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36 
37 
38 Achieving good strength-ductility of Mg alloys has always been a crucial issue for the 
39 
40 widespread applications of Mg-based structural materials. Herein, an unexpected 
41 
42 double-stage strengthening phenomenon was discovered in Mg-8Li-1Y (wt.%) alloys 
43 
44 through high-pressure (6 GPa) heat treatments over a range of 700-1300 °C. Attractively, 
45 
46 the yield strength values are improved remarkably without losing their ductility. The 
47 low-temperature strengthening mechanism is mainly driven by the formation of 
49 

large-volume nanoscale contraction twins. In contrast, the high-temperature 
51 strengthening reason is ascribed to the presence of densely nano-sized stacking faults. 
53 Both coherent interfaces contribute effectively to high mechanical strength without any 
55 tradeoff in ductility. 
57 
58 
59 
60 Key words: Mg alloys; Nano-twins; Stacking faults; Strengthening 
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 1. Introduction

Mg alloys, the lightest structural metals, play an important role in energy saving and emission 

reduction [1]. However, due to the low strength and poor formability at room temperature, their 

engineering applications are still unsatisfied. A large number of approaches have been attempted to 

improve the strength of Mg alloys in the past decades [2]. Traditional strengthening strategies, such 

as grain refinement, precipitation and sub-grain boundaries through dislocation plugging, could 

introduce a large number of boundaries into Mg matrix, which can effectively prevent dislocation 

motion [2]. However, it is common to see the increment in mechanical strength at the expense of 

ductility through those incoherent interfaces, which is ascribed to the limited capacity to 

accommodate dislocations [3]. Hence, the feasible approach to attain high strength without 

scarification in plasticity remains a challenge for the wide applications of Mg alloys. 

Differing from incoherent boundaries, coherent twin boundaries (TBs), can not only act as 

effective barriers to dislocation movement, but also provide huge space for dislocation storage. This 

strategy is applicable for FCC metals [4] whilst difficult for HCP Mg, owing to the intrinsic 

characteristics of twins in Mg alloys. In particular, the interfaces of [1012] tension twins (TTWs) 

are not stable. In addition, though the interfaces of [1011] contraction twins (CTWs) are more stable 

than those of TTWs, secondary TTWs are readily initiated in and occupy the entire internal domains 

of CTWs [5]. Therefore, it is difficult to strengthen Mg alloys by increasing volume fractions of 
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41 TBs. More recently, our group introduced distinctive hierarchical {1011}−{1011} double 
42 
43 contraction nanotwins in Mg-8Li (all compositions given thereafter in wt.%) binary alloy by means 
44 of an ultra-high pressure treatment (UHP) technique [6]. Such a unique structure elevates the yield 
46 

strength of  Mg-8Li  alloys  up  from  50  to  249  MPa  while  maintains  its  high  ductility (23.6% 
48 elongation rate). Subsequently, an improved contraction nanotwins-stacking faults structure was 
50 achieved by increasing Li concentration to 13 wt.%, which further increases the specific strength of 
52 Mg-13Li alloy [7]. It is anticipated that coherent structure strengthening could be a feasible strategy 
54 to design high strength-ductile Mg alloys. 
55 
56 In the present work, we attempt to explore the effects of Y alloying element on interface 
57 
58 strengthening of Mg-8Li alloys. It is well-known that large-sized rare earth elements (REs) are 
59 
60 prone to segregate in TBs, which remarkably affects their structures and properties [8]. 
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Experimental work was designed to provide evidence to elucidate two critical issues that dominate 
coherent interface strengthening in Mg alloys: i) is it technically feasible to yield coherent structure 

strengthening through REs alloying under milder conditions? and ii) which structure of contraction 

twins or stacking faults is more effective to improve mechanical properties? 

2. Experimental processes

A Mg-8Li-0.5Zn-1Y (LZY801) ingot was prepared by vacuum induction melting and machined 
into samples with dimensions of 10 mm in diameter and 14 mm in length for following 

UHPed treatments. Samples were wrapped up with Ta foil and then inserted into a boron nitride 

crucible in a cubic-anvil large-volume press with six rams. Loading pressure of 6 GPa was operated 

before heating up the system. After UHPed treatment holding at a defined temperature (over a range of 

700 -1300 °C) for 30 min, LZY801 specimens were quenched down to room temperature. The 
sample was then heated from room temperature to 200 ° C at a heating rate of 5 ° C / min to release  

residual stress. LZY801 samples which were subject to UHPed treatment under 6 GPa at 900 °C for 30 

min was denoted as LZY801-6GPa-900. The as-cast counterpart was introduced as a reference. 

Microhardness was measured through a Vickers hardness tester (HV) with an applied load of 100 

g and dwelling time of 15 s. Mechanical tests were performed on Gleeble 3500 with a strain rate for 

tension and compression tests of 0.4 mm/min and 1×10-3 s-1, respectively. Length and width of the 

dog-bone shape tensile samples were 6 and 1.5 mm, respectively. In comparison, compressive samples 

were accurately machined into dimensions of 5 mm in diameter and 10 mm in length. Microstructural 

investigations were performed using optical and transmission electron microscopy (TEM). TEM thin 

foils were prepared by Ar ion milling in a Fischione system operating at 5 keV. X-ray diffraction 

(XRD) was carried out on a Rigatu 2500C with Cu-Kα radiation at a scanning rate of 4°/min over a 

range of 20 - 80°. 

3. Results and discussion

Figure 1a illustrates microhardness evolution of the UHPed samples as a function of processing 

temperature. The as-cast LZY801sample presents the lowest microhardness value of 48 
60 
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HV, similar to that of previous as-cast Mg-8Li alloy [6]. It is noted that the samples are 
dramatically hardened (75 HV) from the original as-cast state as a result of heat treatment 

(700-1300 °C) at a constant high pressure (6 GPa). Two distinct strengthening stages are evident 

between 700-900 °C and 1000-1200 °C, respectively, followed by a sharp drop in microhardness 

from its peak point of 96 HV (1200 °C) to 54 HV (1300 °C). 

In general, the melting point of a metal increases with externally applied pressure, such as the 
representative cases of Al-Zn alloys [9]. As such, two processes, i.e. ultra-high solid solution and 
ultra-high re-solidification, would occur during the UHPed heat treatments. Namely, the UHPed 
solid solution process occurs in a range of 700-1200 °C, whilst the UHPed re-solidification is 
triggered above 1200 °C, which is confirmed by both optical microstructure and XRD patterns 
(Figure 1b). Differing from α phase (Mg-rich) and β phase (Li-rich), the eutectic YZn5 (hexagonal 
with space group P6/mmm) phase is reduced with increasing temperature, whilst the equal-axis grain 
structure well remains below 1200 °C. Analogous to the atmospheric heat treatment, the UPed 
treatment mainly involves two typical processes. If the temperature is below melting point, the heat 
treatment is related to the UPed solid solution. Comparatively, when the temperature is over melting 
point, the heat treatment is ascribed to the UPed re-solidification. According to our previous results 
[6,7], the melting point of Mg alloys will be increased to over 1200 ˚C under 6GPa. As soon as the 
temperature is over melting point, the strengthening structure is eliminated, and the main 
strenthening role is merely related to solid-solution strengthening. Therefore, is demonstrated that 
the increment in microhardness of UHPed LZY801 is related to the UHPed solid solution treatment, 
while the decrease of microhardness is related to the ultra-high re-solidification.
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Figure 1c displays the representative true stress-strain curves of the as-cast, the 

LZY801-6GPa-900  and  the  LZY801-6GPa-1200  specimens,  which  agrees  with  the  results  of 

microhardness measurements (Figure 1a). A low yield strength of 89 MPa in the as-cast LZY801 

alloy is largely increased up to 248 MPa through heat treatment at 900 °C (LZY801-6GPa-900), 

and approaches the maximum value of 270 MPa for the LZY801-6GPa-1200, three times of that of 

the as-cast one. It is noteworthy that such improvement in strength does not sacrifice elongation in 

a significant manner (~19 %, Figure 1c). Same results are confirmed by compressive tests, 

where samples are not fractured until it reaches the load limitation of compression tester (Figure 

1d). In addition, the tensile-compression asymmetry (TCA)-the ratio of tensile yield 

strength 4 
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(σtys)/compressive yield strength (σcys)-is significantly minimized after UHPed treatment, and the 
TCA value is reduced from 1.25 (as-cast) to 1.02 (LZY801-6GPa-1200). In particular, tensile yield 

strength of all LZY801-6GPa alloys exceeds largely those of both Mg-Li binary alloys (100 ± 50 

MPa) and majority of multiple Mg-Li-X alloy systems (X: other alloying elements), even after 

severe plastic deformation treatments, such as rolling [10-14], extrusion [14-17], equal-

channel angular pressing [18, 19] and aging [20]. 

TEM characterization was employed to elucidate the mechanisms of the two-stage 

strengthening. Regarding the as-cast case (Figure 3a-c), both α and β phases are evidently 

distributed in the matrix. Moreover, a number of particles with a size of 0.1 μm in diameter are 

accumulated in grain boundaries. Corresponding energy dispersive spectroscopy (EDS) mapping 

(Figure 3b) confirms that the precipitates in the as-cast LZY801 sample are enriched in Y. 

Therefore, those particles are assigned to eutectic YZn5 phase, as indicated in the XRD pattern 

(Figure 1b). In the case of the LZY801-6GPa-900 (Figure 3d), a few nanoscale twins are 

embedded within the matrix, and some nanoscale particles are found. HRTEM micrograph (Figure 

3e) exhibits that nano-twin boundaries (NTBs) are mainly composed of coherent structures, and the 

angle between (0001) twin and (0001) matrix is ~123.4 °, indicating the formation of CTWs [5]. The 

average twin thickness is about 80 nm. 

Figure 3f-g reveals that the dimension of the particles is 10-20 nm. The spacing of (100) is 

about 0.453 nm, which aligns will with the theoretical value (0.432 nm) of YZn5 [21]. Consequently, 

it is evident that the strengthening stage I is attributed to the presence of such a unique 

microstructure, i.e. co-presence of a large number of nano-coherent twins in matrix and a 
few residual nanoscale YZn phases. According to the empirical twin-strengthening mode [6],
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46 
theoretical yield strength with NTWs can be calculated by the following equation: 

48 ∆σy = nkTBλ-1/2 (1) 
50 Where λ is 80 nm; n is the volume fraction; and kTB is the Hall-Petch constant (0.35 MPa m1/2). 
52 Hence, the theoretical increment in yield strength of CTWs is 1.23 GPa. 
54 In contrast, a large number of SFs with an average spacing of 18 nm exist in the matrix of 
55 
56 LZY801-6GPa-1200 alloy without any twins or YZn particles (Figure 4a). The formation of SFs is 
57 
58 also confirmed by the streaks in SAED (Figure 4b). The atomic-scale image of SFs (Figure 4c) 
59 
60 indicates that the SFs are assigned to growth fault (I1-type), differing from the stacking sequence 
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4 (...ABABABAB...) of an ideal HCP Mg alloy. It is normally built by removing one A plane above 
5 

6 one B plane, and then shearing the remaining planes above B plane by 1/3[1100], resulting in 
7 a …ABACBCBCB… structure. According to previous SFs strengthening mechanisms, the 
9 theoretical increased yield strength can be calculated by the following equation [7]: 
11 ∆σy = mkSFd-1 (2) 
13 Where d is the average width of SFs (18 nm); m is the volume fraction, and kSF is experimental 
15 constant (3780 MPa nm). Therefore, the theoretical increase in yield strength of SFs is 2.6 GPa. 
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4. Conclusions

The effect of Y alloying element on mechanical properties of the UHPed Mg-8Li alloys was 

explored. The results reveal that the addition alloying element can obviously optimize the UHPed 

conditions by reducing the operating temperature. Moreover, it demonstrates that both CTWs and 

SFs are achieved within one simple system by varying the UHPed conditions, and SFs are more 

effective to the enhancement in mechanical properties. The tradeoff between strength and ductility 

of Mg alloys can be mitigated through modifying nanoscale coherent interfaces. 
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Figure captions 
Figure 1. Mechanical properties of UHPed LZY801 alloys as a function of processing temperature. 

(a) Effects of UHP conditions on microhardness. (b) Optical microstructure and XRD patterns. (c) 

Tensile and (d) compression curves. The insets correspond to macro-size optical photographs.

Figure 2. Comparison in terms of mechanical properties between UHPed LZY801 alloys and a 

range of representative Mg-Li-X (alloying elements) alloys prepared by a variety of 

themal-mechanical treatments. 

Figure 3. TEM characterization of the LYZ801-6GPa-900 alloy. (a) STEM micrographs of the 

as-cast LZY801 sample. (b) EDS mapping of Y in (a). (c) SAED pattern of α-Mg. (d) TEM image 

of the LZY801-6GPa-900 observed along [1120] axis. A randomly particle in the matrix is marked 

by a red arrow. (e) Atomic-level image of coherent contraction twin boundary. (f) High 

magnification image of the particle in (d). (g) Local atomic-level magnified region as marked in (f). 

Figure 4. Strengthening mechanisms in the LZY801-6GPa-1200 alloy. (a) TEM image with an 

inset corresponding to the spacing distribution SFs derived from statistical calculations of 50 

random results. (b) Corresponding SAED patterns, where crystal planes and SFs (streaking pattern) 

are marked. (c) Atomic level image of SFs in (a). 
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Figure 1. Mechanical properties of UHPed LZY801 alloys as a function of processing 

temperature. (a) Effects of UHP conditions on microhardness. (b) Optical microstructure and 

XRD patterns. (c) Tensile and (d) compression curves. The insets correspond to macro-size 

optical photographs. 
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Figure 4. Strengthening mechanisms in the LZY801-6GPa-1200 alloy. (a) TEM image with an 

inset corresponding to the spacing distribution SFs derived from statistical calculations of 50 

random results. (b) Corresponding SAED patterns, where crystal planes and SFs (streaking 

pattern) are marked. (c) Atomic level image of SFs in (a). 
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