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Abstract: Designing an ensemble of classifiers is one of the popular research topics in machine learning 

since it can give better results than using constitute member. Furthermore, the performance of ensemble 

can be improved using the selection or adaptation approach. In the former, the optimal set of base 

classifiers, meta-classifier, original features, or meta-data is selected to obtain a better ensemble than 

using the entire classifiers and features. In the latter, base classifiers or combining algorithms working 

on the outputs of base classifiers are made to adapt to a particular problem. The adaptation here means 

that the parameters of these algorithms are trained to be optimal for each problem. In this study, we 

propose a novel evolving combining algorithm using the adaptation approach for the ensemble systems. 

Instead of using the numerical value when computing the representation for each class label, we propose 

to use the interval-based representation for the class label. The optimal value of the representation is 

found through Particle Swarm Optimization. The class label is assigned to each test instance by 

selecting the class label associated with the shortest distance between the predictions of the base 

classifiers on that instance and the interval-based representation. Experiments conducted on a number 

of popular datasets confirm that the proposed method is better than the well-known combining 

algorithms for ensemble systems using the combining methods including Decision Template, Sum Rule, 

L2-loss Linear Support Vector Machine, and Multiple Layer Neural Network, and the selection methods 

for ensemble systems (GA-Meta-data, META-DES, and ACO). 
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1. Introduction 

Ensemble of classifiers (EoC, also known as ensemble systems, classifier ensemble) is one of the 

popular research topics in machine learning in which multiple classifiers collaborate in decision making 

i.e. their predictions are combined to generate the final prediction, which is expected to be better than 

the predictions of any of the individual classifier. Many types of ensemble systems have been introduced 

using one of the six techniques: different initializations, different architectures, different parameters, 

different learning algorithms, different training sets, and different feature sets [1]. In this study, we are 

concern with heterogeneous ensemble in which the base classifiers are obtained from different learning 

algorithms trained on a given training set. A combining algorithm is then used to aggregate the output 

(called meta-data) of these base classifiers to obtain the final prediction. An important research topic 

for heterogeneous ensemble is the design of an effective combining algorithm [2, 3]. In the literature, 

the combining algorithm is also known as the meta-classifier, meta-learner, combiner, or second-level 

classifier. 

It has been observed that by removing some poor-performing base classifiers from the ensemble, a 

better prediction can be obtained than using the entire EoC. This approach is known as classifier 

selection (also called ensemble selection, selective ensemble or ensemble pruning) in which a search 

method is applied to the ensemble to find the optimal set of base classifiers for each specific dataset [4]. 

Moreover, by searching for a suitable subset of features for each learning algorithm, the obtained 

classifier can give a better prediction than that trained using the entire feature set. This is known as 

feature selection for the ensemble [5]. Similar approaches can also be found in the selection of meta-

classifier [6] and meta-data [7, 8] for the ensemble system. Finally, we usually use pre-selected 

parameters for the learning algorithm and the combining algorithm when training the base classifiers 

and the meta-classifier. These parameters, in fact, can be optimized to adapt to each specific 

classification task. This is known as ensemble optimization.  

Evolutionary Computation (EC) have been widely applied to ensemble optimization [9-11]. Classical 

optimization methods may be more efficient than EC when solving linear, strongly convex problems. 

However, for non-differentiable, discontinuous, or multi-model objective functions that appear in many 

real-life applications, EC may be a better choice. In this study, we use Particle Swarm Optimization 

(PSO) algorithm [12], a popular EC, to find the optimal parameters for the meta-classifier. 

In this work, we introduce a novel meta-classifier for the heterogeneous ensemble. The proposed 

method origins from the fact that Decision Template method [13], one of the most well-known meta-

classifier, does not work well on imbalanced datasets, and for datasets with skewed class distribution. 

In addition, as classifiers generated from different learning strategies can produce different predictions, 

it is more informative to model these predictions using the interval [14, 15]. Therefore, we first generate 

meta-data of the training set through cross validation and then model the meta-data of each class label 



by using an interval-based representation i.e. a vector of intervals. The optimal bounds of the 

representation are obtained by minimizing the empirical 0-1 loss function on the training data based on 

Partial Swarm Optimization (PSO). Then, in the classification phase, the class label is assigned to a test 

instance based on the closeness of its meta-data to the interval-based representation. 

Table 1. Main Notation 

Notation Description � = ����, �	�
� The training set ��� , �	�
 Observation with the true label �	� � The number of class labels 

 The number of training observations  = |�| � Number of classifiers � = �������,…,� Set of labels 

� Set of classifiers ��,����
 Support of ��� classifier for ��� class on �� � Meta-data of � ����
 Meta-data of �� | . | Relative cardinality of a set 

 = !"�# Interval-based representation 

"� Interval-based representation for the $�� class �$ = 1, … , �
 

&�', (∙*
 Distance between scalar ' and an interval +��� ,  
 Distance between a vector �� and a representation   ℒ-.����,  
 0-1 loss function on �� associated with   ℒ-.�� 
 0-1 loss function on the training data associated with   

 

 

The contribution of our work is: 

• We performed a review on the development of meta-classifier for heterogeneous ensemble and 

the evolutionary approaches for ensemble selection and optimization. 

• We analysed the limitation of the well-known Decision Template method and proposed a novel 

meta-classifier algorithm based on the interval-based representation  

• We performed extensive experiments to show that the proposed method is better than several 

well-known meta-classifiers and EC-based ensemble systems. 



This paper is organized as follows. Section 2 presents background and related work including meta-

classifier design for the ensemble system, the Decision Template method, and the EC-approach for 

ensemble optimization. Section 3 introduces the formulation and optimization technique of the 

proposed method. Section 4 presents the experimental design, in which we describe the datasets for the 

experiments, the baseline methods, the experimental settings, and the statistical tests of significance for 

performance comparison. Section 5 discusses in detail the comparative study. Section 6 provides the 

conclusion and future work.  

 

2. Background and related work 

a. Meta-classifier for heterogeneous ensemble 

We denote � = ����, �	�
, � = 1, … , � as the training set in which �	� is the true label of ��, �	� ∈ � =
����, $ = 1, … , �, and � as the number of base classifiers. For an observation ��, the 01ℎ

 classifier 

returns the supports, i.e. the predictions that this observation belongs to the class labels of label set �. 

In fact, these supports can be viewed as an estimation of the posterior probabilities that �� belongs to 

the class labels. We denote �0,$���
 as the support of the 0�� classifier for the $�� class on �� in which ����
 ∈ (0,1* and  ∑ �0,$���
$ = 1. 

The meta-classifier works on these predictions to obtain the final prediction. There are two types of 

meta-classifier for the heterogeneous ensemble: fixed method and trainable method. For the fixed 

method, the meta-classifier does not use the label information in the training set in its prediction. 

Besides the simple fixed combining methods like fixed combining rules, e.g. Sum, Product, Max, Min, 

Median, Majority Vote [16], and weighted multiple rules [17], other fixed methods came up with more 

complicated designs. One of the popular combining methods is based on the concept of base belief 

assignment (BBA) in the Dempster-Shafer (D-S) theorem [18]. In detail, this method works on the 

supports of the base classifiers for a test sample by using BBA and then combines the outputs based on 

the Dempster’s rule or a related modification. There are two approaches here, one focuses on the 

modification of the Dempster’s rule to reallocate and manage evidential conflict in the supports of the 

base classifiers while the other focuses on the correction of the original supports.  Some examples of 

combining methods based on the D-S theorem can be found in [18, 19]. 

The trainable methods meanwhile work on the meta-data of the training observations to obtain the class 

discrimination model. The trainable methods are based on the stacked generalization paradigm (also 

called stacking algorithm). Stacking algorithm works as follows. The base classifiers are obtained by 

running different learning algorithms on the original training set. Another algorithm called the 

combining algorithm is trained on the predictions from the base classifiers to obtain the meta-classifier. 

Although any supervised algorithm such as Naïve Bayes (NB) and Decision Tree (DT) can be used as 



the meta-classifier [8, 20], a specific meta-classifier that can handle and adapt to the characteristics of 

the meta-data is expected to achieve better performance. There are two main approaches to combine the 

meta-data, namely weighted trainable combining and representation-based combining. In the first 

approach, it is assumed that each base classifier puts a different weight on each class label and the meta-

classifier tries to find the optimal weights by exploiting the meta-data. Some examples of the weighted 

trainable method are multiple linear regression (MLR) [21] and hinge loss function with different 

regularizations with group sparsity [22]. Recently, Yijing et al. [23] proposed a new weighted 

combining rule in which the weight of each classifier is computed based on its performance on the 

training data measured by Area under the ROC Curve (AUC). Representation-based combining 

methods, on the other hand, build the representation for class labels on the meta-data of the training 

data. A class label is assigned to a test instance based on the maximum similarity (or the minimum 

dissimilarity) between its meta-data and the class representation. Decision Template method [13], Fuzzy 

rule-based combining [3], Bayesian-based combining with Gaussian [2] or Gaussian Mixture Model 

(GMM) [7] approximation, and SCANN [24] are examples in this group. 

 

b. Decision Template method 

Among the trainable methods for the heterogeneous ensemble, Decision Template is one of the most 

popular meta-classifiers because of its simplicity and effectiveness. In this section, we briefly introduce 

the Decision Template method [13] which is the basis and motivation for our approach. The decision 

template 56 = !78�# where 78� is the decision template for the ��� class, computed on the meta-data 

is given by: 

78� = 9 &1��1,1
 … &1��1, �
… ⋱ …&1���, 1
 … &1���, �
; (1) 

where each element of 78� is computed by: 

&1��0, $
 = ∑ <=�� = �	�>�?,����
@��� ∑ <=�� = �	�>@���A  (2) 

for 0 = 1, … , �; $ = 1, … , �; � = 1, … , � 

in which �	� is the true class label of ��, <(∙* is the indicator function which returns 1 if the condition is 

true and 0 otherwise.  

In (2), the &1��0, $
 is the average value computed on the meta-data of the training observations that 

belong to the ��� class (the condition �� = �	� is true for training observations that belong to class ��) 

associated with the 0�� classifier and its predicted class label ��. In other words, &1��0, $
 is the 

average of the supports for label m output by classifier k, taken over all training data with true label j. 



In the classification phase, the distance between the meta-data of a test instance � and 78C �C = D, … , E
 are computed. The class label is assigned to � based on the minimum of the similarity or 

the maximum of the dissimilarity between ���
 and 78C. Eleven measures between ���
 and each 

decision template were introduced in [13]. 

As a trainable combining method, the Decision Template method exploits the label information in the 

meta-data when constructing the decision templates during training. In the Decision Template method, 

the mean value is used as a representation for the meta-data distribution of a class. Although the mean 

is the most popular measure for the central tendency, when the distribution becomes skewed, the mean 

loses its ability to provide the best central location. Also, for imbalanced datasets, where instances from 

one class account for the majority of the data, the base classifiers will tend to predict the dominant class. 

Therefore, the decision templates for the other classes tend to have similar value as the decision template 

for the dominant class. We illustrate two examples of applying the Decision Template method on two 

imbalanced datasets Fertility and Hayes Roth (Fig.1). The 2-class Fertility dataset is imbalanced in 

which 80% of the observations belong to the first class. The 3-class Hayes Roth dataset is also 

imbalanced in which each of the first two classes accounts for about 40% of the dataset. In these 

examples, we constructed an ensemble with 3 base classifiers, i.e. Linear Discriminative Analysis 

(denoted by LDA), Naïve Bayes, and 0 Nearest Neighbor (with 0 set to 5, denoted by 0NN5) and 

computed the decision templates on the meta-data to combine the classifiers. Clearly, for the Fertility 

dataset, the decision templates of the 2 classes are very similar and have low discriminative ability. 

Meanwhile, on Hayes Roth dataset, the decision templates for class 1 and class 2 are similar, which 

makes it difficult to assign a test instance to one of them. This makes the Decision Template method 

poor on these datasets. 

c. Evolutionary Computation for ensemble system optimization 

In the past years, many ECs for ensemble system optimization have been proposed (see Table 2) and 

they can be grouped into two categories: optimization for selection and optimization for adaptation. 

The optimization for selection searches for the optimal subset of base classifiers, base features, meta-

classifiers, or meta-data to obtain better classification accuracy than using the whole set of classifiers 

or features. Kuncheva and Jain [25] proposed encodings showing which base features are used by 

different learning algorithms to generate base classifiers, and which base classifiers are selected in the 

final ensemble. Gabrys and Ruta [26] encoded the base classifiers-base features-combiners triple with 

a binary scheme in a chromosome and proposed a multidimensional GA including two-stage crossover 

operation to search for the optimal solution.



 

 

 

 

 

Fig.1. The decision templates generated on meta-data in Fertility and Hayes-Roth dataset 

 

Kim and Oh [27] encoded the base classifiers with a binary scheme and then used hybrid GA to search 

for the optimal ensemble of classifiers. The hybrid GA contains a local search so that the offspring has 

a chance to be improved before going to the replacement stage. Kim and Kang [28] applied GA to base 
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classifier selection for bankruptcy prediction. Shunmugapriya and Kanmani [6] used ABC to find the 

optimal set of base classifiers and the associated optimal meta-classifier. Nguyen et al. [5] encoded the 

classifiers and the features in a single chromosome and used GA to simultaneously search for the 

optimal set of classifiers and the associated features. Nguyen et al. [17] encoded both the base classifiers 

and six fixed combining rules in a chromosome consisting of a two-part binary vector. The final optimal 

set of fixed combining rules is combined using the OWA operator. Chen et al. [29] used Ant Colony 

Optimization (ACO) to find the optimal set of base classifiers in an ensemble system and applied 

Decision Tree on the meta-data to generate the meta-classifier. Nguyen et al. used GA to search for the 

optimal subset of meta-data and used it with GMM [7] or Decision Tree [8] meta-classifier. Mendialdua 

et al. [30] searched for the optimal ensemble of base classifiers using an Estimation of Distribution 

Algorithm (EDA), a member in the class of EC. In EDAs, new population is generated by sampling the 

probability distribution estimated from selected individuals of previous generation. Mousavi and 

Eftekhari [31] considered two objective functions concerning the classification accuracy and ensemble 

diversity in the selection of base classifier and meta-classifier. The solution obtained by using NSGA-

II was combined with a dynamic ensemble selection method with the aim of selecting ensemble of 

classifiers with the most competencies in a defined region associated with each instance.  Haque et al. 

[32] encoded 20 base classifiers using a binary scheme and then used GA to search for the optimal 

solution which aims to perform well on the imbalanced datasets. Recently, Wang et al. [33] used NSGA-

II to search for the optimal set of base classifiers generated by training a regression tree on 100 new 

training sets. The new training data was obtained by applying the random subspace and bootstrap 

resampling techniques on the original training set. Nguyen et al. [34] used ACO to simultaneously select 

the optimal meta-data and meta-classifier to improve ensemble performance. 

Meanwhile, in optimization methods for adaptation, the base classifiers or the combining algorithms 

are learned to be adapted to the particular classification problem. The adaptation here means that the 

parameters of these algorithms are trained via an EC-based approach to obtain the specific optimal value 

for each classification task. Wang and Wang [35] used GA to find the optimal weights that the base 

learning algorithms put on each training observation. The base classifiers are then trained on the 

weighted training data. Nanni and Lumini [36] learned the adaptive representation alternative to the 

orthonormal representation in the SCANN method [24].  Instead of using the crisp label to represent 

the class label like in SCANN, the proposed chromosome encodes the real value as the new 

representation. Ali and Majid [9] applied the evolutionary ensemble system to predict human breast 

cancer using amino acid sequences. The GP technique was used to search for the prediction function as 

the mapping of meta-data to the target labels. Meanwhile, the PSO algorithm was used to find the 

optimal threshold for the prediction functions in different feature spaces.  

There are also some methods to handle both optimizations for selection and adaptation. For example, 

Kim and Cho [10] encoded the feature selection methods which will be used for each learning algorithm  



Table 2. Evolutionary Computation-based approaches for ensemble system optimization 

Year Author 
# of Base 

Classifiers 
Algorithms for Base Classifiers Algorithms for Meta-Classifiers 

Selection/Adaption approach Ensemble 

Type 

Optimization 

Method 
Base 

Classifier 

Base 

Feature 

Meta 

Classifier 
Meta-data Adaptation 

2000 Kuncheva et al. [25] 3 LDA, QDA, Logistic Decision Template � �    Heterogeneity GA 

2006 Gabrys et al. [26] 5 

LDA, QDA, Pseudo-Fisher SVM, 

Linear with KL expansion, 
Levenberg–Marquardt Neural Net 

Sum, Majority Vote, Max, Min, 
Product 

� � �   Heterogeneity GA 

2006 Wang et al. [35] 100 Ensemble with RBF network  Weight-based average     � Homogeneity GA 

2008 Kim et al. [27] 50 KNN(K=1) Majority Vote �     Homogeneity GA 

2008 Kim et al. [10] 6 

MLP, SASOM, SVM(Linear and 

RBF), KNN(Cosine distance), 

KNN(Pearson correlation) 

Majority Vote  �   � Heterogeneity GA 

2009 
Bacauskiene et al. 
[11] 

6 SVM-based classifiers -  �   � Homogeneity GA 

2009 Nanni et al. [36] 25 Random Subspace with KNN(K=1) Majority Vote     � Homogeneity GA 

2012 Kim et al. [28] vary 
Bagging and Boosting with DT, MLP 

or SVM 
Majority Vote �     Homogeneity GA 

2013 
Shunmugapriya et 

al. [6] 
10 

NB, Logistic, IB1, IBk(k=5), KStar, 

OneR, PART, ZeroR, DStump, J48 

DT 

NB, Logistic, IB1, IBk (k=5), KStar, 

OneR, PART, ZeroR, DStump, J48 

DT 

�  �   Heterogeneity ABC 

2014 Nguyen et al. [5] 3 LDA, NB, KNN(K=5) 
One in set of (Sum, Majority Vote, 
Median, Max, Min, Product) 

� �    Heterogeneity GA 

2014 Nguyen et al. [17] 3 LDA, NB, KNN(K=5) 
Sum, Majority Vote, Median, Max, 

Min, Product 
�  �   Heterogeneity GA* 

2014 Nguyen et al. [7] 3 LDA, NB, KNN(K=5) GMM    �  Heterogeneity GA 

2014 Nguyen et al. [8] 3 LDA, NB, KNN(K=5) DT    �  Heterogeneity GA 

2014 Chen et al. [29] 10 

NB, Logistic, IB1, IBk(k=5), KStar, 

OneR, PART, ZeroR, DStump, C4.5 

DT 

DT or one in set of (NB, Logistic, 

IB1, IBk (k=5), KStar, OneR, PART, 

ZeroR, DStump, C4.5 DT) 

�  �   Heterogeneity ACO 

2015 
Mendialdua et al. 

[30] 
10 

1R, KNN, RIPPER, Naive Bayes, 

C4.5 DT, KStar, Bayesian Networks, 

NB Tree, RF, SVM 

One in set of (1R, KNN, RIPPER, 

NB, C4.5 DT, KStar, Bayesian 

Networks, NB Tree, RF, SVM) 

�     Heterogeneity EDA 

2015 Mousavi et al. [31] 46 See the detail in [31] 
Sum, Majority Vote, Median, Max, 

Min, Product 
�  �   Heterogeneity NSGA-II* 

2015 Ali et al. [9] 4 KNN, SVM, NB, RF Predictor Function-based GP     � Heterogeneity GP and PSO 

2016 Haque et al. [32] 20 See the detail in [32] Majority Vote �     Heterogeneity GA 

2016 Padilha et al. [37] 30 
Feature Selection with Least Squares 

SVM 
Weight-based average � �   � Homogeneity GA 

2019 Wang et al. [33] 100 
Random Subspace and Bootstrap with 

Regression Tree 
RF �     Homogeneity NSGA-II* 

2019 Nguyen et al. [34] 3 and 5 LDA, NB, KNN(K=5), DT, NMC LDA, NB, KNN(K=5), DT, NMC   � �  Heterogeneity ACO 
 

LDA: Linear Discriminant Analysis, QDA: Qua Discriminant Analysis, SVM: Support Vector Machine, RBF: Radial Basis Function, KNN: K-Nearest Neighbor, MLP: Multi-Layer Perceptron, SASOM: Structure Adaptive Self-Organizing Map, DT: Decision Tree, NB: Naïve Bayes, RF: 

Random Forest, NMC: Nearest Mean Classifier, GMM: Gaussian Mixture Model, DStump: Decision Stump 

GA: Genetic Algorithm, ABC: Artificial Bee Colony, ACO: Ant Colony Optimization, EDA: Estimation of Distribution Algorithm, NSGA-II: Non-dominated Sorting Genetic Algorithm, GP: Genetic Programming;  

* means that the multi-objective optimization was considered 



to learn the base classifiers. The optimal solution then is obtained via GA. In the extended version, the 

chromosomes in GA have encoded the weight for each feature-classifier pair for the weighted sum 

combining rule. Bacauskiene et al. [11] built an ensemble system of Support Vector Machine (SVM)-

based classifiers in which the parameters of each classifier, i.e. the regularization constant and the kernel 

width, are encoded via the binary encoding scheme. The features used by each classifier are also 

encoded in the same chromosome. The optimal solution containing the optimal parameters for each 

classifier and the optimal features used by each of them is obtained after several generations of GA. 

Padilha et al. [37] encoded base classifiers, base features, parameters of SVM classifiers, and the weight 

of each classifier in a single chromosome to conduct the selection and adaptation simultaneously.  

 

3. Proposed Method 

a. Formulation 

As discussed in Section 2, the Decision Template method has limitations by using the single points for 

the representation and has low discriminative ability on imbalanced datasets. In fact, there are 

approaches introducing new representations to overcome these weaknesses. For example, [38] 

introduced a new decision template based on clustering techniques. In detail, a partition ensemble was 

generated based on the concatenation between the ground truth-based partition and the data partitions 

outputted by a clustering ensemble on the meta-data. A consensus partition then was built by measuring 

the weight-based similarity between the partition ensemble and the set of all possible partitions for the 

meta-data. New decision templates were computed as the centroids of the consensus partition. In this 

study, we introduce a different approach to overcome these disadvantages of the Decision Template 

method while inheriting its simplicity. Instead of using the mean value as the representation for each 

class label, we propose using the interval-based vector as a representation for each class label. It is noted 

that each learning algorithm uses different approaches to train the base classifiers on the training data, 

thus introducing uncertainty (i.e. the agreement and disagreement in predictions) in the classifiers’ 

output. On the one hand, several combining methods like the Decision Template method use the precise 

value built from the supports of classifiers to model the data. In many practical situations, a precise 

value may not reflect every event in the data, especially when only limited information is available [14]. 

On the other hand, it is widely recognized that an interval-based model is a suitable tool in representing 

and handling uncertain knowledge [14]. For applications involving probabilistic and statistical 

reasoning, the interval models have shown many successes, especially when they are applied to handle 

the conflict between different sources of information [15]. 

On each test instance, we compute the distance between its meta-data and the vector of intervals 

(representation). The class label associated with the shortest distance is assigned to the test instance. By 



using the interval vector, we provide a more general representation of the combining method. There are 

two questions concerning the proposed method: 

• How to construct the interval-based vector for the class label representation? 

• How to compute the distance between meta-data of a test instance and the vector of intervals? 

In detail, we generate the set of base classifiers � by learning � algorithms on the training set �. The 

meta-data of the training observations is also generated using the T-fold cross validation. The training 

set � is divided into F disjoined parts � = �� ∪ … ∪ �H in which the number of observations in each 

part is nearly equal. For ��, the � algorithms learn on  �I� = � − �� to obtain classifiers which are used 

to predict for observations in ��. In this way, each observation in � has a unique prediction from each 

classifier. The meta-data of � denoted by � is finally obtained by concatenating all meta-data from each ��  in a  × �� matrix (3): 

� = 9 ��,���D
 …  ��,���D
 … �L,���D
 … �L,���D
⋮ ⋱ ⋮��,���N
 …  ��,���N
 … �L,���N
 … �L,���N
; (3) 

Meanwhile, the meta-data of one observation �� is given in a � × � vector of the supports of the base 

classifiers: 

����
 = (��,���O
 … ��,���O
 �P,���O
 … �P,���O
 … … …  �L,���O
 … �L,���O
* (4) 

In this study, we propose to use intervals instead of average to represent the meta-data associated with 

each of the class labels. As mentioned before, different base classifiers would output different supports 

(possibly with disagreement) for an instance. The meta-classifier, therefore, needs to handle this 

disagreement, which can be done using interval-based representation [14]. In addition, in many practical 

situations, observation may be collected under noisy conditions and therefore cannot be associated with 

a precise value. In this case, intervals provide a flexible way to describe the uncertainty of the underlying 

knowledge [15]. The proposed interval-based representation   = !"C#  is given by: 

"C = QR��,���
�. 
, ��,���
�. 
S … R��,���
 �. 
, ��,���
 �. 
S … … … R�L,���
 �. 
, �L,���
 �. 
S … R�L,���
 �. 
, �?,���
 �. 
S T (5) 

in which �?,���
 �. 
 and  �?,���
 �. 
 are the upper and lower bound of the interval-based representation for 

the training instances in the ��� class obtained from the outputs of base classifier k for its prediction for 

class label m. 

By this definition, "C is a vector of �� intervals.  It is noted that the bounds of each interval satisfy the 

constraint: 

0 ≤ �?,���
 �. 
 ≤  �?,���
 �. 
 ≤ 1 ; 0 = 1, … , �; $ = 1, … , � (6) 

 



The vector of intervals will be used as the representation of the class labels. As mentioned before, an 

instance is assigned to a class based on the closeness between its meta-data and the elements in  . It is 

noted that the meta-data of an instance is a numeric vector given by (4) whereas each element of the 

representation   is a set of a vector of intervals. It is recognized that the distance between a numerical 

vector and a vector of intervals is a special case of the distance between two interval vectors where one 

of the vectors has intervals with the same upper bound and lower bound. 

In fact, several kinds of distance can be defined for interval data. Irpino and Varde [39] grouped these 

distances into three groups, namely component-wise approach (which considers some aspects of 

interval data such as position, span, and content), fuzzy oriented approach (which treats interval data 

by using fuzzy numbers), and boundary approach (which considers the bounds of interval data only). 

In this study, we are inspired by the distance between two multivariate intervals defined in [40, 41] 

which is a sum of the distances between each interval member. In this way, the distance between the 

vector of meta-data ����
 and a vector of intervals "C is given by: 

+V����
, "CW = ∑ & X�?,���O
, R�?,���
 �. 
, �?,���
 �. 
SY?��,…,L;���,…,�  (7) 

To calculate the distances & X�?,���O
, R�?,���
 �. 
, �?,���
 �. 
SY in (7), many formulations for the distance 

between two intervals can be used. For example, in [40], the distance between two intervals was defined 

by the sum of three distances concerning the position, span, and content of interval. In this study, we 

are inspired by the Hausdorff distance between two sets [39] and the distance between two intervals 

introduced in [42], i.e. &�('�, 'P*, (Z, [*
 = max  �|'� − Z|, |'P − [|�, in calculating the distance 

between a numerical value and an interval. With a note that a numerical value ' can be treated as a 

special interval ' = (', '* [42], the distance between �?,���O
 and R�?,���
 �. 
, �?,���
 �. 
S is given by: 

& X�?,���O
, R�?,���
 �. 
, �?,���
 �. 
SY = max Q_�?,���O
 − �?,���
 �. 
_ , `�?,���O
 − �?,���
 �. 
`T (8) 

Clearly, the distance in (8) belongs to the boundary approach which only considers two bounds of the 

interval. 

We now introduce an approach to search for the optimal representation from the meta-data and the 

ground truth of the training set. Assume that we have an arbitrary representation  , we compute the 

distances between "C and the meta-data of each training observation. The predicted label is assigned to 

the shortest one among all these distances. Since the ground truths of all training observations are known 

in advance, the empirical 0-1 loss function ℒ-.� computed on a training observation �� is given by: 

ℒ-.����,  
 = < aarg minfg,���,…,�  !+V����
, "CW# ≠ �	�i (9) 

The empirical 0-1 loss function on the training data is given by: 

j-.�� 
 = �@ ∑ ℒ-.����,  
@���  (10) 

 



 

Fig.2. The illustration for the proposed method 

 

The optimal representation is obtained by minimizing the loss function (10) subjects to the constraint 

in (6). The optimization problem is given by: 

kmin j0−1 � 
                                                                                                                       
subject to 0 ≤ �0,$��
 �. 
 ≤  �0,$��
 �. 
 ≤ 1; 0 = 1, … , �; $ = 1, … , �; � = 1, … , �  (11) 

in which   = !"C# and "C is given in (5). After solving (11) by an optimization method, we obtain 

the optimal representation  t = !"t C#�� = 1, … , �
 for the class labels. During classification for a test 

instance �, we compute its meta-data ���
 in (4) by classifying � with the � base classifiers in �. The 

class label is assigned to � by calculating the distance between ���
 and the optimal representation "t C �� = 1, … , �
 and then picking the one associated with the smallest distance. 

�O ∈ �� if �� = arg minfg,���,…,�  !+V����
, "t CW#  (12) 
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b. Optimization 

In this study, we use the Particle Swarm Optimization (PSO) algorithm to search for the optimal bounds 

of the intervals in the representation. PSO is a stochastic population-based algorithm originally 

introduced by Kennedy and Eberhart [12] inspired by the emergent motion of a flock of birds searching 

for food. PSO has some advantages in comparison to other optimization techniques. It is well-known 

that PSO is well suited to handle non-linear, non-convex spaces with non-differentiable, discontinuous 

objective functions. PSO can work with diverse types of variables including continuous, discrete and 

integer types. In comparison to other evolutionary computation-based optimization methods, PSO 

requires fewer number of function evaluations, while it can obtain better or similar quality of solutions 

[43]. Especially, PSO is more effective than GA when solving unconstrained problems with continuous 

variables [44]. PSO is also effective in exploitation as it can employ the knowledge of the previous 

good solution to find better solutions. In contrast, other biological-inspired optimization algorithms like 

the original Artificial Bee Colony is poorer than PSO in term of this ability [45]. Finally, PSO can be 

efficiently parallelized to reduce computational cost. 

There are some variations related to the PSO algorithm that needs to be considered. First, modifications 

can be made on the PSO algorithm to handle the optimization problem with constraints. The most 

straightforward way is to keep tracking the feasible solutions only while the particles search the whole 

space like in the original algorithm [46]. A penalty term can also be added to the objective function 

value when a position violates the constraints so that the positions do not have any opportunities to 

become the best position. Parsopoulos and Vrahatis [47] defined the penalty term as the product of a 

function of iteration number and the sum of multi-stage assignment function of violation of each 

constraint. Perez and Behdinan [43] introduced the penalty scheme with the attention of the average of 

the objective function in the current swarm and the violation of each constraint averaged over the current 

population.  Besides, experiments show that the three parameters of PSO, i.e. the inertia weight u which 

is used to balance the abilities of global and local search, the social and cognitive attraction v� and vP 

which indicates how much confidence one candidate has in the swarm or in itself respectively, may 

have a significant influence on the efficiency and reliability of the PSO algorithm [48]. In the literature, 

some suggested values for these parameters have been introduced so as to improve the effectiveness of 

the search procedure. For inertia weight, there are three strategies to determine its value through the 

iterations: setting it as a constant value and selecting it randomly, changing it with iteration number, 

and revising it using feedback parameters as summarizing in [49]. In this study, we use the second 

strategy in which u is updated at the 1�� iteration as [50]: 

 u = u�wx − �yz{|.yz}~
��wxH  (13) 



Meanwhile, there are also different selections for the social and cognitive attraction when dealing with 

different optimization problems. In the next section, we examine the influence of different values of �v�, vP
 on the performance of the proposed method on the experimental datasets. 

The training phase of the proposed method is presented in Algorithm 1 and Algorithm 2. Given the 

training set �, we learn the set of classifiers � by using � learning algorithms ��?� (step 1). T-fold 

cross validation is then used to generate the meta-data of � (step 2-9). After that, we use PSO algorithm 

to search for the optimal interval-based representation (step 10). In each population, PSO generates and 

evaluates the fitness of ���� candidates. Specifically, for each training observation, we compute the 

distance between its meta-data and each "� (vector of intervals) in the candidate   (step 3 in Algorithm 

2). We then compute the value of the loss function of each training observation (step 5 in Algorithm 2) 

and on the whole training set (step 7 in Algorithm 2). At the end of the PSO algorithm, we reached the 

optimal solution  t . 

In the classification phase in Algorithm 3, the output of the base classifiers � on an unlabeled instance � is obtained as ���
 (step 1). We then computed the distance between ���
 and each of "t� of the 

optimal representation  t  (step 2-4). Based on the classification rule in (12), we assign class label to �� 

using the shortest distance criterion (step 5). 

 

Algorithm 1: Training phase 

Input: Training set �, � learning algorithms ��?�, maximum number 
of iteration: $Z'F, population size: ����, social attraction: v�, 
cognitive attraction: vP. 
Output: The optimal representation of  t and � 

 (Generate the base classifier) 

1. Learn � classifiers � on � using ��?�, 0 = 1, … , � 
 (Generate the meta-data) 

2. Meta-data � = ∅  
3. � = �� ∪ … ∪ �H ,      �� ∩ �� = ∅ �� ≠ �
 
4. For each �� 
5.       �I� = � − �� 
6.       Learn ensemble of classifiers on �I� using ��?� 
7.       Classify instances of �� by these classifiers 
8.       Add outputs on instances in �� to � (3) 
9. End 



10. Use the PSO method:  

For each generated candidate  , compute j-.�� 
 using 

Algorithm 2 

Select the optimal  t with the smallest fitness at the end 
11. Return  t and � 

 

Algorithm 2: Compute the loss value for each candidate generated 

in PSO algorithm 

Input: candidate   

Output: The loss value for   

1. For each �� ∈ �  
2.      For each "� in   

3.           Compute distance between ����
 and "� (7) 
4.      End    

5.      Compute ℒ-.����,  
 by (9) 
6. End 

7. Compute and return ℒ-.�� 
 by (10) 
 

Algorithm 3: Classification phase 

Input: Unlabeled instance �, the optimal representation of  t = !"t�# 
and � 

Output: Predicted class label for � 
1. Obtain the meta-data ���
 by using �(4) 

2. For each "t� 
3.        Compute distance between ���
 and "t� (7) 
4. End 

5. Assign the class label for � by (12) 
 

4. Experimental Studies 

a. Baselines and Settings 

We used three learning algorithms, namely LDA, Naïve Bayes, and 0NN5, to construct the 

heterogeneous ensemble. For the PSO algorithm, the maximum number of iterations $Z'F was set to 



100, the number ���� was set to 50 as in the experiments in [7, 8].  Meanwhile, u�wx and u��� in 

(15) were set to 0.9 and 0.5, respectively. 

We compare the classification accuracy and the F1 measure of the proposed method to some benchmark 

algorithms. On a data file, we used the first 10-fold cross validation procedure to create the training and 

testing data. The first cross validation procedure was run 3 times to obtain 30 trials in each data file. 

The mean and variance of the classification accuracy and F1 measure for the 30 results of each method 

on each data file were computed and reported. We use another 10-fold cross validation on the training 

data to generate its meta-data (Step 2-9 in Algorithm 1). The fitness value of each individual in the PSO 

algorithm, i.e. the value of the 0-1 loss function was evaluated on the meta-data by using (9). The details 

of the experimental procedure can be found in Figure S1 in the Supplement Material. 

We selected seven ensemble systems as the benchmark algorithms. The details of the seven benchmark 

algorithms are: 

• Two well-known heterogeneous ensemble methods namely Decision Template [13] and Sum 

Rule [16]. For these methods, we also used 3 learning algorithms, i.e. LDA, Naïve Bayes, and 0NN5
, to generate the base classifiers. 

• Two EA-based approaches for ensemble selection optimization, namely ACO [29] and GA 

Meta-data [8]: we also used 3 learning algorithms, i.e., LDA, Naïve Bayes, and 0NN5
 to 

generate the base classifiers and the C4.5 Decision Tree was trained on the meta-data to 

generate the meta-classifier like in the original papers. 

• One dynamic ensemble selection method named META-DES [51]. This method aims to select 

a subset of base classifiers for each test instance based on their performance on the neighbors 

of the test instances getting from the training set. META-DES obtains top performance among 

many dynamic ensemble selection methods in experiments. 

• Two ensemble methods using L2-loss Linear Support Vector Machine (denoted by L2LSVM) 

and multi-layer neural network (denoted by MLNN) as the combining algorithms. For these 

methods, we also used 3 learning algorithms i.e. LDA, Naïve Bayes, and 0NN5
 to generate the 

base classifiers. L2-loss Linear Support Vector Machine (denoted by L2LSVM) is a method 

developed from the traditional Support Vector Machine for large scale datasets [52]. We used 

L2LSVM from the package LIBLINEAR (https://www.csie.ntu.edu.tw/~cjlin/liblinear/). For 

MLNN, since it is widely recognized that its performance depends on the configuration, we 

experimented on a wide range of parameter values and then reported the best results for the 

comparison. In detail, the number of hidden layers was set to 2 while the size of the hidden 

layer was chosen from the set of {20, 30, 50, 70, 100}. We used MLNN from the Pattern 

recognition network package of Matlab. 

 

 



b. Statistical Test of Significance 

The proposed method was compared to the benchmark algorithms in terms of classification accuracy 

and F1 measure. We conducted statistical tests to evaluate the difference between the performance of 

the proposed method and the benchmark algorithms. In this study, we used two different statistical tests 

for the comparison purpose. The first test is to compare the performance of all experimental methods 

on all experimental datasets. Here the Friedman test was used to test the null hypothesis that “all 

methods perform equally”. If the null hypothesis is rejected, Nemenyi post-hoc test was used to compare 

all pairwise combinations of the experimental methods. The level of significance was set to 0.05. 

In the second test, we aim to compare performance of the proposed method and each benchmark 

algorithm on a specific dataset. The Wilcoxon signed-rank test [53] was used with the null hypothesis 

that “two methods perform equally on the dataset”. The performance scores of two methods are treated 

as significantly different if the � − �Z��� of the test is smaller than a given confidence level � (set to 

0.05). We used the software package provided in the Matlab library for the Wilcoxon signed-rank test. 

 

c. Datasets 

All methods are run on the 29 datasets extracted from UCI (https://archive.ics.uci.edu/ml/index.php) 

and the GM4 dataset from [3]. The datasets were selected to ensure an objective comparison: diverse 

in the number of observations, the number of class labels, and the number of features. Table 3 presents 

a description of the datasets used in this analysis. 

 

5. Results and Discussions 

a. Evaluations under different values of parameters 

We first evaluate the influence of the two parameters of the PSO algorithm, i.e. social attraction v� and 

cognitive attraction vP, on the performance of the proposed method. As mentioned in section 3, there 

are different choices for the values of these parameters. In this study, we examine v� and vP from the 

set �0, 0.2, 0.4, … , 1.8, 2�. The relationships between �v�, vP
 and the classification accuracy and F1 

score on 10 datasets are shown in Fig 3 and 4, respectively. Clearly, these parameters only have a slight  

effect on the performance of the proposed method except when v� is set to 0, as the classification 

accuracy and F1 score only change slightly with the changes of parameters’ values. For example, the 

classification accuracy varies only by 3.1% on Artificial (0.7519 to 0.7829), 1.13% on Breast-Cancer 

(0.9565 to 0.9678), and 1.44% on Iris (0.9678 to 0.9822) with the changes of v� and vP. A similar 

pattern is found in the figures for F1 score. For instance, F1 score only shows small changes on Artificial 

(3.79%, from 0.7371 to 0.7705) and Iris (2.53%, from 0.9569 to 0.9820). For datasets such as Hayes-

Roth and Balance, the proposed method performs poorly when v� = 0, meanwhile, its performance is 



nearly similar to other values. Since the performance of the proposed method depends only slightly on 

the parameters of the PSO algorithm and its optimal value is somewhat data-dependent, we choose the 

value v� = vP = 1.494 when comparing to the benchmark algorithms. These values are also suggested 

in [48, 49]. 

 

Table 3. The experimental datasets 

Dataset name # of observations # of classes # of dimension 

Appendicitis 106 2 7 

Artificial 700 2 10 

Balance 625 3 4 

Banana 5300 2 2 

Biodeg 1055 2 41 

Blood 748 2 4 

Breast-Cancer 683 2 9 

Cleveland 297 5 13 

Contraceptive 1473 3 9 

Dermatology 358 6 34 

Fertility 100 2 9 

GM4 1000 3 1000 

Haberman 306 2 3 

Hayes-Roth 160 3 4 

Heart 270 2 13 

Hill-Valley 2424 2 100 

Iris 150 3 4 

Led7digit 500 10 7 

Madelon 2000 2 500 

Magic 19020 2 10 

Musk2 6598 2 166 

Newthyroid 215 3 5 

Ring 7400 2 20 

Skin_NonSkin 245057 2 3 

Spambase 4601 2 57 

Twonorm 7400 2 20 

Vehicle 846 4 18 

Waveform_w_Noise 5000 3 40 

Waveform_wo_Noise 5000 3 21 

Wdbc 569 2 30 

 

 

 

 



 

 

 

 

Fig. 3. Relationship between social and cognitive attraction parameters and classification 

accuracy 



 

 

 

Fig. 4. Relationship between social and cognitive attraction parameters and F1 score 

 

b. Comparison based on classification accuracy 

The mean and variance of the classification accuracy of the proposed method and the benchmark 

algorithms are shown in Table 4. First, based on the Friedman test, we rejected the null hypothesis that 

all methods perform equally. We, therefore, conducted the Nemenyi post-hoc test to compare all 

pairwise combinations of all methods. The results of this test are shown in Fig 5. The post-hoc test 



shows that the proposed method is better than META-DES, GA Meta-data, and ACO. Concerning the 

ranking computed on the classification accuracy, the proposed method is better than all benchmark 

algorithms, ranking first with rank value 2.97. Ensemble (L2LSVM) is the second-best method with a 

rank value of 3.23. GA Meta-data and ACO are the two poorest methods in the experiment, ranked at 

values 5.42 and 5.53, respectively. The detail can be found in Table S3 in the Supplement Material. 

Fig 6 shows the results of Wilcoxon signed-rank test when comparing the proposed method and each 

benchmark algorithm. Clearly, the proposed method is competitive to Ensemble (L2LSVM) while it 

performs better than the other benchmark algorithms on the experimental datasets. In comparison to 

META-DES, the proposed method is better on 14 datasets while worse only on 4 datasets. On the two 

datasets where the proposed method is poorer than META-DES, the difference of classification 

accuracy is only significant on the Hill-Valley (0.7856 vs. 0.7076) and Ring (0.9787 vs. 0.8923) dataset. 

Meanwhile, on 14 datasets that our method is better than META-DES, some differences are very 

significant, for example, on Cleveland (0.5774 vs. 0.6184), Madelon (0.6545 vs. 0.7110), and Vehicle 

(0.7226 vs. 0.7762). The proposed method also outperforms Sum Rule, winning on 18 datasets and 

losing on only 2 datasets. On the two datasets that our method loses, i.e. Appendicitis and Artificial, the 

differences in classification accuracy are only 2.21% and 2.57%, respectively. The proposed method 

performs significantly better than the Decision Template method since ours does not lose on any 

datasets while wins on 14 datasets. On datasets such as Biodeg and Breast-Cancer, the classification 

accuracy of the proposed method is around 1% higher than that of the Decision Template method. On 

datasets such as Cleveland, Blood, and Haberman, the proposed method is nearly 4% better than the 

Decision Template method. Especially, on Hayes-Roth, Ring, and Fertility, the proposed method 

significantly outperforms the Decision Template method and the differences in classification accuracy 

of the two methods are 12.3%, 8.55%, and 28%, respectively.  

The proposed method is better than Ensemble (MLNN), winning on 8 datasets and losing on 2 datasets. 

In the cases where ours are poorer than Ensemble (MLNN), the classification accuracies are not too 

much different, 0.7771 vs. 0.7614 on the Artificial dataset and 0.9970 vs. 0.9840 on the GM4 dataset. 

On the other hand, on the datasets where the proposed method is better than Ensemble (MLNN), the 

differences in the classification accuracies are significant, for example, 0.8509 vs. 0.8730 on the Biodeg 

dataset, 0.7540 vs. 0.7746 on the Blood dataset, and 0.9278 vs. 0.9683 on the Wdbc dataset. Finally, 

the proposed method is competitive to Ensemble (L2LSVM) as the win/loss ratio is 5/4. In the cases 

where the Wilcoxon test shows significant differences, the differences in classification accuracy of the 

two methods are from 0.5% to 1.5%. These outstanding results show the superiority of the proposed 

method on the experimental datasets. 

We compare the proposed method to two selection methods namely GA Meta-data and ACO. Once 

again, our method is significantly better than both selection methods since it wins on 15 and 17 datasets 



for GA Meta-data and ACO, respectively. In detail, GA Meta-data and ACO are better than the proposed 

method on 2 datasets, namely GM4 (1 and 1 vs. 0.9840) and Newthyroid (0.9629 and 0.9582 vs. 

0.9408). In contrast, we achieved significantly better results than GA Meta-data and ACO on 15 and 17 

datasets, respectively. Significant differences are found on Blood (0.7180 of ACO vs. 0.7746 of the 

proposed method), Contraceptive (0.4764 of GA Meta-data vs. 0.5347 of the proposed method), and 

Heart (07605 of GA-Meta-data vs. 0.8272 of the proposed method). 

 

Fig. 5. Results of Nemenyi post-hoc test concerning classification accuracy 

 

 

Fig.6. Results of Wilcoxon signed-rank test concerning classification accuracy 
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Table 4. Mean and standard deviation of classification accuracy of proposed method and benchmark algorithms 

Dataset 
META-DES GA Meta-data ACO Decision Template Sum Rule Ensemble (MLNN) Ensemble (L2LSVM) Proposed Method 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Appendicitis 0.8770▼ 0.0927 0.8400 0.1020 0.8173 0.1229 0.8703 0.0908 0.8803 ▼ 0.0940 0.7906 0.1852 0.8682 0.0924 0.8582 0.1034 

Artificial 0.7638 0.0464 0.7705 0.0489 0.7743 0.0491 0.7557 0.0402 0.7871 ▼ 0.0327 0.7771▼ 0.0362 0.7557▲ 0.0387 0.7614 0.0410 

Balance 0.8875▲ 0.0240 0.9148 0.0332 0.9040 0.0285 0.9040 0.0306 0.8901 ▲ 0.0221 0.9190 0.0349 0.8912▲ 0.0232 0.9072 0.0291 

Banana 0.8875 0.0096 0.8884 0.0111 0.8871 0.0152 0.8883 0.0117 0.8903 0.0097 0.8903 0.0094 0.8883 0.0117 0.8906 0.0093 

Biodeg 0.8572▲ 0.0295 0.8164 ▲ 0.0349 0.8200 ▲ 0.0348 0.8610 ▲ 0.0312 0.8575 ▲ 0.0313 0.8509▲ 0.0268 0.8787 0.0237 0.8730 0.0300 

Blood 0.7679 0.0335 0.7656 0.0260 0.7180 ▲ 0.0535 0.7326 ▲ 0.0484 0.7830 0.0349 0.7540▲ 0.0390 0.7853 0.0319 0.7746 0.0330 

Breast-Cancer 0.9624 0.0223 0.9580 0.0285 0.9595 0.0264 0.9541 ▲ 0.0267 0.9536 ▲ 0.0260 0.9566▲ 0.0254 0.9614 0.0256 0.9658 0.0209 

Cleveland 0.5774▲ 0.0750 0.5567 ▲ 0.0637 0.5357 ▲ 0.0781 0.5794 ▲ 0.0796 0.5782 ▲ 0.0560 0.5925 0.0747 0.6274 0.0650 0.6184 0.0555 

Contraceptive 0.5282 0.0321 0.4764 ▲ 0.0361 0.4972 ▲ 0.0442 0.5338 0.0416 0.5440 0.0432 0.5069▲ 0.0405 0.5424 0.0318 0.5347 0.0387 

Dermatology 0.9525▲ 0.0281 0.9617 ▲ 0.0321 0.9663 ▲ 0.0285 0.9739 0.0240 0.9739 0.0241 0.9674 0.0096 0.9739 0.0240 0.9739 0.0289 

Fertility 0.8533 0.0562 0.8100 ▲ 0.1136 0.8533 0.0562 0.5800 ▲ 0.1513 0.8667 0.0538 0.8533 0.0763 0.8800 0.0400 0.8600 0.0611 

GM4 0.9923▼ 0.0117 1.0000 ▼ 0.0000 1.0000 ▼ 0.0000 0.9747 ▲ 0.0146 0.9540 ▲ 0.0214 0.9970▼ 0.0069 1.0000▼ 0.0000 0.9840 0.0123 

Haberman 0.7298 0.0538 0.7036 ▲ 0.0475 0.7016 ▲ 0.0415 0.6898 ▲ 0.0624 0.7405 0.0470 0.7317 0.0504 0.7188 0.0344 0.7243 0.0424 

Hayes-Roth 0.6708 0.1237 0.7083 0.0959 0.7292 0.1145 0.5958 ▲ 0.1432 0.6583 ▲ 0.1449 0.7083 0.1063 0.7167 0.1204 0.7188 0.1082 

Heart 0.8173 0.0496 0.7605 ▲ 0.0832 0.7815 ▲ 0.0909 0.8259 0.0559 0.8296 0.0609 0.7926 0.0945 0.8272 0.0544 0.8272 0.0600 

Hill-Valley 0.7856▼ 0.0420 0.7256 0.0497 0.7215 0.0595 0.7122 0.0256 0.6352 ▲ 0.0292 0.7160 0.0515 0.7112 0.0210 0.7076 0.0541 

Iris 0.9689 0.0374 0.9667 0.0412 0.9600 ▲ 0.0443 0.9667 0.0375 0.9667 0.0375 0.9556 0.0737 0.9667 0.0375 0.9711 0.0373 

Led7digit 0.7013▲ 0.0630 0.7027 ▲ 0.0671 0.6987▲ 0.0778 0.7300 0.0661 0.7273 0.0670 0.7260 0.0743 0.7227 0.0694 0.7267 0.0662 

Madelon 0.6545▲ 0.0297 0.7130 0.0263 0.7130 0.0263 0.7148 0.0284 0.6320 ▲ 0.0332 0.6935▲ 0.0288 0.7132 0.0270 0.7110 0.0248 

Magic 0.8031▲ 0.0070 0.8080 ▲ 0.0117 0.8098 ▲ 0.0069 0.8098 ▲ 0.0078 0.8091 ▲ 0.0061 0.8109▲ 0.0086 0.8132 0.0068 0.8132 0.0067 

Musk2 0.9600▲ 0.0070 0.9650 0.0059 0.9645 0.0059 0.9537 ▲ 0.0070 0.9503 ▲ 0.0078 0.9665 0.0067 0.9639▲ 0.0065 0.9651 0.0058 

Newthyroid 0.9317 0.0510 0.9629 ▼ 0.0349 0.9582 ▼ 0.0369 0.9316 0.0492 0.9052 ▲ 0.0507 0.9396 0.0434 0.9347 0.0505 0.9408 0.0454 

Ring 0.9787▼ 0.0052 0.8768 ▲ 0.0135 0.8789 ▲ 0.0114 0.8068 ▲ 0.0127 0.7912 ▲ 0.0110 0.8916 0.0122 0.8901 0.0114 0.8923 0.0122 

Skin_NonSkin 9.9835E-01▲ 3.07E-04 9.9957E-01 1.19E-04 9.9957E-01 1.13E-04 9.6696E-01 ▲ 1.06E-03 9.5884E-01 ▲ 1.10E-03 9.9958E-01 1.22E-04 9.9953E-01▲ 1.15E-04 9.9958E-01 1.08E-04 

Spambase 0.9039▲ 0.0126 0.8815 ▲ 0.0140 0.8776 ▲ 0.0172 0.9078 0.0108 0.9031 ▲ 0.0116 0.9087 0.0123 0.9055▲ 0.0104 0.9091 0.0112 

Twonorm 0.9783 0.0049 0.9670 ▲ 0.0060 0.9690 ▲ 0.0059 0.9789 0.0044 0.9789 0.0043 0.9761▲ 0.0047 0.9788▼ 0.0045 0.9782 0.0047 

Vehicle 0.7226▲ 0.0422 0.7373 ▲ 0.0436 0.7403 ▲ 0.0379 0.7833 0.0335 0.7395 ▲ 0.0427 0.7644 0.0367 0.7904▼ 0.0307 0.7762 0.0310 

Waveform_w_Noise 0.8468▲ 0.0121 0.8213 ▲ 0.0143 0.8230 ▲ 0.0149 0.8366 ▲ 0.0141 0.8329 ▲ 0.0127 0.8571 0.0170 0.8567 0.0148 0.8539 0.0160 

Waveform_wo_Noise 0.8537▲ 0.0163 0.8262 ▲ 0.0211 0.8295 ▲ 0.0166 0.8440 ▲ 0.0183 0.8354 ▲ 0.0186 0.8601 0.0169 0.8651▼ 0.0164 0.8579 0.0163 

Wdbc 0.9584▲ 0.0205 0.9648 0.0249 0.9543 ▲ 0.0292 0.9654 0.0190 0.9648 ▲ 0.0188 0.9278▲ 0.1225 0.9724 0.0202 0.9683 0.0258 

▼ : The benchmark algorithm is better to the proposed method, ▲: The benchmark algorithm is worse than the proposed method



 

c. Comparison based on F1 score 

We compare the proposed method to the benchmark algorithms on the experimental datasets based on 

F1 score. Once again, the advantage of the proposed method is demonstrated although the result is not 

as significant as the comparison based on classification accuracy. First, the P-Values of the Friedman 

test concerning F1 score is smaller than 0.05 so that we reject the null hypothesis that all methods 

perform equally. The Nemenyi post-hoc test result in Fig. 7 shows that the proposed method is better 

than ACO. The proposed method ranks first among all methods (rank value 3.45), closely followed by 

Ensemble (L2LSVM) (rank value 3.48). ACO and GA Meta-data once again are the two poorest 

methods for F1 measure. The detail of ranking of all methods on each dataset can be found in Table S4 

in the Supplement Material. 

Concerning the Wilcoxon signed-rank test (Fig 8), the proposed method is competitive to Ensemble 

(L2LSVM) and continues to be better than the other benchmark algorithms on the experimental 

datasets. In comparison to META-DES, we rejected 17 null hypotheses that our method and META-

DES perform equally among the 30 datasets. In these cases, the proposed method wins on 14 datasets 

and loses on 3 datasets. The proposed method is better than Sum Rule on F1 score since from the 18 

null hypotheses rejected, ours is better than Sum Rule on 17 cases. The significance in the difference 

between the Decision Template method and the proposed method, however, is reduced in this case 

comparing to the results for classification accuracy. Among the 30 cases, our method outperforms 

Decision Template methods on 9 datasets while underperforms on 4 datasets while for classification 

accuracy, the winning and losing cases are 14 and 0. The proposed method is outstanding compared to 

GA Meta-data and ACO for F1 score. Among 16 rejected null hypothesis, we win on 14 cases and lose 

on only 2 cases. A similar result is obtained when comparing ACO and the proposed method as the 

win/loss ratio is 15/2. The proposed method continues to be slightly better than Ensemble (MLNN) 

since our method wins on 6 cases among 8 rejected null hypothesis. Finally, although, the proposed 

method performs competitively to Ensemble (L2LSVM) with 5 wins and 4 losses, the differences in 

the cases where ours wins are very significant on the Balance (0.6184 vs. 0.8063) and the Haberman 

dataset (0.4823 vs. 0.5400). 



 

Fig.7. Results of Nemenyi post-hoc test concerning F1 score 

 

 

Fig8. Results of Wilcoxon signed-rank test concerning F1 score 
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Table 5. Mean and standard deviation of F1 score of proposed method and benchmark algorithms 

Dataset 
META-DES GA Meta-data ACO Decision Template Sum Rule Ensemble (MLNN) Ensemble (L2LSVM) Proposed Method 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Appendicitis 0.7490 0.1931 0.7057 0.1947 0.6786 0.2002 0.7786 ▼ 0.1652 0.7554 ▼ 0.2010 0.6243 0.2313 0.7279 0.1985 0.6970 0.2265 

Artificial 0.7444 0.0522 0.7517 0.0496 0.7546 0.0503 0.7503 0.0414 0.7651 0.0391 0.7604 0.0381 0.7500 0.0401 0.7509 0.0420 

Balance 0.6233▲ 0.0349 0.8241 0.0730 0.7951 0.0752 0.8380 0.0431 0.6178 ▲ 0.0150 0.8268 0.0941 0.6184▲ 0.0158 0.8063 0.0876 

Banana 0.8842▲ 0.0101 0.8863 0.0115 0.8852 0.0152 0.8869 0.0118 0.8877 0.0100 0.8883 0.0096 0.8869 0.0118 0.8886 0.0096 

Biodeg 0.8440▲ 0.0312 0.7963 ▲ 0.0378 0.7941 ▲ 0.0415 0.8479 0.0333 0.8435 ▲ 0.0342 0.8317▲ 0.0308 0.8627 0.0270 0.8566 0.0339 

Blood 0.5874 0.0668 0.5201 ▲ 0.0748 0.5294 ▲ 0.0646 0.6597 ▼ 0.0593 0.5915 0.0778 0.5778 0.0648 0.5803 0.0767 0.5884 0.0722 

Breast-Cancer 0.9587 0.0241 0.9540 ▲ 0.0312 0.9559 0.0285 0.9488▲ 0.0296 0.9483 ▲ 0.0288 0.9523▲ 0.0276 0.9572 0.0283 0.9630 0.0223 

Cleveland 0.3399 0.1030 0.3193 0.0896 0.3070 0.0721 0.3550 0.0951 0.3065 0.0753 0.3474 0.0934 0.3487 0.0814 0.3365 0.0637 

Contraceptive 0.5096 0.0329 0.4504 ▲ 0.0356 0.4649 ▲ 0.0438 0.5236 0.0405 0.5247 0.0453 0.4783▲ 0.0502 0.5159 0.0381 0.5151 0.0438 

Dermatology 0.9473▲ 0.0313 0.9558 ▲ 0.0385 0.9570 ▲ 0.0395 0.9716 0.0257 0.9717 0.0259 0.9608 0.0427 0.9716 0.0257 0.9715 0.0315 

Fertility 0.4599 0.0167 0.4672 0.0973 0.4790 0.0746 0.4191 0.1393 0.4638 0.0161 0.4953 0.1208 0.4678 0.0117 0.4618 0.0185 

GM4 0.9920▼ 0.0124 1.0000 ▼ 0.0000 1.0000 ▼ 0.0000 0.9745 ▲ 0.0148 0.9543 ▲ 0.0215 0.9970▼ 0.0068 1.0000▼ 0.0000 0.9836 0.0126 

Haberman 0.5358 0.0859 0.4999 0.0894 0.4659 ▲ 0.0627 0.5791 ▼ 0.0794 0.5563 0.0874 0.5467 0.0931 0.4823▲ 0.0639 0.5400 0.0843 

Hayes-Roth 0.6943 0.1187 0.7156 0.0976 0.7389 0.1192 0.6176 ▲ 0.1353 0.6728 ▲ 0.1418 0.6920 0.1334 0.7269 0.1217 0.7189 0.1229 

Heart 0.8115 0.0533 0.7547▲ 0.0889 0.7765 ▲ 0.0961 0.8224 0.0572 0.8250 0.0633 0.7809 0.1192 0.8235 0.0558 0.8230 0.0622 

Hill-Valley 0.7817▼ 0.0448 0.7156 0.0538 0.7102 0.0653 0.7117 0.0256 0.6283 ▲ 0.0342 0.7112 0.0566 0.7109 0.0211 0.6851 0.0716 

Iris 0.9684 0.0382 0.9662 0.0420 0.9594 0.0452 0.9662 0.0382 0.9662 0.0382 0.9508 0.0919 0.9662 0.0382 0.9709 0.0375 

Led7digit 0.6936▲ 0.0616 0.6959 ▲ 0.0720 0.6939 ▲ 0.0787 0.7266 0.0660 0.7248 0.0675 0.7207 0.0738 0.7175 0.0697 0.7219 0.0678 

Madelon 0.6538▲ 0.0299 0.7119 0.0272 0.7119 0.0272 0.7142 0.0291 0.6317 ▲ 0.0330 0.6926▲ 0.0289 0.7122 0.0278 0.7101 0.0252 

Magic 0.7603▲ 0.0093 0.7749 ▲ 0.0115 0.7764 ▲ 0.0084 0.7853 ▼ 0.0092 0.7706 ▲  0.0079 0.7804 0.0100 0.7842▼ 0.0084 0.7811 0.0083 

Musk2 0.9179▲ 0.0154 0.9299 0.0123 0.9280 0.0132 0.9058 ▲ 0.0149 0.8957 ▲ 0.0179 0.9322▼ 0.0137 0.9276 0.0132 0.9286 0.0127 

Newthyroid 0.8859 0.0928 0.9482 ▼ 0.0548 0.9374 ▼ 0.0580 0.8818 0.0904 0.8346 ▲ 0.1025 0.9048 0.0720 0.8885 0.0917 0.9000 0.0817 

Ring 0.9787▼ 0.0052 0.8754▲ 0.0137 0.8774 ▲ 0.0118 0.8047 ▲ 0.0131 0.7816 ▲ 0.0125 0.8909 0.0124 0.8891▲ 0.0117 0.8917 0.0124 

Skin_NonSkin 9.9750E-01▲ 4.65E-04 9.9934E-01 1.80E-04 9.9934E-01 1.72E-04 9.5249E-01 ▲ 1.45E-03 9.3936E-01 ▲ 1.57E-03 9.9936E-01 1.86E-04 9.9929E-01▲ 1.75E-04 9.9936E-01 1.64E-04 

Spambase 0.8993▲ 0.0131 0.8757 ▲ 0.0148 0.8714 ▲ 0.0178 0.9023 0.0115 0.8963 ▲ 0.0126 0.9036 0.0132 0.8997▲ 0.0111 0.9044 0.0117 

Twonorm 0.9783 0.0049 0.9670 ▲ 0.0060 0.9690 ▲ 0.0059 0.9789 0.0044 0.9789 0.0043 0.9761▲ 0.0047 0.9788 0.0045 0.9782 0.0047 

Vehicle 0.7095▲ 0.0475 0.7376 ▲ 0.0447 0.7414 ▲ 0.0363 0.7768 0.0369 0.7279 ▲ 0.0467 0.7630 0.0359 0.7867▼ 0.0311 0.7692 0.0322 

Waveform_w_Noise 0.8463▲ 0.0122 0.8212 ▲ 0.0144 0.8229 ▲ 0.0148 0.8332 ▲ 0.0148 0.8286 ▲ 0.0135 0.8568 0.0171 0.8563 0.0148 0.8536 0.0160 

Waveform_wo_Noise 0.8524▲ 0.0166 0.8259 ▲ 0.0213 0.8292 ▲ 0.0167 0.8386 ▲ 0.0197 0.8281 ▲ 0.0204 0.8593 0.0173 0.8643▼ 0.0166 0.8568 0.0167 

Wdbc 0.9551▲ 0.0222 0.9626 0.0264 0.9514 ▲ 0.0309 0.9622 ▲ 0.0211 0.9614 ▲ 0.0209 0.9138▲ 0.1597 0.9700 0.0220 0.9658 0.0276 

▼ : The benchmark algorithm is better to the proposed method, ▲: The benchmark algorithm is worse than the proposed method



d. Discussions 

The proposed method is better than Sum Rule for both classification accuracy and F1 score. As 

mentioned before, Sum Rule is a fixed combining method which does not use the label information in 

the meta-data of the training observations to train the combiner. This, therefore, makes Sum Rule very 

fast in training since only the base classifiers are trained. However, because Sum Rule does not exploit 

information in the meta-data of the training observations, it performs poorer compared to trainable 

combining methods such as the Decision Template method and the proposed method. As we also 

optimized the upper and lower bound of each interval in the representation by minimizing the 0-1 loss 

on the training data, the proposed method is therefore significantly better than Sum Rule. 

Surprisingly, the two selection methods perform the poorest in our experiment, taking the last positions 

in ranking. In GA Meta-data and ACO method, we used C4.5 Decision Tree as the combining algorithm 

as in the original studies. The poor performance of Decision Tree when working as a combiner is a 

reason why these two methods underperform on experimental datasets. Theoretically, any learning 

algorithms can be used to combine classifiers in an ensemble system. However, algorithms that can 

handle and adapt to the characteristics of the meta-data like Decision Template and the proposed method 

are expected to achieve better performance.  

META-DES ranks fourth for both performance measures. In fact, META-DES is a dynamic ensemble 

selection method that selects a subset of base classifiers for each test instance based on their competency 

on the neighborhood of the test instance. The performance of the dynamic ensemble selection method 

thus mainly depends on the technique to define the region to compute competency [51]. In META-DES, 

the K Nearest Neighbors obtained from a validation set are used to construct the region of competence 

associated with each test instance. On some datasets, the base classifiers which perform well on the 

validation instances may misclassify test instance because of the difference in distribution between the 

validation data and the test data. This explains why META-DES obtains low classification accuracy on 

some datasets. 

Finally, the proposed method is better than the Decision Template method, especially for classification 

accuracy. As mentioned in Section 2.2, the Decision Template method has a limitation when applying 

to imbalanced data as the prediction is mainly belonged to the majority label, resulting in the similarity 

in the decision templates. The Decision Template method, therefore, performs poorly on imbalanced 

datasets in experiments such as Fertility and Hayes-Roth. The proposed method meanwhile uses 

intervals to model the class label. The representation is learned to adapt to each dataset by minimizing 

the 0-1 loss function on the training data, resulting in better results than the Decision Template method. 

Moreover, interval is an effective way to handle reasoning and it has more advantages than the single 

point representation in the Decision Template method. Fig 9 shows the comparison between the 

representation of the Decision Template method and the proposed method on the Fertility dataset 



(Another figure for Hayes-Roth is shown in the Supplement Material). In detail, we draw the histogram 

to show the distribution of data in each column of the meta-data. For each class label, we will have � ×� histograms, � × � decision templates, and � × � intervals. The red line here shows the value of 

decision template while the yellow range between two green lines shows the interval of representation. 

It is observed that the interval approach provides a more general representation by capturing the range 

in predictions than just a single point value as in the Decision Template method. Moreover, the decision 

templates of this dataset are very similar, resulting in an ambiguous decision when assigning instances 

to the class labels (see Fig. 1 for more detail). The elements in the interval-based representation, in 

contrast, are significantly different between the two class labels. These make the proposed method 

performs better than the Decision Template method on some datasets. 

Fig. 10 shows the average value of loss function vs iterations in PSO. The value was obtained from the 

loss values of all candidates in the population in each generation. In this work, along with candidates 

generated by PSO algorithm, we initialize a special candidate based on the decision template by 

adding/subtracting a value � = 0.01 to the decision template to obtain the interval i.e. 

=&1��0, $
 − �, &1��0, $
 + �>. This candidate will be evolved through iterations in PSO algorithms. In 

this way, we also search intervals around the decision template for the optimal solution. It is observed 

from Fig. 10 that the average value of the loss value quickly coverages to the optimal value after a small 

number of iterations. 

 

6. Conclusions 

We have introduced a novel combining method for heterogeneous ensemble systems via the interval-

based representation. The proposed method originates from the observation that the Decision Template 

method does not perform well on imbalanced datasets and datasets with skewed class distribution. In 

this study, instead of using numerical value to model the representation like in the Decision Template 

method, we used the interval values which provide a more general representation as well as capturing 

the uncertainty in the classifiers’ predictions. Here each class label is modeled by an optimal vector of 

intervals which is found by minimizing the 0-1 loss function on the training data using PSO algorithm. 

It is noted that the bounds of each interval belong to (0,1* and the lower bound is smaller than or equal 

to the upper bound so that the original PSO algorithm was modified to handle the constraints of the 

bounds of intervals. Classification is done by assigning a test instance to the label that is associated with 

the shortest distance between the meta-data of the instance and the interval-based representation. 

 

 



 

             

0.8338 0.1662 0.9170 0.0830 1.0000 0.0000 

0.9873 0.0127 0.9838 0.0162 1.0000 0.0000 

0.8105 0.1895 0.8926 0.1074 0.8000 0.2000 

… … … … … … 

0.9986 0.0014 0.9962 0.0038 1.0000 0.0000 

0.9980 0.0020 0.9908 0.0092 1.0000 0.0000 

0.9875 0.0125 0.9246 0.0754 1.0000 0.0000 

 

 

 

 

 

 

  

Meta-data associated with class 1 



 

 

0.8401 0.1599 0.8702 0.1298 1.0000 0.0000 

0.9435 0.0565 0.9437 0.0563 1.0000 0.0000 

0.7434 0.2566 0.6856 0.3144 0.6000 0.4000 

… … … … … … 

0.8616 0.1384 0.9383 0.0617 0.8000 0.2000 

0.9991 0.0009 0.9943 0.0057 1.0000 0.0000 

0.8697 0.1303 0.8941 0.1059 0.8000 0.2000 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison between the representation of Decision Template method and proposed method on the Fertility dataset

Meta-data associated with class 2 



 

Fig. 10. The value of loss function in the PSO iterations on six datasets 

 

We conducted the experiments on the proposed methods and 7 benchmark algorithms on 30 datasets. 

Based on the results of multiple methods – multiple datasets test, the proposed method is better than 

META-DES, ACO and GA Meta-data for classification accuracy. The proposed method also ranks first 

for both performance measures. Meanwhile, via the results of Wilcoxon signed-rank test when 

comparing to each benchmark algorithm, proposed method is better than all the benchmark algorithms 

except Ensemble (L2LSVM) for classification accuracy and F1 score. We also noted that the social and 

cognitive attraction parameters of the PSO algorithm have slight influences on the performance of 

proposed method except on some datasets when social attraction is set to 0. 

The proposed method is an evolutionary computation-based approach for the adaptation of combining 

algorithm. In the future, the proposed method can be expanded to handle the selection problem which 

could further improve the classification performance. In this study, we only addressed a single objective 

optimization problem i.e. minimizing the 0-1 loss function to obtain the optimal representation. The 

searching process therefore only focuses on finding the candidate which has the smallest loss value 

while ignoring other performance measures such as F1 score. The F1 score or other performance 

measures of the proposed method can be enhanced by considering multi-objective optimization when 



searching for the optimal candidates. Besides, although the mean loses its capability to provide the best 

central location in some situations, it is still a very important statistic. One potential research is to 

combine both the mean value-based distance and the interval-based distance to assign the predicted 

label in (12). Moreover, in this study, we used the boundary approach in calculating the distance 

between two vectors of intervals [39, 42]. Other distances like in [39-41] can be used in this method to 

measure the similarity (or dissimilarity) between the meta-data and the interval-based representation. 

The analysis of the influence of using different distances to the ensemble performance will be a potential 

future work. Finally, the proposed method can be combined with other techniques to handle imbalanced 

data. In [54], synthetic minority over-sampling technique (SMOTE) and sampling with replacement 

technique in Bagging were combined with differentiated sampling rates (DSR) to generate positive and 

negative samples respectively to obtain balanced training data.  [55] meanwhile handles imbalanced 

data streams by using embedded SMOTE in each iteration of AdaBoost to generate minority samples. 

The sampling process focuses more on generating new samples around new and difficult minority 

samples to make the training data balanced. All these approaches are useful for further investigations. 
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Fig.S1. The experimental procedure 

 

*From a data file, we used the first 10-fold Cross-Validation procedure (the blue box) to create the training and testing data. The first Cross-Validation procedure was run 3 times to obtain 30 trials in each data file. 

The second 10-fold Cross-Validation procedure (the orange box) was used in each training set to generate its meta-data 
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Table.S1. Wilcoxon signed rank test result concerning classification accuracy 

Dataset 
  

META-DES vs. GA Meta-data vs. ACO-S1 vs. Decision Template vs. Sum Rule vs. Ensemble 
(L2LSVM) 

vs. Ensemble 
(MLNN) 

P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? 
Appendicitis 2.34E-02 Yes▼ 4.20E-01  5.27E-02  5.39E-01  3.13E-02 Yes ▼ 1.56E-01  1.12E-01  
Artificial 7.12E-01  2.09E-01  1.23E-01  7.12E-02  2.05E-03 Yes ▼ 4.06E-02 Yes ▲ 3.60E-02 Yes ▼ 
Balance 1.24E-03 Yes▲ 1.33E-01  3.38E-01  4.44E-01  3.28E-03 Yes ▲ 4.53E-03 Yes ▲ 8.02E-02  
Banana 1.10E-01  6.32E-02  1.35E-01  9.58E-02  6.73E-01  9.58E-02  5.59E-01  
Biodeg 1.12E-02 Yes▲ 2.53E-06 Yes ▲ 8.04E-06 Yes ▲ 4.03E-02 Yes ▲ 9.90E-03 Yes ▲ 1.74E-01  5.75E-04 Yes ▲ 
Blood 1.62E-01  1.34E-01  3.03E-05 Yes ▲ 9.26E-05 Yes ▲ 1.81E-01  1.12E-01  9.99E-03 Yes ▲ 
Breast-Cancer 2.83E-01  8.96E-02  7.56E-02  2.69E-03 Yes ▲ 1.78E-03 Yes ▲ 2.64E-01  2.67E-02 Yes ▲ 
Cleveland 2.72E-02 Yes▲ 1.25E-03 Yes ▲ 3.23E-04 Yes ▲ 5.72E-03 Yes ▲ 1.39E-02 Yes ▲ 2.92E-01  6.53E-02  
Contraceptive 3.00E-01  4.54E-06 Yes ▲ 7.54E-05 Yes ▲ 9.32E-01  1.13E-01  2.16E-01  4.45E-03 Yes ▲ 
Dermatology 2.79E-03 Yes▲ 4.58E-02 Yes ▲ 4.22E-02 Yes ▲ 1.00E+00  1.00E+00  1.00E+00  2.21E-01  
Fertility 7.54E-01  2.83E-02 Yes ▲ 7.81E-01  3.42E-06 Yes ▲ 7.66E-01  6.25E-02  7.45E-01  
GM4 4.36E-03 Yes▼ 1.44E-05 Yes ▼ 1.44E-05 Yes ▼ 6.10E-05 Yes ▲ 4.95E-06 Yes ▲ 1.44E-05 Yes ▼ 4.23E-04 Yes ▼ 
Haberman 6.39E-01  1.97E-02 Yes ▲ 2.39E-02 Yes ▲ 1.63E-02 Yes ▲ 1.06E-01  2.72E-01  6.47E-01  
Hayes-Roth 5.57E-02  5.73E-01  5.22E-01  2.84E-05 Yes ▲ 7.69E-03 Yes ▲ 9.53E-01  5.15E-01  
Heart 4.27E-01  3.98E-05 Yes ▲ 6.84E-03 Yes ▲ 9.52E-01  3.61E-01  8.83E-01  1.76E-01  
Hill_Valley 2.16E-05 Yes▼ 2.29E-01  2.70E-01  7.19E-01  6.01E-05 Yes ▲ 6.29E-01  3.36E-01  
Iris 8.13E-01  6.88E-01  2.97E-02 Yes  ▲ 5.00E-01  5.00E-01  5.00E-01  4.06E-01  
Led7digit 1.62E-03 Yes▲ 1.06E-04 Yes ▲ 5.56E-04 Yes ▲ 4.61E-01  8.84E-01  2.83E-01  8.64E-01  
Madelon 4.05E-06 Yes▲ 3.62E-01  3.62E-01  1.77E-01  1.98E-06 Yes ▲ 3.01E-01  3.81E-03 Yes ▲ 
Magic 2.83E-06 Yes▲ 1.48E-03 Yes ▲ 3.38E-03 Yes ▲ 5.14E-04 Yes ▲ 4.03E-05 Yes ▲ 5.09E-01  4.99E-02 Yes ▲ 
Musk2 1.35E-05 Yes▲ 8.59E-01  4.16E-01  1.71E-06 Yes ▲ 1.72E-06 Yes ▲ 3.89E-02 Yes ▲ 6.18E-02  
Newthyroid 2.86E-01  3.06E-02 Yes ▼ 1.36E-02 Yes ▼ 2.32E-01  6.16E-04 Yes ▲ 4.69E-01  7.75E-01  
Ring 1.73E-06 Yes▼ 2.46E-06 Yes ▲ 2.46E-06 Yes ▲ 1.71E-06 Yes ▲ 1.72E-06 Yes ▲ 6.54E-02  3.94E-01  
Skin_NonSkin 1.73E-06 Yes▲ 6.35E-01  1.02E-01  1.73E-06 Yes ▲ 1.73E-06 Yes ▲ 8.49E-03 Yes ▲ 5.69E-01  
Spambase 3.71E-02 Yes▲ 2.35E-06 Yes ▲ 1.92E-06 Yes ▲ 1.35E-01  1.47E-04 Yes ▲ 9.64E-03 Yes ▲ 7.40E-01  
Twonorm 7.53E-01  2.03E-06 Yes ▲ 4.27E-06 Yes ▲ 1.23E-01  1.15E-01  4.29E-02 Yes ▼ 1.54E-02 Yes ▲ 
Vehicle 4.81E-05 Yes▲ 5.24E-04 Yes ▲ 2.42E-04 Yes ▲ 1.51E-01  1.28E-04 Yes ▲ 2.41E-03 Yes ▼ 1.03E-01  
Waveform_w_Noise 1.34E-02 Yes▲ 3.45E-06 Yes ▲ 2.33E-06 Yes ▲ 5.47E-06 Yes ▲ 3.42E-06 Yes ▲ 8.25E-02  1.61E-01  
Waveform_wo_Noise 2.77E-02 Yes▲ 2.11E-06 Yes ▲ 3.48E-06 Yes ▲ 4.26E-05 Yes ▲ 3.85E-06 Yes ▲ 2.10E-04 Yes ▼ 3.99E-01  
Wdbc 5.22E-03 Yes▲ 4.07E-01  9.40E-03 Yes ▲ 7.81E-02  3.27E-02 Yes ▲ 4.94E-01  1.15E-02 Yes ▲ 

 

* Yes means we rejected the null hypothesis because P-Value of the test is smaller than 0.05 
* ▲ and ▼ mean the proposed method is better or worse than the benchmark algorithm 
 

 



Table.S2. Wilcoxon signed rank test result concerning F1 score 

Dataset META-DES vs. GA Meta-data vs. ACO-S1 vs. Decision Template vs. Sum Rule vs. Ensemble 
(L2LSVM) 

vs. Ensemble 
(MLNN) 

P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? P-Value Reject? 
Appendicitis 5.08E-02  1.00E+00  6.73E-01  3.39E-02 Yes ▼ 2.34E-02 Yes ▼ 1.64E-01  2.70E-01  
Artificial 4.91E-01  9.54E-01  7.70E-01  8.41E-01  1.91E-01  6.79E-01  3.16E-01  
Balance 3.88E-06 Yes▲ 8.94E-01  2.30E-01  3.36E-01  6.28E-06 Yes ▲ 4.72E-06 Yes ▲ 3.82E-01  
Banana 1.57E-02 Yes▲ 5.45E-02  1.20E-01  2.37E-01  4.69E-01  2.37E-01  7.54E-01  
Biodeg 2.85E-02 Yes▲ 2.56E-06 Yes ▲ 9.32E-06 Yes ▲ 1.59E-01  3.32E-02 Yes ▲ 2.58E-01  8.35E-04 Yes ▲ 
Blood 5.96E-01  5.29E-04 Yes ▲ 4.68E-03 Yes ▲ 7.51E-05 Yes ▼ 8.48E-01  4.69E-01  5.04E-01  
Breast-Cancer 6.73E-02  1.90E-02 Yes ▲ 9.87E-02  6.34E-04 Yes ▲ 3.63E-04 Yes ▲ 1.16E-01  1.12E-02 Yes ▲ 
Cleveland 8.45E-01  2.99E-01  1.11E-01  2.89E-01  1.65E-01  3.04E-01  7.50E-01  
Contraceptive 4.91E-01  4.73E-06 Yes ▲ 1.49E-05 Yes ▲ 2.06E-01  2.37E-01  8.13E-01  2.58E-03 Yes ▲ 
Dermatology 7.29E-04 Yes▲ 1.13E-02 Yes ▲ 3.09E-02 Yes ▲ 1.00E+00  1.00E+00  1.00E+00  8.34E-02  
Fertility 1.00E+00  4.85E-01  6.08E-01  9.75E-02  7.66E-01  6.25E-02  5.45E-01  
GM4 3.78E-03 Yes▼ 1.76E-05 Yes ▼ 1.76E-05 Yes ▼ 6.10E-05 Yes ▲ 3.18E-06 Yes ▲ 1.76E-05 Yes ▼ 3.13E-04 Yes ▼ 
Haberman 6.48E-01  8.19E-02  2.84E-03 Yes ▲ 4.76E-02 Yes ▼ 2.47E-01  2.23E-03 Yes ▲ 7.92E-01  
Hayes-Roth 2.64E-01  8.29E-01  5.85E-01  5.56E-05 Yes ▲ 3.25E-02 Yes ▲ 5.10E-01  3.47E-01  
Heart 2.05E-01  4.80E-05 Yes ▲ 4.17E-03 Yes ▲ 9.66E-01  8.72E-01  8.95E-01  6.74E-02  
Hill_Valley 1.64E-05 Yes▼ 1.20E-01  1.27E-01  1.99E-01  2.96E-03 Yes ▲ 1.85E-01  8.22E-02  
Iris 5.00E-01  4.53E-01  1.56E-01  3.13E-01  3.13E-01  3.13E-01  2.50E-01  
Led7digit 2.56E-03 Yes▲ 9.71E-05 Yes ▲ 9.63E-04 Yes ▲ 2.00E-01  5.39E-01  4.56E-01  7.01E-01  
Madelon 4.73E-06 Yes▲ 3.49E-01  3.49E-01  1.77E-01  2.13E-06 Yes ▲ 3.05E-01  4.68E-03 Yes ▲ 
Magic 1.73E-06 Yes▲ 2.61E-04 Yes ▲ 8.94E-04 Yes ▲ 1.71E-03 Yes ▼ 2.60E-06 Yes ▲ 1.59E-03 Yes ▼ 8.13E-01  
Musk2 1.64E-05 Yes▲ 2.99E-01  6.29E-01  1.73E-06 Yes ▲ 1.73E-06 Yes ▲ 4.53E-01  1.69E-02 Yes ▼ 
Newthyroid 6.12E-02  6.07E-03 Yes ▼ 2.28E-02 Yes ▼ 9.20E-02  7.77E-05 Yes ▲ 2.72E-01  8.72E-01  
Ring 1.73E-06 Yes▼ 2.13E-06 Yes ▲ 2.13E-06 Yes ▲ 1.73E-06 Yes ▲ 1.73E-06 Yes ▲ 2.70E-02 Yes ▲ 3.99E-01  
Skin_NonSkin 1.73E-06 Yes▲ 5.84E-01  9.45E-01  1.73E-06 Yes ▲ 1.73E-06 Yes ▲ 2.97E-02 Yes ▲ 4.81E-01  
Spambase 3.16E-02 Yes▲ 2.35E-06 Yes ▲ 1.92E-06 Yes ▲ 6.45E-02  1.49E-05 Yes ▲ 1.48E-03 Yes ▲ 7.66E-01  
Twonorm 5.16E-01  1.92E-06 Yes ▲ 4.28E-06 Yes ▲ 1.63E-01  1.75E-01  8.92E-02  2.11E-02 Yes ▲ 
Vehicle 3.11E-05 Yes▲ 1.71E-03 Yes ▲ 2.77E-03 Yes ▲ 1.36E-01  1.36E-04 Yes ▲ 8.31E-04 Yes ▼ 5.04E-01  
Waveform_w_Noise 1.40E-02 Yes▲ 3.52E-06 Yes ▲ 2.35E-06 Yes ▲ 1.73E-06 Yes ▲ 1.73E-06 Yes ▲ 9.78E-02  1.85E-01  
Waveform_wo_Noise 2.85E-02 Yes▲ 2.35E-06 Yes ▲ 3.18E-06 Yes ▲ 1.02E-05 Yes ▲ 2.13E-06 Yes ▲ 2.22E-04 Yes ▼ 3.82E-01  
Wdbc 4.72E-03 Yes▲ 6.37E-01  3.86E-02 Yes ▲ 1.13E-02 Yes ▲ 4.82E-03 Yes ▲ 4.73E-01  1.50E-02 Yes ▲ 

 

* Yes means we rejected the null hypothesis because P-Value of the test is smaller than 0.05 
* ▲ and ▼ mean the proposed method is better or worse than the benchmark algorithm 
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Fig.S2.Comparison between the representation of Decision Template method and proposed method on Hayes-Roth dataset 
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Table.S3. Ranking of benchmark algorithms and proposed method on each dataset for classification accuracy 

 META-DES GA Meta-data ACO Decision 
Template Sum Rule Ensemble 

(MLNN) 
Ensemble 

(L2LSVM) 
Proposed 
Method 

Appendicitis 2 6 7 3 1 8 4 5 
Artificial 5 4 3 7.5 1 2 7.5 6 
Balance 8 2 4.5 4.5 7 1 6 3 
Banana 7 4 8 5.5 2.5 2.5 5.5 1 
Biodeg 5 8 7 3 4 6 1 2 
Blood 4 5 8 7 2 6 1 3 
Breast-Cancer 2 5 4 7 8 6 3 1 
Cleveland 6 7 8 4 5 3 1 2 
Contraceptive 5 8 7 4 1 6 2 3 
Dermatology 8 7 6 2.5 2.5 5 2.5 2.5 
Fertility 5 7 5 8 2 5 1 3 
GM4 5 2 2 7 8 4 2 6 
Haberman 3 6 7 8 1 2 5 4 
Hayes-Roth 6 4.5 1 8 7 4.5 3 2 
Heart 5 8 7 4 1 6 2.5 2.5 
Hill-Valley 1 2 3 5 8 4 6 7 
Iris 2 4.5 7 4.5 4.5 8 4.5 1 
Led7digit 7 6 8 1 2 4 5 3 
Madelon 7 3.5 3.5 1 8 6 2 5 
Magic 8 7 4.5 4.5 6 3 1.5 1.5 
Musk2 6 3 4 7 8 1 5 2 
Newthyroid 6 1 2 7 8 4 5 3 
Ring 1 6 5 7 8 3 4 2 
Skin_NonSkin 6 3.5 3.5 7 8 1.5 5 1.5 
Spambase 5 7 8 3 6 2 4 1 
Twonorm 4 8 7 1.5 1.5 6 3 5 
Vehicle 8 7 5 2 6 4 1 3 
Waveform_w_Noise 4 8 7 5 6 1 2 3 
Waveform_wo_Noise 4 8 7 5 6 2 1 3 
Wdbc 6 4.5 7 3 4.5 8 1 2 
Average 5.03 5.42 5.53 4.88 4.78 4.15 3.23 2.97 

 



Table.S4. Ranking of benchmark algorithms and proposed method on each dataset for F1 score 

 META-
DES GA Meta-data ACO Decision 

Template Sum Rule Ensemble 
(MLNN) 

Ensemble 
(L2LSVM) 

Proposed 
Method 

Appendicitis 3 5 7 1 2 8 4 6 
Artificial 8 4 3 6 1 2 7 5 
Balance 6 3 5 1 8 2 7 4 
Banana 8 6 7 4.5 3 2 4.5 1 
Biodeg 4 7 8 3 5 6 1 2 
Blood 4 8 7 1 2 6 5 3 
Breast-ancer 2 5 4 7 8 6 3 1 
Cleveland 4 6 7 1 8 3 2 5 
Contraceptive 5 8 7 2 1 6 3 4 
Dermatology 8 7 6 2.5 1 5 2.5 4 
Fertility 7 4 2 8 5 1 3 6 
GM4 5 2 2 7 8 4 2 6 
Haberman 5 6 8 1 2 3 7 4 
Hayes-Roth 5 4 1 8 7 6 2 3 
Heart 5 8 7 4 1 6 2 3 
Hill-Valley 1 2 6 3 8 4 5 7 
Iris 2 4.5 7 4.5 4.5 8 4.5 1 
Led7digit 8 6 7 1 2 4 5 3 
Madelon 7 3.5 3.5 1 8 6 2 5 
Magic 8 6 5 1 7 4 2 3 
Musk2 6 2 4 7 8 1 5 3 
Newthyroid 6 1 2 7 8 3 5 4 
Ring 1 6 5 7 8 3 4 2 
Skin_NonSkin 6 3.5 3.5 7 8 1.5 5 1.5 
Spambase 5 7 8 3 6 2 4 1 
Twonorm 4 8 7 1.5 1.5 6 3 5 
Vehicle 8 6 5 2 7 4 1 3 
Waveform_w_Noise 4 8 7 5 6 1 2 3 
Waveform_wo_Noise 4 8 6 5 7 2 1 3 
Wdbc 6 3 7 4 5 8 1 2 
Average 5.17 5.25 5.47 3.87 5.20 4.12 3.48 3.45 
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