the reservoir, evaluate the volume of avail-
able hydrocarbons and engineer the most efficient and profitable way to extract
them from the reservoir [18]. The most direct type of geological data about
the formation come from core analysis, the laboratory examination of well core
samples extracted during the drilling. It is the only time scientists can see and
physically examine material from within the reservoir.

Core analysis is usually divided into two stages. The first stage is called Rou-
tine Core Analysis (RCA) and the second stage is called Special Core Analysis
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(SCAL) [16]. RCA usually includes tests such as fluid saturations, porosity and
permeability measurements. Those measurements are taken on plugs or core
samples. A SCAL programme might include the measurement of relative per-
meabilities, capillary pressures and wettability among others. Furthermore, the
effect of coring and other fluids on the SCAL parameters could be used to eval-
uate the damage they cause to the formation[23].

Core analysis data are usually expensive and time consuming (several weeks)
to obtain [27]. However, they are deemed to be the most accurate source of in-
formation for reservoir characterisation and a thoroughly designed core analysis
programme can result in a more productive reservoir later in their lifetime [18].

2 Related work

Machine learning techniques have been used in the past in the context of core
analysis mainly to extrapolate rarely available core analysis data to other more
available types of data such as well log data [27]. Examples include prediction
of permeability of gas reservoirs using well logs and core data [9] [22], identify-
ing drilling sweet-spots for gas hydrate reservoirs without pre-existing well logs
[15] [10], rock texture image classification using support vector machines [21],
predicting permeability during acidizing [11] and predicting the optimal rate of
penetration during drilling [12]. The work closest to ours is the study by Erofeev
et al. [5] on the Chayandinskoye oil and gas condensate field in Russia. However,
that study was limited to a single field and used desalination instead of drilling
mud application during core analysis.

In contrast, this work relies on high quality data of actual permeability mea-
surements obtained in the laboratory from a substantial number of core samples
across a large number of wells across multiple fields of the UKCS and the north
sea. Oil and Gas operators value the core analysis derived data as indispens-
able. However, budget constraints often limit the number of tests included in
core analysis projects. A reliable and effective predictive method could be used
alongside traditional routine core analysis techniques to fill the gap. The aim is
to be able to provide the next best estimate when there is not enough funding
for extensive laboratory measurements. As a proof of concept, the permeability
is predicted after drilling mud application has been performed to the samples.

3 Methods

3.1 Dataset

The private dataset used here is part of the historical archive of Corex UK Ltd. It
covers a significant part of the offshore area of the UK Continental Shelf (UKCS)
and the north sea.

After data cleaning and preparation, the final dataset contained 273 obser-
vations and 13 features (Table 1). The number of samples might look small but
core analysis is a laborious process with relatively small pace of generating data.
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Table 1. Table showing the variables used, their corresponded type in R and their
units

Feature Type Units

Top Depth Numeric m
Pore Volume Numeric cc
Porosity Numeric rate
Grain Density Numeric gcc
Gas Permeability Numeric mD
Initial Permeability Numeric mD
Final Permeability Numeric mD
Brine Concentration Numeric ppm
Mud Weight Numeric ppg
Mud Type Character NA
Reservoir Temperature Numeric C
Pore Pressure Numeric atm
Overburden Pressure Numeric psi

The features include the pore volume, porosity, grain density, the top depth
of the core, gas permeability, initial permeability, final permeability (output),
brine concentration, mud weight, mud type, reservoir temperature, pore pres-
sure, overburden pressure. Mud type is a categorical feature and it is encoded
into three dummy variables, with LTOBM (Low Toxicity OBM) the reference
level.

Initial permeability is the permeability measurement before drilling mud ap-
plication while final permeability is the permeability measured after drilling mud
application. Drilling mud application for the context of this research means the
laboratory simulation of the drilling procedure in the field using a specific drilling
mud system. Drilling mud systems are expected to interact with the rock for-
mation and potentially reduce its permeability (Figure 1). When centering or
scaling of the input data is performed it is explicitly mentioned at the relevant
model subsection otherwise the original values were used.

3.2 Prediction Models

A range of well established machine and statistical learning algorithms were
applied to the given dataset. The main research question was whether the final
permeability, after drilling mud application, can be predicted using the results
of routine core analysis (RCA) tests as input. Therefore, the final permeability
was selected as the output of the models. All the variables in table 1 were used
as input parameters.

Least Squares Linear Regression The starting point of this research was to
try and fit a linear model, represented by the formula:

Y = β0 + β1X1 + ...+ βpXp + ε (1)
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Fig. 1. The distribution of permeabilities before (dark grey) and after drilling mud
application (light grey).

Least squares estimates the coefficients that minimise the following:

RSS =

n∑
i=1

yi − β0 − p∑
j=1

βjxij

2

(2)

The linear model was fitted using the lm() function from the R stats pack-
age [19]. The QR decomposition of the input matrix is used to estimate the
coefficients [6].

Ridge Regression Ridge regression adds a penalty to the loss function of least
squares (equation 3.2). The penalty has the form λ

∑p
j=1 β

2
j [13]. The penalty is

controlled by the hyper-parameter λ, which is usually selected with grid search
and cross validation. Ridge was fitted using the glmnet package in R. [7]

Lasso Regression This model is similar to Ridge except it applies an `1 penalty
to minimise the RSS subject to the constraint λ

∑p
j=1 |βj| [24]. Lasso tries to

address some of the problems arising in Ridge regression. The `2 penalty used in
Ridge minimises the coefficients towards zero but it does not turn any of them
to exactly zero. Lasso instead can set a coefficient to zero and effectively perform
feature selection. Lasso was fitted using the glmnet package in R[7].

Partial Least Squares (PLS) PLS identifies a set of components Z1, ...ZM

that are a linear combination of the original features [25]. The new components
are fitted so they explain most of the variance in the predictors [14]. The idea
behind this approach is that there are latent variables affecting the output that
are not necessarily measured or captured in the dataset [26].
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Support Vector Regression (SVR) Support Vector Regression estimates the
weights of a hyperplane such that the RSS of the support vectors is minimised
[4]. The support vectors are the only part of the dataset that participate in the
estimation of the hyperplane equation and the minimization of the loss function.
The input space was transformed into a higher dimension feature space using the
radial basis function [3]. The SVR model was fitted using the e1071 R package
[17]. The variables were scaled for zero mean and unit variance. The cost and
gamma hyper-parameters were estimated by 10-fold cross validation, using the
tune.svm() function.

Artificial Neural Networks (ANNs) A multi-layer perceptron [20] was used
consisting of a feed-forward neural network with 13 neurons at the input layer,
two hidden layers with five and three neurons respectively and an output layer
with a single neuron for the final permeability. The model was trained using
resilient back-propagation (RPROP) with weight backtracking [20] and the neu-
ralnet R package [8]. The input was scaled with mean 0 and unit variance. The
learning rate was set to 100 and the maximum number of allowed steps to 1e+05.
The sum of square errors was the loss function.

Decision Trees and Random Forests Regression Trees [1] predict the value
of a continuous variable by dividing the input space into j distinct and not
overlapping areas. For every new observation that falls into this area the average
of the values of the training observations is returned. The regression tree was
fitted with the tree package in R [2]. Random Forests build a number of trees in a
bootstrapped version of the training samples. In each split step it only considers
a random sample of m predictors from the total available ones. This number is
typically

√
p, where p is the total number of features[14]. It then uses averaging

across the trained trees to produce a final prediction.

4 Results and Discussion

A summary of the results for predicting the final permeability, after drilling mud
application, using the various algorithms is presented in (Table 2). The dataset
was divided into a training set (67%) and a test set (33%). The R2, given by
1 − RSS

TSS with TSS =
∑n

i (yi − ȳ), on the training set and the MSE, given by
1
n

∑n
i (ŷi− ȳ), on the test set will be used to evaluate the models on the training

and test set respectively.
R2 scores show that many algorithms fit the training data well. SVR, Least

Squares and PLS having the lowest MSE (Figure 2) on the test set. PLS and
Lasso can give us great insight on the predictors affecting the response variable.
According to the Least Squares model initial permeability, gas permeability and
pore volume are the most significant features. (Figure 3).

Lasso produced a sparse model only assigning the pore volume, initial perme-
ability and mud type(WBM) non zero coefficients. PLS also produced a sparse
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Table 2. Table showing the R2 on the training set and the MSE on the test set.

Algorithm Name R2 MSE

Least Squares 0.916 50,020.24
Linear Lasso 0.725 50,927.96
Linear Ridge 0.881 51,251.47
PLS 0.894 50,150.91
SVR 0.900 44,135
ANN 0.997 323,477.3
Decision Tree 0.937 108,424.7
Random Forest 0.925 57,202.81

Fig. 2. Compare the models using R2 on the training set (orange) and MSE on the
test set(blue).
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Fig. 3. The t value and the associated p value of the features for the least squares
model.

model. The first six components are linear combinations of the top depth, gas
permeability, initial permeability, brine concentration, pore pressure and over-
burden pressure.

Linear Regression Least Squares The linear regression model has a R2 on
the training set of 0.916 and test set MSE 50020.24 (Figure 4). R2 suggests that
the model fits the data relatively well but the MSE on the test set indicates that
the predictive power requires further improvement.

Linear Lasso The best lambda for the Lasso model was estimated by 10-fold
cross validation at 12.429. The non zero coefficients for the best λ are pore
volume, gas permeability, initial permeability, and mud type (WBM). Lasso has
a test MSE of 50927.96 (Figure 5). The model does not fit the training data as
well as the Least Squares but it still manages to generalise well on the test set
according to the MSE figure.

Linear Ridge Ridge regression λ parameter was estimated similarly to Lasso
using 10-fold cross validation. The value that resulted in the lowest cross valida-
tion error was 89.749. Ridge regression performance on the training dataset was
estimated by means of R2 at 0.881 (Figure 5).

Partial Least Squares PLS fit the data on par with the regularised linear
models and SVR. R2 is estimated at 0.894 (Figure 6) on the training set and the
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Fig. 4. The real against the predicted permeability values on the training set by Least
Squares Regression.

Fig. 5. The real against the predicted permeability values on the training set for the
Lasso (left) and the Ridge model (right).
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MSE at 50150.91 on the test set. The number of components of the final model
was estimated by 10-fold cross validation. The number of components with the
lowest CV error was 5 components and it was the one used to generate the model
PLS R2 and MSE values.

Support Vector Regression SVR gave the most promising results so far. The
SVR hyper-parameters were estimated by grid search at γ = 0.01 and cost = 10
. The model fit the training data with a R2 value of 0.9. Its MSE on the test
set was estimated at 44135 (Figure 6). SVR performs much better than Least
Squares in the test set.

Fig. 6. The real against the predicted permeability values on the training set for the
PLS (left) and the SVR model (right).

Artificial Neural Network The Artificial Neural Network was the model
that followed the closest the training data with an R2 value of 0.997. However,
it performed very poorly on the test set with an MSE of 323477.3 (Figure 7).
The high R2 indicates that the model over-fits the training data while the very
high test set MSE suggests that it fails to predict the permeability on unseen
core samples.

Decision Tree The Decision tree model appeared to slightly over-fit the train-
ing data. Its R2 was estimated at 0.937 and generalised poorly with MSE on test
set at 57202.81 . The decision tree model performs better on the test set than
the neural network but not as good as the SVR model.
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Fig. 7. The real against the predicted permeability values on the training set for the
ANN (left) and the Random Forest model (right).

Random Forest The mtry hyperparameter, that controls the number of vari-
ables randomly sampled as candidates at each split, was estimated at 11 using
10-fold cross validation, repeated three times. The R2 value on the training set
was 0.925. The Random Forest model was an improvement compare to the de-
cision tree model and generalised relatively well on the test set with an MSE of
57202.81 (Figure 7), albeit not as good as SVR.

5 Conclusion

This work showed that machine learning can be used alongside routine core
analysis to predict final permeability, with SVR, Least Squares and PLS being
the best models. Traditionally oil and gas companies only contract a small num-
ber of representative samples to be tested in the laboratory, due to financial
constraints. Learning models based on historical data together with laboratory
measurements of the limited number of financially approved measurements can
alternatively provide a prediction for the rest of the available samples. This could
be a new source of revenue for core analysis laboratories and a new service that
can provide valuable information to operators to better manage their reservoirs.
Future work might include more input features e.g. stratigraphic data that will
improve the algorithm’s performance in unseen cases or predict different types
of output that can be of value for the oil and gas sector.
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