ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A., CONWAY, A. and OWUSU, G. 2020. Racing strategy for the
dynamic-customer location-allocation problem. In Proceedings of 2020 Institute of Electrical and Electronics
Engineers (IEEE) congress on evolutionary computation (IEEE CEC 2020), part of the 2020 (IEEE) World congress on
computational intelligence (IEEE WCCI 2020) and co-located with the 2020 International joint conference on neural
networks (IJCNN 2020) and the 2020 IEEE International fuzzy systems conference (FUZZ-IEEE 2020), 19-24 July 2020,
Glasgow, UK [virtual conference]. Piscataway: IEEE [online], article 9185918. Available from:
https://doi.org/10.1109/CEC48606.2020.9185918

Racing strategy for the dynamic-customer
location-allocation problem.

ANKRAH, R., LACROIX, B., MCCALL, J., HARDWICK, A., CONWAY, A. and
OWUSU, G.

2020

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

O enAI R This document was downloaded from

B

@RGU https://openair.rgu.ac.uk

https://doi.org/10.1109/CEC48606.2020.9185918

Racing Strategy for the Dynamic-Customer
Location-Allocation Problem

1School of Computing Science and Digital Media, Robert Gordon University, Aberdeen, Scotland

2Research and Innovation Department, British Telecommunications Plc, Ipswich, England

Reginald Ankrah!

Benjamin Lacroix! John McCall!

Andrew Hardwick? Anthony Conway?

r.b.ankrah@rgu.ac.uk b.m.e.lacroix@rgu.ac.uk j.mccall@rgu.ac.uk andrew.hardwick@bt.com anthony.conway@bt.com

Gilbert Owusu?
gilbert.owusu@bt.com

Abstract—In previous work, we proposed and studied a new
dynamic formulation of the Location-allocation (LA) problem
called the Dynamic-Customer Location-allocation (DC-LA) prob-
lem. DC-LA is based on the idea of changes in customer
distribution over a defined period, and these changes have to be
taken into account when establishing facilities to service changing
customers distributions. This necessitated a dynamic stochastic
evaluation function which came with a high computational cost
due to a large number of simulations required in the evaluation
process.

In this paper, we investigate the use of racing, an approach
used in model selection, to reduce the high computational cost
by employing the minimum number of simulations for solution
selection. Our adaptation of racing uses the Friedman test to
compare solutions statistically. Racing allows simulations to be
performed iteratively, ensuring that the minimum number of
simulations is performed to detect a statistical difference.

We present experiments using Population-Based Incremental
Learning (PBIL) to explore the savings achievable from using
racing in this way. Our results show that racing achieves
improved cost savings over the dynamic stochastic evaluation
function. We also observed that on average, the computational
cost of racing was about 4.5 times lower than the computational
cost of the full dynamic stochastic evaluation.

Index Terms—Dynamic Customer Location-Allocation (DC-
LA) Problem, Robust optimisation over time (ROOT), Dynamic
stochastic evaluation function, Population-Based Incremental
Learning Algorithm (PBIL), Simulation Model, Racing

I. INTRODUCTION

The location-allocation problem involves choosing facility
locations in a region of concern to service the demands of
customers aimed at minimising total costs [1]. The funda-
mental characteristics of Location-Allocation (LA) problems
require that any rational model reflect some aspects of future
uncertainty [2]. Changes in the population growth and migra-
tion, market size, environmental factors and advancement in
technology often drive the need of consumers which causes
demand to vary over time. For this reason, facilities are
expected to be effective in servicing demand over an extended
planning period. Especially in cases where considerable capital

This project is funded by British Telecommunications Plc. in collaboration
with the Robert Gordon University

and resource investment is required in establishing facilities,
it is vital to take into consideration potential variations in
demand over time when deciding the location of facilities
[3]. To address this problem, we introduced a new dynamic
formulation of Location-allocation problem in [4] that takes
into account the actualised servicing costs and movement of
customers over time. We called this problem the Dynamic-
Customer Location-allocation (DC-LA) problem.

In this model, customers are located in cities, and their
movement over time is driven by the randomly generated
attractivity of each city.

DC-LA is formulated in the context of Robust optimisation
over time (ROOT) [5] in that facilities are established once
at the start of the planning period and are expected to be
satisfactory in servicing changing customer locations.

In [4], we generated 1440 problem instances of the problem
by varying three problem parameters: (1) movement rate,
which determines the mobility of customers, (2) the number
of facility locations (problem dimension) and (3) the number
of customers. We compared the performance of Population-
Based Incremental Learning Algorithm (PBIL) [6] using a
static evaluation which assumes no customer movement, and
a dynamic evaluation (referred to as a fixed number of
simulations) which evaluates the fitness of a solution over
100 customer movement scenarios. Comparison of the results
shows that the dynamic evaluation obtains better results but at
a high computational cost.

To address this issuc of high computational cost, in this
paper, we apply the concept of racing [7] to reduce the
number of simulations required for solution selection within
our evolutionary framework. Racing uses a statistical test to
compare solutions in the population within a race after they
have been evaluated against several simulations. A race here is
a single iteration of the search process. Racing is also dynamic
in nature and evaluates solutions against a simulation just
as the dynamic evaluation function does, however, instead of
using a fixed number of simulations as is done in the dynamic
evaluation function, racing initially evaluates solutions against
a minimum number of simulations at the start of the race

and performs a statistical test to discard the worst solutions
from the population. If more simulations are required to
eliminate weak solutions, only the required minimum number
of simulations are generated by racing. Which helps to save
on the number of evaluations. Racing was first proposed in
machine learning to deal with the problem of model selection
[7] and later adapted by [8] [9] for the tuning of optimisation
algorithms. Racing has then been successfully applied to tackle
real-world problems [10]-[13]

The rest of the paper is organised as follows. In section II,
we give a summary of the DC-LA. In section III, we define
the concept of racing. In section IV and V, we describe the
experimental setup and discuss the result. Finally, we conclude
and present future works in section VI.

II. DYNAMIC-CUSTOMER LOCATION-ALLOCATION
PROBLEM

Dynamic-Customer Location-Allocation (DC-LA) Problem
involve the location of facilities to adequately service the
changing distributions of customers over a defined period to
reduce the overall total costs. In defining DC-LA, let a set

of m cities A = {ay,as,...,a,} be a set of m potential
locations, and B = {by,bo, bn} be a set of n customers.
Each a; € [0, 1]% and b; € [0, 1]? define the coordinates in a 2-

dimensional plane. Here, the cost d;; of connecting customer
b; to location a; is defined by the euclidean distance between
b; to location a;. Let a set T = {ti,t2, ..., tmaz} denote
the defined period where t,,,, is the maximum length of
time. DC-LA considers the potential movement of customers
over a given period of T". In DC-LA, the pattern of customer
location changes is assumed to be stochastically driven by the
attractivity of cities. The attractivity of cities aims at modelling
the shift in customer population. In DC-LA a facility is
assumed to be located within the centre of a city. Hence for
this paper, a city and facility will be used interchangeably
to refer to the location of a facility. Locations employed in
DC-LA are assumed to be discrete, and the optimal number
of facilities are found by solving the problem. In this paper,
the problem formulation assumes that facilities offer similar
services to customers and facilities are unconstrained in the
number of customers they can adequately service. The cost of
opening a facility is set to the number of customers divided
by the number of facilities.

DC-LA is formulated as Robust optimisation over time
(ROOT) problem [5]. In robust optimisation over time, we aim
to obtain solutions that are reliable or robust over the defined
time, rather than pursuing the shifting optima. A solution is
described as robust over a specific period when its quality
continues to be satisfactory and is relatively indifferent to the
environmental fluctuations during the defined time interval.

To generate an instance of this DC-LA, we first uniformly
generate cities location and their attraction rate randomly.
Based on those locations, customers are then iteratively gen-
erated by randomly selecting a city (based on the attraction
rates). The coordinates of the customer are then obtained by

sampling its location from a normal distribution centred in the
coordinates of the city.

A. Measuring the goodness of a solution

The dynamic evaluation function considers the potential
movement of customers over a given period 7. This will
influence the connection cost Cy(x) in each ¢ period. The
decision variables are represented by a binary string x =
(1, ..., Tm) € {0,1}™ where 1 represents an opened facility
and O represent a closed facility. The objective function of the
dynamic evaluation function is thus formulated as:

tmaa

fdynamic(x) = Zcixi+co(x)+E Z Ct(LL')(]. + d?")_t
i=1 t=1
(1)

Where Cj is the connection cost of each customer to an

opened facility. mn
C()(.L’) = Z Z dzjl’ij

i=1 j=1

@)

where x;; = 1 if customer j is connected to facility ¢ and
Tij = 0 if not.
Subject to:

3)

the cost function Cy(z) is a deterministic function
and returns the service costs of customers at time f.
E Ziz‘{‘ Ci(z)(1 + dr)_t} is the expected service costs
Cy(x) of customers for times {¢1,t2, ..., tqs b discounted over
tmaz using dr. dr is a discount rate, typically applied to
allow comparison of costs incurred at different times. Because
facilities are assumed to be able to service all the demand of
a customer, Constraint 3 ensures that a customer is connected
to only one facility.

B. Simulation Model

The simulation model is based on the assumption that
customers will move over time. Each simulation starts by gen-
erating new attraction rates for each city. For each customer,
we then generate the times at which the customer is going to
move over the next t,,,, years. For this purpose, we introduce
a new parameter call movement rate mr ranging from 0 to
1, which regulates the mobility of customers. The movement
times of each customer are sampled from a normal distribution
centred in mr - t,,4,. Hence, the lower the movement rate, the
higher the number of movements a customer makes.

Each simulation consists of generating customer movements

and calculating their service costs over the period. The steps
of a simulation are outlined in Algorithm 1.

Algorithm 1 Simulation Model

Require: A, B, tyax
for Each Simulation do
Generate attraction rate a’ for each city a; € A
for Each customer b; € B do
Set of movement dates: M = ()
t=20
while ¢ < t,,,, do
t=t+N(mr- tmaz, 0.1 tmaz)
M=MUt
end while
for ¢, in 1 (0 ty4, do
if t, € M then
Choose a new city for the customer based on A’
Generate new location for customer in the new
city
Update cost for servicing customer based on open
facilities
end if
Add cost of servicing customer b; to total cost for
year &,
end for
end for
Actualise costs obtained for ¢,,,, using discount rate dr
end for

III. RACING AS A MODEL SELECTION

The concept of racing was first developed in [7] by Maron
et al. for model selection. Racing worked by testing the
various models in parallel, one test point at a time. In this
way, a running average could be maintained for each model’s
generalisation error. The average generalisation error is an
estimate of the model’s exact generalisation error had it been
tested on all of the test points. By using a statistical bound,
the closeness of the estimated generalisation error to the exact
error could be determined. After a small number of test points,
the best models, i.e. the models with the lowest generalisation
error can be distinguished from the worst models (.i.e models
with the highest generalisation error). The models that are
significantly worse than the best ones are discarded from the
race. The more test points that are observed, the tighter the
estimated generalisation error is to the exact error. Hence many
models can be differentiated from each other and discarded,
thereby concentrating the computational effort on differentiat-
ing among the better model [7].

Racing was later adapted in [8] as Iterated racing to auto-
matically configure optimisation algorithms. The process of
iterated racing primarily involves three steps: (1) sampling
new configurations according to a particular distribution, (2)
selecting the best configurations from the newly sampled ones
utilising racing, and (3) updating the sampling distribution
in order to bias the sampling towards the best configuration.
These three actions are iterated until a termination condition
is reached [9].

From a general perspective, an iterated racing approach
is any method that repeats the creation of solutions using
a racing algorithm to select the fittest solutions. Therefore
an exploration method of an iterated racing algorithm could
be distinct from the current method of finding the best solu-
tions and instead employ population-based algorithms or local
searches. The essential factor here is the suitable combination
of a search method with an evaluation that considers the
underlying stochasticity of the evaluation into account [8].
Base on this reasoning, we are motivated to adopt the con-
cept of iterated racing to the problem of Dynamic-Customer
Location-Allocation (DC-LA) to help reduce the total number
of evaluations and in general, the considerable computational
effort expended by the dynamic evaluation function. In section
III-A, we describe our adaptation of racing to DC-LAP.

A. Adaptation of Racing to Dynamic-Customer Location-
Allocation problem

We employ the concept of racing [7] in DC-LA as a
selection process to quickly discard the statistically worse
solutions from the best solutions at the early stages of the
search process thereby concentrating the computational effort
on differentiating among the better solutions. An essential
aspect of our adaptation of racing is in the truncation mecha-
nism which strives to use the least number of simulations to
compare solutions in the population.

In describing our adaptation of racing to DC-LAP, we first
define the input parameters:

« A population size |P| of k solutions

o Spaz: defines the maximum number of customer move-
ment simulations per race. In the situation where so-
lutions become mutually statistically indistinguishable,
the race will continue to evaluate solutions against new
simulations until the maximum number per race Sy,qz iS
exhausted.

o Spin: minimum number of simulations before running a
statistical test.

e A truncation rate u: Based on the size k of the initial
population, the race terminates when the size of the
population P is decreased to pk. p € {0,1}

Once the initial population P of k solutions are generated
by PBIL, for each race i every solution x in the population
P is evaluated on a customer movement scenario S; by
f(Pz, S;). Before a statistical test is performed, each solution
has to have performed S,,;, simulations. We employ the
Friedman test as the statistical test for determining statistical
differences between the solutions. Friedman test is a non-
parametric test that can be applied to sample of unknown
distribution. Here, every solution in the population is tested
on the same scenarios. Once a statistical difference has been
recorded, the solution(s) considered to be statistically worst
when compared to the best solution in the population are
removed from the population. If neither of the terminating
criteria for the race has been satisfied, i.e. S),q; Or uk, the
race continues by generating a new scenario and evaluating
the remaining solutions against the new scenario. After the

first statistical test has been performed using .S, ;,, simulations,
subsequent statistical tests arc performed more frequently after
the single evaluation of all remaining solutions on every new
scenario. After every test, statistically worse solutions from
the best solutions are discarded from the population. Race
continues until the size of P is decreased to pk or Sy,q. is
reached.

An example of a race is shown in figure 1. In figure 1 there
exist 10 solutions. At every step of the race, the solutions are
evaluated on a single scenario A’ based on a new attraction
rate. After several steps, those solutions that are deemed to
be statistically worse than the best solution in the population
are discarded from the population, and the race proceeds
with the surviving solutions. Because the initial elimination
test is essential in performing the statistical test, typically a
higher number of simulations (A4, ;) are observed before
making the initial statistical test. Succeeding statistical tests
are performed for each (A’ ;) scenario. The process proceeds
until a termination criterion is reached, i.e. a set minimum
number of solutions in the population is reached, or the set
maximum number of scenarios is exhausted, or a set number
of solutions have been evaluated. Each node is the evaluation
of a solution on a scenario. ‘_’ indicates that no statistical test
is performed, ‘4’ indicates that the test removed at least one
solution from the population, ‘=" indicates that the test did
not remove any solutions from the population. In the example

below, A, =5and A, = L.

Xp X2 X3 X3 Xs Xg X7 Xg Xg Xio
v oeoeo oo 00000 -
o000 0 @00 @0 —
o0 000 @00 00 —
Aleo0 00000 0@ —
A5 o900 ©0 @00 00 —
A |e00 00080 +
A E K K +
e e e e +
5 0 0 0@ =
vl @ @ © =
Auleo @ @ T
A @ @ @
Apl®@ @ @ =
Aul® @ +

Fig. 1: Racing for solution selection.

After the race, PBIL updates the probability vector PV with
the surviving solutions. PBIL then generates new solutions
to reset the population to its initial value of k. Solutions
surviving from the previous generation are carried on to the
next generation. Because the surviving solutions are not re-
evaluated on the same customer movement scenarios, it allows
for the Algorithm to save simulations in further generations.
Algorithm 2 shows the pseudo-code of racing.

Algorithm 2 Racing as a selection method

1: k: population size

2: @ truncation rate

3: Smin : minimum number of simulations before running
statistical test

Smaz : Maximum number of simulation per race

5: Generate initial population at random of k solutions P =
{w1, 22, .., w5}

6: Generate set of customer movement scenarios S =

{51, ..-s Smaz}
7: while termination criterion not reached do
8 i=0;
9: while |P|> pk AND i < S;q, do
10: 1=1+1
11: for jin 1 to k do

Evaluate Fij = f(xj, Sz)

12: end for
13: if 1 > S, then
14: Perform statistical test on Fj;
15: Remove from P all z; that are significantly worse

than the best individual in the population.
16: end if
17: end while
18: Update probability vector of PBIL with remaining so-
lutions.
19: Generate new solution from PBIL probability vector.
20: Add new solutions to P until the size of |P|=k
21: end while

IV. EXPERIMENTAL SETUP AND RESULTS

In this Section, we analyse the benefits of using the racing
evaluations over the dynamic approach, which evaluates a
solution by averaging the costs over a fixed number of simula-
tions. Following our previous paper, the number of simulations
was fixed to 100 simulations, and we will refer to this approach
as fi100. It will be opposed to the racing approach which we
will refer to as fracing-

The parameters and problem instances used in our exper-
iments are the same as in [4]. We generated 48 problem
configurations by varying:

o The number of facilities m = {10, 20, 50, 100}.

o The number of customers n = {100, 500, 1000}.

o The movement rate mr = {0.25,0.5,0.75,1}.

For each of the 48 configurations, we generated 30 in-
stances, giving us a total of 1440 problem instances. Each
run is allowed to evaluate 10000 solutions. At the end of each
run, the best solution is evaluated using the fixed number of
simulation evaluation over 5000 simulations, and the expected
cost of that solution is returned. For each problem, the average
over 20 runs is retained for comparison. The following sections
present and discuss the results obtained.

A. DC-LAP parameters influence on results

In order to better understand the problem characteristics,
we analyse the performance of each approach according to
the parameter values used in each configuration.

We present a summary of wins and ties of racing (fracing)
against the fixed number of simulation evaluation (f1gg) in
table 1.

From table I, we observe that the maximum number of
wins is obtained by frqcing On problems of larger dimensions
(higher number of facilities).

A look at the problems configurations with a smaller number
of facilities shows more ties recorded between frqcing and a
fixed number of simulation evaluation. However, frqcing 18
seen to achieve more wins on average than the fixed number
of simulation evaluation. It is also observed that for a smaller
number of facilities, i.e. m10 especially in situations where
customers make frequent movements over the planning period,
fracing might not be the better choice of the two evaluations
as it achieves fewer wins than figg.

To see how the wins achieved by fr.qcing translates into cost
savings, we direct our attention to figures 2a, 2b and 2c¢ which
shows the percentage cost savings between frqcing and figo
grouped according to the movement rate mr, the number of
facilities m and number of customers n respectively. Negative
values mean cost savings.

In figure 2a, frqcing is seen to improve the costs achieved by
the fixed number of simulation evaluation of up to about 0.5%
across all customer movement scenarios. The performance of
fracing on movement rates shows fr.cing to be the better
choice among the two evaluation functions when considera-
tion is made to the movement of customers in deciding the
locations of facilities.

In figure 2b, frqcing is observed to improve on the cost
savings achieved by the fioo for a smaller number of facilities
of about 0.125% and this increases to about 0.55% for a larger
number of facilities.

In figure 2¢, frqcing is observed to improve on the savings
achieved by f190 with an improved cost savings of about
0.55% for a smaller number of customers and decreases to
about 0.35% for a larger number of customers. The improved
cost savings of fqcing makes it the better evaluation function
when compared to fipg concerning the number of customers.

Results discussed in this Section shows that fr.4cing achieves
improved cost savings when compared to the fixed number of
simulation evaluation concerning all problem parameters of
movement rate mr, the number of facilities m and number
of customers n. An essential reason of adapting frqcing to
our problem was to help reduce the number of simulations
needed to efficiently compare solutions in a population during
the search process thereby reducing the considerable com-
putational effort that comes with evaluating solutions with
many simulations as done in f1g9. We, therefore, examine the
computational effort expended by f;.4cing in terms of time on
the DC-LA instances in section IV-B.

B. Computational time complexity

In this Section, we examine the computational time of
fracing On problem instances based on the problem parameters
of DC-LAP.

TABLE I: Wins, Losses and Ties of fr4cing and f1po grouped
by configuration of DC-LA

mr m n fracing f100 Ties
0.25 10 100 3 8 19
0.5 10 100 3 9 18
0.75 10 100 5 4 21
1 10 100 0 1 29
0.25 10 500 7 2 21
0.5 10 500 6 2 22
0.75 10 500 2 1 27
1 10 500 1 1 28
0.25 10 1000 2 1 27
0.5 10 1000 5 0 25
0.75 10 1000 2 3 25
1 10 1000 1 2 27
0.25 20 100 14 12 4
0.5 20 100 14 10 6
0.75 20 100 12 6 12
1 20 100 9 0 21
0.25 20 500 13 7 10
0.5 20 500 15 6 9
0.75 20 500 13 1 16
1 20 500 9 0 21
0.25 20 | 1000 16 3 11
0.5 20 1000 17 4 9
0.75 20 1000 12 1 17
1 20 1000 9 0 21
0.25 50 100 12 17 1
0.5 50 100 15 14 1
0.75 50 100 26 3 1
1 50 100 25 5 0
0.25 50 500 22 8 0
0.5 50 500 24 6 0
0.75 50 500 23 7 0
1 50 500 26 4 0
0.25 50 1000 26 4 0
0.5 50 | 1000 24 6 0
0.75 50 | 1000 28 2 0
1 50 | 1000 27 3 0
0.25 100 100 22 8 0
0.5 100 100 28 2 0
0.75 100 100 27 2 1
1 100 100 27 3 0
0.25 100 500 28 2 0
0.5 100 500 28 2 0
0.75 100 500 30 0 0
1 100 500 29 0 1
0.25 100 | 1000 30 0 0
0.5 100 | 1000 29 1 0
0.75 100 1000 29 1 0
1 100 1000 28 2 0

L]
L]
N $
e °
! °
8 L]
2 025- 5
2 . i
@© L)
2 o Y
8
£
c
3
2 000- ’J_‘
@
Qo
[0
Q
c
o
hel
© —0.25-
Q 025 ' '
£ 3
C
S ! .
K $ H g
°
L] L]
L]
-0.50- ®
L]
025 05 0.75 i

Movement rate

(a) Grouped by movement rate

L]
L]
H
s $
& 0.25-) °
2 o §
&]
2 ° [) 4 °
3 '
oF
C
3
Q
Q °
@
o
=
o
£ H
= [
© -0.25-
g H
[
[
<4
[0
o
-0.50-
10 20 50 100

Number of facilities

(b) Grouped by number of facilities

<o
N
a

o
=3
S

-0.25-

© CDEREEN——

Percentage difference between fracing and f1o0

i

-0.50-

100 500 1000
Number of customers

(c) Grouped by number of customer

Fig. 2: Percentage difference between the frqcing and figo
grouped according to DC-LA parameters

Results from experiments show that as customers make
frequent movement over time, the average computational time
of fracing is 4.8 times lower than the average time recorded by
the fixed number of simulation evaluation. Also, as customers
make little or no movement over time, the average time
recorded by frqcing is 4.5 times lower than the average time
recorded by fi00.

For the number of facilities, we observe that on the smallest
number of facilities, the average time recorded by frqcing 18
4.5 times lower than the average time recorded by f199 and
the average time recorded by f;.qcing On the larger number of
facilities is 4.7 times lower than the average time recorded by
J100-

For the number of customers, we observe that on the
smallest number of customers, the average time recorded by
fracing s 4.3 times lower than the average time recorded by
the fi00 and the average time recorded by frqcing On the larger
number of customers is 4.8 times lower than the average time
recorded by f1g0-

The improved computational time of frqcing can be at-
tributed to the ability of f,.4cing to discard weak solutions at
the beginning of the search process through the use of statisti-
cal tests to compare solutions in the evolutionary framework.
This approach allows simulations to be performed iteratively
until a statistical difference is reached, which ensures that
the minimum number of simulations is performed to detect
statistical difference to support solution selection. On the other
hand, due to the larger number of simulations required by the
fixed number of simulation evaluation, a considerable effort
is often wasted in the early stages of the search process on
weak solutions. The waste of effort and a large number of
simulations all contribute to the expensive computational cost
of f100, which is on average 4.5 times higher than the average
time recorded by fracing-

Overall problem parameters the ratio between the variance
in computational time recorded for frqcing is 24 times lower
than the variance in computational time recorded by figg-
The variance shows that the computational time recorded
for fracing on problem configurations are relatively closer to
the mean recorded time than for figp. On average, fracing
employs about 21 simulations within each race of a run
to quickly discard weak solutions from the population. The
use of the minimum amount of simulation to discard weak
solutions accounts for the low variance in the computational
costs recorded for frqcing.

V. THE MAXIMUM LIKELIHOOD SOLUTION

So far, in this paper, the solution returned by the search was
the one that yields the best-expected fitness over a limited
number of simulations. In this Section, we are interested
in comparing that solution with what we call the Maximum
Likelihood Solutions (MLS), i.e the solution that is the most
likely to be generated. As an EDA, PBIL builds a probabilistic
model from the most promising solutions and uses it to sample
new candidate solutions.

The probability of obtaining MLS is defined as:

P(x) =[] pi(x) “)

Because the probability vector (PV) in PBIL is a uni-
variate model, i.e. it assumes full independence of problem
variables the probability of MLS: P(MLS) is the product
of the probabilities of the individual propertics. Although
the probability of obtaining MLS is minimal, MLS has a
whole region around it that is quite similar to it. Taking
the region into consideration gives us a large concentration
of probabilities. We employ MLS for comparison to see if
we can get an estimate consistent with results obtained by
an evaluation function when we run the experiments many
times and hence avoid running many experiments. To allow
for comparison of results, we evaluate MLS with the same
5000 scenarios used to evaluate the best solutions found for

fracing-

TABLE II: Recorded wins and ties between frqcing and
fracingMLs on problem configurations

mr m n Jracing | Jracingnns | Ties
0.25 10 100 19 3 8
0.5 10 100 17 3 10
0.75 10 100 19 0 11
1 10 100 23 0 7
0.25 10 500 24 0 6
0.5 10 500 21 9
0.75 10 500 24 0 6
1 10 500 27 0 3
0.25 10 1000 21 0 9
0.5 10 1000 24 0 6
0.75 10 1000 23 1 6
1 10 1000 25 0 5
0.25 20 100 21 4 5
0.5 20 100 18 8 4
0.75 20 100 21 1 8
1 20 100 21 0 9
0.25 20 500 21 1 8
0.5 20 500 22 1 7
0.75 20 500 21 0 9
1 20 500 24 0 6
0.25 20 1000 21 2 7
0.5 20 1000 23 1 6
0.75 20 1000 23 1 6
1 20 1000 22 0 8
0.25 50 100 18 11 1
0.5 50 100 18 11 1
0.75 50 100 30 0 0
1 50 100 30 0 0
0.25 50 500 29 1 0
0.5 50 500 30 0 0
0.75 50 500 30 0 0
1 50 500 30 0 0
0.25 50 1000 30 0
0.5 50 1000 30 0 0
0.75 50 1000 30 0 0
1 50 1000 30 0 0
0.25 100 100 0 30 0
0.5 100 100 0 30 0
0.75 100 100 0 30 0
1 100 100 1 29 0
0.25 100 500 3 27 0
0.5 100 500 2 28 0
0.75 100 500 3 27 0
1 100 500 2 28 0
0.25 100 1000 3 27 0
0.5 100 1000 5 25 0
0.75 100 1000 2 27 1
1 100 1000 3 27 0

The results observed in table II shows that for larger
problems having 100 facilities, using the MLS offers better
results than the results obtained by frqcing. This means that for

much larger problems, we can employ the MLS as a measure
of making decisions to locate facilities without having to run
many experiments.

VI. CONCLUSION

In previous work [4], we introduced a new dynamic variant
of Location-allocation problem called the Dynamic-customer
Location-allocation (DC-LA) problem where facilities are
opened once at the start of a defined period and are expected to
be satisfactory in servicing customers demands irrespective of
changes in customer distribution. To help evaluate a solution to
DC-LA, we explored a stochastic dynamic evaluation function
in the context of simulation-based optimisation, which we
called fi9p or a fixed number of simulation evaluation. figg
takes into account possible movements of customers over the
planning period. It does this by simulating customer move-
ments to estimate the expected cost over time. To evaluate
the performance of fig9, we employed a static evaluation
function that forms the baseline for comparison. The static
evaluation function, which is a deterministic function assumes
that customers will make no movements over the planning
period and thus, their locations remain the same from start to
the end of the planning period.

Although observations from experiments showed that using
a fixed number of simulation evaluation led to better costs
savings when compared to the static evaluation function, the
fixed number of simulation evaluation came with a high
computational cost due to a large number of simulations
required in the evaluation process.

To help achieve a balance between a large number of
simulation and the high computational cost, we adapted the
concept of frqcing as a selection method to our problem.
fracing Was first proposed in machine learning to deal with
the problem of model selection and later adapted for the
configuration of an optimisation algorithm. In recent years,
fracing has been adapted in solving optimisation problems.

Our adaptation of f;.q¢ing uses the Friedman test to compare
solutions in PBIL statistically. frqcing allows simulations to be
performed iteratively, ensuring that the minimum number of
simulations is performed to detect a statistical difference.

The experiments conducted with frcing On the same prob-
lem instances employed in our previous work showed frqcing
to have better results when compared to the fixed number of
simulation evaluation on all DC-LA parameters. In terms of
cost savings, frqcing showed good performance by achieving
improved cost savings over figp.

We also observed that on average, the computational cost
of fracing Was about 4.5 times lower than the computational
cost recorded for f199. Results obtained shows that not only is
fracing able to reduce a large number of simulations required
to select solutions within an evolutionary framework effi-
ciently, but f,qcing also achieves better results and improved
cost savings due to the ability of f,qcing to quickly discard
weak solutions from the population at the early stage of the
search process. The application of f.4cing can be adapted

to other aspects of location problems with a stochastic cost
function.

A study of the maximum likelihood solution (MLS) showed
that for problem configurations with a larger number of
facilities (i.e. 100 facilities) we could employ the MLS to
decide the locations of facilities without having to run many
experiments; thereby saving much computational effort.

In this work, we employed the Friedman test for testing
for the statistical difference between solutions in frqcing. The
statistical power of the Friedman test is dependent on the
sample size, i.e. a larger sample size has more statistical
power. Hence, before we can perform the initial statistical
test in the race, we have to evaluate each solution in the
population several times to give us enough of a sample size
for testing. Future work will explore other non-parametric
statistical tests other than the Friedman test to see if we
can find statistical differences between solutions with a lesser
number of simulations.

Also in this work, we used PBIL algorithm to solve
DC-LA problem however in the literature other EDA’s that
are bi-variate in nature has been shown to improve on the
performance of uni-variate EDA’s such as PBIL especially
in considering the strong trend in customer movements of
DC-LA problem. This is because univariate EDAs treat each
decision variable independently and hence, they are often not
representative enough to provide the best performance. Future
work will, therefore, explore bi-variate EDA such as the h-
BOA [14] to sec if allowing some dependencies between
variables in DC-LA problem can help to further reduce the
number of evaluations. Finally, we will seek to compare
the performance of racing with other approaches from the
literature.

REFERENCES

[1] Scott AJ. Location-allocation systems: a review. Geographical Analysis.
1970;2(2):95-119.

[2] Farahani RZ, Abedian M, Sharahi S. Dynamic facility location problem.
In: Facility Location. Springer; 2009. p. 347-372.

[3] Farahani RZ, Asgari N, Heidari N, Hosseininia M, Goh M. Covering
problems in facility location: A review. Computers & Industrial
Engineering. 2012;62(1):368—407.

[4] Ankrah R, Lacroix B, McCall J, Hardwick A, Conway A. Introducing
the dynamic customer location-allocation problem. 2019;.

[5] Fu H, Sendhoff B, Tang K, Yao X. Robust optimization over time:
Problem difficulties and benchmark problems. IEEE Transactions on
Evolutionary Computation. 2015;19(5):731-745.

[6] Ankrah R, Lacroix B, McCall J, Hardwick A, Conway A. A Holistic
Metric Approach to Solving the Dynamic Location-Allocation Problem.
In: International Conference on Innovative Techniques and Applications
of Artificial Intelligence. Springer; 2018. p. 433-439.

[7] Maron O, Moore AW. The racing algorithm: Model selection for lazy
learners. Artificial Intelligence Review. 1997;11(1-5):193-225.

[8] Birattari M, Stiitzle T, Paquete L, Varrentrapp K. A racing algorithm
for configuring metaheuristics. In: Proceedings of the 4th Annual Con-
ference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc.; 2002. p. 11-18.

[9]1 Lopez-Ibafiez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stiitzle T.
The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives. 2016;3:43-58.

[10] Lacroix B, McCall J, Lonchampt J. Iterated racing algorithm for
simulation-optimisation of maintenance planning. In: 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE; 2018. p. 1-7.

[11] Becker S, Gottlieb J, Stiitzle T. Applications of racing algorithms:
An industrial perspective. In: International Conference on Artificial
Evolution (Evolution Artificielle). Springer; 2005. p. 271-283.

[12] Hoos HH. Automated algorithm configuration and parameter tuning. In:
Autonomous search. Springer; 2011. p. 37-71.

[13] Birattari M, Yuan 7, Balaprakash P, Stiitzle T. F-Race and iterated
F-Race: An overview. In: Experimental methods for the analysis of
optimization algorithms. Springer; 2010. p. 311-336.

[14] Pelikan M. Hierarchical Bayesian optimization algorithm. In: Hierar-
chical Bayesian Optimization Algorithm. Springer; 2005. p. 105-129.

	coversheet_conference_single_paper
	ANKRAH 2020 Racing strategy (AAM)

