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ABSTRACT
Deep Neural Networks have achieved many successes when apply-
ing to visual, text, and speech information in various domains. The
crucial reasons behind these successes are the multi-layer archi-
tecture and the in-model feature transformation of deep learning
models. These design principles have inspired other sub-fields of
machine learning including ensemble learning. In recent years,
there are some deep homogenous ensemble models introduced
with a large number of classifiers in each layer. These models, thus,
require a costly computational classification. Moreover, the exist-
ing deep ensemble models use all classifiers including unnecessary
ones which can reduce the predictive accuracy of the ensemble. In
this study, we propose a multi-layer ensemble learning framework
called MUlti-Layer heterogeneous Ensemble System (MULES) to
solve the classification problem. The proposed system works with a
small number of heterogeneous classifiers to obtain ensemble diver-
sity, therefore being efficiency in resource usage. We also propose
an Evolutionary Algorithm-based selection method to select the
subset of suitable classifiers and features at each layer to enhance
the predictive performance of MULES. The selection method uses
NSGA-II algorithm to optimize two objectives concerning classifi-
cation accuracy and ensemble diversity. Experiments on 33 datasets
confirm that MULES is better than a number of well-known bench-
mark algorithms.

CCS CONCEPTS
• Computing methodologies → Ensemble methods; • Math-
ematics of computing → Evolutionary Algorithms;
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1 INTRODUCTION
In recent years “deep learning” has become one of the most popular 
terms in the research community. Deep Neural Networks (DNNs) 
have shown outstanding achievements in many supervised learn-
ing tasks for visual, text, and speech information [13]. In computer 
vision, for instance, Convolutional Neural Network (CNN), a DNN, 
significantly outperforms traditional machine learning algorithms 
on the large-scale ImageNet classification task [11]. Zhou and Feng 
summarized three crucial reasons for the success of DNNs, includ-
ing layer-by-layer processing, in-model feature transformation, and 
sufficient model complexity [30]. From the training data, DNNs gen-
erates the new training input at each layer in which the new training 
features reflect the different high-level abstract representations of 
the original data. This multi-layer design brings out different as-
pects of the original data in comparison to the flat networks i.e. 
single-hidden layer networks or traditional machine learning mod-
els which only work on the original data. Moreover, DNNs are 
designed with many hyper-parameters in many layers, resulting in 
high model complexity. Such high complexity is needed to explore 
the large training data.

DNNs are built based on neural networks by using backpropa-
gation technique to train multi-layer with differentiable nonlinear 
modules. Recently, some efforts are being done to extend deep learn-
ing models with many layers of ensemble of classifiers [3, 21, 24, 30]. 
An ensemble is a collection of classifiers whose prediction are 
combined so as to achieve better performance than its constituent 
members. The key success of ensemble learning results from the 
diverse exploration of the original data using different hypothesis 
i.e. classifiers. By constructing deep ensemble models, we expect to
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benefit from both the deep learning and ensemble learning mech-
anisms. Although these deep ensemble models achieve superior
classification performance on many datasets, the existing ensemble
requires a large number of classifiers, resulting in huge memory
usage and expensive computation. Moreover, these deep ensemble
models do not perform classifier selection for each layer. In fact, the
presence of some poor classifiers in each layer could degrade the
system performance. We addressed these limitations by designing
a multi-layer ensemble model with ensemble selection.

This paper aims to design an effective ensemble-based supervised
learning system for classification inspired by the representation
learning using layer-by-layer processing of DNNs. To achieve this
goal, the objectives below have been specified:

• Design a novel ensemble model involving a multi-layer archi-
tecture with diverse classifiers in each layer (called MULES).
By combining the advantages of ensemble learning and deep
learning, the proposed system is expected to perform well
in many classification tasks.

• Investigate an approach to simultaneously select classifiers
and the features in each layer. The proposed approach thus
can overcome the limitation of existing deep ensemble mod-
els by selecting only the subset of suitable classifiers and
features for each layer.

• Propose fitness measures for MULES by considering not
only classification accuracy but also the ensemble diversity
generated by classifiers in each layer.

• Compare the performance of MULES to several existing en-
semble methods and deep ensemble models.

In Section 2, we briefly introduce ensemble learning for classifica-
tion and some recent developments in Evolutionary Algorithms
for ensemble systems. In Section 3, we give a detail description
of the general architecture for the MULES. Experimental studies
on a number of datasets are provided in Section 4, followed by
conclusions in Section 5.

2 BACKGROUND AND RELATEDWORK
2.1 Ensemble Learning
Ensemble learning explores the original data by using different
hypothesis, i.e. classifiers. There are two strategies to generate the
set of classifiers: heterogeneity or homogeneity [2, 4, 19]. In homo-
geneous ensemble, many classifiers are obtained by training one
learning algorithm on many different training sets obtained from
the original one. Homogeneous ensemble uses many classifiers
to ensure that the classification error converges to its asymptotic
value. This thus requires huge memory storage for classifiers and
high computational budgets for classification. Among many homo-
geneous ensemble frameworks, Random Forest and XgBoost are the
top-performance methods [4, 8]. The heterogeneous ensemble, in
contrast, uses a small number of different learning algorithms on the
training data to generate diverse classifiers. The research on hetero-
geneous ensemble focuses on designing combining algorithms that
effectively combine the predictions of the classifiers. Some examples
of combining algorithms are Bayesian-based method with Mixture
of Gaussians [16] and Information Granularity-based method [19].

Ensemble methods based on a multi-layer architecture is nowa-
days becoming a popular trend in ensemble system design. Such

systems involve more than one layer of ensembles. Some examples
of two layers of ensembles are two-layer heterogeneous ensemble
[17], and a two-layer ensemble of Random Subspace and Bagging
[29]. Viola and John [25] proposed a cascade model as a sequence
of binary classifiers. If one classifier outputs positive value, the
data is transmitted to the next classifier. A deep ensemble learning
model with more than two layers called gcForest was introduced by
Zhou and Feng [30] with four random forests in each layer. Utkin
et al. [24] optimized gcForest by considering the weights of the
trees in the same forest when averaging their predictions. These
weights are found by minimizing a loss function on the training
data based on the Euclidean distance between the weighted average
vector and the crisp distribution vector based on the class labels
of the training instances. Qi et al. [21] introduced a deep model
with ensemble of SVM classifiers in each layer. The parameters
of the models including the kernel functions of SVM classifiers,
the number of classifiers, and the weights of features are found by
using AdaBoost. In deep ensemble model in [3], the training input
for ith layer is formed by concatenating the original training data
and all predictions of classifiers from the 1th layer to the (i − 1)th
layer. The optimal hyper-parameters of the proposed model, includ-
ing the number of classifiers in each layer, the number of layers,
and the parameters for classifiers in each layer, are found by an
Evolutionary Algorithm.

2.2 Selection Problem with Evolutionary
Algorithms

In the past years, many applications of Evolutionary Algorithm
(EA) have been proposed to select the optimal subset of classifiers or
features to improve the ensemble performance. Nguyen et al. [15]
proposed the encoding of both the classifiers and six combining
methods in a chromosome. The final optimal set of combining
methods is combined once again using the OWA operator. Chen
et al. [5] used Ant Colony Optimization (ACO) to find the optimal
set of classifiers in the ensemble system. A combining algorithm
is chosen from a given set of algorithms by using the uniform
distribution. Wang et al. [26] used NSGA-II [6] to search for the
optimal set of classifiers generated by training a regression tree
on 100 new training sets. The new training data was obtained by
applying the random subspace and bootstrap resampling techniques
on the original training set.

EA is also widely applied to feature selection which aims to re-
move redundant and irrelevant attributes to improve predictive per-
formance and efficiency [28]. In ensemble learning, some EA-based
feature selection methods have been proposed to select features for
classifiers or to select predictions of classifiers for the combining
algorithms. Kim and Cho [9] encoded the feature selection methods
that will be used for each learning algorithm to learn the classi-
fiers. The optimal solution is then obtained by using GA. In their
extended version, the chromosomes in GA encodes the weight for
each feature-classifier pair for the weighted sum combining rule. Ba-
causkiene et al. [1] built the homogeneous ensemble system of SVM
classifiers in which the parameters of each classifier i.e. the regular-
ization constant and the kernel width and the features used by each
classifier are encoded via the binary encoding scheme. Nguyen et
al. [18] used ACO to simultaneously select the optimum from the
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predictions of classifiers and the set of combining algorithms to
improve ensemble performance.

Recently, some Evolutionary Algorithms-based approaches have
been proposed for DNNs optimization in terms of their topology
and hyper-parameters [14]. In [27], Genetic Algorithm was used
to optimize the network structures of CNNs. The CNN network
was organized in several states including ordered nodes. A binary
encoding scheme was used in each stage to encode the connec-
tions between the nodes insides. In [23], the three different building
blocks: the convolutional layer, the pooling layer, and the fully
connected layers in a CNN were encoded in one chromosome for
evolution. The individuals are organized in variable-length encod-
ing so as to reach the optimal depth of architecture. In [10], the
hyper-parameters of DenseNet, a CNN, including the number of
blocks, the number of layers in each block, and the growth rate
was optimized by considering two objectives, namely computation
accuracy and computational cost. The taxonomy of Evolutionary
Algorithms to optimize DNNs can be found in [14].

3 PROPOSED SYSTEM
3.1 Deep Heterogeneous Ensemble System
Let D = {(xn, ŷn )}, |D| = N be the training data, where xn ∈ RD

is the D-feature vector of the training instance, ŷn ∈ Y = {ym },
|Y| = M be its corresponding label that belongs to the label set
withM labels,K = {Kk } be the set of learning algorithms |K | = K .
In supervised learning (i.e. classification or regression), we aim to
learn a hypothesis h (i.e., classifier) for the unknown relationship д :
xn → ŷn and use this hypothesis to assign a label for each unlabeled
instance. By using an ensemble system, we train an ensemble of
classifiers (EoC) onD to obtain several different hypotheses {h̃i} for
д. These hypotheses are then combined by a combining algorithm
C : h̃ = C{h̃i} for final decision making.

In this study, we propose MULES to solve the classification prob-
lems. The proposed system has multiple layers including different
classifiers in each layer. The classifiers in the first layer train on
the original training data and generate the new input training data
for the second layer. The classifiers in the next layer train on the
new training data generated by the preceding layer and generate
the new training data for the subsequent layer. A layer thus can be
viewed as the feature generator which generates features for the
next layer. The combining algorithm then trains on the predictions
of the classifiers in the last layer for collaborated prediction. In
fact, this model is based on the idea of DNNs in which the data
is passed through several layers in the learning system. However,
it is different from DNNs since the information in the MULES is
processed under the feed-forward mechanism in which the infor-
mation is only passed from one layer to the next layer and does not
involve back-propagation like in neural network methods. More-
over, several different learning algorithms will be used in each layer,
whereas DNNs only work with layers of neurons. An illustration of
MULES with a 3 layer-architecture and several different classifiers
in each layer is shown in Figure 1. The outputs of the Decision
Tree, Naïve Bayes, and Random Forest classifier in the first layer
are combined with the original training data to generate the input
for the second layer. A similar scheme is used at the second layer
with two classifiers (SVM and Decision Tree) and in the third layer

with two classifiers (LDA and SVM), before the output of the third
layer is combined for the final prediction.

Two following questions arise from the proposed MULES:
• How to grow the deep model?
• How to combine the predictions of the last layer to obtain
the final prediction?

To grow the deep model of MULES, it is needed to generate the
input data for one layer. In this study, we concatenate the original
training data with the predictions of classifiers of the ith layer to
form the new input data for the (i + 1)th layer. We use Ti -fold
cross-validation on the input data for the ith layer to generate the
predictions for the training data. In cross-validation, the input for
ith layer is divided into Ti disjoint parts in which the cardinality
of each part is nearly similar. The predictions for observation in
each part will obtain by using classifiers trained on the other parts.
An observation thus will be predicted one time. We obtain the
prediction of the kth classifier at the ith layer that xn belongs
to the class label ym denoted by p

(i)
(k ,m)

(xn). We assume that the
classifiers output the predictions in the form of probability [19]:

M∑
m=1

p
(i)
k ,m (xn) = 1;k = 1, ...,K ;n = 1, ...,N (1)

Let Li denotes the new data generated by the ith layer as the input
for the (i + 1)th layer (i = 1, 2, . . . ) and L(0) = D. In this study,
we propose to generate Li by concatenating the original training
data and the prediction of each classifier for each observation. The
augmented features, i.e. predictions and original features is expected
to improve the discriminative characteristic of the training data [30].
In detail, the predictions for the training set at the ith layer is given
as a N × (MK) matrix P (i)(xn) =

[
p
(i)
1,1(xn),p

(i)
1,2(xn), ...,p

(i)
K ,M (xn)

]
while the original training data is given as a N × D matrix. The
concatenation operator will generate a new input for the (i + 1)th
layer in the form of a N × (D +MK) matrix including the original
training features and predictions of all instances arranged in the
order as in Eqn. (3).

L(i) =
[
L(i)(x1)...L(i)(xN)

]T
(2)

L(i)(xn) =
[
xn1, ..., xnD ,p

(i)
1,1(xn),p

(i)
1,2(xn), ...,p

(i)
K ,M (xn)

]
(3)

In ensemble systems, an algorithm is used to combine the pre-
dictions of classifiers for the collaborated prediction. In this study,
we used the Sum Rule method for combining [10]. Sum Rule sum-
marizes the predictions of each instance with regard to each class
label and assigns the instance to the class label associated with the
maximum value. The combined prediction on an instance x at the
ith layer is given by:

x ∈ yt if t = argmaxm=1, ...,M

{ K∑
k=1

p
(i)
k ,m (x)

}
(4)

The classification process works in a straightforward manner where
a test instance x is fed forward through the layers to finally obtain
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Layer (1) Layer (2) 

Random Forest 

SVM 
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Decision Tree 
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To keep the figure simple, we do not show the concatenation between training data and the prediction of each classifier to create the input for the next layer.

Figure 1: An illustration of the proposed deep heterogeneous ensemble system.

the predictions when reaching the output layer. Once again, the pre-
dictions ofK classifiers at ith layer for x, i.e.Li (x) are concatenated
with the original training data in a shape of a (D +MK)-vector (3).
The prediction vector of the last layer is fed into the combiner to
generate the predicted label.

3.2 Simultaneous Classifier and Feature
Selection Approach

At each layer of MULES, the original training data is concatenated
to the predictions of classifiers to generate the input for the next
layer. The prediction of a classifier can be viewed as scaled data from
feature domain to probability domain. The new data in the proba-
bility domain may have better discriminative characteristics than
the original training data in case of correct predictions where obser-
vations that belong to the same class will have similar prediction
results and stay close together in the probability domain. However,
in cases of wrong predictions, the discriminative characteristic of
data will be mitigated. Concatenating the original training data and
the classifier’s predictions can therefore result in better or worse
discriminative characteristics than the original training data. In this
work, we develop a simultaneous classifier and feature selection
method for each layer of MULES in which the system performance
can be improved by either removing some inconsistent classifiers in
each layer or selecting the most suitable features for each selected
classifier when training on the input data.

We design a two-part encoding representation for the simultane-
ous classifier and feature selection method. The first part [h(i)k ,k =
1, ...,K] of the proposed encoding E(i) in Eqn. (5) is the encoding of
theK classifiers and the second part

[
f
(i)
kd ,k = 1, ...,K ;d = 1, ...,di

]
is the encoding of the features used by each classifier. In both parts,
each gene in the encoding get two binary values {0,1} showing
which classifiers is absence or presence in each layer (Eqn. (6)) or

which features will be used by a classifier (Eqn. (7)).

E(i) =



h
(i)
1 . . .h

(i)
K

f
(i)
11 , f

(i)
12 , . . . , f

(i)
1di

f
(i)
21 , f

(i)
22 , . . . , f

(i)
2di

. . .

f
(i)
K1, f

(i)
K2, . . . , f

(i)
Kdi


(5)

where di is the number of training features for layer i

h
(i)
k =

{
1, kthclassifier is selected at layer i

0, otherwise
(6)

f
(i)
kd =

{
1, dth feature is used by kth classifier at layer i

0, otherwise
(7)

In this study, the model selection is conducted at each layer to
obtain the optimal set of classifiers and their features. The purpose
of classifiers in all layers except the last one is to generate the input
data for the next layer. Thus, the attention on only prediction accu-
racy is not enough to ensure the generation of effective input data.
Here we consider bi-objective optimization for the model selection
problem. The first objective is the accuracy of the classification task
on the validation setV:

maxE (i )

{
1
|V|

|V |∑
n=1

Jh̃(i)(xn) = ŷnK
}

(8)

where h̃(i) is the combining model using Sum Rule at the ith layer,
| · | denotes the cardinality of a set, and J·K is equal 1 if the condition
is true, otherwise equal 0.

The second objective concerns the ensemble diversity generated
by classifiers in each layer. It is widely recognized that diversity is
an important factor to be considered when designing an ensemble
system [12, 20, 30]. Kuncheva et al. [12] studied ten pairwise and
non-pairwise diversity measures and examined the relationship
between accuracy and diversity. Diversity was considered when
designing an evaluation measure for ensemble selection (aka en-
semble pruning) [20]. In this study, we measure the diversity of
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Figure 2 presents an example of the new training data generated by the first layer in Figure 1 for a four class-classification problem. Each of the three groups is the
predictions of Decision Tree, Naïve Bayes, or Random Forest which show the probabilities that one instance belongs to the class labels. The new training features are
concatenated with the original training data and predictions. For instances, the prediction vector (0.6, 0.2, 0.1, 0.1) in the first group shows the probabilities instance
x1 belongs to class label y1, y2, y3, and y4 respectively given by the Decision Tree classifier. The new training features of x1 is (x11, x12,..., x1D , 0.6, 0.2, 0.1, 0.1, 0.9,
0.1, 0.0, 0.0, 0.8, 0.2, 0.0, 0.0) will be used as the input training data for the 2nd layer.

Figure 2: An example of the output data of the first layer in Figure 1.

classifiers in each layer by using Q-statistic computed on the pre-
dictive outcomes of two classifiers [12]:

Qi j =
N00N11 − N10N01
N00N11 + N10N01

(9)

in which N11 denotes the number of samples which are correctly
classified by both classifiers, N10 denotes the number of samples
correctly classified by the ith classifier but are not correctly classi-
fied by the jth classifier. N00 and N01 is inversion of N11 and N10,
respectively.

The Q-statistic diversity of the ith layer is computed by averag-
ing the diversity of pairwise of selected classifiers. It is noted that
the lower the value of the Q-statistic, the higher the value of the
ensemble diversity. The second objective, which aims to maximize
the ensemble diversity, is given by:

minE (i )

{
2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

Qi j

}
(10)

in whichm is the number of selected classifiers.

3.3 Algorithms
In the training process, MULES receives the inputs including the
training data D, the validation data V , the learning algorithms K
and early stopping roundsTstop . In each layer, MULES searches for
the optimal subset of classifiers and features using bi-objective op-
timization. Among the Evolutionary Algorithms introduced in solv-
ing the multi-objective optimization problems, the non-dominated
sorting genetic algorithm II (NSGA-II) is one of the most popular
and effective methods [26]. NSGA-II was designed with the elitism
and diversity preserving characteristics so as to find the Pareto-
optimal solution (a set of non-dominated solutions) [6]. In this
study, we use NSGA-II in each layer to solve the combinational
optimization problem given in (8) and (10) (line 4). Since there is no
clear relationship between accuracy and diversity of an ensemble
[12], the use of NSGA-II makes these objectives to be considered
separately, thus maintaining the richness of both criteria in the
evolution process. The final result is still the prediction accuracy

as it is the main objective of interests [22, 26]. Therefore, we sim-
ply choose the chromosome with the best accuracy from the last
generation of NSGA-II as the final selected individual.

Based on the encoding of the selected individual, we get the
set of selected classifiers H (i) and their associated features F (i).
The selected algorithms K(i) and F (i) is then used on L(i−1) with
the Cross-Validation procedure to generate the predictions for the
training instances at the ith layer i.e. a N × (MK) matrix P(i). In
line 8, P(i) is concatenated with the original training data L(0) to
form the input training data L(i) for the (i + 1)th layer.

In this study, we evaluate the predictive performance of MULES
on V on each layer to automatically determine the number of
layers. In line 9, we used the selectedH (i) and the selected features
for each classifier F (i) onVi−1 to obtain the predictions P(i)

Vi
for

instances in the validation set at the ith layer. As mentioned in (4),
we apply Sum Rule on P

(i)
Vi

to obtain the predicted class label Y
(line 10). By comparing Y and the ground truth of class labels of the
instances in V , we can calculate the classification error rate of the
ith layer on V (line 11). The predictions P(i)

V1
is also concatenated

with the original validation set V to obtain V(i) for the evaluation
at the (i + 1)th layer.

We use a checkpoint to save the current best result and the
number of layers when MULES enhances its performance on the
validation set (line 13-16). After a specific number of layers, if the
classification error on the validation part does not improve, we
stop growing new layers and then use the checkpoint to choose the
optimal number of layers.

In the testing process, an unlabeled instance is pass through all
layers in MULES until reaching the last layer. In the ith layer, by
referencing F (i), we can choose the features of the test instance for
each selected classifier. The predictions of the selected classifiers
for the test instance are concatenated to the original features to
form the new training data for the next layer. We use Sum Rule on
the predictions of the selected classifiers at the last layer to assign
a class label for the test instance.
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Algorithm:MULES
Input:

• Training data D = [(xn, ŷn ),n = 1...N ]

• Validation data V = [(xi, ŷi ), i = 1...|V|]

• K learning algorithm K

• Early stopping rounds Tstop
Output: List of selected classifiers and their associated

features at layer i
1 Initizlize L(0) = D,V0 = V, i = 0,best_error_model = 1.0 ;

2 while True do
3 i++ //Train layer i ;
4 Apply NGSA-II with (8) and (10) to obtain optimal

encoding E for layer (i) ;
5 Get the set of selected classifierH (i) and their

associated features F (i) from E ;
6 Get the selected algorithm K(i) ;
7 P(i) = Cross_Validation(K(i), F (i),L(i−1)) ;
8 L(i) = P(i) ∪ L(0) ;
9 P

(i)
Vi
= predict(H (i), F (i),V(i−1)) ;

10 Y = Sum_Rule_predict(P(i)
Vi

) by (4) ;
11 error = Loss_f unction(Y ,V) ;
12 V(i) = P

(i)
Vi

∪V0 ;
13 if error < best_error_model then
14 best_error_model = error ;
15 Tlayer = i;
16 end
17 if error does not decrease after Tstop layers then
18 Break
19 end
20 end

21 Return
[
H (i)andF (i)

]
, i = 1, ...,Tlayers ;

4 EXPERIMENTAL STUDIES
4.1 Configurations
MULES was constructed with five learning algorithms: K Nearest
Neighbor (KNN, K was set to 5), Logistic Regression, Naïve Bayes
(Bernoulli distribution was used), Random Forest (with 200 esti-
mators), and Decision Tree. All these methods were implemented
from the scikit-learn library with default parameters. We followed
the experiments in [30] in which 80% of labeled data is used for the
training part and the remainder is used for the validation part. We
used the 2-fold Cross-Validation in one layer to generate the predic-
tions for the training part. The layer growing process is stopped if
the classification error rate on the validation part does not improve
after 5 layers. For NSGA-II algorithm using in each layer, the maxi-
mum number of generations was set to 100 and the population size
was set to 50.

We used somewell-known benchmark algorithms to evaluate the
performance of MULES: Random Forest (with 2000 trees), gcForest

(4 forests and 500 trees in each forest), XgBoost (with 2000 trees),
and Multi-Layer Perceptron (MLP). As the performance of MLP
significantly depends on the network structure, we performed grid
search on different parameters and reported the best result for
the comparison. For MLP, we followed the experiments in [30] in
which it was constructed with different configurations: input-30-
20-output, input-50-30-output, and input-70-50-output.

We used the Friedman test to test the null hypothesis that all
methods perform equally on all datasets. If the P-Value of this test
is smaller than a significant threshold e.g. 0.05, we reject the null
hypothesis and conduct the Nemenyi post-hoc test for pairwise
comparison on all datasets [7]. The experiments were conducted on
33 datasets selected from various sources such as the UCI Machine
Learning Repository and OpenML 1.

4.2 Experimental Results
Comparison to baselines: The prediction error rates of MULES
and five benchmark algorithms are presented in Table 1. Some
observations can be made:

• Based on the Friedman test, the null hypothesis was rejected
with the P-Value. The Nemenyi test shows that MULES is
better than XgBoost, gcForest, and MLP.

• MULES achieves the lowest average rank among all methods
(rank value 1.76). On the 33 datasets, MULES ranks first in 16
cases (48.5%) and ranks second in 13 cases (39.4%). Although
MULES performs poorly on 4 datasets, i.e. it ranks fourth on
the Breast-Cancer and Twonorm datasets and ranks third on
the Cleveland and Spambase datasets, the prediction error
rates of MULES and the first rank method are not significant
differences (0.0488 vs. 0.0244 of gcForest on Breast-Cancer
dataset, for example).

• Random Forest and XgBoost rank second and third with
average rank value 2.59 and 3.12, respectively. Random For-
est ranks first on 9 datasets while XgBoost ranks first on
4 datasets. Random Forest is better than MULES on only
two datasets Hayes-Roth (0.1250 vs. 0.1667) and Wine_white
(0.3014 vs. 0.3449). In contrast, MULES is better than Random
Forest on 6 datasets namely Chess-krvk (about 6% better),
Embryonal (more than 10% better), Hill-valley (about 30%
better), Madelon (about 10% better), Tic-tac-toe and Vehicle
(about 5% better).

• gcForest is worse than MULES in our experiment. One some
datasets such as Chess-krvk, Electricity, Hill-valley, and Iso-
let, gcForest performs poorly and by far worse than MULES.
gcForest ranks first on three datasets namely Breast-Cancer,
Marketing, and Cleveland, but the differences in comparison
to classification results of MULES are not significant.

• MLP is the poorest method in our experiment. AlthoughMLP
was run with different configurations and we reported the
best result for comparisons, its performance is by far worse
than MULES. On some datasets like Ring, Satimage, and

1The experimental datasets are Biodeg, Breast-Cancer, Breast-Tissue, Chess-krvk,
Cleveland, Contraceptive, Electricity, Embryonal, Hayes-roth, Hill-valley, Isolet, Let-
ter, Leukemia, Madelon, Magic, Marketing, Musk1, Phoneme, Ring, Satimage, Skin-
NonSkin, Spambase, Texture, Tic-tac-toe, Titanic, Twonorm, Vehicle, Vertebral, Wave-
form_w_noise, Waveform_wo_noise, Wine, Wine_red, Wine_white. The detail of these
datasets can be found in the Supplement Material
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Table 1: Classification error rate and ranking of the benchmark algorithms and MULES

gcForest MLP Random Forest XgBoost MULES

Biodeg 0.1325 (4) 0.1073 (1) 0.1230 (2.5) 0.1546 (5) 0.1230 (2.5)
Breast-Cancer 0.0244 (1) 0.0488 (4) 0.0439 (2) 0.0488 (4) 0.0488 (4)
Breast-Tissue 0.3125 (3.5) 0.3750 (5) 0.2813 (1.5) 0.3125 (3.5) 0.2813 (1.5)
Chess-krvk 0.1882 (3) 0.3571 (5) 0.1784 (2) 0.2526 (4) 0.1280 (1)
Cleveland 0.4000 (1.5) 0.5000 (5) 0.4000 (1.5) 0.4444 (4) 0.4111 (3)
Contraceptive 0.4344 (3) 0.4027 (1) 0.4525 (4) 0.4615 (5) 0.4276 (2)
Electricity 0.1989 (5) 0.1950 (4) 0.0937 (3) 0.0926 (2) 0.0674 (1)
Embryonal 0.5000 (3.5) 0.3889 (1.5) 0.5556 (5) 0.5000 (3.5) 0.3889 (1.5)
Hayes-roth 0.1667 (2.5) 0.2292 (5) 0.1250 (1) 0.1875 (4) 0.1667 (2.5)
Hill-valley 0.4148 (5) 0.1058 (2) 0.3407 (4) 0.3214 (3) 0.0234 (1)
Isolet 0.1863 (5) 0.0504 (2) 0.0603 (4) 0.0543 (3) 0.0483 (1)
Letter 0.0360 (2) 0.0658 (5) 0.0427 (4) 0.0373 (3) 0.0332 (1)
Leukemia 0.0909 (4) 0.0909 (4) 0.0455 (1.5) 0.0909 (4) 0.0455 (1.5)
Madelon 0.3550 (4) 0.4550 (5) 0.3300 (3) 0.3117 (2) 0.2283 (1)
Magic 0.1539 (4) 0.1604 (5) 0.1193 (1) 0.1213 (3) 0.1197 (2)
Marketing 0.6418 (1) 0.6597 (3) 0.6709 (4) 0.6733 (5) 0.6563 (2)
Musk1 0.1538 (2.5) 0.1748 (5) 0.1538 (2.5) 0.1678 (4) 0.1329 (1)
Phoneme 0.1726 (5) 0.1369 (4) 0.0943 (1) 0.1307 (3) 0.0986 (2)
Ring 0.0351 (3) 0.1568 (5) 0.0410 (4) 0.0284 (1) 0.0342 (2)
Satimage 0.1253 (4) 0.1636 (5) 0.0777 (3) 0.0284 (1) 0.0756 (2)
Skin-NonSkin 1.4350E-02 (5) 8.5693E-04 (4) 5.5769E-04 (3) 4.7607E-04 (2) 4.3500E-04 (1)
Spambase 0.0608 (4) 0.0644 (5) 0.0449 (1) 0.0478 (2) 0.0492 (3)
Texture 0.1564 (5) 0.0067 (1) 0.0248 (4) 0.0152 (3) 0.0145 (2)
Tic-tac-toe 0.1632 (5) 0.0729 (3) 0.0764 (4) 0.0000 (1) 0.0208 (2)
Titanic 0.2466 (2) 0.2496 (4) 0.2496 (4) 0.2496 (4) 0.2284 (1)
Twonorm 0.0306 (5) 0.0293 (3.5) 0.0243 (2) 0.0239 (1) 0.0293 (3.5)
Vehicle 0.2717 (4) 0.3110 (5) 0.2362 (3) 0.2283 (2) 0.1811 (1)
Vertebral 0.2043 (4.5) 0.2043 (4.5) 0.1505 (1) 0.1935 (3) 0.1720 (2)
Waveform_w_noise 0.1433 (4) 0.1633 (5) 0.1333 (2) 0.1380 (3) 0.1233 (1)
Waveform_wo_noise 0.1567 (3.5) 0.1567 (3.5) 0.1427 (2) 0.1713 (5) 0.1353 (1)
Wine 0.0000 (2) 0.6111 (5) 0.0000 (2) 0.0556 (4) 0.0000 (2)
Wine_red 0.4146 (4) 0.4354 (5) 0.3354 (2) 0.3604 (3) 0.3250 (1)
Wine_white 0.4252 (4) 0.4837 (5) 0.3014 (1) 0.3490 (3) 0.3449 (2)
Average Ranking 3.59 3.94 2.59 3.12 1.76

Table 2: An example of the obtained configuration for
MULES on Tic-tac-toe dataset

Classifiers Features Encoding

Layer 1
Random Forest (200) 6 original features 011010111

Decision Tree 6 original features 111110100
KNN(5) 5 original features 100100111

Layer 2

Random Forest (200) 5 original features + 1 prediction 100010111 | 000100
Naïve Bayes 7 original features + 5 predictions 001111111 | 111110
KNN(5) 4 original features + 4 predictions 100101100 | 111010

Logistic Regression 6 original features + 2 predictions 011110110 | 010010

Layer 3
KNN(5) 4 original features + 8 predictions 101001100 | 10111111

Logistic Regression 3 original features + 6 predictions 011000100 | 10011111

Layer 4
KNN(5) 3 original features + 2 predictions 001001001 | 1010

Logistic Regression 3 original features + 1 prediction 100010001 | 0010

Vehicle, the classification error rates of MLP are significantly
higher than those of MULES.

The number of layers and configuration: Figure 4 presents
the comparisons between the number of layers generated by gc-
Forest and MULES on the experimental datasets. Like gcForest,
MULES can automatically determine the number of layers based
on its prediction performance on the validation set. On average,
MULES generated 4 layers of ensemble of classifiers. This means
going deeply can improve the performance of the deep model on
the validation data of some datasets. Moreover, MULES generated

1 2 3 4

CD

MULES

Random Forest

XgBoost

gcForest

MLP

Figure 3: The Nememyi test result

more number of layers than gcForest, 4 compared to 3.7 on average.
Exceptionally, both methods generate only one layer on 9 and 6
datasets. In these cases, going deeply with the new proposed input
data does not bring benefits to the ensemble system.

We further analyze the benefits of the multi-layer architecture
in MULES. Figure 5 shows the reductions of the prediction error
rates on the test data of MULES through layers in the deep model.
On Hayes-Roth dataset, for example, where MULES generates the
model with 2 layers, the prediction error rate reduces from 0.1875
to 0.1667. On Tic-Tac-Toe dataset, the prediction error rate reduces
from 0.1042 to 0.059 from the first layer to second layer, and con-
tinue to reduce to 0.0486 at the third layer and to 0.0208 at the fourth
layer. This figure demonstrates the advantages of layer-by-layer
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Figure 5: The changes of classification error rate in each
layer.

processing in MULES since the classification system gets better
results with deeper layer.

We illustrate an example of the obtained configuration forMULES
on the Tic-tac-toe dataset. At each layer, MULES selected the suit-
able classifiers and their features to generate the input for the next
layer. In detail, on the first layer, MULES chose 3 classifiers: Ran-
dom Forest, Decision Tree, and KNN. Each classifier used its own
features selected from the original features. In the second layer,
classifiers except Decision Tree were selected with different feature
sets obtained from the original features and predictions. On the
third and fourth layers, two classifiers KNN and Logistic Regression
were selected with different feature sets. By selecting the suitable

classifiers in each layer and suitable features for each classifier,
MULES can obtain high prediction accuracy and effectiveness in
resource usage in terms of memory and computation requirements.

Classification time: AlthoughMULES takes much higher train-
ing time than gcForest, the classification time of MULES is lower
than gcForest. On Tic-tac-toe dataset, for example, MULES used
3154.86 second for training process compared to only 311.78 of
gcForest. Meanwhile, gcForest used 0.62 second to classify all test
instances while MULES only used 0.26 second.

MULES obtains a subset of classifiers and their features in each
layer. From the obtained configuration for Tic-tac-toe dataset in
Table 2, after the evolution process, only 3 and 4 classifiers were kept
in the first and second layer. The third and fourth layer only have 2
classifiers. Therefore, only 11 classifiers aremaintained inMULES to
classify instances on this dataset. That makesMULES takes less time
during classification. In contrast, gcForest used 4 Random Forests
involving 500 trees in each forest. MLP also takes high computation
for the training process as its configuration is somehow problem-
dependent that requires a procedure to search for the optimal one. It
is noted that like population-based Evolution Algorithms, NSGA-II
can be implemented in parallel. This can further reduce the training
time of MULES.

5 CONCLUSIONS
In summary, we introduced a Multi-Layer Heterogeneous Ensem-
ble System (MULES) inspired by the layer-by-layer processing of
DNNs. MULES includes several layers of the ensemble of different
classifiers in which the classifiers in one layer train on the new
training data generated by the preceding layer. The new training
data for one layer is the concatenation of the predictions of the
classifiers in the preceding layer and the original training data. We
train a combining algorithm on the predictions of classifiers in the
last layer for the final collaborated prediction. Since the ensemble
in each layer can contain the unnecessary classifiers which increase
the prediction error of the ensemble, we propose an Evolutionary
Algorithm-based method to select the optimal set of classifiers and
their features on each layer. The optimization problem is considered
under two objectives concerning the prediction error and ensemble
diversity. We used NSGA-II, a popular and effective multi-objective
evolutionary algorithm, to solve this optimization problem.

Experiments on 33 datasets confirm that MULES is better than
MLP, Random Forest, gcForest, and XgBoost in terms of predictive
performance and efficiency.

Two solutions to enhance the performance of MULES could be
implemented in the future. First, in this study we concatenated the
original training data and the predictions of classifiers in one layer
to generate the input data for the next layer. In general, MULES
can generate multiple layers and its prediction accuracy becomes
better on the deeper layers. The exception occurred on 6 datasets
where going deeply does not achieve any improvements for the
classification process. A new input data is needed to populate the
deep model in these cases. Second, we used NSGA-II to search
for the set of classifiers and their features in each layers. Parallel
implementation of NSGA-II can be used in MULES to reduce its
training time.
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