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Abstract. Combining classifiers in an ensemble is beneficial in achiev-
ing better prediction than using a single classifier. Furthermore, each
classifier can be associated with a weight in the aggregation to boost the
performance of the ensemble system. In this work, we propose a novel
dynamic weighted ensemble method. Based on the observation that each
classifier provides a different level of confidence in its prediction, we pro-
pose to encode the level of confidence of a classifier by associating with
each classifier a credibility threshold, computed from the entire training
set by minimizing the entropy loss function with the mini-batch gradi-
ent descent method. On each test sample, we measure the confidence of
each classifier’s output and then compare it to the credibility threshold
to determine whether a classifier should be attended in the aggregation.
If the condition is satisfied, the confidence level and credibility threshold
are used to compute the weight of contribution of the classifier in the
aggregation. By this way, we are not only considering the presence but
also the contribution of each classifier based on the confidence in its pre-
diction on each test sample. The experiments conducted on a number of
datasets show that the proposed method is better than some benchmark
algorithms including a non-weighted ensemble method, two dynamic en-
semble selection methods, and two Boosting methods.

Keywords: Supervised Learning, Classification, Ensemble Method, En-
semble Learning, Multiple Classifier System, Weighted Ensemble

1 Introduction

In recent years, learning with an ensemble of classifiers (EoC) has enjoyed in-
creased attention in the machine learning community due to its advantage in
achieving better prediction than using a single classifier [11]. In ensemble method,
the diverse classifiers are obtained by learning different algorithms on a training
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set (heterogeneous ensemble) or learning one algorithm on many different train-
ing sets (homogeneous ensemble) [12]. Each learning algorithm learns a classifier
with the aim of describing the relationship between the features and the class
label of the training observations. The generated classifier returns the output in
the form of crisp labels (0-1 class memberships) or posterior probabilities (fuzzy
class memberships) [8]. A combiner is then used to aggregate the outputs of all
classifiers to obtain the final decision.

In the combining method, simple averaging can be conducted on the classi-
fiers’ output by assigning equal weights for all individual classifiers. In ensem-
ble systems where individual classifiers exhibit nonidentical strength, unequal
weights in the aggregation may achieve a better performance than simple aver-
aging [11]. In this work, we focus on weighted ensemble in which the prediction
of each classifier is associated with a weight when combining for final decision.
In fact, weighted ensemble is a special case of ensemble pruning (which is also
known as selective ensemble or ensemble selection) where the weights on some
classifiers are set to zero. In ensemble pruning, the EoC can be obtained via
static or dynamic approach. In detail, the static approach learns one optimal
EoC on the training data and uses it to assign a label for all test samples. This,
therefore, limits the flexibility of the selection procedure. Meanwhile, the dy-
namic approach selects a classifier or an EoC with the most competencies in a
defined region associated with each test sample. Although this approach pro-
vides more flexibility than the static approach, the performance of the dynamic
approach is dependent on the performance of the techniques that define the re-
gion of competence (RoC) [3]. A new weighted ensemble method which benefits
from the advantage of both static and dynamic selective method i.e. learning the
optimal condition on the training data to select classifiers and then determining
particular weights for each test sample would be beneficial.

Our idea for weighted ensemble is based on the observation that classifiers
in an ensemble are generated from different methodologies, and therefore have
different confidence level in their predictions. On a particular dataset, some clas-
sifiers can provide very high confidence in the classification while others can have
difficulty in decision when assigning a label for a test sample based on their out-
puts. We come up with an idea to encode the level of confidence of a classifier by
associating with each classifier a credibility threshold, computed from the entire
training set by minimizing the entropy loss function with the gradient descent
method. We also measure the confidence level of each classifier’s prediction on
each test sample i.e. how confident it makes the decision. The confidence in the
prediction is then compared to the credibility threshold to determine whether
the output of the classifier should be included in the aggregation. In a procedure
to assign a label for a test sample, when a classifier is attended, its confidence
level and the credibility threshold will be used to compute the weight to show
its contribution to the aggregation. By this way, the proposed method integrates
both static and dynamic approach of ensemble selection through finding the
credibility threshold like in the static methods and assigning particular weights
for classifiers on each test sample like in dynamic methods.
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The contribution of this work are: (i) We propose a measure to qualify the
confidence in the output of each classifier. (ii) We propose a dynamic weighted
ensemble method to select classifiers based on the confidence of its prediction.
(iii) We formulate the optimization problem on the convex entropy loss function
to search for the credibility threshold (iv) Experiments on a number of datasets
demonstrate that the proposed method is better than several well-known bench-
mark algorithms.

2 Background and Related work

In ensemble system, the outputs of classifiers are combined to obtain the final
discriminative decision. Traditionally, simple combining methods like Sum and
Vote are frequently applied to the outputs of base classifiers to predict class labels
[13]. In fact, the simple combining method is the special case of the weighted
combining method where the classifiers are treated equally in the aggregation,
i.e. all classifiers make the equal contributions in the final collaborated decision.
In weighted combining methods, each classifier can put different weight on the
prediction result and the combining algorithm works by takingM weighted linear
combinations of posterior probabilities for the M classes. Several approaches
have been proposed to find the weights. In [15], Ting et al. proposed MLR method
which depends on solving M Linear Regression models corresponding to the M
classes based on meta-data and the training data labels in crisp form to find these
combining weights. Yijing et al. [18] proposed the new weighted combining rules
in which the weight of each classifier is computed based on its performance on the
training data measured by Area under the ROC Curve (AUC). Wu [17] proposed
a new ensemble learning paradigm that takes into account information about the
performance ordering of the base classifiers reported in previous literature. By
measuring the similarity between two learning tasks, the performance ranking of
the trained classifiers of a given learning task can be inferred so as to obtain the
optimal combining weights of the trained classifiers. Nguyen et al. [10] weighed
the base classifiers generated on projected data of training observations by the
linear regression model.

Boosting is also a family of weighed ensemble methods. The idea of this ap-
proach is to learn weak classifiers with respect to a distribution to form a strong
classifier. When weak classifiers are combined, they will have weights which usu-
ally are related to the weak classifiers’ accuracy. Some well-known examples of
the boosting approach are AdaBoost [5] where the weak classifier is tweaked to
handle previously misclassified samples, LPBoost [4] where the margin between
training samples of different classes is maximized via linear programming, and
RUSBoost [14] where imbalanced datasets are handled by learning from skewed
training data.

Ensemble pruning is a special case of weighted ensemble in which the weights
of some classifiers are set to zero. The purpose of ensemble pruning is to search
for a suitable subset of classifiers that is better than using the whole ensemble.
In this technique, a single classifier or an EoC can be obtained via static or
dynamic approach. The static approach selects only one subset of classifiers dur-
ing the training phase and uses it to predict for all unseen samples. In the past
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years, many statistic ensemble selection methods have been proposed to search
for the optimal or sub-optimal subset of ensembles, and they can be grouped into
three categories: ordering-based methods [9], clustering-based methods [1], and
optimization-based methods via mathematical programming [19], probabilistic
pruning [2], or heuristic search [6]. Zhang et al. [19] formulated the ensemble
pruning problem as a quadratic integer programming problem and used semi-
definite programming to acquire an approximate solution. Although this method
outperforms the other heuristics in the author’s evaluation, fixing the number
of selected base classifiers is a hindrance to efficient performance. Chen et al. [2]
propose a probabilistic pruning method which includes a sparsity-inducing prior
distribution introduced over the combination weights. The maximum a posteri-
ori estimation of the weights is then acquired by the Expectation Propagation
algorithm.

On the other hand, in the dynamic approach, a classifier or an EoC is se-
lected to classify each test sample based on the competence level of the classifiers
computed according to some criteria on a local region of the feature space [3].
Here the region to compute competence can be defined by kNN methods [3, 7]
and potential functions [16]. Comparison experiments indicated that a simple
dynamic selection method like KNORA Union can be competitive or sometimes
outperforms more complex methods.

3 Proposed Method

3.1 Problem Formulation

Given the training set D with N data points and K learning algorithms K =
[Kk]. The base classifier hk is generated by training Kk on D. Denote P = [pk,j ],
pk,j = P (yj = 1|x) as the prediction of hk for a sample x to class label yj = 1.
For example, prediction vector (0.3,0.6,0.1) of a classifier for a sample in a 3-
class classification problem means that probabilities this sample belongs to class
y1, y2, and y3 are 0.3, 0.6, and 0.1, respectively. To measure the confidence on
the prediction of hk on x, we define e = [ek] as the difference between the
maximum value among the predictions and the average of the other values. In
fact, the class label is assigned based on the maximum value of the posterior
probability. By defining ek, we aim to measure the convincing decision in this
decision strategy. The higher ek results in the bigger gap between the maximum
value of the posterior probability and the average of the others, making it the
more convincing decision.{

ek = pk,s − 1
M−1

∑M
j=1,j 6=s pk,j

s = argmaxj=1,...,Mpk,j
(1)

Proposition 1: ek is bounded in [0, 1]
As mentioned above, we measure the confidence level in the prediction of

each classifier and then compare with the credibility threshold associated with
this classifier. If the confidence level is higher than the threshold, the classifier
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will be attended to the aggregation. By this way, we define a ‘relu-like’ function
ak for activation calculation concerning the confidence threshold β = [βk]:

ak = max (0, ek − βk) k = 1, . . . ,K (2)

The combining vector pc = [pcj ] from all K classification probability vectors
for the class yj (j = 1, . . . ,M) is:

pcj =

K∑
k=1

akpk,j (3)

Clearly, when ek > βk, the function ak > 0 that means classifier hk is acti-
vated in the combination in (3) and its contribution to the combination is the
value of the activated function ak. The proposed method is a dynamic weighted
ensemble since the weight of each classifier in combining vector is different on
each test sample via the different confidence in its prediction. We use softmax
function to transform the combination vector to the ensemble classification prob-
ability pe = [pej ] as:

pej =
epcj∑M
j=1 e

pcj
(4)

In this work, the credibility threshold is found by minimizing the convex
entropy loss function. This loss function on a data point (x,y) in which y is
one-hot vector of class label of x is given by:

L (β) = −
M∑
j=1

yj log pej (5)

3.2 Optimization

We use the gradient descent approach to solve the optimization problem for the
function in (5). First, the entropy loss function is transformed to:

L (β) = −
M∑
j=1

yj log pej = −
M∑
j=1

yj log
epcj∑M
j=1 e

pcj

= −
M∑
j=1

yjpcj − yj log

M∑
j′=1

epcj′


= −

M∑
j=1

yjpcj + log

M∑
j′=1

epcj′ (Due to

M∑
j=1

yj = 1)

We compute the gradient of the lost function at each data point (x,y). The

gradient of L along β is ∂L
∂β =

[
∂L
∂βk

]
in which each subgradient is computed by:

∂L
∂βk

= −
M∑
j=1

yj
∂pcj
∂βk

+

∑M
j=1

∂epcj

∂βk∑M
j=1 e

pcj
(6)
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In detail:

∂pcj
∂βk

=
∂
(∑K

k=1 akpk,j

)
∂βk

=
∂ (akpk,j)

∂βk

(
Due to

∂ (ak′pk′,j)

∂βk
= 0 ∀k′ 6= k

)
=
∂ (max (0, ek − βk) pk,j)

∂βk

=

{
0, if ek ≤ βk
−pk,j , if otherwise

:= gk,j (7)

∂epcj

∂βk
= epcj

∂pcj
∂βk

= epcjgk,j (8)

Replace (6) by results in (7) and (8), we have:

∂L
∂βk

= −
M∑
j=1

yjgk,j +

∑M
j=1 e

pcjgk,j∑M
j=1 e

pcj

= −
M∑
j=1

yjgk,j +

M∑
j=1

pejgk,j

= −〈y,gk〉+ 〈pe,gk〉 = 〈pe− y,gk〉 (9)

where gk = [gk,j ]
To calculate the gradient of L along β for a mini-batch of n data points, we

take the average of gradients of these points as:

∂L
∂βk

:=
1

n

n∑
i=1

〈pe(i) − y(i),g
(i)
k 〉 (10)

Now, we update βk according to gradient descent method with learning rate
ηk at kth iteration:

βk+1 = βk − ηk
∂L
∂βk

(11)

In this work, we applied the proposed weighted ensemble method to the
heterogeneous ensemble systems where several different learning algorithms learn
on one training set to obtain the base classifiers. As these classifiers perform
differently on each dataset because of the differences in learning strategies, it is
expected to obtain better results than simple aggregation [11]. First, we learn
base classifiers H = [hk] on D using the given learning algorithms. The meta-
data P of D is generated via the T-fold cross validation procedure. Specifically,
D is divided into T disjoint parts. The meta-data of observations in one part is
then created by the classifiers generated by training the K learning algorithms on
the complement. All meta-data sets from each part are concatenated to generate
the meta-data P.
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Having P in hand, we compute the ek from P for each x ∈ D by using Eqn.
(1). The threshold βk is initialized to 0. The algorithm loops via a number of
single passes through the full training set (epochs). In each epoch, we create the
random permutation for N observations and then shuffle on P and associated
class labels y using this permutation. Based on the batch size n, one permutation
is divided in to

(
nb = N

n

)
mini-batch. On each mini-batch, using the value of

shuffled P and y, we compute the weights a = [ak] of the base classifiers. The
posterior probabilities pbk,j of observations in the mini-batch is combined via
the weights ak to obtain the pcj (Eqn. (3)). The gradient of the lost function
is updated based on condition in Eqn. (7). Each βk finally is updated by using
Eqn. (11).

The classification process works in a straightforward way. Each testing sample
first is predicted by the base classifiers in H to obtain the posterior probabili-
ties. We then compute the value of [ek] on the prediction results and compute
the weight vector [ak] by Eqn. (2). The base classifier with ek ≤ βk will not be
attended in the final ensemble for the testing sample, and therefore contribute
nothing to the final aggregation. The other base classifiers will join to the final
ensemble with their contribution (ek − βk). The class label is assigned by re-
turning the class label associated with the maximum of the combination vector
(3).

4 Experimental studies

4.1 Experimental setup

Eighteen real world and synthetic datasets are used in the experiment. For the
six real-world datasets (Chess-krvk, DownJones-1985-2003, Electricity, Letter,
Penbased Skin NonSkin) we collected a number of datasets from the UCI5 and
OPENML6 data sources. For the synthetic datasets, we used MOA library7 to
generate the data. The detailed information of the datasets is summarized in
Table 1.

We applied the proposed method to a heterogeneous ensemble system, gen-
erated by using 3 learning algorithms named Linear Discriminant Analysis (de-
noted by LDA), Näıve Bayes, and kNearest Neighbors (where the value of k
was set to 5, denoted as kNN5). The proposed method in this case was denoted
by Proposed Method3. For the mini-batch approach in the mini-batch gradient
descent method, we initialized learning rate η = 0.001, the credibility threshold
β = [β0] = 0.

We performed extensive comparative studies using a number of existing algo-
rithms as benchmarks: two homogeneous ensemble method named AdaBoost [5]
and RUSBoost [14] with 100 classifiers. We also compared with Sum Rule [13] in
a heterogeneous ensemble where the set of learning algorithms is similar to our
method. For the ensemble pruning methods, we selected two high-performance

5 http://archive.ics.uci.edu/ml/datasets.html
6 https://www.openml.org
7 https://moa.cms.waikato.ac.nz
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Table 1. Information of experimental datasets

# Datasets
# of
samples

# of
dimensions

# of
class labels

1 Agrawal 1000000 9 2
2 AssetNegotiation-F2 1000000 5 2
3 AssetNegotiation-F3 1000000 5 2
4 AssetNegotiation-F4 1000000 5 2
5 BNG-bridge-v1 1000000 12 6
6 BNG zoo 1000000 17 7
7 Chess-krvk 28056 6 18
8 DowJones-1985-2003 138166 8 30
9 Electricity-normalized 45312 8 2
10 Hyperplane 1000000 10 2
11 Letter 20000 16 26
12 Penbased 10992 16 10
13 RandomTree 1000000 10 2
14 RBF 1000000 50 4
15 Sine 1000000 4 2
16 Skin NonSkin 245057 3 2
17 Stagger 1000000 3 2
18 Waveform 1000000 21 3

dynamic ensemble selection methods, namely KNORA Union and KNORA Elim-
inate (denoted by KNORA-U and KNORA-E) [7] as the benchmark algorithms.
The number of nearest neighbors in these dynamic methods was set to 7 [3].
For all methods, we performed the same experimental procedure i.e. run 10-fold
cross validation 3 times to obtain 30 test results for each dataset (presented in
Table 2). The non-parametric two-tailed Wilcoxon signed-rank test [10] was used
to compare the experimental results of the proposed method and a benchmark
algorithm on a particular dataset in which p-value < 0.05 deems as difference in
experimental results is significant.

4.2 The influence of parameters

In this study, we used the mini-batch approach to compute the gradient in
updating the credibility threshold through iterations. We examined the influence
of the batch size and number of epochs on the performance of the proposed
method. Figure 1 presents the relationship between classification error rate and
values of batch size n ∈ {1, 16, 32, 64, 128, 256, 521, 1024, 2048, 4096, 8192, All}
where All means all the number of training data were used as a single batch.
Clearly, the line graphs show a common upward trend with different slopes on
all datasets as increasing value of batch size can downgrade performance of
proposed method. On some datasets like Hyperplane, RBF, Letter and Penbased,
the classification error rate increases sharply with the increase of n. Meanwhile,
on other datasets such as Agrawal, Electricity-normalized, and BNG-bridge-v1,
classification error rates only increase slightly with the increase of the number
of batch size. It is also noted that the cost of training is more expensive with
smaller value of n. In practice, depending on the training resource and expected
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Table 2. Classification error rates of benchmark algorithms and proposed method
(using 3 learning algorithms)

# KNORA-U KNORA-E AdaBoost Sum Rule RUSBoost Proposed Method3

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 0.3293N(4.5) 3.65E-08 0.3440N(6) 2.53E-07 0.0494H(1) 3.36E-07 0.3293N(4.5) 3.04E-08 0.0545H(2) 3.75E-07 0.3280 (3) 2.50E-11

2 0.0717N(5) 9.01E-07 0.0558N(4) 5.55E-07 0.0511H(1) 4.08E-07 0.1042N(6) 7.53E-07 0.0553N(3) 4.02E-07 0.0519 (2) 3.43E-07

3 0.0656N(5) 7.19E-07 0.0560N(3) 6.26E-07 0.0531N(2) 1.01E-06 0.0905N(6) 7.78E-07 0.0589N(4) 5.16E-07 0.0525 (1) 3.48E-07

4 0.0740N(4) 4.34E-07 0.0608N(3) 2.99E-06 0.0529H(1) 2.94E-07 0.1139N(6) 7.08E-07 0.0838N(5) 5.17E-07 0.0542 (2) 2.52E-06

5 0.3117N(5) 1.17E-06 0.3017N(3) 1.51E-06 0.2762H(1) 1.42E-06 0.3100N(4) 9.96E-07 0.3376N(6) 1.42E-06 0.2869 (2) 1.47E-06

6 0.0695N(4.5) 4.83E-07 0.0585N(2) 5.55E-07 0.0603N(3) 6.44E-07 0.0695N(4.5) 4.34E-07 0.1155N(6) 1.70E-06 0.0522 (1) 2.50E-07

7 0.3242N(4) 6.93E-05 0.2955N(2) 6.11E-05 0.6705N(5) 3.41E-05 0.3031N(3) 4.59E-05 0.7433N(6) 8.09E-05 0.2650 (1) 5.77E-05

8 0.0055N(5) 2.60E-07 7.0447E-04N(3) 4.12E-08 2.0024E-04N(2) 6.52E-09 0.0043N(4) 3.15E-07 0.6376N(6) 5.46E-09 0.0000 (1) 0.00E+00

9 0.2192N(5) 4.93E-05 0.2024N(3) 2.42E-05 0.1561H(1) 3.96E-05 0.2126N(4) 6.07E-05 0.2297N(6) 9.51E-05 0.1893 (2) 3.22E-05

10 0.0281N(5) 2.36E-07 0.0128N(2) 9.55E-08 0.0279N(4) 3.18E-07 0.0276N(3) 2.40E-07 0.2542N(6) 9.62E-06 0.0049 (1) 4.35E-08

11 0.1089N(3) 5.00E-05 0.0617N(2) 3.36E-05 0.3460N(5) 1.15E-04 0.1395N(4) 6.18E-05 0.7147N(6) 2.27E-04 0.0507 (1) 3.33E-05

12 0.0435N(4) 2.58E-05 0.0097H(1) 1.10E-05 0.0424N(3) 3.90E-05 0.0895N(5) 5.46E-05 0.2966N(6) 9.54E-05 0.0122 (2) 1.41E-05

13 0.1248N(5) 6.18E-07 0.1179N(3) 5.43E-07 0.0793H(1) 1.16E-05 0.1236N(4) 9.39E-07 0.2529N(6) 8.36E-06 0.1053 (2) 5.90E-07

14 0.0037N(3) 4.52E-08 8.7833E-04N(2) 8.41E-09 0.0475N(5) 3.01E-02 0.0257N(4) 1.85E-07 0.1682N(6) 2.08E-06 2.6667E-06 (1) 1.96E-11

15 0.0119N(5) 1.40E-07 0.0099N(3) 6.70E-08 0.0026H(1) 3.72E-08 0.0115N(4) 1.05E-07 0.0423N(6) 7.39E-07 0.0088 (2) 9.35E-08

16 9.0047E-04N(4) 4.54E-08 5.1145E-04N(2) 1.64E-08 6.2979E-04N(3) 2.73E-08 0.0412N(6) 1.22E-06 0.0265N(5) 2.05E-06 4.7608E-04 (1) 1.74E-08

17 0.0000 (2.5) 0.00E+00 0.0000 (2.5) 0.00E+00 0.1116N(5.5) 9.00E-12 0.0000 (2.5) 0.00E+00 0.1116N(5.5) 9.00E-12 0.0000 (2.5) 0.00E+00

18 0.1591N(3) 1.06E-06 0.1518N(2) 1.67E-06 0.1610N(5) 1.08E-06 0.1594N(4) 1.18E-06 0.2622N(6) 1.41E-05 0.1364 (1) 1.38E-06

Win: 17; Equal:1; Lost:0 Win: 16; Equal: 1; Lost: 1 Win: 11; Equal:0; Lost: 7 Win: 17; Equal:1; Lost: 0 Win:17; Equal:0; Lost:1

Rk 4.25 2.69 2.75 4.36 5.36 1.58

* N and H indicate that proposed method is better or worse than benchmark
algorithm; (.) indicates the rank of method on the dataset

Rk indicates average ranking of each method

performance score, we can choose a suitable value for the batch size parameter.
In the next section, we used the batch size n = 16 in comparison to the baselines.

Figure 2 presents the classification error rates of the proposed method on ex-
perimental datasets where epochs parameter was set to 5 and 50. In general, al-
though increasing the number of epochs can improve the ensemble performance,
differences in two performance scores on these datasets are not significant. One
datasets like Argawal and AssetNegotiation-F2, F3 and F4, the classification
error rates only change slightly or remain unchanged with the change of the
number of epochs. Only on three datasets Letter, Penbased, and Hyperplane,
the differences in classification error rate between two cases are remarkable. In
practice, in case of limited resource available, we can choose a small number of
epochs for the training process.

4.3 Comparing to the baselines

Table 2 presents the classification error rates of benchmark algorithms and pro-
posed method in case of using 3 learning algorithms. The following observations
can be made:

– Proposed Method3 achieves lowest average rank among all methods (rank
value 1.58). On 18 experimental datasets, Proposed Method3 ranks first in 9
cases (50%) and ranks second in 7 cases (38.89%). Our method only performs
poorly on Agrawal dataset in which it ranks third.



10 D.T. Do et al.

– Proposed Method3 is better than two DES methods. Comparing to KNORA-
U, our method wins in 17 cases and does not lose on any case. Proposed
Method3 underperforms KNORA-E on only Penbased datasets (0.0097 vs.
0.0122) while wins this method on 16 datasets.

– Proposed Method3 is significantly better than Sum Rule on 17 datasets. One
Stagger dataset where two methods performs equally, both obtain 100% of
classification accuracy.

– The performance of Proposed Method3 is better than RUSBoost in 17 cases.
Although RUSBoost is special designed for imbalanced data, it significantly
underperforms Proposed Method3 on some imbalanced datasets in our ex-
periments such as Chess-krvk and Skin NonSkin.

– AdaBoost is a high performance ensemble in our experiment in which our
method only wins in 11 cases and loses in 7 cases. However, Proposed
Method3 is only significantly worse than AdaBoost on Agrawal datasets
while our method significantly outperforms on at least 6 datasets Chess-
krvk, Hyperplance, Letter, RBF, Stagger, and DowJones-1958-2003.

– The variances of classification error rate of experimental methods on some
datasets, especially on synthetic ones such as RBF and Sine, are very small.
That means the differences in the classification error rates among 30 results
in the test procedure on these datasets are not significant.

To summarize, Proposed Method3 achieves better performance than two
Boosting methods, two DES methods and one simple non-weighted combin-
ing method. Proposed Method3 significantly outperforms Sum Rule in all cases
which demonstrates the advantage of ensemble weighting technique compared
to the simple combining methods.

5 Conclusions and future work

We have presented a novel weighted ensemble method for ensemble systems
which considers the confidence in the prediction of each classifier. Based on
the observation that each classifier provides a different level of confidence in its
prediction for each sample, we propose to associate a credibility threshold with
each classifier. The confidence in the prediction of each classifier on a sample
is compared to the credibility threshold to determine whether the classifier’s
output should be included in the aggregation. To show the contribution of a
classifier in the selected ensemble, we use the difference between the confidence
in the prediction and the credibility threshold. This allows us to integrate both
the static and dynamic approaches in the proposed method i.e. learning the
credibility threshold on the training data by minimizing the entropy loss function
and assigning a particular weight associated with each classifier for each test
sample. The experiments on diverse data sources show the advantage of the
proposed method compared to the benchmark algorithms.

In the future we plan to 1) analyse the convergence of the proposed method,
2) expand the proposed method to handle data stream with concept drift.
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Fig. 1. The influence of number of batch size to classification error rate of proposed
method
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Fig. 2. The performance comparison between proposed method using 5 and 50 epochs
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